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Abstract: High-resolution mapping of irrigated fields is needed to better estimate water and nutrient
fluxes in the landscape, food production, and local to regional climate. However, this remains a
challenge in humid to subhumid regions, where irrigation has been expanding into what was largely
rainfed agriculture due to trends in climate, crop prices, technologies and practices. One such region is
southwestern Michigan, USA, where groundwater is the main source of irrigation water for row crops
(primarily corn and soybeans). Remote sensing of irrigated areas can be difficult in these regions
as rainfed areas have similar characteristics. We present methods to address this challenge and
enhance the contrast between neighboring rainfed and irrigated areas, including weather-sensitive
scene selection, applying recently developed composite indices and calculating spatial anomalies.
We create annual, 30m-resolution maps of irrigated corn and soybeans for southwestern Michigan
from 2001 to 2016 using a machine learning method (random forest). The irrigation maps reasonably
capture the spatial and temporal pattern of irrigation, with accuracies that exceed available products.
Analysis of the irrigation maps showed that the irrigated area in southwestern Michigan tripled
in the last 16 years. We also discuss the remaining challenges for irrigation mapping in humid to
subhumid areas.

Keywords: irrigation mapping; remote sensing; random forest; subhumid region

1. Introduction

Agriculture is the sector with the largest consumptive use of water across the globe. While crop
water demand is largely met by irrigation in arid to semiarid regions, farmers in humid regions
traditionally rely on rainfall. However, irrigation has become more common in humid to subhumid
regions [1], driven by the growth of demand for corn grain bioethanol, the need to increase yield given
current low prices of corns and soybeans [2], the ready availability of more water and energy efficient
irrigation technologies, and increasing climate variability.

The rapid expansion of irrigation has important implications for terrestrial water balances, food
production, and local to regional climate [3-6]. Land surface models have been increasingly used as
quantitative tools to estimate the effects of land use change and other human activities on terrestrial
water and energy cycles. However, these models require high-resolution observations at the model
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scale to fully vet the irrigated area [7,8]. Thus, detailed depiction of spatiotemporal patterns of
irrigation is needed for modelers and decision makers [9]. However, accurate monitoring of irrigated
area can be difficult in humid to subhumid regions (hereafter humid regions), primarily because of the
similarity of signals from rainfed and irrigated areas in such regions [10].

Remote sensing provides valuable information to delineate irrigated areas. Within the U.S,,
the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset for the
United States (MIrAD-US) national irrigation dataset was developed by the U.S. Geological Survey
(USGS) by integrating U.S. Department of Agriculture (USDA) county statistics, MODIS satellite
imagery and a national land cover map [11]. The MIrAD-US product has 250-m resolution and is
available in 2002, 2007 and 2012. MIrAD-US revealed significant temporal variability and suggests the
need for regular periodic mapping of irrigated areas [12]. Later studies have used higher resolution
imagery (10-30 m) from Landsat and Sentinel-1 satellites to develop more detailed irrigation maps
for local to regional studies [13-15]. In particular, annual irrigation maps were developed for the
Republican River Basin from 1999 to 2016 (AIM-RRB), leveraging recent advances in cloud computing,
machine learning, and increasingly accessible Landsat data [13].

In southwestern Michigan, a subhumid region in the midwestern U.S., water consumption by
agriculture has rapidly increased over the past two decades. Irrigation of row crops (primarily corn and
soybean) was once practiced only on a small fraction of the total crop land across the upper Midwest.
However, in the last two decades there has been a dramatic expansion in irrigation use [2], mostly
from groundwater pumping [16]. Large acreages of fields in southwestern Michigan are devoted
to producing seed corn, commercial corn, and soybeans [16]. The prevailing sandy soils [17] and
shallow depths to groundwater [18] in this region allows adoption of central pivot irrigation systems
with limited operation costs. Given the strong connection between groundwater and surface water,
irrigation in southwestern Michigan has the potential to reduce the health of some local surface water
ecosystems [19].

Remote sensing methods are able to map irrigated fields in arid and semi-arid environments with
satisfactory accuracy, however the accuracy of satellite-based irrigation mapping techniques in more
humid regions is still unknown [11]. The objective of this study was to create high-resolution, annual
maps of irrigated fields in a sub-humid region by integrating remote sensing imagery with climate
and land surface modeling data. We identified three methods to increase remote sensing accuracy:
(1) use weather-sensitive selection of imagery timing, (2) test the transferability of recently-developed
composite indices for detecting irrigation in arid areas [13] to humid regions, and (3) calculate spatial
anomaly indices. We demonstrated this approach in southwestern Michigan (SW MI) where corn and
soybeans are the two principal irrigated crops. We also evaluated the accuracy of irrigation mapping
under various climate conditions in this region, which provided insights into the applicability to other
humid regions.

2. Materials and Methods

2.1. Study Area

In this study, we considered ten counties (Allegan, Barry, Eaton, van Buren, Kalamazoo,
Calhoun, Berrien, Cass, St. Joseph and Branch) covering 28,281 km? in southwestern Michigan
(Figure 1a). The study area is part of the US Corn Belt with a subhumid climate [20], with annual
precipitation ranging from 590 mm (in the 2012 drought) to 858 mm during the study period
2001-2016 (Figure 1b, [21]). Short term droughts, common in this region, induce plant water stress and
reduce grain yields of corn and soybeans, which account for 45% and 32% of total agricultural area,
respectively [22]. During extended drought periods, the sandy soils prevalent in this region cannot
store sufficient soil water to allow crops to reach full yield potential.
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Figure 1. (a). The location (inset) and remotely sensed crop types (CDL, [22]) of the study area,
including ten southwestern Michigan counties. (b) Precipitation from 15 June to 31 July (blue), and the
remainder of year (gray) in the study area.

2.2. Basic Remotely Sensed, Land Surface Model, and Climate Input Data

We used a variety of time-varying and static input data for the random forest (RF) classification
model (summarized in Tables 1 and 2). The static input variables describe terrain, soil, and geographic
location. Dynamic inputs are derived from remote sensing and climate data, as well as land surface
model output. For most time varying data, we focus on the June 15th to July 31st period, which is the
time before canopy closure occurs in corn and soybeans to avoid reflectance saturation. Data were
either obtained from, or uploaded to, the Google Earth Engine (GEE) cloud computing platform [23]
for classification.

Table 1. Basic input variables and indices used to calculate derived input variables.

Variable Description Source
EVI Enhanced Vegetation Index Landsat
GI Green Index Landsat
NDWI Normalized Difference Water Index Landsat
NDVI Normalized Difference Vegetation Index Landsat

Landsat 5 & 7: 10.40-12.50 um band

Thermal Landsat 8: 11.50-12.51 um band Landsat
Dryspell See text Derived: PRISM
P Precipitation PRISM
VPD Mean daily max. vapor pressure deficit PRISM
GDD Growing degree-day PRISM
Aridity Total precipitation/PET, May-Aug Derived: GRIDMET
PDSI Palmer Drought Severity Index GRIDMET
Soil moisture Root zone soil moisture NLDAS-2 Noah
AWC Available water capacity SSURGO
Ksat Vertical saturated hydraulic conductivity SSURGO

Table 2. Weather-sensitive remote sensing, spatial anomaly and composite indices.

Group Variable Code or Suffix Description

VDPMaxGlI 3-day average VPD before maximum Landsat GI day
Number of consecutive days with rainfall <5 mm before

dryspellMaxGI maximum GI da
Weather-sensitive remote y .
sensing indices NDVI, EVI, GI and NDWI canglated' using the L'ancjlsat
scene after a dry period identified using three criteria
_SM Descending soil moisture
_pdsi Lowest PDSI
_ppt Longest dryspell
NDVI, EVI, GI and NDWTI statistics subtracted by
H o,
Spatial anomaly indices _pd0 Zce](l)/%hborhood i

_p90 90%
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Table 2. Cont.

Group Variable Code or Suffix Description
WGI Maximum GI x mean NDWI (water-adjusted GI, [13]
Composite indices AGI Maximum GI/aridity (aridity normalized GI, [13]

WGI and AGI calculated using GI from scenes that

WGLppt, AGLppt immediately follows a dry period

We included five temporally static input variables to account for possible relations between
yield and terrain attributes, soil properties, crop characteristics, and geographic information. These
variables are: (1) slope calculated from 30-m National Elevation Dataset (NED) Digital Elevation
Model (DEM) [24], (2) soil available water capacity (AWC, field capacity minus wilting point), (3)
vertical saturated hydraulic conductivity (ksat), (4) latitude (lat), and (5) longitude (long). The AWC
and kg, are based on the top 25 cm soil properties provided by the USDA Soil Survey Geographic
Dataset (SSURGO) Web Soil Survey [17]. For each SSURGO map unit polygon, we calculated depth-
and component-fraction weighted averages of all soil horizon textures (%sand, %clay) within the top
25 cm. We then used the ROSETTA database [25] to relate these textures to estimates of field capacity,
wilting point, and soil hydraulic conductivity. Vertical hydraulic conductivity was calculated for each
component as the harmonic mean of individual horizontal saturated conductivities.

Climate inputs were derived from daily 4-km resolution PRISM [21] and Gridded Surface
Meteorological dataset (GRIDMET) [26]: (1) precipitation, (2) aridity calculated as the ratio of growing
season rainfall to potential evapotranspiration (PET), (3) average Palmer Drought Severity Index (PDSI),
(4) dryspell (maximum consecutive days with less than 5 mm precipitation), (5) average daily maximum
VPD (vapor pressure deficit), (6) daily mean temperature, (7) heatwave (maximum consecutive days
with daily mean temperature above 25 °C, (8) GDD (growing degree days = cumulative degree
obtained from the difference between air temperature and base temperature for corn and soybeans,
25 °C in this study), and (9) as a measure of pre- and in season-wetness, we calculated the total
precipitation before June 15th (p_early) and from June 15th to Jul. 31st (p_sum), respectively.

Irrigation decisions are often based on soil water content [8]. Here, we use the root zone soil
water content at noon from NLDAS-Noah with 1/8° spatial resolution and hourly time step [27],
which is currently the best readily available product at regional scale that has sufficiently fine temporal
resolution for our application. The NLDAS-Noah product does not implement irrigation, thus its soil
water content data serves as a reference that represents wetness under rainfed conditions.

We used remote sensing data from Landsat Surface Reflectance Products at an 8-day interval in
all years except 2012, when there was a 16-day interval since only Landsat 7 ETM+ was operational.
We included all scenes within 5 days of the June 15th to July 31st key growing season period. The actual
number of available scenes during this period varies spatially and inter-annually as the 8-day (16-day
in 2012) return interval is simultaneously reduced by cloud coverage and augmented by overlapping
scene edges. From 2001 to 2016, the average number of valid observations among pixels in the study
domain varied from 1.67 (2012) to 6.35 (2001) (Table S1, Supplementary Material). All Landsat 7 images
collected after May 31, 2003 have data gaps due to the Scan Line Corrector (SLC) failure, which leads
to significant data shortage in 2012. We used a moving window average method to fill in the gaps
caused by the SLC failure. For every pixel within a gap, we set its value as the average within a five
pixel by one pixel rectangle, oriented perpendicular to the scanline.

After filling the data gaps, we extracted the thermal, near-infrared, short-wave infrared, red,
green, and blue bands from Landsat images between June 10th and August 5th and calculated NDVI,
EVI, GI and NDWI. We then created statistical composites from the available imagery following a best
pixel approach [28] to generate mean, maximum, minimum and range (i.e., maximum subtracted by
minimum) composites for all four indices and the thermal band.
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2.3. Weather-Sensitive Scene Selection, Spatial Anomaly Calculation, and Novel Composite Indices

Initially we applied the methods from previous studies (i.e., [12-14]) to construct a RF classifier
for this region, but found the accuracies were inadequate. We thus developed and tested a variety of
approaches, including several that we deemed unsuccessful because they did not increase the accuracy
of the RF classifier. Ultimately, we implemented three methods to create layers beyond the basic
remotely sensed, land surface model (LSM), and climate indices described in Section 2.2.

First, we calculated two composite indices recently proposed in [13] that adjust Gl in an attempt
to account for regional variations in available water. The first composite variable is the product of
maximum GI and growing-season mean NDWI (i.e., water-adjusted green index, WGI); we anticipate
that for irrigated fields GI and NDWI will both be high. A pixel with high GI but low NDWI may be
rainfed (low NDWI) but treated with abundant nutrients (high GI). The other composite variable is
maximum GI divided by seasonal aridity (i.e., aridity-normalized green index, AGI). The rationale
behind AGl is that irrigated fields should have high GI even during relatively dry growing conditions.

Second, we developed weather-sensitive remote sensing indices calculated from Landsat scenes
at the time most favorable for distinguishing irrigated from rainfed fields. We assumed this time
immediately follows a dry period identified based on three separate criteria: (1) maximum consecutive
days with monotonically descending root zone (up to 1-m depth) soil water content, (2) lowest PDSI
of the season, and (3) greatest number of consecutive days with daily precipitation less than 5 mm.
The criteria were calculated using climate and LSM model outputs listed in Table 1. The resulting
input variables are denoted with suffix _SM, _pdsi, _ppt, respectively. Irrigated crops generally exhibit
higher vegetation indices and NDWI than rainfed crops [13,14,27,29,30]; we expect that this difference
is amplified under water stress conditions during dry periods. Further, the three-day average vapor
pressure deficit (VPD) before the day of maximum Landsat GI (VPDMaxGlI) and number of consecutive
days with rainfall not exceeding 5 mm before maximum GI day (dryspellMaxGI), were calculated as
rainfed crops are unlikely to exhibit maximum GI when VPD is high or after a dry period.

Third, we calculated spatial anomaly remote sensing indices to better distinguish irrigated from
rainfed fields. We first calculated the neighborhood percentiles (40% and 90%) of the vegetation
indices using a circular kernel with a 10-km radius for every year. This radius was selected based
on the range of a spherical fit to the empirical variogram of the climate and LSM model outputs.
Two percentiles were selected to provide anomalies that would be useful in areas where irrigation
is relatively sparse (where an anomaly relative to the 90%would be more appropriate), and where
irrigation is predominant (similarly, where the 40% might indicate irrigated fields). We then subtract
the neighborhood percentiles from the vegetation indices to produce annual anomaly maps; resulting
input variables are denoted with suffix _p40 and _p90, respectively. A positive value points to a
higher-than-neighbor vegetation index under similar climate conditions, which we expected to be
related to irrigation activity.

All together, the basic remote sensing, climate, and LSM simulated indices (Section 2.2) and the
weather-sensitive remote sensing, spatial anomaly, and composite indices comprise 98 input variables
of the RF classifier. A complete list of these variables is provided in Table S2, Supplementary Material.

Several “failed” attempts to define improved indices were made, and then abandoned based
on lack of improvement in classification accuracy. We provide these here as information for others
seeking to further the work of humid region irrigation remote sensing. A full list of these variables is
included in Table S3, Supplementary Material. Many of these variables were extracted from MODIS
products. Due to short overpass time, MODIS products are less subject to cloud coverage than Landsat
products. We expected that MODIS thermal bands, terrestrial evapotranspiration (ET), and potential
evapotranspiration (PET) estimates [31] would provide valuable information to identify irrigation
activity [32]. We thus used monthly statistics of these products as well as calculated composite indices,
including the difference between precipitation and MODIS ET, and ET divided by VPD. Another
climate index that we tested is temporal anomaly of precipitation (annual precipitation subtracted
by the multi-year average precipitation). We also derived the monthly ratio of vegetation indices



Remote Sens. 2019, 11, 370 6 of 16

such as maximum GI in July divided by maximum GI in June, ratio among vegetation indices such
as Gl divided by EVI, and GI divided by NLDAS-Noah soil water content. Our preliminary results
suggested that these indices did not improve classification accuracy on our validation points and
were thus not used to generate the final results. Likely reasons include the coarse spatial resolution of
MODIS and climate products as well as possible errors embedded in these products. These may be
useful in areas with larger fields than the pilot study area.

2.4. Random Forest Classifier

We use a random forest (RF) machine learning algorithm to inductively build a classifier of
irrigated versus rainfed areas. We selected RF because the algorithm was successful in various
hydrologic and remote sensing applications (e.g., [13,14,33-35] is robust with relatively large number
of inputs, provides input variable importance measures and probabilistic outputs [36], and is supported
in the GEE cloud computing platform.

A random forest is comprised of an ensemble of decision trees. Given a set of training data
{xi,y;},1 = 1,...,n, where x; denotes input variables, and y; is the corresponding output. In this
study, y. is a categorical variable with two classes: irrigated and rainfed. The algorithm randomly
draws n samples with replacements from the training dataset to train a single tree. The process is
repeated N times, resulting in a forest of N trees. Once trained, each tree predicts the class of a
new data point, and the N trees may predict M classes. The RF algorithm outputs the percentage of
trees that provide a prediction of the M classes. The class that receives the highest probability is the
final prediction.

In the mapping process, a composite of images is created for each year as input data layers
(Tables 1 and 2, Table S2, Supplementary Material). For each year since 2007, the composite is masked
using the Cropland Data Layers (CDL, [22]) to keep only corn and soybean fields for this region. For
years before 2007, the composite is masked using the National Land Cover Dataset (NLCD, [37]),
the primary available product for the study region. The NLCD-based crop mask includes all row
crop fields because NLCD does not distinguish among row crops. The trained RF classifier is then
applied to input composites and labels each pixel as either irrigated or rainfed. In this way, we develop
irrigation probability maps for every year from 2001 to 2016. The probability value ranges from 0 to 1,
with higher values suggesting larger likelihood of irrigation activity in the pixel. A pixel is classified
as irrigated if it receives a probability greater than 0.5, and as rainfed otherwise. The resulting binary
maps are postprocessed in two steps. Due to cloud coverage, 2014 and 2015 have 8.2% and 5.7% pixels,
respectively, with no Landsat scene from June 10th to August 5th. The gap pixels in 2014 are labeled
irrigated if it was classified as irrigated in both 2012 and 2013. Similarly, the gap pixels in 2015 are
labeled irrigated if it is classified as irrigated in the 2013 map and gap-filled 2014 map. In the second
step, all pixels that are classified as irrigated only once during 2001-2015 are labeled as rainfed as it is
unlikely that farmers will irrigate only one time due to high infrastructure costs. We then examine the
final irrigation maps to track the spatial extent and the changing irrigation dynamics.

During training, the RF algorithm also calculates a variable importance score based on the total
decrease in node impurities by splitting on the variable, averaged over all trees [38]. The variable
importance scores provide a measure of the relative importance of each input variable for capturing the
spatiotemporal irrigation pattern. In this study, we used all 98 input variables described in Sections 2.2
and 2.3, and used the RF calculated variable importance measure to draw insights into the data worth
of various indices in similar irrigation mapping applications. We note that RF algorithms are robust
with the presence of a large number of inputs. Depending on specific applications, and especially when
using other machine learning algorithms that are less robust to high input number, more sophisticated
feature selection techniques (e.g., [34,39]) can be used to constrain the input space dimension.
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2.5. Manually Labeled Dataset

The RF classifier is built based on a training dataset compiled from high-resolution aerial
photography that was acquired during growing seasons (National Agriculture Imagery Program,
NAIP [40]) from the study area. Approximately half of the training points are sampled in two
representative years, 2012 and 2014. 2012 is known as a dry year in which limited rainfall induced
water stress during the crop growth period. We expect that the irrigated crops are more productive
than rainfed crops in this year, and the difference should be reflected in our selected indices. Therefore,
2012 represents an “easy” irrigation mapping case for the classifier. On the other hand, the 2014
growing season receives plenty of precipitation and thus represents a challenging case for the algorithm.
In addition, we sampled 100 locations across multiple years (2005, 2006, 2009, 2010) to track shifts
between rainfed and irrigated fields. The locations of the data points were randomly sampled after
applying an agriculture land cover mask. From 2001 to 2006 the mask is derived from the NLCD and
included pixels categorized as cultivated crops. Since 2007 when CDL was first available in the study
area, the masks include pixels labeled as corn and soybean fields in CDL.

Through the GEE cloud computing platform, we manually labeled each point as either irrigated or
rainfed based on multiple lines of evidence, including the presence of visible irrigation infrastructure,
high vegetation indices, and limited water supply from remote sensing and climate data. The presence
of irrigation infrastructure, primarily central pivot irrigation systems, is identified from NAIP images.
When such infrastructure is identified, we examine the time series of vegetation indices, NDWI,
precipitation, and NLDAS-Noah root zone soil water content to estimate whether a particular location
is irrigated. As described previously, the vegetation indices and NDWI are derived from available
Landsat scenes, with precipitation data from PRISM. A data point is discarded when a decision cannot
be made. In total, the manually labeled dataset include 1536 data points (locations in Figure 2).

° ;0‘-‘"'

g
4

One-time training points » Multi-year training points

Figure 2. Training points are randomly generated, scattered in crop areas. One-time training points
(green triangles) are generated for 2012 (dry) and 2014 (wet) years. Additional points (red dots) are
generated for 2005, 2006, 2009, 2010, 2012 and 2014.

2.6. Classification Accuracy Assessment

We evaluated the accuracy of irrigation mapping using two validation data sources. First,
we randomly divided the manually labeled dataset into training (80%) and validation (20%). We
trained a random forest on the training dataset, and then tested its performance on the validation
data points. To reduce the effects of random sampling, we repeated this sample-and-train process
20 times. We note that some of the remote sensing and climate information are used both in the
manual labeling of the validation dataset as well as inputs to the random forest classifier. Such
overlap may favorably influence classifier performance evaluation on the manually labeled validation
dataset. However, the manually labeled reference dataset primarily relies upon visual cues in the
NAIP high-resolution imagery, which was not included in the RF classification. Overlapping datasets
provided only supporting evidence for manual labeling. Therefore, the validation points still provide
valuable insights into irrigation mapping accuracy, especially given the lack of ground truth data. As a
second, independent assessment, we calculated the total irrigated area of corn and soybean for each
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county in the study domain. The results are compared with county-wise statistics of the two crops
available through NASS Agricultural Census [2] in the available years (2002, 2007, 2012).

For comparison, we also evaluate the accuracy of MIrAD-US, a national, 250-m resolution
irrigation dataset available in 2002, 2007 and 2012 [12], using the manually labeled dataset.
The MIrAD-US product identifies irrigated pixels when MODIS annual peak NDVI exceeds a threshold,
which is adjusted for each county such that the resulting total irrigated acreage agrees with the USDA
NASS statistics. We compare MIrAD-US label (irrigated versus rainfed) with the manually labeled
dataset (Section 2.5), with error rates reported in Section 3.1. The MIrAD-US error rate is then compared
with RF classification validation error for data points in 2012 (no training data is generated in 2002 and
2007 due to lack of NAIP images), averaged over 20 repeated experiments.

3. Results and Discussions

We developed annual irrigation probability maps for 2001 to 2016 (Figure 3) by integrating
Landsat remote sensing imagery and hydroclimatic variables in a RF analysis as discussed above.
Figure 3 shows the irrigation probability maps for a 2.7 by 3.2 km area in 2012. Comparing the irrigation
maps with NAIP imagery (Figure 3b,c), the RF classifier can identify irrigation with detailed sub-field
spatial pattern, which national products such as MIrAD-US cannot capture due to its coarse resolution
(Figure 3e). This is important, as small fragmented fields are common in the study area. It is important
to note that NAIP imagery was only used to label training points and not included in the input data to
produce the irrigation maps. Figure 3c shows the green indices calculated from the Landsat scene that
immediately follows a dry period (GI_ppt), which is identified as the longest consecutive days with
daily precipitation less than 5 mm (Section 2.4). This variable is the most important input variable
according to RF important score (see Section 3.2 for more details).

o
o
Fraction of Years Irrigated

2 4 6 8 10 12 Noncom/soy 05 1 Non com/soy Rainfed Irrigated
Gl Irrigation probability

Figure 3. (a) Map of fraction of years classified as irrigated since earliest year irrigated according to
the fandom forest (RF)-based annual irrigation maps spanning 2001-2016. For example, a pixel that is
irrigated every year since the start of irrigation in 2012 will receive a fraction of 1.0. 2012 insets of (b)
NAIP aerial image showing irrigated farms with varying sizes, (c) GI calculated from the Landsat scene
that immediately follows the largest dryspell (GI_ppt), (d) random forest-based irrigation probability
map with 30-m resolution and (e) MIrAD-US irrigation map with 250-m resolution. Images (b—e) are
for 2012. Areas not classified as corn or soybeans (USDA-NASS, 2016) are shown in dark.
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3.1. Classification Accuracy

First, we examined the error rate of the RF classifier on the validation points we reserved before
training the classifier, as described in Section 2.5. Accuracies for all years, dry years (6/15 to 7/31
precip. <2001-2016 mean), and wet years (6/15 to 7/31 precip. > 2001-2016 mean) are 82%, 85% and
78%, respectively (Table 3). It is not surprising that the classification accuracy is lower in wet years
that received plenty of precipitation. In wet years, the input indices describing the crop status may not
be significantly different between rainfed and irrigated fields, inducing higher commission error and
lower omission error than in dry years (Table 3). It is notable that the difference between the accuracies
in dry and wet years is small. This suggests the utility of spatial anomaly and weather-sensitive remote
sensing indices in distinguishing irrigated fields from rainfed even under humid conditions.

Table 3. Irrigation mapping accuracy evaluated using manually labeled data points. Omission error
describes the percentage of irrigated training points that are classified as rainfed (false negative), while
commission error describes the percentage of rainfed training points that were classified as irrigated
(false positive). The accuracies of RF classifier and MIrAD-US [12] are compared for 2012 when both
the manually labeled data points and MIrAD-US map are available.

Year Omission Error Commission Error Overall Accuracy
Dry (2009, 2012) 40% 9% 85%
Wet (2005, 2006, 2010, o o o
2014) 38% 14% 78%
All years 39% 13% 82%
2012 RF (This study) 39% 6% 84%
2012 MIrAD-US [12] 49% 16% 74%

We then compared the county irrigated area classified by RF with NASS Agricultural Census
statistics [2] in 2002, 2007, 2012, as shown in Figure 4. For county statistics, there is a good
overall agreement (1> = 0.69). Figure 5 reports the annual total irrigated area in the study domain.
While spread is noticeable in the county data (Figure 4), the total irrigated area agrees well with
NASS statistics.

p— /l
N .
c 400l O 2002 y
=, A 2007 /
° O 2012 7

= x

% 300 '/,

° ‘/

(TH /

& 200 R

3 4

© A L) RO

100, o AL

.& ID/“ - St. Joseph
= a

0

0 100 200 300 400
Irrigated area, NASS [kmz]

Figure 4. County irrigated area for 2002, 2007, 2012 according to the RF-based irrigation maps. Color
encodes different counties. As explained in Section 3.1, RF significantly underestimates irrigated area
in St. Joseph county due to widespread seed corn production in that area.
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Figure 5. Empirical probability density function of green index following maximum dryspell (GI_ppt)
estimated from manually labelled dataset.

Next, we compared the error rate of RF classifier and MIrAD-US using the manually labeled data
(Sections 2.5 and 2.6) in 2012 when both the manually labeled data points and MIrAD-US map are
available. As shown in Table 3, the MIrAD-US error rate (defined as 1—accuracy) is 26%, and the RF
classifier error rate is 16%. In addition, RF irrigation maps have lower omission and commission errors
than MIrAD-US, suggesting a higher accuracy of RF-derived irrigation maps.

The high omission error of the irrigation classification (Table 3) may be due to the agricultural
management practice of deficit irrigation in the study area. Notably from Figure 4, the RF classifier
significantly underestimated irrigated area in St. Joseph county where seed corn is the dominant
crop [18], and deficit irrigation in late season (August) is commonly applied to dry up corn in plots.
These locations would thus exhibit lower vegetation indices. The irrigation maps may underrepresent
locations where a deficit irrigation strategy is applied in the rest part of the study domain.

The accuracy assessed on the validation points is lower than previous study that used a similar
method to map irrigated area in a semi-arid to arid region [13]. In a more arid climate, the vegetation
indices of rainfed crops are distinctively lower than those of irrigated crops. This is not the case in
humid to subhumid climates. As shown in Figure 5, while the mean value of GI_ppt is higher in
irrigated fields, the distributions of the two classes largely overlap. Such mixing also occurs for other
input variables, making separation of the two classes challenging in humid regions.

The accuracy of our irrigation maps is also subject to the uncertainties of the input data.
As described in Section 2.2, the irrigation maps are developed based on crop masks derived from
NLCD and CDL. Thus, misclassification of either product affects the validity of training points and
the accuracy of irrigation maps. For years before 2007, the crop mask based on NLCD includes all
row crop fields, thus the classified irrigated fields likely include irrigated fields other than corn and
soybean. Furthermore, cloud coverage inevitably leads to missing scenes during the critical crop
development phase. For locations with few available Landsat scenes, important information regarding
the crop status may be missing, and resulting classification may be misled. The issue of cloud coverage
may be alleviated using fusion of remote sensing products across recent platforms [41,42] such as
radar imagery [15]. Finally, fields smaller than the 30-m resolution may not be well captured by the
Landsat-based mapping method.

3.2. Important Input Variables

During the training process, the RF classifier calculates the variable importance scores as how
much impurity (i.e., irrigated versus rainfed) can be explained by each input variable. Figure 6
depicts the 30 variables receiving the highest scores. Most of these higher-ranking variables are
weather-sensitive remote sensing indices from Landsat scenes immediately following a dry period
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identified by low soil water content, negative PDSI, or limited precipitation. This finding highlights
the importance of selecting Landsat scenes that provide the most information for separating irrigated
fields from rainfed ones. These critical scenes capture crop performance under a water stress condition;
irrigated crops are expected to exhibit higher vegetation indices than rainfed crops. Such differences
are not captured by peak vegetation indices, as rainfed crops may exhibit vegetation indices as high as
irrigated crops during periods with sufficient precipitation. Simple remote sensing indices such as peak
vegetation indices are not among the variables that explain most of irrigation spatiotemporal variability.
In humid regions, maximum vegetation indices can be biased due to extensive cloud coverage.

Composites and some spatial anomaly indices receive high importance score, suggesting the utility
of these variables to identify irrigated fields. Besides climate and remote sensing data, latitude is among
the most important variables, likely due to the gradient of increasing fraction of seed corn from north
to south. It is common to regularly irrigate seed corn as required in contracts. In addition, water supply
indicators such as PDSI and pre-season precipitation (p_early) receive high ranks because they can
explain the interannual climate variability. Other climate variables received lower importance scores.

We found that soil properties and slope are not important factors for simulating the spatial
distribution of irrigation in this region. This is not surprising because sandy soil with low AWC and
mild terrain are prevalent in the agricultural lands of the study area. Other variables that do not appear
to be important include soil water content, precipitation, aridity and extreme weather condition indices
such as GDD, dryspell and heatwave, likely because the resolution of the meteorological data used
to calculate these indices is too coarse to capture the fine-scale heterogeneity of irrigation. However,
these variables portray large-scale water supply and demand, and we have shown that they can be
used to select Landsat scenes that provide the best information for separating irrigated fields from
rainfed ones. In particular, soil water content is simulated by NLDAS-Noah, which does not account
for irrigation and estimates wetness under rainfed conditions.
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Figure 6. Top 30 (of 98) important variables as identified by RF; variables are grouped into six categories
as indicated by different colors (Sections 2.2 and 2.3, Tables 1 and 2, Table S2, Supplementary Material).

3.3. Expansion of Irrigation

From the RF classified irrigation maps we calculated the total irrigated area for the study region
for 20012016 (Figure 7) and compared this to NASS statistics. Temporal fluctuation is noticeable, with
limited irrigated area in 2009-2011 and high irrigated area in 2013-2014. The peak in 2014 is likely a
combination of three factors. First, the critical crop development phase in 2014 had 21% higher than
average (Figure 7) and more frequent precipitation (the dryspell of the study area is 13 days in 2014
and 17 averaged over 2001-2016), leading to robust rainfed crops and correspondingly high vegetation
index values across the region. Thus, the RF classifier may overestimate the irrigated area in this year.
Second, as described in Section 2.5, 2014 has 8.2% pixels with no Landsat scenes during the critical crop
development phase. To fill in the gaps, we labeled pixels as irrigated in 2014 if they were classified as
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irrigated in both 2012 and 2013. This may result in commission errors (i.e., classifying rainfed fields
as irrigated) in those pixels. Third, farmers may have switched to irrigated agriculture after the crop
losses in the 2012 drought.
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o / s s
& 1500 | ] / ] 15 2
g [ 1 P4 w40 8
@© [\ 1 3 = S
1000 | x| A= 8
- B I - a

e TN \ -\ 50
500 = v V"
w

0 : ‘ ; ; ] ; ; ;
2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

Figure 7. Annual total irrigated area in SW MI according to the random forest-based irrigation
maps (line with squares), NASS Consensus (triangles, [2]). Gray bars show precipitation during the
15 June-31 July period, averaged over the study domain. Linear regression with and without 2014
irrigated area is also shown.

There is a statistically significant (p < 0.05) increasing trend in irrigation in this study region
despite notable interannual variability. Over the 16-year period, irrigated area tripled (increased by
204%), according to the linear regression shown in Figure 7. The estimated slope of 70.8 km?/year is
approximately twice the estimate from NASS statistics in 2002, 2007 and 2012 (slope = 35.6 km?/year).
In order to isolate the likely skewness due to high irrigated area estimated in 2014, we performed
another linear regression excluding 2014 (Figure 7). An increasing trend is statistically significant
(p < 0.05) with estimated slope of 49.1 km? /year.

We also calculated the change in irrigated area for corn and soybeans, respectively, for 2007-2016,
when CDL is available for the study area. The irrigated area fractions for corn and soybeans increased
from 19.1% in 2007 to 24.9% in 2016, and from 9.2% in 2007 to 17.9% in 2016, respectively.

To examine the spatial pattern, irrigation trends are calculated based on linear regression (Figure 8).
To do this, we aggregated the 30-m irrigation maps to a larger grid to perform linear regression on the
irrigated area through time. We chose the 9-km? grid to examine relatively fine-scale spatial patterns of
irrigation trends across the region (vs. county level, for instance). Slight decreasing trends in lakeshore
area suggests discontinuation of irrigation. The highest increase rate (up to 0.25 km?/year per 9-km?
cell) was found in southern part of the study area. The irrigation expansion is believed to be associated
with the promotion of seed corn in this area [16,18]. Seed corn is usually irrigated because irrigation is
typically required by the contracts between farmers and seed corn companies.
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Figure 8. Rate of change of irrigated area over time based on linear regression calculated for an
aggregated 9 km? grid. Gray indicates non-significant trend (« > 0.1).

In addition, correlation analyses suggest crop commodity price is another factor affecting irrigation
decisions. The annual irrigated area of the study region is found to be correlated with previous year’s
corn price [2] (Figure 9, r = 0.66, p = 0.009). Irrigation may double corn yields and increase soybean
yields by more than 66% in SW MI [16]. Given the easy accessibility to irrigation water, adoption of
irrigation will likely increase farmers’ revenue. Irrigation expansion may be further encouraged by
devastating crop losses in the 2012 drought in fields without irrigation [43,44].
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Figure 9. Commodity price of corn (a) and its correlation with irrigated area (b) 2001-2016.
4. Conclusions

By integrating satellite imagery and hydroclimatic information using a machine learning
algorithm, we created annual irrigation maps for a subhumid area in southwestern Michigan for
2001-2016. The maps capture the spatiotemporal pattern of irrigation at a high spatial resolution (30 m)
and indicate that irrigated area in southwestern Michigan roughly tripled in the last 16 years according
to linear regression.

We demonstrated the utility of novel input variables including weather-sensitive remote sensing,
spatial anomalies, and recently-developed composite indices. In particular, we found that those
vegetation indices following dry periods are the most important to distinguish irrigated fields from
rainfed. This not only reduces the number of scenes (thus memory and computational expense) to
process, but also avoids possible confounding effects of high vegetation indices captured during a
wet period.

The annual irrigation maps are validated using multiple data sources. Reasonable accuracy is
achieved despite the difficulties involved with estimating irrigated area in a region with a subhumid
climate and heterogeneous agricultural management practices (e.g., deficit irrigation strategy for seed
corn). We found that the mapping accuracy in dry years is higher than in wet years with a narrow
margin. The small difference between accuracies may be attributed to the use of spatial anomaly and
weather-sensitive remote sensing indices, which were able to distinguish irrigated from rainfed fields
even under subhumid conditions.
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We identified several challenges and limitations for mapping irrigated areas in subhumid to humid
regions, including the dependency on the quality of input data (e.g., land cover) and cloud coverage,
which is more frequent in such regions. The substantial efforts and difficulty involved in generating
training data are also noteworthy and call for in season high-resolution imagery. Nevertheless, the
promising results underscore the potential of using remote sensing and cloud computing to provide
valuable information for water resources decision makers and hydrologic studies at regional scales.

Supplementary Materials: The annual irrigation maps 2001-2016 can be downloaded at https://doi.org/10.
4211 /hs.3766845be72d45969fca21530a67bb2d. In addition, the following are available online at http://www.
mdpi.com/2072-4292/11/3/370/s1, Table S1: The mean and quantiles for the cumulative probabilities 0.025 and
0.975 of number of available scenes for all pixels in the study domain between June 10th and August 5th for each
year in the study period (2001-2016), Table S2: All input variables of the random forest classifier grouped into
seven categories, Table S3. Unsuccessful input variables that were not used in the final random forest classifier.
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Table S1. The mean, quantiles for the cumulative probabilities 0.025 and 0.975 quantiles of number

of available scenes for all pixels in the study domain between June 10t and August 5* for each year

in the study period (2001-2016).

Year Mean 25% 97.5%
2001 6.35 2.4 13
2002 593 3 12
2003  4.30 2.5 8
2004 3.28 0 7
2005 3.41 1 8
2006 3.95 1 8
2007 4.16 1 9
2008  5.45 2 13
2009 3.74 1 8
2010 3.82 1 10
2011 322 1 7
2012 1.67 0 4
2013  4.23 2.3 9
2014 1.58 0 4
2015 3.12 0 8
2016  4.40 2.1 9
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Table S2. All input variables of the random forest classifier grouped into seven categories. Suffixes
_mean, _max, _min, _range refer to statistical summaries, _p90 and p_40 refer to spatial anomaly
relative to 0.9 and 0.4 quantiles, respectively, and _pdsi, _SM, _ppt refer to scenes selected based on

No. Category Variable code No. Category Variable code

1 Aridity 50 EVI_pdsi_p90

2 Dryspell 51 EVI_SM_p40

3 GDD 52 EVI_SM_p90

4 Heatwave 53 EVI_max_p40

5 Basic climate PDSI 54 EVI_max_p90

6 p_early 55 EVI_mean_p40

7 p_sum 56 EVI_mean_p90

8 T_mean 57 EVI_ppt_p40

9 VPD_mean 58 EVI_ppt_p90

10 Model simulation SM 59 GI_pdsi_p40

11 awc 60 GI_pdsi_p90

12 ksat 61 GI_SM_p40

13 Static lat 62 GI_SM_p90

14 long 63 GI_max_p40

15 slope_mean 64 GI_max_p90

16 EVI_max 65 GI_mean_p40

17 EVI_mean 66 GI_mean_p90

18 EVI_range 67 GI_ppt_p40

19 GI_max 68 GI_ppt_p90

20 GI_mean 69 NDVI_pdsi_p40
21 GI_range 70 NDVI_pdsi_p90
22 NDVI_max 71 NDVI_SM_p40

23 Basic remote sensing NDVI_mean 72 NDVI_SM_p90

24 NDWI_max 73 NDVI_max_p40
25 NDWI_mean 74 Spatial anomaly NDVI_max_p90
26 NDWI_min 75 NDVI_mean_p40
27 NDWI_range 76 NDVI_mean_p90
28 Thermal_max 77 NDVI_ppt_p40

29 Thermal_mean 78 NDVI_ppt_p90

30 Thermal_range 79 NDWI_pdsi_p40
31 dryspellMaxGI 80 NDWI_pdsi_p90
32 VPDMaxGI 81 NDWI_SM_p40
33 EVI_pdsi 82 NDWI_SM_p90
34 EVI_SM 83 NDWI_max_p40
35 EVI_ppt 84 NDWI_max_p90
36 GI_pdsi 85 NDWI_mean_p40
37 Weather-sensitive GI_SM 86 NDWI_mean_p90
38 remote sensing GI_ppt 87 NDWI_min_p40
39 NDVI_pdsi 88 NDWI_min_p90
40 NDVI_SM 89 NDWI_ppt_p40
41 NDVI_ppt 90 NDWI_ppt_p90
42 NDWI_pdsi 91 NDWI_range_p40
43 NDWI_SM 92 NDWI_range_p90
44 NDWI_ppt 93 Thermal_max_p40
45 AGI 94 Thermal_max_p90
46 N AGI_ppt 95 Thermal_mean_p40
47 Composite indices o) o 9 Thermal_mean_i%
48 WGI_ppt 97 Thermal_range_p40
49 Spatial anomaly EVI_pdsi_p40 98 Thermal_range_p90
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Table 3. Unsuccessful input variables that were not used in the final random forest classifier.

Source Variable code Time scale Statistics Description
max, min, MOD11A2.005 Land Surface
MODIS thermal June, July, August mean, range Temperature
max, min, MOD16A2 Global Terrestrial
ET June, July, August mean, range Evapotranspiration [1]
max, min, MOD16A2 Global Terrestrial
PET June, July, August mean, range Evapotranspiration [1]
Monthly precipitation for a given
year subtracted by 2001-2016
annual average precipitation for
PRISM p—p June, July, August monthly total this month
Composite ET-P June, July, August - Monthly precipitation deficit
ET/VPD June, July, August - Ratio of MODIS ET to VPD
Landsat GI_July/GI_June - - Ratio of July to June maximum GI
GI_August/GI_July - - Ratio of July to June maximum GI
Ratio of monthly maximum GI to
GI/EVI June, July, August - maximum EVI
Ratio of monthly maximum GI to
GI/SM June, July, August - NLDAS-Noah soil moisture
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