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Abstract

Motivation: Isoforms are mRNAs produced from the same gene locus by alternative splicing and may
have different functions. Although gene functions have been studied extensively, little is known about
the specific functions of isoforms. Recently, some computational approaches based on multiple instance
learning have been proposed to predict isoform functions from annotated gene functions and expression
data, but their performance is far from being desirable primarily due to the lack of labeled training data.
To improve the performance on this problem, we propose a novel deep learning method, DeepIsoFun,
that combines multiple instance learning with domain adaptation. The latter technique helps to transfer
the knowledge of gene functions to the prediction of isoform functions and provides additional labeled
training data. Our model is trained on a deep neural network architecture so that it can adapt to different
expression distributions associated with different gene ontology terms.
Results: We evaluated the performance of DeepIsoFun on three expression datasets of human and mouse
collected from SRA studies at different times. On each dataset, DeepIsoFun performed significantly better
than the existing methods. In terms of area under the receiver operating characteristics curve (or AUC),
our method acquired at least 26% improvement and in terms of area under the precision-recall curve (or
AUPRC), it acquired at least 10% improvement over the state-of-the-art methods. In addition, we also
study the divergence of the functions predicted by our method for isoforms from the same gene and the
overall correlation between expression similarity and the similarity of predicted functions.
Availability: https://github.com/dls03/DeepIsoFun/

1 Introduction
In eukaryotes, the mechanism of alternative splicing produces multiple iso-

forms from the same gene. Studies in (Pan et al., 2008; Wang et al., 2008)

reveal that more than 95% of human multi-exon genes undergo alternative

splicing. Though the changes in the sequences of the isoforms of the same

gene are very small, they may have a systematic impact on cell functions

and regulation (Gallego-Paez et al., 2017). It has been widely reported

that isoforms from the same gene sometimes have distinct or even oppo-

site functions (Himeji et al., 2002; Melamud and Moult, 2009; Mittendorf

et al., 2012). For example, among the two isoforms, l-KlCpo and s-KlCpo,

of gene KlHEM13 that use different transcription start sites, only s-KlCpo
is involved in the growth of K. lactis Δhem13 mutants (Vázquez et al.,
2011). There is also evidence that alternative splicing plays an important

role in the evolutionary process (Gueroussov et al., 2015). For example,

the absence of exon 9 in one of the isoforms of gene PTBP1 expressed

in the brains of mammals amplifies the evolutionary difference between

mammals and the other vertebrates (Gueroussov et al., 2015). Many stud-

ies have found that alternative splicing is critical in human health and

diseases. For example, to escape from cell death in tumorigenesis, gene

BCL2L1 produces two isoforms with opposite functions, where BCL-XS is

pro-apoptosis but BCL-XL is anti-apoptosis (Revil et al., 2007). Similarly,

gene CASP3 has two isoforms, with CASP3-L being pro-apoptosis and

CASP3-S anti-apoptosis (Végran et al., 2006). An isoform of gene TNR6
that skips exon 6 may initiate cell death (Bouillet and O’reilly, 2009).

Among the two isoforms of gene PKM, PKM1 and PKM2 that skip ex-

ons 9 and 10 respectively, only PKM2 is widely expressed in cancer cells

(Mazurek et al., 2005). Besides these examples, the results in (Himeji

et al., 2002; Melamud and Moult, 2009; Oberwinkler et al., 2005; Pick-

rell et al., 2010) offer more interesting stories of isoforms with dissimilar

functions and hence motivate the study of specific functions of isoforms.

There is rich literature concerning the prediction of gene functions

(Barutcuoglu et al., 2006; Mi et al., 2012; Schietgat et al., 2010; Vinayagam

et al., 2004; Yang et al., 2015). In particular, the UniProt Gene Ontology

(GO) database has been widely used as a standard reference for gene func-

tion annotation (Ashburner et al., 2000; Barrell et al., 2008). It is organized

as a directed acyclic graph (DAG) where the nodes represent functional
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terms (referred to as GO terms) and edges indicate how a term is subdi-

vided into more detailed functional concepts. The DAG is comprised of

three main branches, i.e., Biological Process (BP), Molecular Function

(MF) and Cellular Component (CC) (Ashburner et al., 2000), represent-

ing three distinct classes of functional concepts. The functions of a gene

are then represented by mapping the gene to all relevant terms in GO. In

contrast, very little systematic study has been done about the specific func-

tions of isoforms and there is no central database that provides annotated

isoform functions. Recently, several machine learning approaches were

proposed to predict isoform functions from GO and RNA-Seq expression

data (Eksi et al., 2013; Li et al., 2013, 2015; Luo et al., 2017; Panwar et al.,
2016). In other words, these methods attempt to distribute the annotated

functions of a gene to its isoforms based on their expression profiles. Since

labeled training data were generally unavailable, Eksi et al. (2013) (see

also Panwar et al. (2016)), Li et al. (2013) and Luo et al. (2017) solved

the problem by using a semi-supervised learning technique called multi-

ple instance learning (MIL). However, the experimental performance of

their methods was quite poor. For example, on their respective datasets,

the best areas under the receiver operating characteristics curve (or AUCs)

achieved by the methods were only 0.681, 0.671 and 0.677, respectively.

We believe that a primary cause of the poor performance was due to the

lack of labeled training data.

In this paper, we propose a novel method, DeepIsoFun, for predict-

ing isoform functions from GO and RNA-Seq expression data. It directly

addresses the challenge from the lack of labeled training data by combin-

ing MIL with the domain adaptation (DA) technique. The two techniques

are somewhat complementary to each other since while MIL takes advan-

tage of the gene-isoform relationship, DA helps to transfer the existing

knowledge of gene functions to the prediction of isoform functions. More

precisely, we consider each gene as a bag and each isoform as an instance

in the context of MIL where the labels (i.e., functions) of the instances in

each bag are given as a set (Dietterich et al., 1997). The goal of MIL is

to assign the labels (i.e., functions) of each bag (i.e., gene) to its instances

(i.e., isoforms) with the constraint that each label is assigned to at least

one instance in the bag and no instance is assigned a label that does not

belong to its bag (Andrews et al., 2003; Wang et al., 2017). To apply the

DA technique, we take advantage of the fact that genes actually have ex-

pression data and thus can be considered as instances in another domain

(i.e., the gene domain). In other words, a gene can be regarded as both

an instance in the gene domain as well as a bag in the isoform domain.

Since gene functions are known in GO, the DA technique can be used to

transfer knowledge (i.e., the relationship between expression and function)

from the gene domain (called the source domain) into the isoform domain

(called the target domain) (Ganin and Lempitsky, 2015; Long et al., 2015;

Pan et al., 2011; Tzeng et al., 2014). Hence, the gene domain helps provide

the much needed labeled training data.

The model of DeepIsoFun consists of three classifiers. The first at-

tempts to correctly label the functions of each gene. The second attempts

to correctly label the functions of each isoform (via bags). The third tries to

make sure that instances from the source and target domains are indistin-

guishable so knowledge can be transferred. To implement the model, we

use a neural network (NN) auto-encoder to extract features from expression

data that are both domain-invariant and discriminative for functional pre-

diction, inspired by the work in (Ajakan et al., 2014; Ganin and Lempitsky,

2015). The three classifiers are also implemented as parallel NNs and con-

nected to the auto-encoder NN to form a deep feed-forward network. The

NNs involve mostly standard hidden layers and loss functions and can be

trained for each GO term sequentially using a standard back-propagation

algorithm based on stochastic gradient descent, but we also incorporated

the gradient reversal layer to facilitate the DA method as introduced in

(Ganin and Lempitsky, 2015) and take advantage of the hierarchical struc-

ture of GO in training. In particular, we traverse GO starting at the leaf

nodes and make sure that the model is trained for all child nodes before it

is trained for a parent node so the training for the parent node can benefit

from earlier trainings. This also helps maintain the prediction consistency

throughout GO.

To evaluate the performance of DeepIsoFun, we use three RNA-Seq

expression datasets of human and mouse collected from the NCBI Refer-

ence Sequence Archive (SRA) at different times. The first is a new (also

the largest) dataset that we extracted from the SRA recently. The other two

were studied in (Eksi et al., 2013; Li et al., 2013). To measure the predic-

tion accuracy, we use both AUC and area under the precision recall curve

(AUPRC) against specific baselines (measured at the gene level, as done

in (Eksi et al., 2013; Li et al., 2013; Luo et al., 2017)). Our experimental

results consist of two parts. In the first part, we analyze various properties

of DeepIsoFun such as the effect of domain adaptation on its performance,

impact of the frequency of a GO term in genes on its performance, differ-

ence in performance across the three main branches of GO, divergence of

the functions predicted for the isoforms of a gene, and correlation between

the similarity of expression profiles and the similarity of predicted func-

tions. In the second part, we compare the performance of DeepIsoFun with

the methods introduced in (Eksi et al., 2013; Li et al., 2013; Luo et al.,
2017; Panwar et al., 2016), mi-SVM, iMILP and WLRM, based on support

vector machines (SVMs), label propagation and weighted logistic regres-

sion, respectively. On our new dataset, DeepIsoFun outperformed these

mi-SVM, iMILP and WLRM methods by 31%, 64% and 23% (against

baseline 0.5) in AUC, respectively. In terms of AUPRC, DeepIsoFun out-

performed them by 59%, 11% and 63%, respectively, against baseline 0.1.

Similar improvements on the other two datasets were also observed. We

believe that besides the deep learning framework, the DA technique also

played an important role in these significant improvements.

The rest of the paper is organized as follows. In the Method section,

we describe the proposed method and its NN implementation in more

detail. The section of Experimental evaluation shows how to determine

the key parameters in the NN, the construction of experimental datasets

and all computational results on these datasets. Some possible future work

is briefly outlined in the Discussion section.

2 Method
In this section, we detail our proposed method, DeepIsoFun, for predicting

isoform functions from GO and RNA-Seq data. As outlined above, our

learning framework consists of two domains, the gene domain (denoted as

yd = 0) and the isoform domain (denoted as yd = 1), where yd represents

a domain class label. In the isoform domain, the isoforms of each gene

form a bag in the context of MIL. The gene domain will be considered

as the source domain and the isoform domain as the target domain in the

context of DA. Suppose that there are n genes and m isoforms. Hence,

the isoforms are divided into n bags in the isoform domain. Suppose that

the expression profiles consists of r experiments.

Given a GO term, the data in the gene (or source) domain is denoted

as a pair (xs, ys), where xs is an n × r feature matrix representing the

expression profiles of all n genes over the r experiments and ys is an

n-dimensional binary vector (called gene class labels) indicating whether

each gene has the functional term or not. Similarly, the data in the isoform

(or target) domain is denoted as a pair (xt, yt), where xt is an m × r

feature matrix representing the expression profile of all isoforms and yt
is an m-dimensional binary vector (called isoform class labels) indicating

whether each isoform has the functional term or not. The data for each

bag of the isoform domain is also denoted as a pair (XT , YT ), where

XT is a binary matrix representing the membership of isoforms in each

bag (or gene) and YT is an n-dimensional binary vector (called bag class
labels) indicating whether the isoforms in each bag collectively have the

functional term or not. Observe that YT = ys.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty1017/5237551 by U

niversity of C
alifornia, R

iverside user on 14 D
ecem

ber 2018



3

Figure 1: The proposed NN architecture. It includes an auto-encoder (gray), a gene class label predictor (orange), an isoform class label predictor

(yellow), and a domain label predictor (blue). These four modules jointly form a feed-forward NN, where the auto-encoder consists of two hidden layers

and other three components consist of one hidden layer each. The NN is trained using a standard cross-validation so that the auto-encoder extracts

features from the input expression profiles to minimize the loss in gene class label prediction loss, minimize the loss in bag class label prediction and

maximize the loss in domain classification so that knowledge can be transferred from the gene domain to the isoform domain. In the figure, the rectangle

boxes represent the input data and extracted features. Particularly, xs is the input gene expression data, xt is the input isoform expression data, x′
s

the encoded gene feature data, and x′
t the encoded isoform feature data. Each variable y′s, y′t and y′d represents a predicted gene class label vector, a

predicted isoform class label vector and a predicted domain class label vector, respectively. The notation ys represents the true gene class label vector

that is used to calculate Ls, i.e., gene class label loss. The notation XT represents the membership of isoforms in the bags and YT = ys is the true bag

class label vector that is used to calculate Lt, i.e., bag class label loss via a multiple instance loss procedure. The notation yd is the true domain class

label vector that is used for calculating Ld, i.e., domain class label loss. Forward arrows represent forward propagation and backward arrows show how

losses are backpropagated to allow for the adjustment of the weights wf , ws, wt, and wd used in the auto-encoder, gene class label predictor, isoform

class label predictor, and domain label predictor, respectively.

As mentioned above, our method combines the MIL and DA techniques

and uses three classifiers to classify isoforms with respect to each GO term.

It is implemented on a deep NN architecture with four modules: an auto-

encoder, a gene function predictor in the gene domain, an isoform function

predictor in the isoform domain, and a domain label predictor, as illustrated

in Figure 1. The input gene and isoform expression features (xs and xt)

are mapped by the auto-encoder to obtain an encoded feature matrix xf .

We denote the training weights used in this mapping as wf .

Our goal for the auto-encoder is to generate new feature vectors that will

reduce the loss of predicted gene class label, reduce the loss of predicted

bag class label and at the same time, increase the loss of predicted domain

class label. This will hopefully force the auto-encoder to generate domain-

invariant features and hence realize the transfer of knowledge from the gene

domain into the isoform domain. The new (encoded) feature vectors in the

matrix xf are then partitioned into encoded gene feature vectors x′
s and

encoded isoform feature vectors x′
t. Each former vector is mapped by the

gene class label predictor to predict a label y′s in the gene domain and we

denote the weights in this mapping as ws. Each latter vector is mapped by

the isoform class label predictor to predict a label y′t in the target domain

and we denote the weights in this mapping as wt. See Figure 1 for the

detailed NN architecture.

We train the NN by following a five-fold cross-validation procedure

in the isoform domain and use the annotated GO terms of genes to evalu-

ate its performance, similar to (Eksi et al., 2013; Li et al., 2013; Panwar

et al., 2016). The data is partitioned by genes instead of isoforms to avoid

potential data leak, as done in (Panwar et al., 2016). Note that since iso-

forms from homologous genes of the human genome (i.e., paralogs) do not

generally share similar expression profiles (Li et al., 2013), it is unlikely

for them to cause data leak in expression-based prediction of isoforms as

demonstrated in (Eksi et al., 2013). All data from the gene domain is al-

ways applied to enable DA, but the single-isoform genes in the isoform

domain are left out of training to avoid overfitting. Before the training is

started, the variable yt[i] for isoform i is initialized as follows:

y0t [i] =

{
1, if xt ∈ XT [i, j] = 1 ∧ YT [j] = 1)

0, if xt ∈ XT [i, j] = 1 ∧ YT [j] = 0)
(1)

The model is then trained for each GO term separately. To take advan-

tage of the hierarchical structure of GO, we traverse GO starting from the

leaf nodes and train the model on a parent node only after all its children

have been considered. This allows the training for a parent node to benefit

from the knowledge learned from its children, as sketched schematically

in Figure S1 of the Supplementary Materials. as well as help make the

predicted labels more consistent between parents and children.

The weights wf , wd, ws, wt are determined during training to mini-

mize the following objective function:
L(wf , ws, wt, wd) =

∑
i=1,...,n,yd[i]=0

Li
s(wf , ws)

+λ1

∑
i=1,...,m,yd[i]=1

Li
t(wf , wt)− λ2

∑
i=1,...,n+m

Li
d(wf , wd)

(2)

where Li
s denotes the loss in gene class label prediction at the ith gene,

Li
t the loss in bag class label prediction at the ith bag and Li

d the loss

in domain class label prediction at the ith gene or isoform (see Figure

1). More precisely, for a fixed gene (or bag or isoform/gene) i, these loss

functions are:

Li
s(wf , ws) = −{ys[i] log y′s[i] + (1− ys[i]) log(1− y′s[i])}

Li
t(wf , wt) = −{YT [i] log Y ′

T [i] + (1− YT [i]) log(1− Y ′
T [i])}

Li
d(wf , wd) = −{yd[i] log y′d[i] + (1− yd[i]) log(1− y′d[i])}

(3)

We now show how the loss function Lt[i] is derived. Given the pre-

dicted class labels of the isoforms in bag i, we can estimate the class label

of the bag using the method proposed in (Wang et al., 2015) for dealing

with multiple instance loss as shown in equation 4. Clearly, if at least

one instance of the bag is positive, the bag will be predicted as positive;

otherwise, it will be considered as negative.

Y ′
T [i] = 1−

∏
j∈bag i

(1− y′t[j]) (4)
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y′t[j] =
1

1 + e−wt·x′
t[j]

(5) x′
t[j] =

1

1 + e−wf (t)·xt[j]

(6)
Here, i denotes a bag and j an isoform. The predicted isoform class label

y′t[j] for isoform j is calculated by the sigmoid function in equation 5.

The encoded feature vector of isoform j, x′
t[j], is calculated by another

sigmoid function given in equation 6. The weights wf (t) represent the

part of wf derived from the isoform data. The other part of wf , denoted

as wf (s), represents the weights derived from the gene data. Similar sig-

moid functions are used to derive the values of y′s and y′d used in equation

3.

As mentioned above, we would like to seek the values of

wf , ws, wt, wd to achieve a saddle point of equation 2 such that
ŵf , ŵs, ŵt = arg minwf ,ws,wtL(wf , ws, wt, ŵd)

ŵd = arg maxwdL(ŵf , ŵs, ŵt, wd)
(7)

At the saddle point, the weights wd of the domain label predictor

maximize the loss in domain classification while the weights ws and wt

of the class label predictors minimize the loss in functional prediction in

both domains. The feature mapping weights wf help minimize the class

label prediction loss while maximizing the domain classification loss. A

saddle point of equation 7 can be found as a stationary point by using

the following stochastic updates as suggested in (Ganin and Lempitsky,

2015):

wf ← wf − α(
∂Ls

∂wf (s)
+ λ1

∂Lt

∂wf (t)
− λ2

∂Ld

∂wf
)

ws ← ws − α(
∂Ls

∂ws
)

wt ← wt − α(
∂Lt

∂wt
)

wd ← wd − α(
∂Ld

∂wd
)

where the parametersλ1 andλ2 control the relative contributions of the

predictors during learning and α denotes the learning rate in this process.

3 Experimental evaluation
In this section, we describe in detail how to choose the key parameters in

the NN model, how the test data is collected, and how the computational

experiments are performed as well as what are their results.

3.1 The deep NN parameters

DeepIsoFun has been implemented in Caffe (Jia et al., 2014). In our NN

architecture, the auto-encoder consists of two fully-connected layers to

extract common features of the gene and isoform domains. The first fully-

connected layer consists of 600 neurons and the second fully-connected

layer consists of 200 neurons. The number of hidden layers and size of each

layer (i.e., number of neurons in the layer) were optimized by a standard

grid search method (Bergstra et al., 2011; Bergstra and Bengio, 2012). The

gene class label predictor and isoform class label predictor modules are

both output layers, and hence have only a single output neuron each. The

domain label predictor module uses a fully connected layer with 300 neu-

rons and an output layer with a domain output neuron. We used a standard

stochastic gradient descent optimization method to minimize the training

error as represented by the loss function given in equation 2 that involves

two parameters λ1 and λ2. Both parameters were tuned experimentally by

following suggestions in the literature (Bergstra and Bengio, 2012; Snoek

et al., 2012). In particular, the parameter λ2 weighting the contribution

from domain label prediction was set by using the following formula:

λ2 =
2

1 + e−10p
− 1

By adjusting p ∈ [0, 1], we gradually tuned λ2 so that noise from the

domain label predictor is minimized at early training stages. The isoform

domain data was partitioned in the five-fold cross-validation procedure

to produce the training and test data. The batch size used in stochastic

training of the NN model was 200. In other words, 200 source samples

(genes) and 200 target samples (isoforms) are merged to create a batch. At

the initial training stage, the leaning rate was set asα = 0.001. As training

progresses, we update the learning rate by using the standard step decay

procedure (Sutskever et al., 2013) implemented in Caffe. We also checked

if the learning was diverging (e.g., very large loss values were observed),

and dropped the initial learning rate by a factor 10 until convergence has

been achieved.

3.2 Collection of datasets

Manually reviewed mRNA isoform sequences and gene sequences of hu-

man were collected from the NCBI RefSeq (Pruitt et al., 2005). To collect

the expression profiles of these isoforms, we took an initial set of 4643

RNA-Seq experiments from the NCBI SRA database (Leinonen et al.,
2010), and selected datasets with 50 million to 100 million reads. These

experiments represented different physiological and cell conditions but

were not involved in population studies. Such a diverse set of expression

data may reflect many complex characteristics of the isoforms. The tool

Kallisto (Bray et al., 2016) with Sleuth (Pimentel et al., 2016) was used

to generate isoform expression data measured in TPMs (Transcripts Per

Million). The expression level of a gene in a dataset was estimated by

summing up the expression levels of all its isoforms. Experiments with

the pseudo-alignment ratio less than 0.7 were discarded to ensure data

quality. We also filtered out poorly covered genes and their correspond-

ing isoforms in these experiments. Finally, the expression data of 19532

genes and 47393 isoforms from 1735 RNA-Seq experiments formed our

first dataset (simply called Dataset#1). Out of these genes, 9039 have only

one isoform and are called single-isoform genes (SIGs) and 10313 have

more than one isoform and are called multiple-isoform genes (MIGs). The

distribution of isoforms over genes is shown in Figure S2 of the Supple-

mentary Materials. UniProt genes were mapped to RefSeq genes by using

the UniProt ID mapping file. The UniProt GO database was used to anno-

tate the functions of each RefSeq gene, where GO functions inferred from

electronic annotation (IEA) evidence code were discarded as done in (Li

et al., 2013). In other words, only manually curated functions were used

for the final annotation. The number of genes associated with a GO term

is referred to as the GO term size. Intuitively, GO terms with small sizes

are computationally difficult to learn since its data is highly skewed (i.e.,
mostly negative). In particular, it was assumed in (Eksi et al., 2013) that a

GO term with size less than 5 might be very specific to certain genes and

thus not very useful in the cross-validation training procedure. We hence

did not consider such infrequent GO terms in our experiments. The basic

version of GO was used to generate the parent-child relationship between

GO terms (Ashburner et al., 2000). Out of all 44612 GO terms, 14563

appear in human annotations. After the above filtration, 4272 GO terms

were kept for our experimental evaluation work. In addition to Dataset#1,

we also used the datasets with their respective GO annotations introduced

in (Eksi et al., 2013) and (Li et al., 2013) (called Dataset#2 and Dataset#3,

resp.) to ensure our comparison results are unbiased, where Dataset#2 was

generated from 116 SRA mouse studies consisting of 365 experiments

and Dataset#3 was generated from 29 SRA human studies consisting of

455 experiments with the requirement that each study had more than 6

experiments.

3.3 Experimental results

Since isoform functions are generally unavailable, we evaluated the per-

formance of DeepIsoFun using gene level functional annotations by

considering SIGs and MIGs either together or separately, as done simi-

larly in (Eksi et al., 2013; Li et al., 2013). Because each SIG contains only

one isoform, its functional annotation can be used to directly validate the
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predicted functions of the involved isoform. For a MIG, we can only check

if the set of the predicted functions of its isoforms is consistent with its

annotated GO terms (Eksi et al., 2013). We also estimated the functional

divergence achieved by the isoforms of the same gene by calculating the

semantic dissimilarity for each of the three main branches of GO (i.e., CC,

BP and MF). The tool GOssTo (Caniza et al., 2014) was used to perform

this estimation because it was able to take into account the hierarchical

structure of GO. Moreover, we analyzed how the DA technique really

helped the performance of our method, how the size of a GO term im-

pacted the performance and the correlation between expression similarity

and predicted function similarity for isoforms. Finally, we compared our

method with the methods in (Eksi et al., 2013; Li et al., 2013; Luo et al.,
2017; Panwar et al., 2016) in terms of AUC and AUPRC against specific

baselines by focusing on a small set of GO terms (i.e., GO Slim with

117 terms) that have been widely used in the literature (Ashburner et al.,
2000). Here, a baseline represents the performance of a random (untrained)

classifier (Saito and Rehmsmeier, 2015). While the baseline in an AUC

estimation is always 0.5 (Fawcett, 2006; Metz, 1978), the baseline in an

AUPRC estimation depends on data imbalance and equals the proportion

of positive instances (Saito and Rehmsmeier, 2015). The latter measure

is known to be more suitable for imbalanced data. Note that for highly

imbalanced data (like ours), AUPRC values are often quite low (Davis and

Goadrich, 2006; Saito and Rehmsmeier, 2015). However, we may still use

them to compare the relative performance of different methods on various

datasets, taking into account actual baselines.

3.3.1 Performance on the three main branches of GO
Since the three main branches carry very different meanings in gene func-

tions and are often treated separately in the literature, we compared the

performance of DeepIsoFun on them. Out of the 4272 GO terms, 699 be-

long to CC, 2178 BP and 1395 MF. The distributions of GO term sizes on

the three branches are similar. The average AUC values on BP, CC and MF

are 0.735, 0.728 and 0.722, respectively, (see Figure 2a) and the average

AUPRC values are 0.301, 0.279 and 0.294, respectively, (see Figure 2b).

This robust performance of DeepIsoFun on the three main branches of GO

shows that the terms on the branches probably follow similar distributions

(as already observed on the distributions of their sizes).

(a) (b)
Figure 2: Comparison of performance on the three main branches

of GO. (a) The average AUC values on the three branches. (b) The

average AUPRC values on the three branches.

3.3.2 Impact of the size of a GO term on performance
Some GO terms are very specific to certain genes while the others are more

general. To test how the size (or popularity) of a GO term would impact the

performance of DeepIsoFun, we divided the GO terms into four groups

based on size. The four groups consist of GO terms of sizes in ranges

[5-10], [11-20], [21-50], and [51-1000], respectively. The performance of

DeepIsoFun on these groups is given in Figure 3a. DeepIsoFun performed

better on GO terms with smaller sizes in general. This pattern seems to

contradict intuition, but it is consistent with the findings in (Li et al., 2013)

and can perhaps be explained by the large the amount of (annotation)

noise in large size GO terms. To confirm this, we further analyzed the

correlation between expression similarity and functional similarity with

respect to GO terms in each of the four groups. The results in Figure S3 of

the Supplementary Materials suggest that the correlation decreases as the

GO term size increases. The weak correlations shown in the figure also

partially explain why the AUC and AUPRC values obtained in Figure 2

are not very high.

(a)

(b)

Figure 3: Comparison of AUCs achieved in four groups of GO terms

from CC with different sizes. The four groups contain terms with sizes

in ranges [5-10], [11-20], [21-75], and [76-1000], respectively. (a) The

average AUC values achieved by the terms in the four groups are 0.767,

0.734, 0.718, and 0.705, respectively. The plot shows that generally as

the size of a GO term increases, its achieved AUC actually decreases.

(b) DeepIsoFun consistently performed better on MIGs over SIGs. The

average AUC values on MIGs achieved in the four groups are 0.79, 0.748,

0.745, and 0.709, respectively. the average AUC values on SIGs achieved

by in four groups are 0.755, 0.702, 0.693, and 0.675, respectively.

3.3.3 Performance on MIGs vs SIGs
In the previous section, we considered the performance of DeepIsoFun

on all genes, including both SIGs and MIGs. Since our ultimate goal is

to dissect functions of different functions of the same gene, we would

like to compare the performance on MIGs with that on SIGs in this sub-

section. As shown in Figure 3b, the performance increases as term size

decreases. Moreover, the performance on MIGs achieved in these groups

are consistently better than the performance on SIGs. More precisely, the

performance on MIGs was 14%, 23%, 27%, and 19% better (against the

baseline 0.5) than that on SIGs in the four groups, respectively. Hence,

DeepIsoFun was more effective in predicting functions for genes with

multiple isoforms than genes with a single isoform, probably because of

the functional diversity usually acquired by the former. Another plausi-

ble cause is that, since most (95%) human genes are expected to be MIGs,

many SIGs could represent poorly annotated genes that have large numbers

of undiscovered isoforms. Therefore, we also analyzed the performance

of DeepIsoFun on MIGs with a certain number of isoforms. As shown

in Figure S4 of the Supplementary Materials, the AUC performance of

DeepIsoFun increases (slightly) as more isoforms are found in a MIG.

3.3.4 Dissimilarity among the predicted functions of isoforms
Since our ultimate goal is to dissect the functions of isoforms, we esti-

mate the functional divergence of the isoforms of the same gene. For each

GO term, the gene-wise method simGIC of GOssTo (Caniza et al., 2014;

Pesquita et al., 2007) was used to calculate the semantic similarity score

in the range of [0,1] for each gene based on the predicted functions of
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(a) CC (b) BP (c) MF
Figure 4: Functional dissimilarity distributions on the three main branches of GO.

its isoforms. The dissimilarity score was simply defined as one minus the

similarity score (Li et al., 2013). Again, the three main branches of GO

(i.e., CC, BP and MF) were considered separately. Out of the 10313 MIGs,

4310 genes appear in CC, 5224 appear in BP and 3217 appear in MF (a

gene may contain functions from multiple branches). For each branch, the

functional divergence of a gene is calculated as the average dissimilar-

ity scores over all terms on the branch. Figure 4 shows the distribution

of functional dissimilarity scores among the isoforms of each gene. As

observed in the literature (Li et al., 2013; Schlicker et al., 2006), many

genes exhibited low average dissimilarity scores. More precisely, about

24% (1033) of the genes that appear in CC showed average dissimilarity

scores less than 0.1. For BP and MF, this percentage rose to 46% (2405

genes) and 39% (1280 genes). On the other hand, about 7%, 3% and 4%

of the genes have average dissimilarity scores greater than 0.3 on the three

branches, respectively. These results are consistent with the fact that the

isoforms of the same genes have very similar sequences, which lead them

to perform mostly similar functions, but some isoforms may still have very

different functions due to large changes in promoters and/or composition

of coding exons.
3.3.5 Effectiveness of domain adaptation
A main novelty in DeepIsoFun is the use of DA (domain adaptation) to cre-

ate labeled training data and transfer knowledge from the gene domain to

the isoform domain. To test the effectiveness of DA in the experiments, we

compared DeepIsoFun with a version without DA where the third part of

the objective function in equation 2 is disabled. Compared with the average

AUC of 0.695 achieved by the restricted DeepIsoFun without DA, Deep-

IsoFun with DA performed 18% better against the baseline 0.5 as shown

in Figure 5. We then further compared the two versions on the four GO

term groups based on term sizes and found that the DA technique always

made a significant difference. More specifically, it helped DeepIsoFun to

achieve 19%, 19%, 17%, and 20% better AUC (against the baseline 0.5)

in the four groups, respectively.

Figure 5: Comparison of AUCs achieved in the four groups of GO terms

by DeepIsoFun with and without the DA technique. The average AUC

value achieved by DeepIsoFun with DA in all four groups is 0.730 and

the corresponding AUC achieved by DeepIsoFun without DA is 0.695.

The benefit of DA is also clearly shown in the comparison over individual

groups.

We also tested if the DA technique was actually able to mix the two

domains (so knowledge can be transferred). The plots in Supplementary

Figure S5 made by using t-SNE (Maaten and Hinton, 2008) show clearly

that the extracted features from the two domains became indistinguishable

with the help of DA. This makes it possible to transfer knowledge (i.e.,
the relationship between expression profiles and functions) from the gene

domain to the isoform domain and is a key to the improved performance

of DeepIsoFun.

3.3.6 Correlation between expression similarity and the similarity of
predicted functions

Given the difficulty in testing the performance of DeepIsoFun directly due

to the lack of isoform function benchmark, we tested how the predicted

isoform functions are correlated with their expression profiles. After all,

this was the original hypothesis behind the design of DeepIsoFun. We

performed a hierarchical clustering of the isoforms based on the expres-

sion data and Euclidean distance by using a standard tool (hclust) in the R

Stats package. Eight clusters were defined from the clustering tree using

the same tool. Then, the average distance between the expression profiles

of the isoforms within each cluster was calculated and normalized to the

range of [0,1]. The same thing was done to estimate the average distance

between the predicted GO terms of the isoforms within each cluster. The

distributions of the average distances over the clusters are shown in Figure

6. Clearly, isoforms with similar expression profiles resulted in similar

predicted functions.

Figure 6: Comparison between the distribution of expression similarity

and the distribution of similarity concerning predicted functions. The plot

shows a clear positive correlation between the two distributions.

3.3.7 Comparison with the existing methods
We compared the performance of DeepIsoFun with three existing methods,

iterative Multiple Instance Label Propagation (iMILP) (Li et al., 2013),

Multiple Instance SVM (mi-SVM) (Eksi et al., 2013; Panwar et al., 2016)

and the Weighted Logistic Regression Method (WLRM) (Luo et al., 2017).

Here, iMILP is the iterative version of MILP where a feature selection

wrapper method is run over MILP to achieve better performance (Li et al.,
2013). For completeness, we will also included MILP in the comparison.

Note that WLRM was compared in (Luo et al., 2017) with two recent

methods for solving MIL, namely miFV (Wei et al., 2014) and miVLAD

(Wei et al., 2017), and found to perform better in the prediction of isoform

functions. In addition to Dataset#1 analyzed above, we also considered the

two expression datasets introduced in (Eksi et al., 2013; Li et al., 2013),

Dataset#2 and Dataset#3, respectively. Since mi-SVM and WLRM fol-

low a 2-class classification framework but MILP/iMILP adapt a 3-class

classification framework, different benchmarks were used to create func-

tional labels for training and testing in (Eksi et al., 2013; Li et al., 2013;

Luo et al., 2017; Panwar et al., 2016). In a 2-class classification frame-

work, an isoform is classified as either positive or negative with respect

to each GO term, while in a 3-class classification framework, an isoform
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is classified as either positive, negative or unknown. Hence, we present

the comparison between DeepIsoFun and MILP/iMILP in Table 1 and

the comparison among DeepIsoFun, mi-SVM and WLRM in Table 2.

Note that the values in the two tables are not directly comparable. On all

three datasets, DeepIsoFun performed significantly better than the other

methods. The average AUC values achieved by DeepIsoFun on all three

datasets are 0.742, 0.734 and 0.720 with respect to the first benchmark

(Table 1), and 0.735, 0.729 and 0.704 with respect to the second bench-

mark (Table 1). The corresponding values of AUPRC are 0.368 (baseline

0.1), 0.270 (baseline 0.08) and 0.331 (baseline 0.11) with respect to the

first benchmark, and 0.292 (baseline 0.1), 0.246 (baseline 0.08) and 0.234

(baseline 0.11) with respect to the second benchmark. Note that although

the AUPRC values are lower, they still represent quite decent performance

when compared to the baseline values. The best performance achieved

on Dataset#1 is perhaps due to the quality of data (since it was collected

most recently and processed with updated tools) and its diversity across

different tissue conditions. On this dataset, compared to iMILP, MILP, mi-

SVM and WLRM, the AUC of DeepIsoFun increased 64%, 102%, 31%,

and 23% against the baseline 0.5, respectively. Similarly, on Dataset#2 (or

Dataset#3), the improvements are 73%, 216%, 37%, and 45% (or 26%,

450%, 43%, and 24%) against the baseline, respectively. Since our labeled

data was imbalanced, we also compared the performance in AUPRC and

observed similar improvements. On Dataset#1 (Dataset#2 and Dataset#3),

DeepIsoFun performed 59% (29% and 41%, resp.) better than mi-SVM

in AUPRC against respective baselines, 11% (23% and 10%, resp.) better

than iMILP, 57% (32% and 20%, resp.) better than MILP, and 63% (62%

and 85%, resp.) better than WLRM. We think that these significant im-

provements in performance over the existing methods on several human

and mouse datasets demonstrate the success of the DA technique as well

as the power of deep learning.

Table 1. Comparison between DeepIsoFun and MILP/iMILP on different

expression datasets in terms of AUC and AUPRC values. Dataset#1 was gen-

erated from 1735 RNA-Seq experiments by using Kallisto (Bray et al., 2016).

Dataset#2 and Dataset#3 were obtained from (Eksi et al., 2013) and (Li et al.,

2013), respectively. The benchmark positive and negative instances of each

GO term used in testing were defined by following the procedure in (Li et al.,

2013). The unlabeled instances were ignored in testing. Both Dataset#1 and

Dataset#2 were divided based on read length to create different “study groups”.

There are 24, 24 and 29 study groups in Dataset#1, Dataset#2 and Dataset#3,

respectively. On the average, each study group consists of 71, 16 and 17 SRA

experiments in Dataset#1, Dataset#2 and Dataset#3, respectively. As done in

(Li et al., 2013), a selection algorithm was employed by iMILP to choose a

subset of study groups on each dataset optimize its performance.

AUC AUPRC

Dataset

Method
DeepIsoFun MILP iMILP DeepIsoFun MILP iMILP

Dataset#1 0.742 0.620 0.648 0.368 0.271 0.342

Dataset#2 0.734 0.574 0.635 0.270 0.224 0.235

Dataset#3 0.720 0.540 0.674 0.331 0.294 0.311

Table 2. Comparison among DeepIsoFun, mi-SVM and WLRM on different

expression datasets in terms of AUC and AUPRC values. The benchmark pos-

itive and negative instances of each GO term used in testing were defined by

following the procedure in (Eksi et al., 2013).

AUC AUPRC

Dataset

Method
DeepIsoFun mi-SVM WLRM DeepIsoFun mi-SVM WLRM

Dataset#1 0.735 0.679 0.691 0.292 0.221 0.218

Dataset#2 0.729 0.667 0.658 0.246 0.209 0.182

Dataset#3 0.704 0.643 0.664 0.234 0.198 0.177

Some comparisons of the methods in terms of divergence of predicted

isoform functions and time efficiency are given in the Supplementary Ma-

terials ( Figure S6 and Table S1). We also compared the performance of the

methods on two additional datasets concerning Arabidopsis thaliana and

Drosophila melanogaster (i.e., fruit fly) and summarize the comparison

results in Tables S2 and S3 of the Supplementary Materials. As the tables

show, DeepIsoFun consistently performed better than the other methods

in both AUC and AUPRC. The performance of the methods on all five

datasets with respect to different GO term sizes is given in Tables S4 and

S5.

3.3.8 Validation of some predicted isoform functions
As mentioned before, there has been little systematic study on isoform

functions in the literature, and not many specific experimentally-verified

functions of isoforms have been reported. Some of the reported func-

tions concern differential regulatory behaviors of isoforms in important

processes such as the ‘regulation of apoptosis process’ (GO:0042981).

Apoptosis refers to programmed cell death. This GO term has two chil-

dren with opposite functions, i.e., the ‘positive regulation of apoptosis

process’ or pro-apoptosis (GO:0043065) and the ‘negative regulation of

apoptosis process’ or anti-apoptosis (GO:0043066). For MIGs with both

pro-apoptosis and anti-apoptosis functions, it would be interesting to know

if it has some isoforms that are pro-apoptosis but not anti-apoptosis and

some other isoforms that are anti-apoptosis but not pro-apoptosis. In other

words, we would like to know if the pro- and anti-apoptosis functions of

the gene are differentiated among its isoforms. To investigate such MIGs,

we searched for all genes that have multiple isoforms and are annotated

with both pro-apoptosis and anti-apoptosis functions. Totally, 18 such

genes were found (see Table S6 in the Supplementary Materials). The

number of isoforms in each of these genes ranges from 2 to 17. Tables

S6, S7, S8, and S9 in the Supplementary Materials show the performance

of DeepIsoFun, iMILP, mi-SVM, and WLRM, respectively, in predict-

ing the apoptosis regulatory, pro-apoptosis and anti-apoptosis functions,

measured at the gene level. DeepIsoFun was able to predict the apoptosis

regulatory function for the isoforms of 17 out of the 18 genes (94.4% re-

call), the pro-apoptosis function for the isoforms of 13 genes (72.2% recall)

and the anti-apoptosis function for the isoforms of 14 genes (77.7% recall).

In contrast, iMILP achieved recalls 77.7%, 55.6% and 61.1%, mi-SVM

achieved recalls 83.3%, 66.7% and 61.1% and WLRM achieved recalls

77.7%, 61.1% and 72.2% in predicting the three functions, respectively.

Futhermore, the tables show that DeepIsoFun was able to differentiate the

pro- and anti-apoptosis functions among isoforms for 8 of the 18 genes

while iMILP, mi-SVM and WLRM were only able to do it for 5, 4 and 3

genes, respectively. Although we do not know exactly how many of these

genes have differentiated pro- and anti-apoptosis functions among their

isoforms, it is perhaps reasonable to conjecture that most of these genes

do possess this property.

4 Discussion
Although DeepIsoFun achieved significant improvement over the existing

methods in isoform function prediction, its performance as measured by

AUC and AUPRC in our experiments still remained less than desirable.

The prediction of isoform functions is challenging not only because of the

lack of labeled training data (i.e., specific functions are known for very few

isoforms) and noisy GO annotation, but also because the data is very im-

balanced. That is, most GO terms are only associated with a small number

of genes and hence the negative examples are far more than the positive

examples. This makes the situation especially bad when the performance

is measured in AUPRC since the number of false positive examples tends

to be high and thus the precision tends to be low. We dealt with the problem

by leaving out infrequent GO terms that are associated with fewer than five

genes, although such terms often represent specific functions and could be

biologically the most relevant. On the other hand, most functions of genes

are yet to be discovered. Hence, three-class classification was proposed in

(Li et al., 2013) as a way to address the data imbalance issue. However,

such an approach often leads to conservative predictions and may fail to
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predict many isoform specific functions. We plan to study machine learn-

ing (including unsupervised learning) techniques that can help produce

meaningful predictions for infrequent GO terms.

Another challenge we faced was the heterogeneity of the expression

data. While a large dataset covering many tissues and conditions (such

as Dataset#1) provides rich information about isoform functions, it also

contains a lot of noise that makes the extraction of informative features

difficult. (Li et al., 2013) solved this problem by using an elaborate search

procedure to identify the best subset of RNA-Seq experiments in the input

data. However, the search consumes a lot of time, especially when the

number of input RNA-Seq experiments is large. We plan to apply Deep-

IsoFun to tissue-specific data to see how its performance will be affected

as well as if some tissue-specific isoform functions can be discovered.
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