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ABSTRACT

Young massive star clusters spanning ∼104–108 M⊙ in mass have been observed to have

similar surface brightness profiles. We show that recent hydrodynamical simulations of star

cluster formation have also produced star clusters with this structure. We argue analytically that

this type of mass distribution arises naturally in the relaxation from a hierarchically clustered

distribution of stars into a monolithic star cluster through hierarchical merging. We show

that initial profiles of finite maximum density will tend to produce successively shallower

power-law profiles under hierarchical merging, owing to certain conservation constraints on

the phase-space distribution. We perform N-body simulations of a pairwise merger of model

star clusters and find that mergers readily produce the shallow surface brightness profiles

observed in young massive clusters. Finally, we simulate the relaxation of a hierarchically

clustered mass distribution constructed from an idealized fragmentation model. Assuming

only power-law spatial and kinematic scaling relations, these numerical experiments are able

to reproduce the surface density profiles of observed young massive star clusters. Thus, we

bolster the physical motivation for the structure of young massive clusters within the paradigm

of hierarchical star formation. This could have important implications for the structure and

dynamics of nascent globular clusters.
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1 IN T RO D U C T I O N

Most stars in the Universe are field stars, gravitationally bound only

to their host galaxies and not to any discernible smaller element of

structure.However, when the locations of initial star formation are

considered, there is strong evidence that most stars are born in a

statistically clustered, correlated configuration (Lada & Lada 2003;

McKee & Ostriker 2007; Bressert et al. 2010; Gouliermis et al.

2015; Grasha et al. 2017; Gouliermis 2018). The star formation

efficiency M⋆/Mgas of typical giant molecular clouds is only of

order 1–10 per cent (Myers et al. 1986; Mooney & Solomon 1988;

Williams & McKee 1997; Evans et al. 2009; Heiderman et al. 2010;

Lada, Lombardi & Alves 2010; Murray 2011; Kennicutt & Evans

2012; Lee, Miville-Deschênes & Murray 2016), possibly due to

stellar feedback disrupting the molecular cloud once a certain stellar

mass has formed (Murray, Quataert & Thompson 2010; Hopkins,

Quataert & Murray 2012; Hopkins et al. 2014; Grudić et al. 2018).

The loss of binding energy from the blowout of the remaining

⋆ E-mail: mgrudich@caltech.edu

gas can unbind the initial stellar distribution (Tutukov 1978; Hills

1980; Mathieu 1983; Lada, Margulis & Dearborn 1984; Elmegreen

& Clemens 1985; Baumgardt & Kroupa 2007; Parmentier et al.

2008), allowing most or all stars to disperse into the surrounding

galaxy. However, the existence of young, apparently well-relaxed

star clusters within the Milky Way (Portegies Zwart, McMillan &

Gieles 2010) suggests that a certain fraction of star formation does

lead to bound cluster formation, even in Milky Way-like conditions.

In many cases, young star clusters have not had time to evolve

under the effects of evaporation, dynamical relaxation, and stellar

evolution, so their structures should contain some information about

their initial formation. A successful model of star cluster formation

will be able to clarify this relationship.

In this paper, we discuss the formation of young massive star

clusters (YMCs): star clusters that are younger than ∼100 Myr and

more massive than 104 M⊙ (Portegies Zwart et al. 2010).1 Unlike

1The definition of Portegies Zwart et al. (2010) also implicitly includes

gravitational boundedness, however, we emphasize that the observed YMCs

we refer to in this text are not necessarily bound.
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Cluster structure from hierarchical formation 689

mature globular clusters, which are generally well-fit by tidally

truncated models such the King (1966) profile, YMCs have been

found to have extended power-law profiles with no discernible trun-

cation and hence are better fit by the Elson, Fall & Freeman (1987)

surface brightness model (hereafter EFF). This model consists of a

core of finite surface brightness μ0 with an outer surface brightness

profile that decays as μ ∝ R−γ , where γ is the parameter determin-

ing the logarithmic slope of the surface brightness profile, hereafter

referred to as the ‘profile slope’. If γ ≤ 2, the integrated stellar

mass is divergent, so EFF profiles with γ ∼ 2 are referred to as

‘shallow’, and have a greater proportion of their light in the power-

law portion of the surface brightness profile compared to steeper

profiles.

YMCs quite often do have shallow profile slopes with γ typi-

cally ranging from 2.2 to 3.2 (Elson et al. 1987; Mackey & Gilmore

2003a,b; Portegies Zwart et al. 2010; Ryon et al. 2015), which

correspond to 3D density profiles ρ ∝ r−3.2−r−4.2 in the outer re-

gions. The super star clusters of NGC 7252, despite being three

to four orders of magnitude more massive than YMCs of the Lo-

cal Group, also have profile slopes in this range (Bastian et al.

2013). This agreement across mass scales suggests some scale-

free physical mechanism of bound star cluster formation, such

that a shallow EFF-like surface brightness profile is generally

produced.

One might suppose that the shallow power-law profile of young

clusters somehow reflects the initial stellar configuration at the time

of star formation, and a smooth cloud of gas turns into a struc-

tureless star cluster (e.g. Goodwin 1998). However, observations

and simulations (Mac Low & Klessen 2004; McKee & Ostriker

2007; Kruijssen 2013; Krumholz et al. 2014) of star-forming clouds

agree that the initial distribution of stellar positions in a star clus-

ter is clumpy and hierarchical, not smooth and monolithic. Thus,

presently observed smoothly distributed star clusters are likely to

have assembled from a hierarchy of sub-clusters that fragmented

out of the parent molecular cloud. If so, the present-day struc-

ture of young star clusters is the direct result of top-down frag-

mentation into stars followed by bottom-up assembly into a single

star cluster (see Fig. 1). In this work, we investigate this physical

process, arriving at an explanation for the observed structure of

YMCs.

This paper is structured as follows: In Section 2, we review

observations of the structure of YMCs and compare them to the

catalogue of star clusters formed in the Grudić et al. (2018; here-

after Paper I) suite of star cluster formation simulations. We argue

that the profile slopes of YMCs are established early in a cluster’s

lifetime and hence must emerge from their hierarchical formation

events. In Section 3, we discuss how this happens, arguing analyti-

cally that the hierarchical merging of sub-clusters generally creates

clusters with shallower power-law slopes through phase-space mix-

ing. In Section 4, we test our analytic predictions against N-body

simulations of collisionless pairwise star cluster mergers and the

collisionless relaxation of a hierarchically clustered mass distibu-

tion. In Section 5, we discuss various possible implications and

generalizations of our results, and in Section 6, we summarize our

main results. Appendix A describes our algorithm for identifying

bound star cluster membership from N-body particle data in the

simulations of Paper I. In Appendix B, we derive, plot, and provide

approximations for various functions that are useful in the analy-

sis of an EFF star cluster model in collisionless equilibrium with

arbitrary γ .

2 PRO FI LE SLOPES OF YMC POPULATIO NS

The EFF surface brightness model commonly used to fit YMCs has

the form

μ(R) = μmax

(

1 +
R2

a2

)−γ /2

, (1)

where μmax is the central surface brightness, R is the projected

distance from the centre, a is a scale radius, and γ gives power-law

index of the outer brightness profile, hereafter referred to as the

‘profile slope’. The corresponding 3D density profile assuming a

constant mass-to-light ratio is

ρ (r) = ρ0

(

1 +
r2

a2

)− γ+1
2

, (2)

where

ρ0 =
M

a3

Ŵ
(

γ+1

2

)

3/2Ŵ
(

γ−2

2

) (3)

is the central density, M the total mass, a the scale radius, and γ the

profile slope. This density profile can be recognized as a general-

ization of the Plummer (1911) model (corresponding to γ = 4) to

arbitrary profile slope.

Several observed YMC populations are rich enough to be able to

discern an underlying distribution of profile slopes. In Fig. 2, we plot

the distribution of γ as measured by Ryon et al. (2015) for YMCs in

M83, Ryon et al. (2017) for NGC 628 and NGC 131, and Mackey

& Gilmore (2003a,b) for the Magellanic Clouds. These clusters

range from ∼106−108 yr in age and ∼104−106 M⊙ in mass. In all

three populations, the median γ is around 2.5. In general, agreement

between the observed distributions is quite good, suggesting that a

population of EFF-like clusters with this γ distribution arises from

some common underlying physical process.

Power-law density profiles have been proposed to emerge in star

clusters in various ways. A power-law density profile is the hall-

mark of gravothermal core collapse, but an inner density profile of

ρ ∝ r−2.2 should generally result (Cohn 1980; Lynden-Bell & Eggle-

ton 1980), which is unlike the outer power-law profile ρ ∝ r−3.5 typ-

ically observed in YMCs. von Hoerner (1957) and Hénon (1964)

found that a ρ(r) ∝ r−4 (hence γ = 3) density profile results when

a uniform collisionless sphere with a Maxwellian velocity distribu-

tion undergoes violent relaxation towards collisionless equilibrium.

More generally, it results from a discontinuity in the distribution of

stellar mass in energy space across the boundary between bound and

free orbits, as is caused by the escape of stars with positive energy

after a violent relaxation event (Aguilar & White 1986; Jaffe 1987;

Merritt, Tremaine & Johnstone 1989). As such, this may be a good

model of the initial relaxation of the smallest bound sub-structures,

or at the resolution limit in star cluster formation simulations that

do not resolve individual stars (e.g. Paper I). However, it does not

explain the fact that the majority of star clusters have γ < 3.

Elson et al. (1987) suggested that the typically observed value

γ ∼ 2.5 corresponds to the ρ ∝ r−3.5 profile found in Spitzer &

Shapiro (1972) as a steady-state solution for the outer halo of a star

cluster with an inner core, but they proceeded to point out that this

structure would have to be established on the two-body relaxation

time-scale (Spitzer 1987; Portegies Zwart et al. 2010):

trh = 4 × 107 yr

(

M

104 M⊙

)1/2 (
Reff

1 pc

)3/2

, (4)

MNRAS 481, 688–702 (2018)
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690 M. Y. Grudić et al.

Figure 1. Proposed model of cluster formation from hierarchical star formation. Far left: An unstable molecular cloud undergoes gravitational collapse.

Centre left: The gravitational instability causes hierarchical fragmentation, producing a hierarchy of sub-clouds that eventually fragment into individual stars.

Centre right: Stars that fragmented out of the same sub-clouds form in sub-clusters. Feedback from massive stars starts to evacuate gas locally. Far right: The

sub-clusters merge hierarchically into a single cluster as stellar feedback blows out any remaining gas.

Figure 2. Solid: Cumulative distribution of star cluster profile slope in the YMC populations of M83 (Ryon et al. 2015), NGC 628, NGC 1313 (Ryon et al.

2017), and the Small and Large Magellanic Clouds (Mackey & Gilmore 2003a,b). Dashed: CDF for the star cluster population extracted from the simulations

of Paper I, with and without stellar feedback. For both real and simulated cluster populations, we include only those clusters that have γ > 2, as in Ryon et al.

(2015). Agreement between the observed populations is quite good, however, the simulations without feedback appear to have a deficit of shallow clusters.

This may be due to the greater compactness of star clusters produced in absence of feedback, which decreases the cross-section for the dynamical interactions

that lead to shallower profiles.

where Reff is the half-mass radius (we have also assumed here that

the mean mass of a star is 0.5 M⊙). Many YMCs are much younger

than their respective two-body relaxation time-scale, so this picture

is not satisfactory.

In general, scenarios requiring more than a few Myr can be ruled

out, as good EFF fits appear to have been achieved for quite young

star clusters. Indeed, Ryon et al. (2015) found no correlation of γ

with cluster age in M83, suggesting that any secular evolutionary

processes occurring within these YMCs typically takes longer than

∼100 Myr to have an appreciable systematic effect on the outer

structure. Such young cluster have not existed long enough to ex-

perience any significant number of dynamical relaxation times or

orbits around the host galaxy during which they may be tidally

stripped. Thus, we will explore explanations in which γ is es-

tablished over a relatively short cluster formation time-scale and

then evolves only slowly. The most promising of these is the other

physical explanation proposed by EFF: dissipation-less relaxation

following a rapid star formation event. It was noted that simu-

lations of the collisionless relaxation of galaxies from a clumpy,

non-equilibrium state (van Albada 1982; McGlynn 1984) could re-

produce the range of profile slopes observed in star clusters. We will

revisit this scenario in the context of modern star formation theory.

2.1 Simulated cluster populations

To guide our analytic exploration, we consider simulations of star

cluster formation. The multiphysics N-body magnetohydrodynamic

(MHD) simulations of Paper I followed the collapse of a parameter

survey of unstable gas clouds with a wide range of initial condi-

tions, e.g. 10–1000 pc in diameter and 102−104 M⊙ pc−2 in mean

surface density. We found that the clouds form stars until a certain

critical stellar surface density has been reached, sufficient to disrupt

the cloud via stellar feedback, which included the combination of

photoionization heating, radiation pressure, shocked stellar winds,

and supernova explosions, approximated numerically according to

the methods developed for the FIRE project in Hopkins et al. (2014,

2018). In general, we have found that the simulations with greater

star formation efficiency place end with a significant fraction of the

total stellar mass in gravitationally bound, virialized star clusters.

MNRAS 481, 688–702 (2018)
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Cluster structure from hierarchical formation 691

These star clusters form via hierarchical assembly,2 as has been

found in previous simulations following the collapse and turbulent

fragmentation of molecular clouds (Klessen & Burkert 2000; Bon-

nell, Bate & Vine 2003). Many small sub-clusters first fragment

out of the molecular cloud, which then go on to merge with their

neighbours, eventually building up a massive star cluster. Unlike

N-body simulations of star cluster assembly that have relied upon

certain assumptions about the mass-loss history of the system (e.g.

Scally & Clarke 2002; Fellhauer & Kroupa 2005), the process of

star cluster assembly in concert with feedback-induced mass-loss is

followed self-consistently by including stellar feedback physics.3

We identify and catalogue those star clusters that are both well-

resolved (greater than 103 particles) and gravitationally bound via

the algorithm described in Appendix A. We have found that the sur-

face density profiles of star clusters formed in the simulations are

generally well-fit by the EFF profile, covering a range of slope pa-

rameters. In Fig. 2, we plot the distribution of slopes extracted from

the star cluster populations formed in the simulations of Paper I,

both with and without stellar feedback. We find that the agreement

with the observed populations is within the observational scatter

for the simulations that include stellar feedback, suggesting that at

least the most important physics necessary for realistic star cluster

structure are accounted for in the simulations. We find no strong cor-

relation between γ and cluster mass, age,4 or radius, in agreement

with Ryon et al. (2015).

The simulations without stellar feedback also have a significant

population of shallow clusters, but there is a deficit of very shallow

clusters having γ < 2.5. Without stellar feedback, the population of

bound star clusters tends to be richer: more stars form overall due

to the absence of a force that moderates star formation. Also, the

clusters are generally denser on average due to the lack of energy

input from feedback; they do not undergo dynamical expansion due

to mass-loss. These dense, compact clusters are much less likely

per orbit to merge with their neighbours, whereas mergers are more

common in simulations with feedback because the clusters undergo

some amount of dynamical expansion, increasing the cross-section

for merging. This suggests that the formation of shallow clusters has

something to do with the dynamics of the cluster assembly process.

The above simulations and observations lead us to several hy-

potheses about the origin of YMC mass profiles:

(i) The distribution of profile slopes does not differ greatly be-

tween different observed or simulated cluster-forming environ-

ments, if one accounts for stellar feedback in the simulations.

(ii) Interactions with the galactic environment are not necessary

to reproduce the observed γ distribution, as the simulations do not

include these physics.

(iii) Few-body interactions must play a secondary role in deter-

mining the bulk structure of the cluster, as even if the simulations

were capable of resolving these effects (which they are not) they

do not run for any significant fraction of a half-mass relaxation

time. Structural details on the scale of individual stars, such as the

stellar mass function, can be neglected in favour of a mean-field,

2A visualization of the star cluster formation process can be found at http:

//www.tapir.caltech.edu/∼mgrudich/gmc.mp4.
3Unlike these works, our simulations do not resolve the motions of individual

stars, however.
4Note, however, that these simulations follow the isolated formation of star

clusters and do not follow a cluster’s subsequent evolution in a galactic

environment.

IMF-averaged approximation over time-scales much less than the

two-body relaxation time-scale.

It is therefore plausible that star clusters generally form with EFF-

like surface brightness profiles, directly from their initial relaxation

from their hierarchically clustered state.

3 SH A L L OW C L U S T E R S TH RO U G H M E R G I N G

SUB-STRUCTURE

We will now develop physical intuition for how hierarchical star

formation leads to the formation of star clusters with shallow power-

law profiles. Consider first the initial conditions of the problem: a

gas cloud collapses and undergoes star formation. Observations of

the M83 YMC population suggest that the majority of the YMCs

evacuate their natal gas as soon as 2−3 Myr (Hollyhead et al. 2015),

at most a few orbital times. This is also the case in the Paper I

simulations. This process of rapid star formation still has some

finite duration, but we may consider an idealized model wherein

the stars are formed in place instantaneously, and the system then

relaxes as a dissipationless N-body system.

This initial arrangement of stars resulting from the fragmenta-

tion of the cloud will be hierarchically clustered (e.g. Bonnell et al.

2003; Gouliermis et al. 2015; Grasha et al. 2017; Guszejnov, Hop-

kins & Krumholz 2017 ). This is because fragmentation will leave

behind sub-structures of all scales from the size of the parent cloud

to the scale of protostellar discs (Hopkins 2013). The proportion of

the original gas cloud that is actually converted into stars will be

limited by the dynamical ejection of gas and the eventual blowout

due to stellar feedback (e.g. Murray et al. 2010; Grudić et al. 2018),

but let us assume that the cloud has high (>50 per cent) star forma-

tion efficiency, which generally leads to the formation of a bound

star cluster (Hills 1980; Elmegreen & Efremov 1997). sub-clusters

that fragmented from the same self-gravitating parent will then be

gravitationally bound to each other on average, so once they have

turned into stars they will eventually merge together under dynam-

ical friction. The result will be a sequence of hierarchical merging:

sub-clusters will merge with their immediate neighbours that frag-

mented from the same parent, then the more massive cluster will

merge with its neighbour, etc. (see Fig. 1). The smallest and densest

structures will merge first because their respective dynamical times

are the shortest, as their orbital time will be essentially the free-fall

time at the mean density of their parent structure, tff ∝ ρ−1/2.

This process is certainly complex, but the success of the Paper I

simulations in producing star clusters with the correct structure out

of softened, equal-mass star particles encourages us to consider a

collisionless kinetic treatment of the problem. We approximate the

dynamics as those of an ensemble of stars with phase-space distribu-

tion function f(x, v, t), which evolves according to the collisionless

Boltzmann equation:

Df

Dt
= 0, (5)

where D
Dt

denotes the Lagrangian time derivative along the flow of

the system determined by the Hamiltonian with the usual kinetic

and gravitational terms. In other words, the phase-space density f is

conserved along trajectories of the system. Formally, this does link

the initial state of a hierarchical stellar distribution to the final state

of a monolithic star cluster. However, it cannot be applied directly:

while the fine-grained distribution function f is indeed conserved in

a dissipationless relaxation process, the measurable quantity in any

observation or N-body simulation is the coarse-grained distribution

MNRAS 481, 688–702 (2018)
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692 M. Y. Grudić et al.

f̄ :

f̄ (x, v, t) = f (x, v, t) ∗ K

(

x

σx

,
v

σv

)

, (6)

where K is some 6D smoothing kernel, σ x and σ v are the prac-

tical resolution limits of position and velocity measurements, and

∗ represents phase-space convolution. In observations and N-body

simulations, the finite masses of the bodies impose a mass scale that

ultimately determines the practical limit of phase-space resolution:

the support of the smoothing kernel must contain a certain number

of bodies to be able to convert between the full discrete description

and the continuum approximation in any meaningful way.

The collisionless Boltzmann equation does not require that f̄ be

conserved along phase-space trajectories. To the contrary, in a sys-

tem relaxing violently towards equilibrium, phase-space elements

of varying f tend to be stretched out and tangled together until

eventually it is impossible to recover the original value of f at any

resolution at which the continuum limit actually applies (Lynden-

Bell 1967; Dehnen 2005). The result is a ‘dilution’ of mass in

phase-space, wherein f̄ will generally decrease. This process is

clearly essential in the relaxation of a hierarchically clustered mass

distribution into a monolithic cluster, as the initial clumpy state

contains more information than the smooth final state, so this infor-

mation must be effectively lost as mixing entropy. We expect that in

collisionless hierarchical cluster assembly dominated by typically

equal-mass mergers, violent relaxation should be efficient at driving

this phase-space dilution.

The phase-space mixing theorem derived in Dehnen (2005)

makes it possible to constrain the evolution of the phase-space

distribution in hierarchical merging. Dehnen found that when two

collisionless self-gravitating systems merge, the following function

of the coarse-grained phase-space density must strictly decrease for

all f:

D (f ) =
∫

f̄ (x,v)>f

(

f̄ (x, v) − f
)

d3x d3v, (7)

which is known as the excess mass function. This mixing theorem

was used to explain why the inner density profile of a collisionless

merger product must have the same slope as the steeper of the pro-

genitors (e.g. Boylan-Kolchin, Ma & Quataert 2005; Kazantzidis,

Zentner & Kravtsov 2006). It thus immediately follows that two

EFF-like systems must merge into a system with a flat inner density

profile.5

We can also use the mixing theorem to constrain the outer density

profile of the merger. For this purpose, it is more convenient to

consider the reciprocal excess mass function M − D(f), where M

is the total mass of the system; this quantity must strictly increase

during mixing. Dehnen showed that for a system with a 3D outer

density profile ρ ∝ r−γ − 1,

M − D (f ) ∝ f
2γ−4/2γ−1

. (8)

For values of γ giving finite mass (γ > 2), the exponent f
2γ−4/2γ−1

increases monotonically from 0 at γ = 2 to 1 as γ → ∞. Hence,

M − D(f) is a steeper function of f for star clusters with steeper

outer profiles. Therefore, when two collisionless systems merge,

the requirement that the reciprocal mass function for the whole

5In fact, this follows intuitively from the requirement that the maximum

phase-space density cannot increase. Systems in virial equilibrium with flat

inner profiles have a maximum phase-space density, while systems with

power-law inner profiles do not.

system must increase for all f implies that the function must be at

least as shallow as the shallower of the two systems in isolation.

Consequently, the outer density profile of merger product of two

collisionless systems can be no steeper than the shallower of the two

progenitors. We are thus able to explain why hierarchical merging

does not produce steeper density profiles than existed originally,

however, it remains to explain why it might drive the system towards

shallower slopes.

3.1 Similarity solution

A shallow outer density profile can be associated with mass being

spread over many orders of magnitude in phase-space density. In

particular, dM/d log f̄ ∼ ǫ, where ε is some small fraction of the

total mass of the system. More generally, if we consider any pa-

rameter describing a ‘scale’ that approaches 0 far away from the

system, be it spatial scale, density, phase-space density, or velocity

dispersion, it also holds that

dM

log x
∼ const. (9)

for shallow clusters, where x is the chosen scale parameter. In

Guszejnov, Hopkins & Grudić (2018), we argue that such a broad

distribution of mass across different scales is a general feature of

systems formed under the action of gravity and supersonic turbu-

lence, whose equations can be cast in a scale-free form under the

physical conditions relevant to star formation. Therefore, γ ∼ 2

is the expected result of hierarchical cluster formation in the limit

where the hierarchy of sub-structures covers a large range of scales.

In both the fragmentation that produces the hierarchical structure,

and the merging that effaces it, the physics can prefer no particular

scale, and hence leave a small fraction of the total mass behind at

each scale, hence the flat distribution of mass in log f.

This argument predicts γ = 2 in the limit of cluster formation

from a deep hierarchical merger tree; in effect, this is the fixed

point for the outer density profile in hierarchical merging. However,

clusters with γ > 2 remain to be explained. Furthermore, we know

that some of the simulated star clusters plotted in Fig. 2 do not have

particularly extended merger histories; inspection of their merger

histories of the least well-resolved clusters considered generally

reveals no more than 2−3 major mergers. There is clearly some

mechanism that allows clusters to reach shallow slopes with only

limited merger histories, which must arise from some change in γ

in the pairwise merging of star clusters.

3.2 Shallower density profiles through pairwise merging

Let us idealize hierarchical cluster formation as a sequence of pair-

wise cluster mergers. By symmetry, such a merger would most

typically involve two clusters of similar size, mass, and shape, so

we will determine the outcome of a merger of identical star clusters

described by EFF profiles with M = a = 1 and a particular value

of γ . Since the two clusters fragmented out of the same parent un-

der gravitational instability, the two clusters can be expected to be

gravitationally bound to each other; for simplicity, we will consider

the case in which they collide on a marginally bound parabolic orbit

with pericentre smaller enough for the clusters to disrupt each other

in one or two passes. In a marginally bound, collisionless merger,

mass and energy are approximately conserved (White 1979), so we

assume mass and energy are conserved for simplicity. Furthermore,

we assume that the merger product is another star cluster with an

EFF profile with parameters M
′ = 2M, a

′
and γ

′

MNRAS 481, 688–702 (2018)
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Cluster structure from hierarchical formation 693

If the merger is homologous (γ
′ = γ ), mass and energy con-

servation imply that M
′ = 2 and a

′ = 2. Then, the coarse-grained

phase-space density f̄ ∝ G−3/2M−1/2a−3/2 in the neighbourhood

of an average star is rescaled by 1/4, which satisfies the constraint

that f̄ must decrease in the evolution of the system. This ‘uniform

mixing’ approximation has proven to be quite predictive in the

case of dissipationless elliptical galaxy mergers (Cole et al. 2000;

Shen et al. 2003; Boylan-Kolchin et al. 2005; Hopkins et al. 2009).

However, the physical nature of phase-space mixing and violent

relaxation in elliptical galaxy mergers may well be qualitatively

different from star cluster mergers: the cusps of elliptical galaxies

are scale-free, so the phase-space dilution factor tends to be roughly

constant throughout the system, leading to uniform mixing. Mean-

while star clusters with flat inner profiles do have a characteristic

scale imprinted by the maximum density or maximum phase-space

density; some memory of the maximum density should persist in

the merger.

We make the ansatz, to be justified in Section 4.1, that the maxi-

mum phase-space density persists throughout the merger, as phase

mixing becomes less efficient as f → fmax, where fmax is the max-

imum phase-space density found in either cluster. If so, then γ

cannot remain the same while preserving mass and energy, as if it

did then fmax would take 1/4 its original value. Assuming that the

merger product is an EFF cluster and conservation of mass, energy,

and fmax, we arrive at the following equation for the final cluster’s

slope γ
′
:

F
(

γ ′) = 25/2 F (γ )

W (γ )
, (10)

where W (γ ) and F (γ ) are the dimensionless functions that con-

tain the γ dependence of a cluster’s energy and maximum phase-

space density (see equations B9 and B12 for approximate forms and

Figs B2 and B4 for plots of these functions). This equation can be

solved for γ
′

numerically. In the case of merging equal mass and

size Plummer (1911) models (γ = 4), the solution is γ
′ = 2.83: the

final cluster is shallower than its progenitors.

We also consider the ansatz that the central density ρ0 is con-

served. In practice, the predictions of the two ansätze are similar

(see Fig. 3). In general, the models predict that 2 < γ
′
< γ , so a

sequence of mergers will drive γ towards a fixed point of 2. In-

tuitively, mass and energy conservation require the final mass and

effective radius to roughly double. This must be achieved with-

out changing the central (phase-space) density significantly, so a

shallower slope is required because a shallower cluster has greater

central (phase-space) density for a given half-mass radius.

By the arguments above, even very steep (γ ∼ 10) clusters of

similar size and mass will merge into a cluster with γ ∼ 4, so only 1–

2 major mergers are needed to get a cluster into the interval between

2 and 3 in which most YMCs lie (Fig. 2). As we have established

that γ must be established quite early in a cluster’s lifetime, this

merger history comes from the star cluster’s hierarchical assembly

process.

4 N -BODY EX P ERIMENTS

In the previous section, two claims were made that require veri-

fication: that the maximum phase-space density is conserved in a

collisionless star cluster merger, and that the sequence of merg-

ers necessary to produce an EFF-like cluster with γ ∼ 2−3 can

arise from the relaxation of a hierarchically clustered stellar distri-

bution. Now, we shall verify these claims with N-body numerical

experiments, first of a sequence of pairwise mergers and then of

Figure 3. Final surface brightness slope γ
′

of the star cluster produced in

a merger as a function of the initial γ of two merging clusters with equal

γ , mass, and size, assuming that the relaxed merger has an EFF profile.

We plot the analytic predictions assuming that the maximum phase-space

density fmax (solid) and the maximum density ρ0 (dashed) are conserved;

the two models predict similar results: merging of clusters of equal size and

mass always produces a shallower profile than existed before, driving star

clusters towards γ = 2 regardless of their initial structure. We also plot the

results of the simulated mergers described in Section 4.1, which do not agree

exactly with either model but predict the same overall trend of the formation

of shallower profiles.

a hierarchically clustered configuration. We use the multiphysics

code GIZMO (Hopkins 2015) in a pure N-body configuration. Grav-

ity is solved with a hierarchical BH-tree algorithm derivative of

GADGET-3 (Springel 2005). We do not simulate the motion of indi-

vidual star but rather approximate the solution of the collisionless

Vlasov–Poisson equation with a Monte Carlo sampling of the dis-

tribution function with equal-mass, softened particles. Throughout,

we adopt units such that G = 1.

4.1 Pairwise cluster mergers

We first simulate the merger of two Plummer model clusters (γ = 4)

to test the ansätze that their maximum phase-space density should

be conserved, and that the end product should be well-fit by an

EFF profile with γ given by the solution of equation (10). Once

these clusters have merged and the cluster has relaxed to a steady

state, we extract this cluster, copy it, and set it up to merge with its

copy. To avoid building up a spurious anisotropy along the axis of

approach, the orientations of the clusters are randomized between

mergers. We repeat this for a total of three simulated mergers. The

Plummer-equivalent gravitational softening length is fixed at 0.1 in

all runs.

4.1.1 Initial conditions

We construct two Plummer cluster models in collisionless equilib-

rium, randomly sampling the positions of 125 000 particles per

cluster according to the 3D EFF distribution (equation 2) with

M = a = 1 and γ = 4. The velocity distribution is assumed to

be isotropic and is randomly sampled according to the phase-space

MNRAS 481, 688–702 (2018)
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694 M. Y. Grudić et al.

distribution function of equation (B11), which is exact for the Plum-

mer model. We find that a single such cluster evolved in isolation for

104 half-mass dynamical times has no significant evolution from the

Plummer model, so we expect that the particle number is sufficient

so that collisional effects play no major role in the merger, which

happens after ∼300 dynamical times. We place the cluster centres

100 length units from each other, with the relative velocity adjusted

for a parabolic encounter with a pericentric radius of 1.6, which is

just close enough that the clusters merge in a single pass. We set

up the two subsequent mergers in the same way, but we scale the

pericentric radius to the half-mass radius of the cluster.

4.1.2 Results

In all simulations, the clusters approach and merge in a single pass

after O(102) time units, and by the end of the simulation at t = 1000

the new cluster has approached a new collisionless equilibrium. A

fraction of the particles are ejected from the system, so the assump-

tion that the final cluster will contain all initial mass and energy

does not hold exactly, but the fraction is always <10 per cent. Free

particles are deleted from subsequent merger simulations.

Data on the formed clusters are presented in Table 1. We perform

EFF fits on the final surface density profiles as projected in three

orthogonal different planes. The particle positions are binned into

annuli around the centre of the cluster, and we fit the masses within

each bin to the EFF model via χ2 minimization. Since we interpret

the particle states as a Monte Carlo sampling of the phase-space

distribution, the uncertainty of the mass m in each bin is taken to

be the Poisson sampling error m/
√

N , where N is the number of

particles in the bin (valid for sufficiently large N). We find that the

EFF model always fits the surface density profiles reasonably well

(Fig. 4, panel 1), but not exactly; the reduced χ2 of the fits are on the

order of 100. The clusters are only weakly triaxial, with ellipticity

0.25 at most, so the fit results from different projection planes do

not vary greatly. Mergers 2 and 3 both reduce the ellipticity initially

created by Merger 1.

We find that the successive mergers do shallow the surface density

profiles (Fig. 4, clusters with γ = 4 merge into γ = 2.69, then 2.69

into 2.48, and then 2.48 into 2.21). This is not in exact agreement

with the analytic predictions of Section 3.2 assuming either con-

servation of density or phase-space density, however, the analytic

and numerical predictions of γ agree within 0.1, and agree upon the

general trend of a decrease towards γ = 2. Perfect agreement with

the model is not expected because of the many approximations we

have invoked. In particular, it is likely that the obtained slope of 2.69

is shallower than the predicted 2.8 due to the fact that the merger

orbit had non-zero angular momentum, which must be redistributed

in the final configuration. This would give a mass distribution that

is more extended (i.e. with a shallower slope) than a cluster of equal

energy with no net angular momentum.

The last assumption of Section 3.2 to be verified is conservation of

the maximum phase-space density. We estimate the coarse-grained

phase-space density in the neighbourhood of particle i in the most

straightforward way, generally known as the pseudo-phase-space

density (Taylor & Navarro 2001):

f̄i ∝
ρi

σ 3
i

, (11)

where ρi = mi/Vi is the density of the particle estimated from its

effective volume (Hopkins 2015), and σ i is the local velocity dis-

persion computed from the velocities of the particle’s 32 nearest

neighbours.6 In Fig. 4, panel 2, we plot the distribution dM/d log f

and find that indeed, the maximum phase-space density (corre-

sponding to the upper cut-off of the distribution) is conserved from

the initial Plummer model to the final merger. Thus, the deviation

of γ from analytic predictions is due to the deviation of the phase-

space distribution of the cluster from that of an isotropic EFF model.

This is evident in Fig. 4: despite the good apparent fits of the surface

density of Merger 3 to the EFF model, its distribution of phase-space

densities looks quite different from that of an isotropic EFF model

in collisionless equilibrium (shown as the dotted line). Rather than

having the predicted asymptotic ∝f 2γ−4/2γ−1 dependence for small

f, the distribution is flat over a finite interval, then falls off steeply

above and below that interval. The phase-space density at the lower

cut-off corresponds to the mean phase-space density of particles

near 100 distance units from the cluster centre, which is the initial

separation between the clusters in the merger setup and hence where

we expect any scale-free behaviour to break down.

From these results, we may conclude that the assumptions of

Section 3.2 were largely valid: the collisionless merger of two EFF

clusters fits reasonably well to another EFF cluster, at least in its sur-

face density profile. The profile slope γ is close to that analytically

determined by conservation of mass, energy, and fmax; conservation

of mass and energy hold approximately, while conservation of fmax

holds exactly, to the extent that can be tested by our noisy estimate

of the phase-space density.

4.2 Relaxation of a hierarchically clustered mass distribution

Now, we wish to examine whether a hierarchically clustered distri-

bution of stars with realistic spatial and kinematic scaling relations

can form an EFF-like star cluster as it relaxes towards collisionless

equilibrium. We arrange particles in such a configuration and sim-

ulate their dynamical evolution from the hierarchically clustered

state.

4.2.1 Initial conditions

We initialize 643 particles in a hierarchically fragmented configura-

tion by recursively bifurcating a population of sub-clusters, starting

with a single cluster of unit mass centred at the origin. In each

bifurcation, the mass ratio q of the two child fragments is sampled

from the lognormal distribution7 with 〈q〉 = 1 and σ log q = 1. The

masses of the fragments are then

m1 =
q

1 + q
mparent,

m2 =
1

1 + q
mparent. (12)

The relative separation of the fragments 
x is sampled from a 3D

normal distribution with variance σ 2
x . We scale σ 2

x to achieve the

desired two-point spatial correlation function ξ (r) ∝ r−2, where

1 + ξ (r) =
〈n (r)〉
〈n〉

, (13)

6Much more accurate estimates of f̄ from N-body data exist (Arad, Dekel

& Klypin 2004; Ascasibar & Binney 2005), but the pseudo-phase-space

density is suitable for the purposes of this limited analysis.
7The choice of a lognormal mass-ratio distribution was arbitrary; we have

also run simulations where q is always 1 and have found no major difference

in our results.

MNRAS 481, 688–702 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
1
/1

/6
8
8
/5

0
7
8
3
9
3
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

3
 S

e
p
te

m
b
e
r 2

0
1
9



Cluster structure from hierarchical formation 695

Table 1. Parameters and results of the sequence of simulated mergers of identical EFF-like star clusters: Initial cluster

masses M, initial half-mass radii Reff, initial profile slope γ , final cluster mass M
′
, final half-mass radius R′

eff , final fitted

profile slope γ
′
, analytically predicted γ

′
according to equation (10), cluster ellipticity, and the reduced χ2 for the fit

of the final surface density profile to the EFF model. We give χ̂2
fit for the worst of three fits of the final cluster’s surface

density profile as projected in three orthogonal planes. The quoted uncertainty in γ
′

includes the variation between the

three different fit results.

Run M Reff γ M
′

R′
eff γ

′
Predicted γ

′
Ellipticity χ̂2

fit

Merger 1 1.00 1.30 4.00 1.90 2.24 2.69 ± 0.06 2.83 0.25 78.04

Merger 2 1.90 2.24 2.69 3.57 4.22 2.48 ± 0.03 2.37 0.14 212.24

Merger 3 3.57 4.22 2.48 6.53 7.65 2.21 ± 0.01 2.27 0.13 142.20

Figure 4. Results of the successive pairwise merging of star clusters, starting with a pair of identical Plummer models. Left: Cluster surface density profiles

for the initial Plummer model and the three successive merger products. The mergers generally do shallow the surface density profile towards γ = 2. Fits to the

EFF model are shown as dotted lines. Right: Distribution of mass in log phase-space density, dM/d log10 f , for the simulated clusters. The mergers generally

conserve the maximum phase-space density and distribute the mass across more orders of magnitude in f, gradually building up the flat distribution associated

with shallower surface density profiles (γ ∼ 2). The dotted line shows what dM/d log10 f would be for Merger 3 if the phase-space distribution function were

that of an isotropic EFF model with fitted parameters fitted from the surface density profile.

is the ratio between the average number density of particles in a

spherical shell of radius r around a star to the mean stellar number

density of the system. ξ (r) quantifies the tightness of the hierarchical

clustering at a given scale r. The form ξ (r) ∝ r−2 matches obser-

vations of young star clusters on scales greater than 0.01 pc and is

predicted by numerical simulations and general considerations of

the scale-free interplay of gravity and supersonic turbulence (Gusze-

jnov et al. 2017, 2018). This scaling is achieved by the ‘isothermal’

scaling σ x ∝ mparent, so σ x is thus determined down to a constant

scale factor.

With the separation 
x thus sampled, the child clusters are dis-

placed so as to preserve the centre of mass:

x1 = xparent +
1

1 + q

x,

x2 = xparent −
q

1 + q

x. (14)

Lastly, the relative velocity 
v of the child clusters is sampled

from a 3D normal distribution scaled to emulate the v2
∝ R kine-

matic relation that is generally observed in GMCs (Larson 1981;

Solomon et al. 1987; Bolatto et al. 2008) and is robustly reproduced

in simulations of isothermal, self-gravitating turbulent clouds (Krit-

suk, Lee & Norman 2013), the idea being that protostars will inherit

the kinematics of the interstellar medium from which they formed.

This scaling relation is achieved by setting σ 2
v ∝ M4/3. Then, to

conserve momentum

v1 = vparent +
1

1 + q

v,

v2 = vparent −
q

1 + q

v. (15)

The bifurcation iteration described by equations 12 –15 is ap-

plied recursively until the mass of a single particle is reached, so

structures exist on all mass scales down to the mass of individual

particles. However, recall that these N-body simulations of equal-

mass, softened particles are to be interpreted as a Monte Carlo

approximation of the solution of the collisionless Boltzmann equa-

tion. For this to be valid, any resolved structures should be sampled

by a certain number of particles, as biases in the dynamics due to the

discreteness of the particles are not part of the desired solution. For

this reason, once the clustered configuration has been generated,

we smooth the initial conditions by displacing each particle by a

random normally distributed offset with σ = 10−3; this ensures that

structures in the initial conditions are sampled by at least ∼100 par-

ticles. We also set the Plummer-equivalent gravitational softening

length to 10−3 for consistency (e.g. Barnes 2012).

MNRAS 481, 688–702 (2018)
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696 M. Y. Grudić et al.

This procedure generates a clustered particle distribution with the

desired spatial and velocity correlations, as shown in Fig. 5. The

gravitational binding energy W for this distribution is computed

with G = 1, and the system is rescaled by a scale factor 1/W , so

that it has unit binding energy. The velocities are scaled to have a

total kinetic energy of 0.5, so that the system as a whole has a virial

parameter α = T /W = 0.5.

4.2.2 Results

We generate three different sets of initial conditions and evolve

each system for 35 time units; the unit of time is on the order of

the dynamical time-scale of the system.8 Within the first few time

units, sub-clusters undergo hierarchical assembly into a population

of clusters that fly apart from each other and relax into a steady

state. The rate-limiting step for the formation of a given cluster is

merging time-scale of its last two remaining sub-clusters, which is

on the order of their mutual orbital period, at most on the order of

several time units.

We identify bound clusters at the end of the simulation via the

algorithm described in Appendix A. In general, roughly 80 per cent

of particles are found to be gravitationally bound to a cluster, the

rest having been dynamically ejected from their original hosts in

the violent merging process. The surface density profiles of the

clusters are generally well-fit by the EFF model, and we present

the fitted γ values in Table 2. The uncertainties quoted in Table 2

include the variation in the γ obtained when projecting the surface

density profile in three different orthogonal planes. This variation is

generally small compared to the magnitude of γ , as the clusters are

only weakly triaxial: their histories of statistically isotropic mergers

tend to average away preferred orientations. This is also reflected in

the clusters’ modest ellipticities, which we also tabulate in Table 2.

The ellipticities lie in a similar range to those observed in the LMC

cluster population (Frenk & Fall 1982; Kontizas et al. 1989).

It is readily seen from Table 2 that the most massive clusters

tend to have γ closer to 2. The initial conditions were smoothed

over an effective fixed mass scale M0, so a hierarchically assembled

cluster of mass M would have to have experienced an effective

number of mergers N = log2
M
M0

, so in these simulations the more

massive clusters have experienced more mergers, each of which

creates a shallower profile. This anticorrelation between mass and

γ should not be interpreted as a prediction of the statistics of actual

YMC populations because observed YMCs are the product of many

statistically independent star formation events involving physics

with only weak dependence on the mass scale (e.g. Fall, Krumholz

& Matzner 2010; Guszejnov et al. 2018). In contrast, we have

simulated only three different events, all at a single mass scale.

In summary, these numerical experiments demonstrate that an

EFF profile can emerge from the relaxation of a generic, hierarchi-

cally clustered mass distribution with power-law spatial and kine-

matic scaling relations consistent with observations of GMCs and

young star clusters.

8A visualization of Run 2 can be found at http://www.tapir.caltech.edu/∼
mgrudich/hierarchical.mp4.

5 D ISCUSSION

5.1 Smooth versus clumpy initial conditions for globular

cluster formation

Goodwin (1998) concluded that the assembly of a YMC from an

initially clumpy and asymmetric configuration was unlikely, for two

main reasons. First, it was found that if the level of initial clumpiness

is too great, some sub-clusters can survive for many orbits around

the primary assembled cluster. However, Goodwin (1998) simu-

lated the evolution of a collection of clumps with comparable mass

and uncorrelated initial positions, not accounting for correlations

between sub-cluster positions imprinted by the structure formation

process. This problem is averted by a hierarchical configuration, as

neighbouring sub-clusters are all but guaranteed to merge. In the

numerical experiments of Section 4.2, no persistent satellite clumps

were found; the clusters that form tend to do so within a few dynam-

ical times and disperse from each other and within those clusters

sub-structure is erased efficiently.

The other problem with clumpy initial conditions noted by Good-

win (1998) was that the ellipticity of the final cluster is sensitive to

the flattening of the initial conditions, and essentially any amount

of initial flattening produced clusters with ellipticities much larger

than have been observed, in the range [0,0.28] (Kontizas et al. 1989).

This problem is averted by the specific hierarchical picture we have

considered in this work, wherein mergers at different levels in the

hierarchy are uncorrelated in orientation due to an assumed sta-

tistical isotropy. From these experiments, we find no cluster with

ellipticity greatly exceeding the maximum observed. However, it

should be noted that the assumption of statistical isotropy would

not necessarily hold if, for example, the initial sub-clusters con-

sisted of ‘beads’ along a filament or a galactic spur. Indeed, it is

quite possible that hierarchical star formation does impose large-

scale statistical anisotropies. As such, an interesting direction for

future work on this problem would be to investigate the effect of

physically or observationally motivated anisotropy on hierarchical

star cluster assembly. One avenue would be a straightforward mod-

ification to our fragmentation model (Section 4.2.1) wherein the

directions of the separations 
x and relative velocities 
v from

one level to another are given a non-zero correlation.

Overall, we find the structure of YMCs to be largely compatible

with the paradigm of hierarchical cluster formation that we have

considered here. The constraints of Goodwin (1998) upon clumpy

initial sub-structure apply to the specific scenario that they simu-

lated, with initial clumps of comparable masses and uncorrelated

positions. The nature of the relaxation process appears to be qualita-

tively different when the initial stellar density and velocity field are

initialized in a hierarchical fashion in the manner we have investi-

gated, which takes into account the underlying spatial and kinematic

correlation functions observed in star-forming regions.

5.2 Applicability of the collisionless approximation

Throughout this paper, we have approximated the dynamics of the

ensemble of stars by assuming that the evolution is collisionless and

that stars of different masses are well mixed. Working in this approx-

imation, our N-body simulations represented the stellar distribution

as an ensemble of equal-mass, gravitationally-softened particles.

This picture is clearly not entirely realistic for star clusters, which

are generally dense enough for stellar close encounters to be com-

mon enough to affect their long-term dynamical evolution. Bonnell

et al. (2003) found that an order-unity fraction of stars have close

MNRAS 481, 688–702 (2018)
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Cluster structure from hierarchical formation 697

Figure 5. Initial conditions and final results of a simulation of hierarchical cluster formation, as described in Section 4.2. Top left: Initial 3D correlation function

of particle positions, which is ∝r−2 above the resolution limit. Top right: Initial size-velocity dispersion relation. σ 2
v (r) is the average velocity dispersion of

particles within distance r of any given point and is constructed to be ∝r to agree the observed relation of GMC kinematics (Bolatto et al. 2008). Lower left:

Initial hierarchically clustered distribution of 643 equal-mass particles, constructed by the stochastic fragmentation iteration described in Section 4.2.1. Lower

right: Surface density profiles of the best-resolved clusters formed by the end of the simulation. The profiles are offset from each other on the plot for visibility.

They are well described by the EFF model (equation 1).

encounters during hierarchical star cluster formation, so the granu-

larity of stellar mass should clearly have some effect. We expect the

collisionless approximation to break down for clusters in which the

two-body relaxation time is less than the orbital time, which equa-

tion (4) predicts is the case for clusters less massive than ∼250 M⊙.

Therefore, we expect the physics considered in this work to be most

applicable to the regime of massive star clusters that assembled

from sub-clusters more massive than this.

The success of the collisionless approximation in producing star

clusters with realistic coarse-grained structure in both multiphysics

star cluster formation simulations (Paper I) and the numerical exper-

iments of this paper suggests that it is sufficient for these purposes.

The orbital evolution in the hierarchical merging scenario is domi-

nated by rapid changes in the gravitational potential driving violent

relaxation, which affects stellar trajectories independently of their

mass (Lynden-Bell 1967).

5.3 Star cluster initial conditions

It has become possible in recent years to simulate the direct N-

body evolution, and other processes governing the post-formation

dynamical evolution, of a globular cluster consisting of as many as

∼106 stars (Wang et al. 2016). Such simulations are important for

understanding the rich variety of physical mechanisms that caused

young star clusters to evolve into present-day mature globulars, but

they must assume some initial cluster properties ad hoc. Typically,

either the Plummer (1911) or King (1966) model is used as the

initial model (Portegies Zwart et al. 2010).

However, since YMCs are well described by the EFF model, and

we have given this observation further physical motivation in this

paper, we propose that a shallower EFF model is a more realistic

initial condition for globular cluster simulations, rather than some-

thing that resembles a mature globular cluster. According to the

MNRAS 481, 688–702 (2018)
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698 M. Y. Grudić et al.

Table 2. Parameters of the clusters produced in the hierarchical relaxation

simulations of Section 4.2: Masse, half-mass radius Reff, fitted profile slope

γ , ellipticity, and the reduced χ2 of the surface density fit to obtain γ .

Uncertainties in γ include the variation in the parameters from fitting the

surface density profiles as projected in three different orthogonal planes.

Run Mass Reff γ Ellipticity χ̂2
fit

1 0.204 0.108 2.62 ± 0.02 0.13 8.44

1 0.202 0.166 2.26 ± 0.03 0.17 39.87

1 0.195 0.192 2.23 ± 0.02 0.12 13.80

1 0.115 0.074 2.75 ± 0.03 0.15 4.46

1 0.110 0.068 3.16 ± 0.02 0.22 1.12

1 0.054 0.052 3.11 ± 0.04 0.16 1.71

1 0.022 0.038 3.15 ± 0.05 0.12 1.29

1 0.019 0.035 3.19 ± 0.06 0.15 1.31

2 0.382 0.249 2.28 ± 0.03 0.12 104.24

2 0.364 0.171 2.35 ± 0.04 0.17 105.77

2 0.174 0.089 2.89 ± 0.03 0.10 1.78

3 0.147 0.099 2.58 ± 0.02 0.13 4.36

3 0.139 0.083 2.75 ± 0.03 0.21 2.49

3 0.114 0.078 2.62 ± 0.03 0.20 9.19

3 0.106 0.068 2.78 ± 0.03 0.15 6.39

3 0.092 0.067 2.86 ± 0.03 0.26 2.96

3 0.092 0.062 3.22 ± 0.07 0.12 1.54

3 0.053 0.050 3.22 ± 0.04 0.33 1.33

3 0.048 0.051 3.17 ± 0.07 0.25 2.05

3 0.045 0.046 3.48 ± 0.05 0.20 1.28

3 0.043 0.056 2.76 ± 0.03 0.20 2.60

3 0.031 0.040 3.40 ± 0.06 0.13 1.63

3 0.025 0.038 3.32 ± 0.05 0.22 1.10

distribution of profile slopes (Fig. 2), a typical model would have γ

∼ 2.5. Compared to a Plummer model of equal mass and half-mass

radius, the central density of a γ = 2.5 profile is more than ten

times greater, so collisional effects such as mass segregation and

core collapse would likely have much earlier onset.9 This could eas-

ily mark the difference between runaway core collapse happening

before or after the mass-loss and death of massive stars ∼3 Myr af-

ter star formation. This is a critical factor determining whether it is

possible for runaway stellar mergers to form a very massive star or

an intermediate-mass black hole (IMBH) in the centre of the cluster

(Portegies Zwart & McMillan 2002; Gürkan, Freitag & Rasio 2004;

Freitag, Gürkan & Rasio 2006). It should also influence the pairing

and hardening of massive stellar binaries centre of dense clusters,

which would alter the rate of massive (e.g. ∼60 M⊙) binary black

hole mergers such as GW150914 (Rodriguez et al. 2015; Abbott

et al. 2016; Rodriguez, Chatterjee & Rasio 2016). Clearly, the de-

tailed early-dynamical evolution of realistic YMC models warrants

further study with more realistic initial conditions.

5.4 The outer NFW profile

We have established that the phase-space dilution caused by vio-

lent relaxation and phase mixing in the hierarchical merging of star

clusters generally drives clusters towards shallower mass profiles

approaching ρ ∝ r−3. Cold dark matter haloes also merge hierar-

chically and are generally well described by the Navarro, Frenk

& White (1996; NFW) profile in cosmological simulations, which

also has an r−3 dependence. Indeed, it has long been established

9Although they would still take longer than the initial formation of the

cluster.

that such a profile has some relationship with hierarchical merging

(White 1979; Villumsen 1982; Duncan, Farouki & Shapiro 1983;

McGlynn ; Pearce, Thomas & Couchman 1993). To explain this, we

cannot invoke exactly the same argument as the one we have made

for star clusters in Section 3 because the NFW model has no max-

imum phase-space density to conserve. Nevertheless, the Dehnen

(2005) mixing theorem still implies that the hierarchical merging

of dark matter haloes cannot create steeper density profiles. Fur-

thermore, the outer density profile should behave in a manner that

is insensitive to the details of whether the inner profile is a core

or a cusp, so shallower density profiles should generally result in

mergers. We therefore argue that the ∝r−3 outer NFW profile can

be understood as the endpoint of the same process of phase-space

dilution that we have argued drives star clusters to shallow density

profiles.

6 C O N C L U S I O N S

We arrive at the following conclusions about the formation of young

massive clusters:

(i) We compile observational data of young massive cluster pop-

ulations (Mackey & Gilmore 2003a,b; Ryon et al. 2015, 2017 ) and

find that the distribution of surface brightness profile slopes (Fig. 2)

is similar between different cluster populations, suggesting that it

is universal due to common star formation physics.

(ii) MHD star cluster formation simulations with resolved cool-

ing, fragmentation, and stellar feedback (Grudić et al. 2018) have

produced a population of star clusters with profile slopes that agree

with observations (Fig. 2), despite the fact that the simulations do

not resolve the formation of individual stars. To capture the es-

sential physics that determine the shapes of nascent massive star

clusters, it suffices to resolve some fraction of the dynamic range

of fragmentation.

(iii) Stellar feedback clearly has an important role in shaping

star clusters, as simulations without feedback are different from

observed YMCs in many ways. The role of stellar feedback in

setting star cluster structure should be elucidated in detailed cluster

formation simulations.

(iv) Based on the observational and simulation data mentioned

above, evidence is strong that a YMC’s profile slope is established

when it is dynamically young so must be established in the cluster

formation process.

(v) We develop an analytic model for the evolution of a cluster’s

profile slope γ in a sequence of collisionless pairwise mergers be-

tween star clusters modelled by the EFF model. Phase-space mixing

requires that the final slope is no shallower than that of either pro-

genitor. Furthermore, assuming conservation of mass, energy, and

maximum phase-space density, we find that mergers must always

shallow the slope towards 2 by some amount. Thus, a sufficiently

large number of hierarchical mergers will result in γ ∼ 2, as argued

in Guszejnov et al. (2018) from more general considerations.

(vi) We perform collisionless N-body simulations of three iter-

ated star cluster mergers, starting with a pair of identical Plummer

(1911) models and then merging the result with a copy of itself

twice. The results of these simulations are in good agreement with

our analytic model: at most ∼10 per cent of mass and energy are

ejected in each merger, the maximum phase-space density is con-

served, and the mergers drive γ from 4 initially to a value close to

2 (Table 1). The collisionless merger of two EFF clusters produces

another cluster whose surface density profile is also well described

MNRAS 481, 688–702 (2018)
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Cluster structure from hierarchical formation 699

by the EFF model, however, deviations from the model are more

apparent in the phase-space structure (Fig. 4).

(vii) We have performed N-body experiments following the col-

lisionless relaxation of a hierarchically clustered mass distribution

with spatial and kinematic scaling relations corresponding to those

observed in GMCs and young star clusters. We find that sub-clusters

rapidly merge hierarchically into steady-state star clusters with EFF-

like surface density profiles, despite no initial surface density model

being assumed. Thus, the EFF model is physically motivated within

the paradigm of hierarchical star cluster formation and indeed EFF’s

explanation in terms of dissipationless relaxation following rapid

star formation is venerated.

(viii) Because clusters resembling YMCs emerge so readily from

plausible star formation physics, a shallow EFF profile is a more

plausible model of a nascent star cluster than the commonly sim-

ulated Plummer (1911) or King (1966) models. This may have in-

teresting implications for the detailed dynamical evolution of dense

star clusters.
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APPEN D IX A : C LUSTER FINDING

A L G O R I T H M

To identify bound star clusters from the star particle mass, velocity,

and position data of the Paper I simulations, we use an algorithm

based on identifying potential wells. This is generally more robust

than methods based on identifying density maxima because the

gravitational potential contains all necessary information for cluster

finding, while being inherently smoother and hence less susceptible

to noise. The algorithm is as follows:

(i) Determine some fixed number Nngb of each star particle’s

nearest neighbours of each star particle’s nearest neighbors neigh-

boursin

(ii) From each particle, move to the neighbour particle with the

lowest gravitational potential. Repeat until a local minimum in the

potential is found. This is the bottom of the potential well to which

the initial particle is now ‘associated’.

(iii) Compute the gravitational potential as sourced only by the

particles associated with this potential well in isolation.

(iv) Associated particles that are bound to the potential well are

considered bound members of the cluster.

In practice, we take Nngb = 32, which is the number of neighbour

elements used for constructing the hydrodynamic mesh and force

softening in the simulations, so it is on the order the size of the

least massive self-gravitating structure that can exist in the simula-

tion. A larger value could potentially lump together distinct bound

star clusters, while smaller values generally increase the popula-

tion of spurious clusters. We find this algorithm to have satisfactory

accuracy for this problem; it has been tested on control data sets

for which the cluster associations are known a priori and stably

identifies the same cluster between different simulation snapshots.

APP ENDIX B: (SEMI- ) ANALYTIC

PRO P ERTIES OF THE EFF MODEL

Here, we derive useful quantities for calculations involving star clus-

ters modelled by the EFF density profile (equation 2) with arbitrary

profile slope γ :

ρ (r) = ρ0

(

1 +
r2

a2

)− γ+1
2

. (B1)

The quantities needed to construct a dynamical model with this

density profile are only generally expressible in closed form in the

special case γ = 4, which is the Plummer (1911) model. This has

ensured its popularity as an initial condition for N-body simulations

that is easy to construct. However, as discussed in Section 2, a much

more typical initial condition for a star cluster would be γ ∼ 2−3.

For those quantities that lack closed-form expressions, we provide

approximate expressions or upper and lower bounds for use with

numerical root solvers. The reader is also directed to Lupton et al.

(1989) for the derivation of the collisionless Jeans model.

B1 Cumulative mass distribution

The cumulative mass distribution for arbitrary γ is

M(<r) =
∫ r

0

4πr ′2ρ
(

r ′) dr ′

=
4πρ0

3
r3

2F1

(

3

2
,
γ + 1

2
;

5

2
; −

r2

a2

)

, (B2)

where 2F1(a, b; c; z) is the Gauss hypergeometric function (chapter

15, Abramowitz & Stegun 1965).

B2 Half-mass radius

The 3D half-mass radius Reff may be obtained by solving

M(<r)/M = 1/2. For the Plummer model (γ = 4), the solution is
1+ 3√

2√
3

a ≈ 1.3. For general γ , there is no closed-form solution. We

may derive upper and lower bounds from the constant and power-

law parts of the density profile, respectively, from the expansions

of M(r) about 0 and ∞:

(

3M

4πρ0

)1/3

≤ Reff ≤

(

4Ŵ
(

γ+1

2

)

√
πŴ

(

γ

2

)

)1/γ−2

a. (B3)

Equipped with these bounds, Reff can be computed efficiently

with a bounded root-finding algorithm such as Brent’s method.

In the limit γ → 2, the solution will approach the upper bound,

as most of the mass will be in the power-law portion. Similarly

Reff → (3M/4πρ0)1/3 as γ → ∞ because most of the mass will be

in the core. In Fig. B1 we plot these bounds in comparison with the

true solutino.

B3 Potential

The gravitational potential is given by the integral


 (r) =
∫ r

∞

GM
(

r ′)

r ′2 dr ′

= −
4πGa2ρ0 2F1

(

1
2
,

γ−1

2
; 3

2
; − r2

a2

)

γ − 1
. (B4)

The expansion of 
(r) about the centre is


 (r) = 4πGρ0

(

r2

6
−

a2

γ − 1

)

+ O
(

r4
)

. (B5)

The shortest possible orbital frequency in the cluster is that asso-

ciated with simple harmonic motion in the central potential well,

MNRAS 481, 688–702 (2018)
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Cluster structure from hierarchical formation 701

Figure B1. 3D half-mass radius Reff as a function of γ in units of the scale

radius a. The numerical solution is shown in blue, between the bounds given

in equation (B3).

which depends only on the central density:

�max =
√

4πGρ0

3
. (B6)

Expanding about r = ∞, we see that the leading-order correction

to the monopole term −GM
r

is


 (r) +
GM

r
≈

GM

a

Ŵ
(

γ−1

2

)

√
πŴ

(

γ

2

)

( r

a

)1−γ

. (B7)

Thus, for larger values of γ , the leading correction to the point mass

potential is∝r1 − γ , which will be very small, so the potential is well

approximated by a Keplerian potential. This approximation will be

less valid for γ → 2, as most of the mass will be in the power-law

portion of the profile.

B4 Energy

A star cluster in dynamical equilibrium will satisfy the virial the-

orem: E = −W/2, where W is the magnitude of the gravitational

potential energy. The potential energy associated with the mass

distribution may be computed as the integral:

W =
∫ ∞

0

GM (r)

r
4πr2ρ (r) dr = W (γ )

GM2

a
, (B8)

whereW (γ ) is a dimensionless function of γ , plotted in Fig. B2. For

the Plummer model, W (γ ) = 3π/32. The expression in terms of

the hypergeometric function is cumbersome, however, it is asymp-

totically ∝(γ − 2)2 as γ → 2 and ∝ (γ − 2)1/2 as γ → ∞. It can

be very well approximated by the following expression:

W(γ ) =
(

(

c1(γ − 2)2
)α +

(

c2 (γ − 2)
1
2

)α)1/α

, (B9)

with c1 = 0.780, c2 = 0.284, and α = −0.692. This expression

interpolates between the two asymptotic behaviours and is indistin-

guishable from W(γ ) as plotted in Fig. B2.

Figure B2. W(γ ) as a function of γ , where the gravitational binding energy

is given by W = W(γ ) GM2

a
. The function is very well approximated by

equation (B9). It is ∝(γ − 2)2 in the limit γ → 2 and ∝ (γ − 2)
1
2 in the

limit γ → ∞.

B5 Phase-space distribution function

With the potential given by equation (B4) and assuming an isotropic

velocity distribution, the phase-space density f(x, v) is a function

of specific orbital energy alone. We may determine the phase-space

density f (E) with the usual integral formula (Binney & Tremaine

1987):

f (E) =
1

√
8π2

d

dE

∫ ψ=E

ψ=0

dρ
√
E − ψ

, (B10)

where ψ = −
 and E = (−
 − 1
2
v2). In the limit r >> Reff, we

may approximate f (E) by substituting the Keplerian potential and

the approximation ρ ∼ ρ0r−γ − 1. In this limit,

f (E) ≈
Ŵ(γ + 1)Ŵ

(

γ+3

2

)

√
2π3Ŵ

(

γ−2

2

)

Ŵ
(

γ + 1
2

)E
γ− 1

2 . (B11)

Remarkably, for the Plummer model (γ = 4), this power-law

approximation holds exactly. For all other values this is not so,

and the integral and derivative in equation (B10) must be taken

numerically. The derivative in equation (B10) may be taken with a

high-order finite difference stencil, as the integral is smooth every-

where except at E = ψ (0). Fig. B3 plots the numerically computed

f (E) for various values of γ . It is clear that for the non-Plummer

models, the phase-space distribution for the lowest energy (largest

E) orbits deviates significantly from a power law. Fig. B4 shows

the dependence of the maximum phase-space density upon γ . In

the usual units in terms of G, M, and a, the Plummer model has

the lowest maximum phase-space density, and with M and a held

constant fmax increases without bound as γ → 2 and γ → ∞. We

may roll the γ dependence into a dimensionless function F (γ ),

such that fmax = F (γ ) G−3/2M−1/2a−3/2. An approximation of F

with maximum error ∼10−4 over γ ∈ [2.01, 10] is

F (γ ) ≈
((

c1(γ − 2)3/4
)α +

(

c2 (γ − 2)−1/2
)α)1/α

, (B12)

where c1 = 0.0228, c2 = 0.139, and α = 0.816.

MNRAS 481, 688–702 (2018)
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702 M. Y. Grudić et al.

Figure B3. Phase-space density f (E) in units of G−3/2M−1/2a−3/2 for

isotropic cluster models with different γ . The Plummer model (γ = 4)

is the only one that is a true power law ∝E
7/2, hence its popularity as an

analytic model for N-body initial conditions.

Figure B4. Maximum phase-space density fmax as a function of γ , in units

of G−3/2M−1/2a−3/2. The function is ∝(γ − 2)−1/2 in the limit γ → 2, ∝(γ

− 2)3/4 in the limit γ → ∞ and minimized for the Plummer model (γ = 4).

It is well approximated by equation (B12).

B6 Cumulative phase-space-density distribution M(< f)

M(< f), the amount of mass at phase-space density less than f, is a

useful diagnostic quantity in N-body simulations because it is robust

to noisy estimates of f from Monte Carlo particle data. It is also

useful for placing analytic constraints on merger products because

it strictly increases in collisionless evolution as phase mixing occurs.

For a spherically symmetric, isotropic cluster model, f is a mono-

tonic function of E, so it is convenient to compute M(< f) as the

integral

M(<f ) =
∫ E(f )

0

f (E) g (E) dE, (B13)

where E(f ) is the inverse function of f (E) and g (E) dE is the phase-

space volume within the interval [E, E + dE], computable as

g (E) =
√

2 (4π)2

∫ r(E)

0

r2
√

ψ (r) − E dr, (B14)

where again r (E) is the radius at which ψ (r) = E. In the Keplerian

approximation, this gives

g (E) ≈
√

2Ma5
π

3
E

−5/2. (B15)

Combining this with B11, the asymptotic form of M(< f) is

M(<f ) ≈
2

γ−2
2γ−1 π

9
1−2γ

+3
f̂

(

f̂ Ŵ( γ
2

−1)Ŵ
(

γ+ 1
2

)

Ŵ(γ+1)Ŵ
(

γ+3
2

)

)

3
1−2γ

γ − 2
∝ f

2γ−4
2γ−1 ,

(B16)

where f̂ = f /
(

G−3/2M−1/2a−3/2
)

. In general, the integral B13

must be performed numerically. In Fig. B5, we plot M(< f) for

a sequence of EFF clusters with varying γ but equal mass and

energy. Note how smaller values of γ have a flatter distribution, so

their mass is effectively spread over more orders of magnitude in f.

Figure B5. Cumulative phase-space density distribution M(< f) for a series

of clusters varying γ , while keeping mass and energy fixed. At equal-mass

and energy, the distribution is more spread-out for γ values closer to 2 and

is asymptotically ∝f 2γ−4/2γ−1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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