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Abstract:

The effect of genetic markers and reference databases on analyses of fungal communities

were estimated using fungal large subunit (LSU) and internal transcribed spaces (ITS)

amplicon datasets in consecutive years of rhizosphere samples from three candidate

biofuel crops, corn (Zea maize), switchgrass (Panicum virgatum.) and Miscanthus

(Miscanthus x giganteus). These two marker genes were selected to contrast possible

differences in biological conclusions. In addition, two ITS schemes based on two ITS

reference databases were used to assess differences due to reference database

composition. A taxonomy-supervised method was invoked using the RDP naive Bayesian

classifier that accesses all three databases. The UNITE classification scheme had the

highest number of classified taxa in the raw classification result, however it also had the

highest proportion of unknown taxa (sequences that were classified to “unclassified”,

“unidentified”, Incertae sedis or, in the case of Warcup, to matches containing two unique

names). After removal of these unknown taxa, LSU had highest classification rate

followed by Warcup and UNITE. As expected, the communities resolved using the two

ITS databases (same sequences) were relatively more similar than those from the lower

coverage LSU classification scheme. The choice of marker gene or even the same reads

with different classification databases revealed different community patterns due to the



coverage of the database, e.g. the relative abundance of the most abundant groups

changed or were only detected in one or two of the classification schemes, such as for

Mortierella, Fusarium, and Phoma. However, no marked influence on fungal beta-

diversity was found due to the three methods, yet all three methods distinguished the

fungal communities of the three biofuel crops and between the drought and normal

rainfall years. Classification rates, taxonomic conflicts, and coverage differences of high-

abundance fungal groups were identified among classification schemes, but these analysis

choices did not affect conclusions about beta diversity differences.



Introduction

Fungi are the most diverse and dominant eukaryotes in soil (Hawksworth 2001) and can

increase plant production by increasing water uptake (Miransari et al. 2007), promoting

growth (Rodriguez and Fraga 1999), and bio-control (Thangavelu et al. 2004) of plant

pathogens. Profiling of fungal communities can be achieved by sequencing multiple

regions of the fungal rRNA genes including the small subunit (SSU) and large subunit

(LSU) rRNA genes and the internal transcribed spacer (ITS) region. Sequencing of the

SSU rRNA is highly effective in bacteria, but this region does not evolve rapidly enough

in eukaryotes for use in higher resolution taxonomic assignments (Vandenkoornhuyse et

al. 2002). The LR3/LROR primer combination that spans divergence region (D1/D2) of

LSU (28S) rRNA gene is suitable for both classification accuracy and resolution to the

genus level (Liu et al. 2012). The ITS region that separates the SSU and LSU rRNAs in

eukaryotes evolves at a much faster rate and can be used to identify fungi to genus and

often to species level (O’Brien et al. 2005), although resolution varies across taxonomic

lineages.

A previous study by Tedersoo et al. (2015) compared nine different primer pairs

targeting seven nuclear ribosomal DNA (rDNA) regions of fungi including SSU, LSU,

and ITS fungal genetic markers, which are often used in fungal community analyses.



Their research indicated that primer choice biased fungal community studies causing

different conclusions. The ITS1 and ITS2 amplicons provided greater taxonomic and

functional resolution as well as coverage of the communities compared to SSU and LSU

amplicons. Of these the use of ITS2 or the whole ITS region was recommended

(Tedersoo et al. 2015). Also important is the choice of the reference database for

sequence analysis to obtain the taxonomic annotation. Our study extends the evaluation

of genetic marker analysis to the three fungal reference databases LSU, UNITE, and the

new fungal ITS database Warcup (released in 2016) for fungal taxonomy assignment

using RDP’s naive Bayesian classifier.

Taxonomy supervised methods (Sul et al. 2011) are independent from

alignment/clustering and are critical when OTUs cannot be defined such as when

comparing classifications originating from different genetic markers or different regions

of the same genetic marker, or different sequencing platforms. RDP naive Bayesian

classifier is one of the most popular bioinformatics tools to assign taxonomy (Wang et al.

2007). Currently it supports 28S rRNA gene and ITS reads classification with the LSU

(Liu et al. 2012), UNITE (Kodljalg et al. 2013), and Warcup (Deshpande et al. 2016)

databases. The later two are ITS databases.



In this study, effect of genetic markers and reference databases on analyses of

fungal communities were estimated using fungal LSU and ITS amplicon datasets in

consecutive years of rhizosphere samples from three candidate biofuel crops, corn (Zea

maize), switchgrass (Panicum virgatum.) and Miscanthus (Miscanthus % giganteus), in

the long-term Great Lakes Biofuel Research Center (GLBRC) biofuel cropping system.

We addressed differences in the assessment of fungal community composition between

the two genetic markers and among the reference databases: LSU, Warcup and UNITE,

using RDP’s Bayesian classifier-based, taxonomy supervised method. Our overarching

objective is to understand the effects of these biofuel crops on root-associated soil fungal

community composition, particularly in regards to changes in the identities and/or

relative abundances of potential pathogenic or system beneficial fungi.

Materials and methods

Field site and experiment design

The experimental site is located at the Kellogg Biological Station (KBS), Hickory

Corners, MI, USA (42°23°47”N, 85°22°26”W), a GLBRC-initiated bioenergy cropping

system site established in 2008. Based on a five-block design (Fig. S1), each block, (27 m

X 43 m) contained randomly assigned plots for continuous corn, switchgrass and

Miscanthus. Corn was planted at 76 cm row spacings, switchgrass was planted at an



average seeding rate of 7.6 kg seed ha™, and Miscanthus rhizomes were manually planted
at a depth of 10 cm at a density of 17,200 rhizomes ha™. The previous cover crop was
alfalfa and no-till practices were adopted site-wide after initial site preparation. Since this
is a biofuel cropping system study, all mechanically harvestable plant tops (the biofuel)
were removed after plant senesce each fall minimizing plant litter return to the soil. The
corn plots were applied 19-17-0 liquid fertilizer at 15.1 gallons acre”. The Miscanthus
and switchgrass plots were fertilized with 28-0-0 fertilizer at 16.7 gallons acre™. The
fertilizer was sprayed at planting. The predominant soil series at KBS is Kalamazoo
sandy loam (MSCO 2013). Further description of the site, experimental design and
productivity data are reported in Sanford et al. (2016). Background bacterial and fungal
data, including lipid derived biomass, from the second crop year (2009) are reported in da
C. Jesus et al. (2010) and Liang et al. (2012). To determine the organic C content, soil
samples were oven-dried and then were pulverized and combusted in a Costech
Elemental Combustion System 4010 (Costech Analytical Technologies, Valencia CA).
Soil pH was determined with a compound electrode (PE-10, Sartorious, Germany) in a
1:2.5 soil/water ratio solution. The organic matter and soil pH were summarized in table

S1.

Soil sampling and DNA extraction



Samples were collected on October 13, 2012 (5™ crop year since establishment) and July
26,2013 (6™ crop year) within blocks 2-4. For each crop, 7 replicates were collected with
3 replicates from block 2 and 2 replicates from each of the blocks 3-4. For each replicate,
roots with soil attached from three randomly selected adjacent plants were collected.
Roots with very small soil particles (<Imm from root) were cut and washed using
sterilized water. The rhizosphere soil was collected by centrifugation and DNA extracted
from 0.5 g soil using the Powersoil DNA Extraction kit (MoBio Laboratories, Carlsbad,
CA, USA).

The 2012 crop year was a severe drought with summer (from June to August)
rainfall 152 mm, which severely affected crop yield, e.g. 6 Mg DM ha™ for corn biomass
(grain plus vegetative biomass), versus 2013 which was a more normal year, 310 mm
summer (from June to August) rainfall and 16 Mg DM ha™' corn biomass yield (Sanford
et al. 2016).

Amplification and sequencing

Primer sets ITS9 (adapter-mid-TATGGTAATT-GG-GAACGCAGCRAAIIGYGA) and
ITS4 (adapter-mid-AGTCAGTCAG-GG-TCCTCCGCTTATTGATATGC) were used to
amplify the ITS2 region and primers LR3 (mid-CCGTGTTTCAAGACGGG) and LROR

(mid-ACCCGCTGAACTTAAGC) were used to amplify the partial fungal LSU genes for



all samples according to previously published protocols (White et al. 1990; Menkis et al.

2012; Penton et al. 2013), where “mid” refers to a unique barcode sequence used for

sample sorting. For each sample, 3 replicated 20 pul PCRs were performed, with each

mixture containing 1ul of DNA (around 20 ng/ul), 17 pl of AccuPrime Pfx SuperMix

(Invitrogen, CA, USA), 1ul (10 pmol) each forward and reverse primer. Amplification

was performed with an initial denaturation of 4 min at 95 °C; followed by 30 cycles of 45

sec at 94 °C, 30 sec at 55 °C and 1 min at 72 °C, and a final extension at 72 °C for 6 min.

The LSU amplicons, were adapter ligated and bi-directionally sequenced on the 454 Life

Sciences Titanium platform, using Lib-L kits. Sequencing was performed at Center for

Integrated BioSystems (Utah State University, USA). Sequencing of ITS fragments was

conducted by Joint Genome Institute (JGI) on an Illumina MiSeq sequencing platform.

The longer LSU sequences required the longer read sequencing technology, which gives

less coverage than the higher coverage, shorter read technology suitable for the ITS

sequences.

Sequence processing

Sequence data were processed using the RDPipeline (http://pyro.cme.msu.edu) with the

removal of low quality (Qscore < 20 for LSU and < 26 for ITS reads) and short reads

(length < 220 bp). Chimeric reads were removed through Uchime (Edgar 2010). All
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samples were randomly resampled to the same number of reads as the sample with the

lowest reads (4,217 reads per sample). Taxonomy was assigned using RDP (Ribosomal

Database Project) classifier (version 2.7) with 50% confidence (Wang et al. 2007). LSU

reads were classified based on the fungal LSU training set released by RDP in 2011 (Liu

et al. 2012) containing 11,442 sequences in 1,895 genera. ITS reads were classified based

on ITS training sets UNITE (July, 2014) (Kdljalg et al. 2013) and Warcup (Deshpande et

al. 2016), released by RDP in 2016. The Warcup training set contains 17,923 unique

sequences including 1,461 genera, while UNITE has 145,019 unique sequences covering

2,137 genera. The classification rate was calculated after sequences classified to

“unclassified”, “unidentified”, Incertae sedis, or, in the case of Warcup, to matches

containing two unique names were filtered (Tables 1 and 2). All sequences were

deposited in the NCBI Sequence Read Archive (SRA) database (Accession numbers:

SRX483129 and SRX483122).

Data analysis

Non-metric multidimensional scaling (NMDS) analyses based on classification results

from class to species levels of LSU, UNITE, and Warcup were performed to illustrate the

beta-diversity (Bray-Curtis distances) between individual samples. Permutational

multivariate analyses of variance (PERMANOVA) (Anderson 2001) was performed to
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determine the significance of community composition differences between treatments. A

multiple regression tree (MRT) was generated to illustrate plant type (annual/perennial),

temporal (2012/2013) and crop (corn/Miscanthus/switchgrass) effects on fungal

community composition (De’ath 2002). Shared taxa that were present in more than one

database were calculated and illustrated in venn diagrams, from the phylum to species

level. Genera were sorted by the maximal abundance of each genus among the three

classification schemes and the top 30 most abundant groups were illustrated in a heatmap

graph.

Results

Classification rate

In total, 177,114 LSU (4,217 reads per sample) and 4,344,975 ITS (105,975 reads per

sample) reads were obtained after processing. Following RDP Naive Bayesian

classification, phyla to species level lineages were extracted. The LSU sequences

exhibited the highest classification rate, followed by Warcup and UNITE (Fig. 1). From

the phylum to genus, the LSU classification scheme contained 18.7% to 37.8%

unclassified reads. From phylum to species levels, the unclassified reads accounted for

14.8% to 65% of the total reads in the Warcup classification scheme and 22.5% to 83.6%

for UNITE, respectively.

12



Shared and unique taxa

Four phyla (Ascomycota, Basidiomycota, Chytridiomycota and Glomeromycota) were

shared by all classification schemes with similar abundances of unique taxa from phylum

to order taxonomic levels (Fig. 2). At the family and genus level, the LSU classification

scheme exhibited the highest number of unique taxonomies, while UNITE and Warcup

were similar. At the species level, Warcup classification resulted in almost double the

number of unique taxonomies, compared to the UNITE classification scheme. Overall, 19

classes, 50 orders, 96 families, and 183 genera were shared among classification schemes

with 505 species shared by the UNITE and Warcup classification schemes.

Community pattern

Overall, the combination of genetic marker and reference database influenced the sample

clustering patterns. In addition, the separation was more apparent when the classification

went down to the order level (Fig. 3). Dispersion among replicates was significantly

higher (p<0.05) in LSU data (0.58+0.12) than for the UNITE (0.51%0.12) or Warcup

(0.51+0.11) classification schemes. Based on different phylogenetic levels of the three

classification schemes separately, NMDS ordinations showed consistent patterns from

class to species levels even at family level the separation is clearly visible and does not

significantly change down to the species level indicating that genetic markers and

13



databases had little influence on the overall beta-diversity comparisons between

treatments (Fig. 4). The fungal community composition of the corn samples (annual) was

most different from Miscanthus and switchgrass (perennials) that grouped closely to each

other. Overall, PERMANOVA results for all databases indicated significant differences

by plant, time and crop*time interactions (Table S2). Sum of squares indicated plant type

(annual vs. perennial) as the primary driver of community differences. This was

supported by MRT analyses, based on genus level classifications, where plant type drove

the first branch split (Fig. 5). After the initial split, the Warcup and LSU classification

schemes were further split by crop type (Miscanthus and switchgrass) then by sampling

time. A contrary result was identified in the UNITE classification scheme, where the

MRT tree was split by time then by crop type.

Community composition

In order to identify if the different genetic markers or training sets influenced relative

abundances, the top 30 most abundant groups are illustrated in a heatmap (Fig. 6) Among

these, Mortierella, Fusarium, Gibellulopsis, Talaromyces, and Phoma were detected only

using the ITS genetic marker; Orbicula was detected only in LSU classification scheme;

Eupenicillium and Didymella were absent in UNITE classification scheme;

Plectosphaerella, Metarhizium, Gibellulopsis, Aspergillus, Cladosporium, Cercophora,

14



Monascus, Edenia, and Hydropisphaera were detected in a higher proportion in one or

two of the three classification schemes but were in lower abundances in another.

Discussion

Influence of genetic marker and database choice on apparent rhizo-fungal

community composition

In order to understand the differential effects of targeting the LSU and ITS genetic

markers on perceived fungal community compositions, we utilized a taxonomy-

supervised methodology (Sul et al. 2011) using the fungal LSU and two new ITS training

sets (Warcup and UNITE) that have been recently integrated into the RDP naive Bayesian

classifier. Although the ITS region is capable of species-level classification, only a small

proportion of sequences (35.1%-Warcup, 16.3%-UNITE) were classified to that level.

The highest proportion of reads was classified using the smaller LSU reference

classification scheme while the ITS training sets contained more taxonomic conflicts.

This is due to the higher number of the sequences used to create the ITS training sets and

may be the underlying cause of the resulting conflicts (Porras-Alfaro et al. 2014).

Less than 50% of the classified genera were shared by all classification schemes,

supporting the notion that database composition strongly influences fungal classification

(Porras-Alfaro et al. 2014). However, regardless of the genetic marker and database

15



used, ordinations showed similar patterns, indicating that both genetic marker and

database had little influence in revealing overall differences in fungal community

composition (beta-diversity) between treatments (Fig. 4). Further, community differences

between years as well as crops were revealed by all three methods. The soil conditions

for the two years, July vs October sampling and a severe drought and normal rainfall year

likely drove the year differences. Interestingly, the fungal community pattern did not

change with the increase of sequencing depth between 454 and Illumina MiSeq,

indicating that broad biological conclusions remained constant, regardless of community

coverage. Lastly, the variation in classification success (from 16.4% to 85.2%) among

databases also had little influence on the conclusions.

Specific differences due to fungal genetic marker selection

The goal of any gene-targeted metagenomic study is to obtain the highest possible

coverage in concert with the most accurate and diverse taxonomic information. These

results have demonstrated that fungal community classification can be problematic when

different genetic markers and reference databases are utilized. For example, due to

differences in fungal ITS and LSU reference database coverage, a low number of shared

genera in concert with a high number of unique genera was identified. Furthermore,

Mortierella, Fusarium, Gibellulopsis, Talaromyces, and Phoma were detected as the top

16



abundant fungi in the ITS classification schemes, although they were absent in the LSU

classification scheme, due to the lack of matching reference sequences. For example,

there is only one Mortierella reference sequence in LSU, but 142 and 18 sequences in

UNITE and WARCUP, respectively. Fusarium, Gibellulopsis, Talaromyces, and Phoma

are absent in LSU reference database resulting in their failure detection using LSU

database. This ultimately may be due either to the lack of LSU primer coverage or

possibly from variations in taxonomic identification among classification schemes (e.g.

anamorphic vs. telemorphic nomenclature). For example, the anamorph of Fusarium is

Gibberella which is present in all classification schemes. Penicillium is anamorph of

Eupenicillium. Teleomorph states of Phoma have been described in the genera Didymella,

Leptosphaeria, Pleospora and Mycosphaerella, and these genera are all present in the

LSU classification scheme (de Gruyter et al. 2009). In addition, due to their high

abundance in the ITS classification scheme, sequencing depth (Illumina vs. 454) was an

unlikely culprit in explaining their absence in the LSU data. Orbicula was detected only

in LSU classification scheme because Orbicula reference sequence is included in neither

UNITE nor WARCUP ITS databases. Ultimately, we cannot rule out the possibility that

amplification primers demonstrate primer bias towards these groups. For example, in

other ITS-based studies, Mortierella, Fusarium, and Phoma have also been reported as

17



the predominant fungal groups in various environments (Xu et al. 2012; Votiskova and

Baldrian 2013; Xiong et al. 2016). Notably, of these abundant groups, Fusarium contains

species that cause wilt disease on numerous plants (Gilbert and Tekauz 2000; Flood

2006), and many Phoma species are plant pathogens that cause rot disease

(Hollingsworth et al. 2005; Cullen et al. 2007).

Together, these data suggest that fungal genetic marker and classification database

selection is important when targeting fungal pathogens, especially in the context of

disease-focused studies. While these biases ultimately did not affect biological

conclusions in the context of plant and temporal effects, it can impact, for instance,

diversity measures when taxonomy-supervised methods are utilized. This bias is in

addition to those previously identified in gene-targeted metagenomic studies, as well as

due to primer choice, soil sample size used for DNA extraction, number of replicates, and

inherent aggregate to field scale spatial heterogeneity, among others (Tedersoo et al.

2015; Penton et al. 2016; Scholer et al. 2017; Vestergaard et al. 2017).

Conclusion

The choice of genetic markers and reference databases, when used with a naive Bayesian

classifier, did not affect the ability to detect plant fungal community differences (beta

diversity) due to crop and to sampling year. The choice of genetic marker and

18



classification database did, however, result in different relative abundances among the 30

most abundant groups, so at the level of particular taxa or for defining potential indicator

species, these choices do matter. Classification rates, taxonomic conflicts, and coverage

differences of high-abundance fungal groups were identified among -classification

schemes, but these analysis choices had only minor effects.
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Fig. 1 Proportion of classified reads of LSU, UNITE, and Warcup classification schemes from phylum to

species
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Fig 5 Multiple regression tree (MRT) of LSU, UNITE, and Warcup classification schemes at the genus
level. The histograms show the distributions of the genera and the decimals are the deviances of the

community calculated by MRT analysis
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Fig. 6 Heatmap showing top 30 abundant fungal genera in LSU, UNITE, and Warcup classification
schemes. Key on the right from blue to red represents the least abundant to most abundant genera. Numbers
in cells represent the rank of the genus in the corresponding classification scheme. ND represent undetected

in the corresponding classification scheme. The tree on the top is based on hclust
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Fig. S1 Experiment design of long-term Great Lakes Biofuel Research Center (GLBRC) biofuel cropping
system experiment at Kellogg Biological Station (KBS). http://lter.kbs.msu.edu/research/long-term-
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Tables

Table 1 Number of classified taxa from phylum to species levels

Classification scheme Phylum  Class Order Family Genus Species
LSU 6(8) 26(29) 80(90) 201(230) 577 (586) NA
UNITE 5() 24(33) 87(116) 198(292) 578 (732) 995 (2597)
Warcup 5() 23(29) 82(93) 186(211) 552(552) 1446 (1551)

NA represents data not applicable.
Numbers represent number of classified taxa after removal of unknown taxa.

The numbers in brackets represent number of classified taxa with unknown taxa.
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Table 2 Proportion of “unknown” taxa from phylum to species level of LSU, Warcup, and UNITE

classification schemes

Classification Phylum Class Order Family Genus Species
scheme (o) (%) (%) (%) (%) (%)
10.3 11.11 1.88
LSU 25.0 (0.6) (NA) 2.3) 12.6 (4.7) (0.09) NA
27.3 25.9 32.2 21.0 61.8
UNITE 16.778) 190y (1700 (295  (18.5) (39.5)
Warcup 0 (0) 20.7 (5.3) (; 15’3) 11.8 (6.5) 0 (0) 6.77 (2.7)

Numbers represent the proportion of unknown taxa among all identified, classified taxons.
The numbers in brackets represent the proportion of sequences of the unknown taxa.

0<NA<0.01 or NA represents data not applicable.
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Table S1 Soil organic matter and pH in different treatments.

Treatment Organic Matter (%) pH

Corn-2012 3.3940. 22 6.09+0. 3
Miscanthus—2012 3.76%+0. 48 6.11£0. 48
Switchgrass—2012 3.87=£0. 36 6.2440.09

Corn—2013 3.2%0.41 5.67%0. 18
Miscanthus—2013 3.95%+0.29 5.8240. 22
Switchgrass—2013 3.47£0.5 5.81%0. 15

35



Table S2 PERMANOVA results for all databases indicated significant plant, time and crop*time

interactions.
Database Plant Time Plant*Time
F=8.24 F=8.02 F=3.2
LSU 8 8.0 3.27
p<0.01 p<0.01 p<0.01
F=5. =6. =2.
WARCUP 5.95 F=6.92 F=2.58
p<0.01 p<0.01 p<0.01
F=8. =10. =3.
UNITE 8.07 F=10.17 F=3.03
p<0.01 p<0.01 p<0.01
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