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ABSTRACT

Young massive star clusters spanning ~10*~108 Mg in mass have been observed to have
similar surface brightness profiles. We show that recent hydrodynamical simulations of star
cluster formation have also produced star clusters with this structure. We argue analytically that
this type of mass distribution arises naturally in the relaxation from a hierarchically clustered
distribution of stars into a monolithic star cluster through hierarchical merging. We show
that initial profiles of finite maximum density will tend to produce successively shallower
power-law profiles under hierarchical merging, owing to certain conservation constraints on
the phase-space distribution. We perform N-body simulations of a pairwise merger of model
star clusters and find that mergers readily produce the shallow surface brightness profiles
observed in young massive clusters. Finally, we simulate the relaxation of a hierarchically
clustered mass distribution constructed from an idealized fragmentation model. Assuming
only power-law spatial and kinematic scaling relations, these numerical experiments are able
to reproduce the surface density profiles of observed young massive star clusters. Thus, we
bolster the physical motivation for the structure of young massive clusters within the paradigm
of hierarchical star formation. This could have important implications for the structure and
dynamics of nascent globular clusters.
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1 INTRODUCTION

Most stars in the Universe are field stars, gravitationally bound only
to their host galaxies and not to any discernible smaller element of
structure.However, when the locations of initial star formation are
considered, there is strong evidence that most stars are born in a
statistically clustered, correlated configuration (Lada & Lada 2003;
McKee & Ostriker 2007; Bressert et al. 2010; Gouliermis et al.
2015; Grasha et al. 2017; Gouliermis 2018). The star formation
efficiency M, /Mg, of typical giant molecular clouds is only of
order 1-10 per cent (Myers et al. 1986; Mooney & Solomon 1988;
Williams & McKee 1997; Evans et al. 2009; Heiderman et al. 2010;
Lada, Lombardi & Alves 2010; Murray 2011; Kennicutt & Evans
2012; Lee, Miville-Deschénes & Murray 2016), possibly due to
stellar feedback disrupting the molecular cloud once a certain stellar
mass has formed (Murray, Quataert & Thompson 2010; Hopkins,
Quataert & Murray 2012; Hopkins et al. 2014; Grudi¢ et al. 2018).
The loss of binding energy from the blowout of the remaining
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gas can unbind the initial stellar distribution (Tutukov 1978; Hills
1980; Mathieu 1983; Lada, Margulis & Dearborn 1984; Elmegreen
& Clemens 1985; Baumgardt & Kroupa 2007; Parmentier et al.
2008), allowing most or all stars to disperse into the surrounding
galaxy. However, the existence of young, apparently well-relaxed
star clusters within the Milky Way (Portegies Zwart, McMillan &
Gieles 2010) suggests that a certain fraction of star formation does
lead to bound cluster formation, even in Milky Way-like conditions.
In many cases, young star clusters have not had time to evolve
under the effects of evaporation, dynamical relaxation, and stellar
evolution, so their structures should contain some information about
their initial formation. A successful model of star cluster formation
will be able to clarify this relationship.

In this paper, we discuss the formation of young massive star
clusters (YMCs): star clusters that are younger than ~100 Myr and
more massive than 10* M@ (Portegies Zwart et al. 2010)." Unlike

IThe definition of Portegies Zwart et al. (2010) also implicitly includes
gravitational boundedness, however, we emphasize that the observed YMCs
we refer to in this text are not necessarily bound.
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mature globular clusters, which are generally well-fit by tidally
truncated models such the King (1966) profile, YMCs have been
found to have extended power-law profiles with no discernible trun-
cation and hence are better fit by the Elson, Fall & Freeman (1987)
surface brightness model (hereafter EFF). This model consists of a
core of finite surface brightness o with an outer surface brightness
profile that decays as i oc R™7, where y is the parameter determin-
ing the logarithmic slope of the surface brightness profile, hereafter
referred to as the ‘profile slope’. If y < 2, the integrated stellar
mass is divergent, so EFF profiles with y ~ 2 are referred to as
‘shallow’, and have a greater proportion of their light in the power-
law portion of the surface brightness profile compared to steeper
profiles.

YMCs quite often do have shallow profile slopes with y typi-
cally ranging from 2.2 to 3.2 (Elson et al. 1987; Mackey & Gilmore
2003a,b; Portegies Zwart et al. 2010; Ryon et al. 2015), which
correspond to 3D density profiles p oc r=>2—r~*2 in the outer re-
gions. The super star clusters of NGC 7252, despite being three
to four orders of magnitude more massive than YMCs of the Lo-
cal Group, also have profile slopes in this range (Bastian et al.
2013). This agreement across mass scales suggests some scale-
free physical mechanism of bound star cluster formation, such
that a shallow EFF-like surface brightness profile is generally
produced.

One might suppose that the shallow power-law profile of young
clusters somehow reflects the initial stellar configuration at the time
of star formation, and a smooth cloud of gas turns into a struc-
tureless star cluster (e.g. Goodwin 1998). However, observations
and simulations (Mac Low & Klessen 2004; McKee & Ostriker
2007; Kruijssen 2013; Krumholz et al. 2014) of star-forming clouds
agree that the initial distribution of stellar positions in a star clus-
ter is clumpy and hierarchical, not smooth and monolithic. Thus,
presently observed smoothly distributed star clusters are likely to
have assembled from a hierarchy of sub-clusters that fragmented
out of the parent molecular cloud. If so, the present-day struc-
ture of young star clusters is the direct result of top-down frag-
mentation into stars followed by bottom-up assembly into a single
star cluster (see Fig. 1). In this work, we investigate this physical
process, arriving at an explanation for the observed structure of
YMCs.

This paper is structured as follows: In Section 2, we review
observations of the structure of YMCs and compare them to the
catalogue of star clusters formed in the Grudic¢ et al. (2018; here-
after Paper I) suite of star cluster formation simulations. We argue
that the profile slopes of YMCs are established early in a cluster’s
lifetime and hence must emerge from their hierarchical formation
events. In Section 3, we discuss how this happens, arguing analyti-
cally that the hierarchical merging of sub-clusters generally creates
clusters with shallower power-law slopes through phase-space mix-
ing. In Section 4, we test our analytic predictions against N-body
simulations of collisionless pairwise star cluster mergers and the
collisionless relaxation of a hierarchically clustered mass distibu-
tion. In Section 5, we discuss various possible implications and
generalizations of our results, and in Section 6, we summarize our
main results. Appendix A describes our algorithm for identifying
bound star cluster membership from N-body particle data in the
simulations of Paper I. In Appendix B, we derive, plot, and provide
approximations for various functions that are useful in the analy-
sis of an EFF star cluster model in collisionless equilibrium with
arbitrary y.
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2 PROFILE SLOPES OF YMC POPULATIONS

The EFF surface brightness model commonly used to fit YMCs has
the form

2\ /2
M(R) = HMmax (1 + ?) s (D

where ma 1s the central surface brightness, R is the projected
distance from the centre, a is a scale radius, and y gives power-law
index of the outer brightness profile, hereafter referred to as the
‘profile slope’. The corresponding 3D density profile assuming a
constant mass-to-light ratio is
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is the central density, M the total mass, a the scale radius, and y the
profile slope. This density profile can be recognized as a general-
ization of the Plummer (1911) model (corresponding to y = 4) to
arbitrary profile slope.

Several observed YMC populations are rich enough to be able to
discern an underlying distribution of profile slopes. In Fig. 2, we plot
the distribution of y as measured by Ryon et al. (2015) for YMCs in
M83, Ryon et al. (2017) for NGC 628 and NGC 131, and Mackey
& Gilmore (2003a,b) for the Magellanic Clouds. These clusters
range from ~10°—10% yr in age and ~10*—10° Mg in mass. In all
three populations, the median y is around 2.5. In general, agreement
between the observed distributions is quite good, suggesting that a
population of EFF-like clusters with this y distribution arises from
some common underlying physical process.

Power-law density profiles have been proposed to emerge in star
clusters in various ways. A power-law density profile is the hall-
mark of gravothermal core collapse, but an inner density profile of
p oc r~22 should generally result (Cohn 1980; Lynden-Bell & Eggle-
ton 1980), which is unlike the outer power-law profile p o< r—3 typ-
ically observed in YMCs. von Hoerner (1957) and Hénon (1964)
found that a p(r) oc ¥~* (hence y = 3) density profile results when
a uniform collisionless sphere with a Maxwellian velocity distribu-
tion undergoes violent relaxation towards collisionless equilibrium.
More generally, it results from a discontinuity in the distribution of
stellar mass in energy space across the boundary between bound and
free orbits, as is caused by the escape of stars with positive energy
after a violent relaxation event (Aguilar & White 1986; Jaffe 1987,
Merritt, Tremaine & Johnstone 1989). As such, this may be a good
model of the initial relaxation of the smallest bound sub-structures,
or at the resolution limit in star cluster formation simulations that
do not resolve individual stars (e.g. Paper I). However, it does not
explain the fact that the majority of star clusters have y < 3.

Elson et al. (1987) suggested that the typically observed value
y ~ 2.5 corresponds to the p oc ¥~ profile found in Spitzer &
Shapiro (1972) as a steady-state solution for the outer halo of a star
cluster with an inner core, but they proceeded to point out that this
structure would have to be established on the two-body relaxation
time-scale (Spitzer 1987; Portegies Zwart et al. 2010):

tm =4 x 107 yr M\ R\ )
" 10° Mg Ipc)

MNRAS 481, 688-702 (2018)

6102 Jequisldas g0 uo Jasn ABojouyoa] Jo aynisu| eluioed Aq £6£8/706/889/1/1 81/10B1Sqe-0[01E/SRIUW /W00 dnoolwapese//:sdiy Woll papeojumod



690 M. Y. Grudié et al.
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Figure 1. Proposed model of cluster formation from hierarchical star formation. Far left: An unstable molecular cloud undergoes gravitational collapse.
Centre left: The gravitational instability causes hierarchical fragmentation, producing a hierarchy of sub-clouds that eventually fragment into individual stars.
Centre right: Stars that fragmented out of the same sub-clouds form in sub-clusters. Feedback from massive stars starts to evacuate gas locally. Far right: The
sub-clusters merge hierarchically into a single cluster as stellar feedback blows out any remaining gas.
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Figure 2. Solid: Cumulative distribution of star cluster profile slope in the YMC populations of M83 (Ryon et al. 2015), NGC 628, NGC 1313 (Ryon et al.
2017), and the Small and Large Magellanic Clouds (Mackey & Gilmore 2003a,b). Dashed: CDF for the star cluster population extracted from the simulations
of Paper I, with and without stellar feedback. For both real and simulated cluster populations, we include only those clusters that have y > 2, as in Ryon et al.
(2015). Agreement between the observed populations is quite good, however, the simulations without feedback appear to have a deficit of shallow clusters.
This may be due to the greater compactness of star clusters produced in absence of feedback, which decreases the cross-section for the dynamical interactions

that lead to shallower profiles.

where R is the half-mass radius (we have also assumed here that
the mean mass of a staris 0.5 M)). Many YMCs are much younger
than their respective two-body relaxation time-scale, so this picture
is not satisfactory.

In general, scenarios requiring more than a few Myr can be ruled
out, as good EFF fits appear to have been achieved for quite young
star clusters. Indeed, Ryon et al. (2015) found no correlation of y
with cluster age in M83, suggesting that any secular evolutionary
processes occurring within these YMCs typically takes longer than
~100 Myr to have an appreciable systematic effect on the outer
structure. Such young cluster have not existed long enough to ex-
perience any significant number of dynamical relaxation times or
orbits around the host galaxy during which they may be tidally
stripped. Thus, we will explore explanations in which y is es-
tablished over a relatively short cluster formation time-scale and
then evolves only slowly. The most promising of these is the other
physical explanation proposed by EFF: dissipation-less relaxation
following a rapid star formation event. It was noted that simu-
lations of the collisionless relaxation of galaxies from a clumpy,
non-equilibrium state (van Albada 1982; McGlynn 1984) could re-
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produce the range of profile slopes observed in star clusters. We will
revisit this scenario in the context of modern star formation theory.

2.1 Simulated cluster populations

To guide our analytic exploration, we consider simulations of star
cluster formation. The multiphysics N-body magnetohydrodynamic
(MHD) simulations of Paper I followed the collapse of a parameter
survey of unstable gas clouds with a wide range of initial condi-
tions, e.g. 10~1000 pc in diameter and 10*—10* M pc~? in mean
surface density. We found that the clouds form stars until a certain
critical stellar surface density has been reached, sufficient to disrupt
the cloud via stellar feedback, which included the combination of
photoionization heating, radiation pressure, shocked stellar winds,
and supernova explosions, approximated numerically according to
the methods developed for the FIRE project in Hopkins et al. (2014,
2018). In general, we have found that the simulations with greater
star formation efficiency place end with a significant fraction of the
total stellar mass in gravitationally bound, virialized star clusters.
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These star clusters form via hierarchical assembly,2 as has been
found in previous simulations following the collapse and turbulent
fragmentation of molecular clouds (Klessen & Burkert 2000; Bon-
nell, Bate & Vine 2003). Many small sub-clusters first fragment
out of the molecular cloud, which then go on to merge with their
neighbours, eventually building up a massive star cluster. Unlike
N-body simulations of star cluster assembly that have relied upon
certain assumptions about the mass-loss history of the system (e.g.
Scally & Clarke 2002; Fellhauer & Kroupa 2005), the process of
star cluster assembly in concert with feedback-induced mass-loss is
followed self-consistently by including stellar feedback physics.?

We identify and catalogue those star clusters that are both well-
resolved (greater than 10? particles) and gravitationally bound via
the algorithm described in Appendix A. We have found that the sur-
face density profiles of star clusters formed in the simulations are
generally well-fit by the EFF profile, covering a range of slope pa-
rameters. In Fig. 2, we plot the distribution of slopes extracted from
the star cluster populations formed in the simulations of Paper I,
both with and without stellar feedback. We find that the agreement
with the observed populations is within the observational scatter
for the simulations that include stellar feedback, suggesting that at
least the most important physics necessary for realistic star cluster
structure are accounted for in the simulations. We find no strong cor-
relation between y and cluster mass, age,* or radius, in agreement
with Ryon et al. (2015).

The simulations without stellar feedback also have a significant
population of shallow clusters, but there is a deficit of very shallow
clusters having y < 2.5. Without stellar feedback, the population of
bound star clusters tends to be richer: more stars form overall due
to the absence of a force that moderates star formation. Also, the
clusters are generally denser on average due to the lack of energy
input from feedback; they do not undergo dynamical expansion due
to mass-loss. These dense, compact clusters are much less likely
per orbit to merge with their neighbours, whereas mergers are more
common in simulations with feedback because the clusters undergo
some amount of dynamical expansion, increasing the cross-section
for merging. This suggests that the formation of shallow clusters has
something to do with the dynamics of the cluster assembly process.

The above simulations and observations lead us to several hy-
potheses about the origin of YMC mass profiles:

(i) The distribution of profile slopes does not differ greatly be-
tween different observed or simulated cluster-forming environ-
ments, if one accounts for stellar feedback in the simulations.

(ii) Interactions with the galactic environment are not necessary
to reproduce the observed y distribution, as the simulations do not
include these physics.

(iii) Few-body interactions must play a secondary role in deter-
mining the bulk structure of the cluster, as even if the simulations
were capable of resolving these effects (which they are not) they
do not run for any significant fraction of a half-mass relaxation
time. Structural details on the scale of individual stars, such as the
stellar mass function, can be neglected in favour of a mean-field,

2 A visualization of the star cluster formation process can be found at http:
/Iwww.tapir.caltech.edu/~mgrudich/gmc.mp4.

3Unlike these works, our simulations do not resolve the motions of individual
stars, however.

4Note, however, that these simulations follow the isolated formation of star
clusters and do not follow a cluster’s subsequent evolution in a galactic
environment.
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IMF-averaged approximation over time-scales much less than the
two-body relaxation time-scale.

Itis therefore plausible that star clusters generally form with EFF-
like surface brightness profiles, directly from their initial relaxation
from their hierarchically clustered state.

3 SHALLOW CLUSTERS THROUGH MERGING
SUB-STRUCTURE

We will now develop physical intuition for how hierarchical star
formation leads to the formation of star clusters with shallow power-
law profiles. Consider first the initial conditions of the problem: a
gas cloud collapses and undergoes star formation. Observations of
the M83 YMC population suggest that the majority of the YMCs
evacuate their natal gas as soon as 2—3 Myr (Hollyhead et al. 2015),
at most a few orbital times. This is also the case in the Paper I
simulations. This process of rapid star formation still has some
finite duration, but we may consider an idealized model wherein
the stars are formed in place instantaneously, and the system then
relaxes as a dissipationless N-body system.

This initial arrangement of stars resulting from the fragmenta-
tion of the cloud will be hierarchically clustered (e.g. Bonnell et al.
2003; Gouliermis et al. 2015; Grasha et al. 2017; Guszejnov, Hop-
kins & Krumholz 2017 ). This is because fragmentation will leave
behind sub-structures of all scales from the size of the parent cloud
to the scale of protostellar discs (Hopkins 2013). The proportion of
the original gas cloud that is actually converted into stars will be
limited by the dynamical ejection of gas and the eventual blowout
due to stellar feedback (e.g. Murray et al. 2010; Grudi¢ et al. 2018),
but let us assume that the cloud has high (>50 per cent) star forma-
tion efficiency, which generally leads to the formation of a bound
star cluster (Hills 1980; Elmegreen & Efremov 1997). sub-clusters
that fragmented from the same self-gravitating parent will then be
gravitationally bound to each other on average, so once they have
turned into stars they will eventually merge together under dynam-
ical friction. The result will be a sequence of hierarchical merging:
sub-clusters will merge with their immediate neighbours that frag-
mented from the same parent, then the more massive cluster will
merge with its neighbour, etc. (see Fig. 1). The smallest and densest
structures will merge first because their respective dynamical times
are the shortest, as their orbital time will be essentially the free-fall
time at the mean density of their parent structure, #; o< p~'/2.

This process is certainly complex, but the success of the Paper I
simulations in producing star clusters with the correct structure out
of softened, equal-mass star particles encourages us to consider a
collisionless kinetic treatment of the problem. We approximate the
dynamics as those of an ensemble of stars with phase-space distribu-
tion function fix, v, t), which evolves according to the collisionless
Boltzmann equation:

Df

— =0, 5
Dt )
where D% denotes the Lagrangian time derivative along the flow of

the system determined by the Hamiltonian with the usual kinetic
and gravitational terms. In other words, the phase-space density fis
conserved along trajectories of the system. Formally, this does link
the initial state of a hierarchical stellar distribution to the final state
of a monolithic star cluster. However, it cannot be applied directly:
while the fine-grained distribution function fis indeed conserved in
a dissipationless relaxation process, the measurable quantity in any
observation or N-body simulation is the coarse-grained distribution
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f:
f(x,v,t)zf(x,v,z)*l((i,1>, (6)

GX Gl}

where K is some 6D smoothing kernel, o, and o, are the prac-
tical resolution limits of position and velocity measurements, and
* represents phase-space convolution. In observations and N-body
simulations, the finite masses of the bodies impose a mass scale that
ultimately determines the practical limit of phase-space resolution:
the support of the smoothing kernel must contain a certain number
of bodies to be able to convert between the full discrete description
and the continuum approximation in any meaningful way.

The collisionless Boltzmann equation does not require that f be
conserved along phase-space trajectories. To the contrary, in a sys-
tem relaxing violently towards equilibrium, phase-space elements
of varying f tend to be stretched out and tangled together until
eventually it is impossible to recover the original value of f at any
resolution at which the continuum limit actually applies (Lynden-
Bell 1967; Dehnen 2005). The result is a ‘dilution’ of mass in
phase-space, wherein f will generally decrease. This process is
clearly essential in the relaxation of a hierarchically clustered mass
distribution into a monolithic cluster, as the initial clumpy state
contains more information than the smooth final state, so this infor-
mation must be effectively lost as mixing entropy. We expect that in
collisionless hierarchical cluster assembly dominated by typically
equal-mass mergers, violent relaxation should be efficient at driving
this phase-space dilution.

The phase-space mixing theorem derived in Dehnen (2005)
makes it possible to constrain the evolution of the phase-space
distribution in hierarchical merging. Dehnen found that when two
collisionless self-gravitating systems merge, the following function
of the coarse-grained phase-space density must strictly decrease for
all f;

D(f) = / (7 e v) — f) dx o, )
fxv)>f

which is known as the excess mass function. This mixing theorem
was used to explain why the inner density profile of a collisionless
merger product must have the same slope as the steeper of the pro-
genitors (e.g. Boylan-Kolchin, Ma & Quataert 2005; Kazantzidis,
Zentner & Kravtsov 2006). It thus immediately follows that two
EFF-like systems must merge into a system with a flat inner density
profile.’

We can also use the mixing theorem to constrain the outer density
profile of the merger. For this purpose, it is more convenient to
consider the reciprocal excess mass function M — D(f), where M
is the total mass of the system; this quantity must strictly increase
during mixing. Dehnen showed that for a system with a 3D outer

density profile p oc r7 ~ 1,

M —D(f) o f

For values of y giving finite mass (y > 2), the exponent f
increases monotonically from 0 at y =2 to 1 as y — o0o. Hence,
M — D(f) is a steeper function of f for star clusters with steeper
outer profiles. Therefore, when two collisionless systems merge,
the requirement that the reciprocal mass function for the whole

2y—4/2y—1

®)

2y—4/2y—1

SIn fact, this follows intuitively from the requirement that the maximum
phase-space density cannot increase. Systems in virial equilibrium with flat
inner profiles have a maximum phase-space density, while systems with
power-law inner profiles do not.
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system must increase for all f implies that the function must be at
least as shallow as the shallower of the two systems in isolation.
Consequently, the outer density profile of merger product of two
collisionless systems can be no steeper than the shallower of the two
progenitors. We are thus able to explain why hierarchical merging
does not produce steeper density profiles than existed originally,
however, it remains to explain why it might drive the system towards
shallower slopes.

3.1 Similarity solution

A shallow outer density profile can be associated with mass being
spread over many orders of magnitude in phase-space density. In
particular, dM /dlog f ~ €, where ¢ is some small fraction of the
total mass of the system. More generally, if we consider any pa-
rameter describing a ‘scale’ that approaches 0 far away from the
system, be it spatial scale, density, phase-space density, or velocity
dispersion, it also holds that

dm
log x

~ const. ©)]

for shallow clusters, where x is the chosen scale parameter. In
Guszejnov, Hopkins & Grudi¢ (2018), we argue that such a broad
distribution of mass across different scales is a general feature of
systems formed under the action of gravity and supersonic turbu-
lence, whose equations can be cast in a scale-free form under the
physical conditions relevant to star formation. Therefore, y ~ 2
is the expected result of hierarchical cluster formation in the limit
where the hierarchy of sub-structures covers a large range of scales.
In both the fragmentation that produces the hierarchical structure,
and the merging that effaces it, the physics can prefer no particular
scale, and hence leave a small fraction of the total mass behind at
each scale, hence the flat distribution of mass in logf.

This argument predicts ¥ = 2 in the limit of cluster formation
from a deep hierarchical merger tree; in effect, this is the fixed
point for the outer density profile in hierarchical merging. However,
clusters with y > 2 remain to be explained. Furthermore, we know
that some of the simulated star clusters plotted in Fig. 2 do not have
particularly extended merger histories; inspection of their merger
histories of the least well-resolved clusters considered generally
reveals no more than 2—3 major mergers. There is clearly some
mechanism that allows clusters to reach shallow slopes with only
limited merger histories, which must arise from some change in y
in the pairwise merging of star clusters.

3.2 Shallower density profiles through pairwise merging

Let us idealize hierarchical cluster formation as a sequence of pair-
wise cluster mergers. By symmetry, such a merger would most
typically involve two clusters of similar size, mass, and shape, so
we will determine the outcome of a merger of identical star clusters
described by EFF profiles with M = a = 1 and a particular value
of y. Since the two clusters fragmented out of the same parent un-
der gravitational instability, the two clusters can be expected to be
gravitationally bound to each other; for simplicity, we will consider
the case in which they collide on a marginally bound parabolic orbit
with pericentre smaller enough for the clusters to disrupt each other
in one or two passes. In a marginally bound, collisionless merger,
mass and energy are approximately conserved (White 1979), so we
assume mass and energy are conserved for simplicity. Furthermore,
we assume that the merger product is another star cluster with an
EFF profile with parameters M = 2M, a and y'
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If the merger is homologous (y' = y), mass and energy con-
servation imply that M = 2 and ¢ = 2. Then, the coarse-grained
phase-space density f oc G=3/2M~1/24=3/? in the neighbourhood
of an average star is rescaled by 1/4, which satisfies the constraint
that f must decrease in the evolution of the system. This ‘uniform
mixing’ approximation has proven to be quite predictive in the
case of dissipationless elliptical galaxy mergers (Cole et al. 2000;
Shen et al. 2003; Boylan-Kolchin et al. 2005; Hopkins et al. 2009).
However, the physical nature of phase-space mixing and violent
relaxation in elliptical galaxy mergers may well be qualitatively
different from star cluster mergers: the cusps of elliptical galaxies
are scale-free, so the phase-space dilution factor tends to be roughly
constant throughout the system, leading to uniform mixing. Mean-
while star clusters with flat inner profiles do have a characteristic
scale imprinted by the maximum density or maximum phase-space
density; some memory of the maximum density should persist in
the merger.

We make the ansatz, to be justified in Section 4.1, that the maxi-
mum phase-space density persists throughout the merger, as phase
mixing becomes less efficient as f — fiax, Where fi.x is the max-
imum phase-space density found in either cluster. If so, then y
cannot remain the same while preserving mass and energy, as if it
did then f;,,x would take 1/4 its original value. Assuming that the
merger product is an EFF cluster and conservation of mass, energy,
and fiax, We arrive at the following equation for the final cluster’s
slope y:

N\ _ A5/2 F(y)

Fy)=2 W) (10)
where W(y) and F(y) are the dimensionless functions that con-
tain the y dependence of a cluster’s energy and maximum phase-
space density (see equations B9 and B12 for approximate forms and
Figs B2 and B4 for plots of these functions). This equation can be
solved for ' numerically. In the case of merging equal mass and
size Plummer (1911) models (y = 4), the solution is " = 2.83: the
final cluster is shallower than its progenitors.

We also consider the ansatz that the central density p¢ is con-
served. In practice, the predictions of the two ansitze are similar
(see Fig. 3). In general, the models predict that 2 < ¥’ < y, s0 a
sequence of mergers will drive y towards a fixed point of 2. In-
tuitively, mass and energy conservation require the final mass and
effective radius to roughly double. This must be achieved with-
out changing the central (phase-space) density significantly, so a
shallower slope is required because a shallower cluster has greater
central (phase-space) density for a given half-mass radius.

By the arguments above, even very steep (y ~ 10) clusters of
similar size and mass will merge into a cluster with y ~ 4, so only 1—
2 major mergers are needed to get a cluster into the interval between
2 and 3 in which most YMCs lie (Fig. 2). As we have established
that y must be established quite early in a cluster’s lifetime, this
merger history comes from the star cluster’s hierarchical assembly
process.

4 N-BODY EXPERIMENTS

In the previous section, two claims were made that require veri-
fication: that the maximum phase-space density is conserved in a
collisionless star cluster merger, and that the sequence of merg-
ers necessary to produce an EFF-like cluster with y ~ 2—3 can
arise from the relaxation of a hierarchically clustered stellar distri-
bution. Now, we shall verify these claims with N-body numerical
experiments, first of a sequence of pairwise mergers and then of
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Figure 3. Final surface brightness slope y’ of the star cluster produced in
a merger as a function of the initial y of two merging clusters with equal
y, mass, and size, assuming that the relaxed merger has an EFF profile.
We plot the analytic predictions assuming that the maximum phase-space
density fmax (solid) and the maximum density po (dashed) are conserved;
the two models predict similar results: merging of clusters of equal size and
mass always produces a shallower profile than existed before, driving star
clusters towards y = 2 regardless of their initial structure. We also plot the
results of the simulated mergers described in Section 4.1, which do not agree
exactly with either model but predict the same overall trend of the formation
of shallower profiles.

a hierarchically clustered configuration. We use the multiphysics
code GIzMO (Hopkins 2015) in a pure N-body configuration. Grav-
ity is solved with a hierarchical BH-tree algorithm derivative of
GADGET-3 (Springel 2005). We do not simulate the motion of indi-
vidual star but rather approximate the solution of the collisionless
Vlasov—Poisson equation with a Monte Carlo sampling of the dis-
tribution function with equal-mass, softened particles. Throughout,
we adopt units such that G = 1.

4.1 Pairwise cluster mergers

We first simulate the merger of two Plummer model clusters (y =4)
to test the ansitze that their maximum phase-space density should
be conserved, and that the end product should be well-fit by an
EFF profile with y given by the solution of equation (10). Once
these clusters have merged and the cluster has relaxed to a steady
state, we extract this cluster, copy it, and set it up to merge with its
copy. To avoid building up a spurious anisotropy along the axis of
approach, the orientations of the clusters are randomized between
mergers. We repeat this for a total of three simulated mergers. The
Plummer-equivalent gravitational softening length is fixed at 0.1 in
all runs.

4.1.1 Initial conditions

‘We construct two Plummer cluster models in collisionless equilib-
rium, randomly sampling the positions of 125 000 particles per
cluster according to the 3D EFF distribution (equation 2) with
M = a =1 and y = 4. The velocity distribution is assumed to
be isotropic and is randomly sampled according to the phase-space
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distribution function of equation (B11), which is exact for the Plum-
mer model. We find that a single such cluster evolved in isolation for
10* half-mass dynamical times has no significant evolution from the
Plummer model, so we expect that the particle number is sufficient
so that collisional effects play no major role in the merger, which
happens after ~300 dynamical times. We place the cluster centres
100 length units from each other, with the relative velocity adjusted
for a parabolic encounter with a pericentric radius of 1.6, which is
just close enough that the clusters merge in a single pass. We set
up the two subsequent mergers in the same way, but we scale the
pericentric radius to the half-mass radius of the cluster.

4.1.2 Results

In all simulations, the clusters approach and merge in a single pass
after O(10?) time units, and by the end of the simulation at £ = 1000
the new cluster has approached a new collisionless equilibrium. A
fraction of the particles are ejected from the system, so the assump-
tion that the final cluster will contain all initial mass and energy
does not hold exactly, but the fraction is always <10 per cent. Free
particles are deleted from subsequent merger simulations.

Data on the formed clusters are presented in Table 1. We perform
EFF fits on the final surface density profiles as projected in three
orthogonal different planes. The particle positions are binned into
annuli around the centre of the cluster, and we fit the masses within
each bin to the EFF model via x2 minimization. Since we interpret
the particle states as a Monte Carlo sampling of the phase-space
distribution, the uncertainty of the mass m in each bin is taken to
be the Poisson sampling error m/+/N, where N is the number of
particles in the bin (valid for sufficiently large N). We find that the
EFF model always fits the surface density profiles reasonably well
(Fig. 4, panel 1), but not exactly; the reduced x 2 of the fits are on the
order of 100. The clusters are only weakly triaxial, with ellipticity
0.25 at most, so the fit results from different projection planes do
not vary greatly. Mergers 2 and 3 both reduce the ellipticity initially
created by Merger 1.

We find that the successive mergers do shallow the surface density
profiles (Fig. 4, clusters with y = 4 merge into y = 2.69, then 2.69
into 2.48, and then 2.48 into 2.21). This is not in exact agreement
with the analytic predictions of Section 3.2 assuming either con-
servation of density or phase-space density, however, the analytic
and numerical predictions of y agree within 0.1, and agree upon the
general trend of a decrease towards y = 2. Perfect agreement with
the model is not expected because of the many approximations we
have invoked. In particular, it is likely that the obtained slope of 2.69
is shallower than the predicted 2.8 due to the fact that the merger
orbit had non-zero angular momentum, which must be redistributed
in the final configuration. This would give a mass distribution that
is more extended (i.e. with a shallower slope) than a cluster of equal
energy with no net angular momentum.

The last assumption of Section 3.2 to be verified is conservation of
the maximum phase-space density. We estimate the coarse-grained
phase-space density in the neighbourhood of particle i in the most
straightforward way, generally known as the pseudo-phase-space
density (Taylor & Navarro 2001):

- 10

fi o =, (11)
o;

where p; = m;/V; is the density of the particle estimated from its

effective volume (Hopkins 2015), and o; is the local velocity dis-
persion computed from the velocities of the particle’s 32 nearest
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neighbours.® In Fig. 4, panel 2, we plot the distribution dM /d log f
and find that indeed, the maximum phase-space density (corre-
sponding to the upper cut-off of the distribution) is conserved from
the initial Plummer model to the final merger. Thus, the deviation
of y from analytic predictions is due to the deviation of the phase-
space distribution of the cluster from that of an isotropic EFF model.
This is evident in Fig. 4: despite the good apparent fits of the surface
density of Merger 3 to the EFF model, its distribution of phase-space
densities looks quite different from that of an isotropic EFF model
in collisionless equilibrium (shown as the dotted line). Rather than
having the predicted asymptotic oc f2 ~#/?* =1 dependence for small
£, the distribution is flat over a finite interval, then falls off steeply
above and below that interval. The phase-space density at the lower
cut-off corresponds to the mean phase-space density of particles
near 100 distance units from the cluster centre, which is the initial
separation between the clusters in the merger setup and hence where
we expect any scale-free behaviour to break down.

From these results, we may conclude that the assumptions of
Section 3.2 were largely valid: the collisionless merger of two EFF
clusters fits reasonably well to another EFF cluster, at least in its sur-
face density profile. The profile slope y is close to that analytically
determined by conservation of mass, energy, and fi.x; conservation
of mass and energy hold approximately, while conservation of fi.x
holds exactly, to the extent that can be tested by our noisy estimate
of the phase-space density.

4.2 Relaxation of a hierarchically clustered mass distribution

Now, we wish to examine whether a hierarchically clustered distri-
bution of stars with realistic spatial and kinematic scaling relations
can form an EFF-like star cluster as it relaxes towards collisionless
equilibrium. We arrange particles in such a configuration and sim-
ulate their dynamical evolution from the hierarchically clustered
state.

4.2.1 Initial conditions

We initialize 643 particles in a hierarchically fragmented configura-
tion by recursively bifurcating a population of sub-clusters, starting
with a single cluster of unit mass centred at the origin. In each
bifurcation, the mass ratio ¢ of the two child fragments is sampled
from the lognormal distribution” with (g) = 1 and Ologg = 1. The
masses of the fragments are then

my; = mmparemy
1
= — . 12
ny l+qmparem ( )

The relative separation of the fragments Ax is sampled from a 3D
normal distribution with variance o>. We scale o to achieve the
desired two-point spatial correlation function £(r) oc r~2, where

(n (r))
(n)

1+&0) = , (13)

SMuch more accurate estimates of f from N-body data exist (Arad, Dekel
& Klypin 2004; Ascasibar & Binney 2005), but the pseudo-phase-space
density is suitable for the purposes of this limited analysis.

"The choice of a lognormal mass-ratio distribution was arbitrary; we have
also run simulations where ¢ is always 1 and have found no major difference
in our results.
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Table 1. Parameters and results of the sequence of simulated mergers of identical EFF-like star clusters: Initial cluster
masses M, initial half-mass radii Ry, initial profile slope y, final cluster mass M , final half-mass radius Réff, final fitted

profile slope y/, analytically predicted y/ according to equation (10), cluster ellipticity, and the reduced y? for the fit
of the final surface density profile to the EFF model. We give 5(%[ for the worst of three fits of the final cluster’s surface

density profile as projected in three orthogonal planes. The quoted uncertainty in y’ includes the variation between the

three different fit results.

Run M Reit y M Ry Y Predicted ¥ Ellipticity 22
Merger I 1.00 130 400 190 224 269 +0.06 2.83 0.25 78.04
Merger2 190 224 269 357 422  24840.03 2.37 0.14 212.24
Merger3 357 422 248 653 765  221+001 227 0.13 142.20
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Figure 4. Results of the successive pairwise merging of star clusters, starting with a pair of identical Plummer models. Left: Cluster surface density profiles
for the initial Plummer model and the three successive merger products. The mergers generally do shallow the surface density profile towards y = 2. Fits to the
EFF model are shown as dotted lines. Right: Distribution of mass in log phase-space density, dM /dlog;, f, for the simulated clusters. The mergers generally
conserve the maximum phase-space density and distribute the mass across more orders of magnitude in f, gradually building up the flat distribution associated
with shallower surface density profiles (y ~ 2). The dotted line shows what dM /dlog;, f would be for Merger 3 if the phase-space distribution function were
that of an isotropic EFF model with fitted parameters fitted from the surface density profile.

is the ratio between the average number density of particles in a
spherical shell of radius r around a star to the mean stellar number
density of the system. & (r) quantifies the tightness of the hierarchical
clustering at a given scale r. The form &(r) o ¥~> matches obser-
vations of young star clusters on scales greater than 0.01 pc and is
predicted by numerical simulations and general considerations of
the scale-free interplay of gravity and supersonic turbulence (Gusze-
jnov et al. 2017, 2018). This scaling is achieved by the ‘isothermal’
scaling o', OC Mpgrent, SO 0, is thus determined down to a constant
scale factor.

With the separation Ax thus sampled, the child clusters are dis-
placed so as to preserve the centre of mass:

1
X1 = Xparent + mAx,
q
X2 = Xparent — mAx (14)

Lastly, the relative velocity Av of the child clusters is sampled
from a 3D normal distribution scaled to emulate the v?> oc R kine-
matic relation that is generally observed in GMCs (Larson 1981;
Solomon et al. 1987; Bolatto et al. 2008) and is robustly reproduced
in simulations of isothermal, self-gravitating turbulent clouds (Krit-
suk, Lee & Norman 2013), the idea being that protostars will inherit

the kinematics of the interstellar medium from which they formed.
This scaling relation is achieved by setting o2 oc M*/3. Then, to
conserve momentum

V] = Vparent + mAvy
q
V2 = Uparent — 71 tq Av. (15)

The bifurcation iteration described by equations 12 —15 is ap-
plied recursively until the mass of a single particle is reached, so
structures exist on all mass scales down to the mass of individual
particles. However, recall that these N-body simulations of equal-
mass, softened particles are to be interpreted as a Monte Carlo
approximation of the solution of the collisionless Boltzmann equa-
tion. For this to be valid, any resolved structures should be sampled
by a certain number of particles, as biases in the dynamics due to the
discreteness of the particles are not part of the desired solution. For
this reason, once the clustered configuration has been generated,
we smooth the initial conditions by displacing each particle by a
random normally distributed offset with o = 1073; this ensures that
structures in the initial conditions are sampled by at least ~100 par-
ticles. We also set the Plummer-equivalent gravitational softening
length to 10~2 for consistency (e.g. Barnes 2012).
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This procedure generates a clustered particle distribution with the
desired spatial and velocity correlations, as shown in Fig. 5. The
gravitational binding energy W for this distribution is computed
with G = 1, and the system is rescaled by a scale factor 1/W, so
that it has unit binding energy. The velocities are scaled to have a
total kinetic energy of 0.5, so that the system as a whole has a virial
parameter « = 7 /W = 0.5.

4.2.2 Results

We generate three different sets of initial conditions and evolve
each system for 35 time units; the unit of time is on the order of
the dynamical time-scale of the system.® Within the first few time
units, sub-clusters undergo hierarchical assembly into a population
of clusters that fly apart from each other and relax into a steady
state. The rate-limiting step for the formation of a given cluster is
merging time-scale of its last two remaining sub-clusters, which is
on the order of their mutual orbital period, at most on the order of
several time units.

We identify bound clusters at the end of the simulation via the
algorithm described in Appendix A. In general, roughly 80 per cent
of particles are found to be gravitationally bound to a cluster, the
rest having been dynamically ejected from their original hosts in
the violent merging process. The surface density profiles of the
clusters are generally well-fit by the EFF model, and we present
the fitted y values in Table 2. The uncertainties quoted in Table 2
include the variation in the y obtained when projecting the surface
density profile in three different orthogonal planes. This variation is
generally small compared to the magnitude of y, as the clusters are
only weakly triaxial: their histories of statistically isotropic mergers
tend to average away preferred orientations. This is also reflected in
the clusters’ modest ellipticities, which we also tabulate in Table 2.
The ellipticities lie in a similar range to those observed in the LMC
cluster population (Frenk & Fall 1982; Kontizas et al. 1989).

It is readily seen from Table 2 that the most massive clusters
tend to have y closer to 2. The initial conditions were smoothed
over an effective fixed mass scale My, so a hierarchically assembled
cluster of mass M would have to have experienced an effective
number of mergers N = log, Mﬂo, so in these simulations the more
massive clusters have experienced more mergers, each of which
creates a shallower profile. This anticorrelation between mass and
y should not be interpreted as a prediction of the statistics of actual
YMC populations because observed YMCs are the product of many
statistically independent star formation events involving physics
with only weak dependence on the mass scale (e.g. Fall, Krumholz
& Matzner 2010; Guszejnov et al. 2018). In contrast, we have
simulated only three different events, all at a single mass scale.

In summary, these numerical experiments demonstrate that an
EFF profile can emerge from the relaxation of a generic, hierarchi-
cally clustered mass distribution with power-law spatial and kine-
matic scaling relations consistent with observations of GMCs and
young star clusters.

8 A visualization of Run 2 can be found at http://www.tapir.caltech.edu/~
mgrudich/hierarchical.mp4.
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5 DISCUSSION

5.1 Smooth versus clumpy initial conditions for globular
cluster formation

Goodwin (1998) concluded that the assembly of a YMC from an
initially clumpy and asymmetric configuration was unlikely, for two
main reasons. First, it was found that if the level of initial clumpiness
is too great, some sub-clusters can survive for many orbits around
the primary assembled cluster. However, Goodwin (1998) simu-
lated the evolution of a collection of clumps with comparable mass
and uncorrelated initial positions, not accounting for correlations
between sub-cluster positions imprinted by the structure formation
process. This problem is averted by a hierarchical configuration, as
neighbouring sub-clusters are all but guaranteed to merge. In the
numerical experiments of Section 4.2, no persistent satellite clumps
were found; the clusters that form tend to do so within a few dynam-
ical times and disperse from each other and within those clusters
sub-structure is erased efficiently.

The other problem with clumpy initial conditions noted by Good-
win (1998) was that the ellipticity of the final cluster is sensitive to
the flattening of the initial conditions, and essentially any amount
of initial flattening produced clusters with ellipticities much larger
than have been observed, in the range [0,0.28] (Kontizas et al. 1989).
This problem is averted by the specific hierarchical picture we have
considered in this work, wherein mergers at different levels in the
hierarchy are uncorrelated in orientation due to an assumed sta-
tistical isotropy. From these experiments, we find no cluster with
ellipticity greatly exceeding the maximum observed. However, it
should be noted that the assumption of statistical isotropy would
not necessarily hold if, for example, the initial sub-clusters con-
sisted of ‘beads’ along a filament or a galactic spur. Indeed, it is
quite possible that hierarchical star formation does impose large-
scale statistical anisotropies. As such, an interesting direction for
future work on this problem would be to investigate the effect of
physically or observationally motivated anisotropy on hierarchical
star cluster assembly. One avenue would be a straightforward mod-
ification to our fragmentation model (Section 4.2.1) wherein the
directions of the separations Ax and relative velocities Av from
one level to another are given a non-zero correlation.

Overall, we find the structure of YMCs to be largely compatible
with the paradigm of hierarchical cluster formation that we have
considered here. The constraints of Goodwin (1998) upon clumpy
initial sub-structure apply to the specific scenario that they simu-
lated, with initial clumps of comparable masses and uncorrelated
positions. The nature of the relaxation process appears to be qualita-
tively different when the initial stellar density and velocity field are
initialized in a hierarchical fashion in the manner we have investi-
gated, which takes into account the underlying spatial and kinematic
correlation functions observed in star-forming regions.

5.2 Applicability of the collisionless approximation

Throughout this paper, we have approximated the dynamics of the
ensemble of stars by assuming that the evolution is collisionless and
that stars of different masses are well mixed. Working in this approx-
imation, our N-body simulations represented the stellar distribution
as an ensemble of equal-mass, gravitationally-softened particles.
This picture is clearly not entirely realistic for star clusters, which
are generally dense enough for stellar close encounters to be com-
mon enough to affect their long-term dynamical evolution. Bonnell
et al. (2003) found that an order-unity fraction of stars have close
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Figure 5. Initial conditions and final results of a simulation of hierarchical cluster formation, as described in Section 4.2. Top left: Initial 3D correlation function
of particle positions, which is o/~ above the resolution limit. Top right: Initial size-velocity dispersion relation. GUZ (r) is the average velocity dispersion of
particles within distance r of any given point and is constructed to be ocr to agree the observed relation of GMC kinematics (Bolatto et al. 2008). Lower left:
Initial hierarchically clustered distribution of 64> equal-mass particles, constructed by the stochastic fragmentation iteration described in Section 4.2.1. Lower
right: Surface density profiles of the best-resolved clusters formed by the end of the simulation. The profiles are offset from each other on the plot for visibility.

They are well described by the EFF model (equation 1).

encounters during hierarchical star cluster formation, so the granu-
larity of stellar mass should clearly have some effect. We expect the
collisionless approximation to break down for clusters in which the
two-body relaxation time is less than the orbital time, which equa-
tion (4) predicts is the case for clusters less massive than ~250 M.
Therefore, we expect the physics considered in this work to be most
applicable to the regime of massive star clusters that assembled
from sub-clusters more massive than this.

The success of the collisionless approximation in producing star
clusters with realistic coarse-grained structure in both multiphysics
star cluster formation simulations (Paper I) and the numerical exper-
iments of this paper suggests that it is sufficient for these purposes.
The orbital evolution in the hierarchical merging scenario is domi-
nated by rapid changes in the gravitational potential driving violent
relaxation, which affects stellar trajectories independently of their
mass (Lynden-Bell 1967).

5.3 Star cluster initial conditions

It has become possible in recent years to simulate the direct N-
body evolution, and other processes governing the post-formation
dynamical evolution, of a globular cluster consisting of as many as
~10° stars (Wang et al. 2016). Such simulations are important for
understanding the rich variety of physical mechanisms that caused
young star clusters to evolve into present-day mature globulars, but
they must assume some initial cluster properties ad hoc. Typically,
either the Plummer (1911) or King (1966) model is used as the
initial model (Portegies Zwart et al. 2010).

However, since YMCs are well described by the EFF model, and
we have given this observation further physical motivation in this
paper, we propose that a shallower EFF model is a more realistic
initial condition for globular cluster simulations, rather than some-
thing that resembles a mature globular cluster. According to the
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Table 2. Parameters of the clusters produced in the hierarchical relaxation
simulations of Section 4.2: Masse, half-mass radius R, fitted profile slope
v, ellipticity, and the reduced x? of the surface density fit to obtain y.
Uncertainties in y include the variation in the parameters from fitting the
surface density profiles as projected in three different orthogonal planes.

Run Mass Rest y Ellipticity )A(ﬁzt

1 0.204 0.108 2.62 +0.02 0.13 8.44
1 0.202 0.166 2.26 +0.03 0.17 39.87
1 0.195 0.192 2.23 +0.02 0.12 13.80
1 0.115 0.074 2.75 +0.03 0.15 4.46
1 0.110 0.068 3.16 £0.02 0.22 1.12
1 0.054 0.052 3.11 £0.04 0.16 1.71
1 0.022 0.038 3.15+0.05 0.12 1.29
1 0.019 0.035 3.19 +£0.06 0.15 1.31
2 0.382 0.249 2.28 +0.03 0.12 104.24
2 0.364 0.171 2.35+0.04 0.17 105.77
2 0.174 0.089 2.89 +0.03 0.10 1.78
3 0.147 0.099 2.58 +0.02 0.13 4.36
3 0.139 0.083 2.75 +0.03 0.21 2.49
3 0.114 0.078 2.62 +0.03 0.20 9.19
3 0.106 0.068 2.78 +£0.03 0.15 6.39
3 0.092 0.067 2.86 +0.03 0.26 2.96
3 0.092 0.062 322 £0.07 0.12 1.54
3 0.053 0.050 322 +0.04 0.33 1.33
3 0.048 0.051 3.17 £0.07 0.25 2.05
3 0.045 0.046 3.48 +£0.05 0.20 1.28
3 0.043 0.056 2.76 +0.03 0.20 2.60
3 0.031 0.040 3.40 £+ 0.06 0.13 1.63
3 0.025 0.038 3.32+0.05 0.22 1.10

distribution of profile slopes (Fig. 2), a typical model would have y
~2.5. Compared to a Plummer model of equal mass and half-mass
radius, the central density of a y = 2.5 profile is more than ten
times greater, so collisional effects such as mass segregation and
core collapse would likely have much earlier onset.” This could eas-
ily mark the difference between runaway core collapse happening
before or after the mass-loss and death of massive stars ~3 Myr af-
ter star formation. This is a critical factor determining whether it is
possible for runaway stellar mergers to form a very massive star or
an intermediate-mass black hole (IMBH) in the centre of the cluster
(Portegies Zwart & McMillan 2002; Giirkan, Freitag & Rasio 2004;
Freitag, Giirkan & Rasio 2006). It should also influence the pairing
and hardening of massive stellar binaries centre of dense clusters,
which would alter the rate of massive (e.g. ~60 M) binary black
hole mergers such as GW150914 (Rodriguez et al. 2015; Abbott
et al. 2016; Rodriguez, Chatterjee & Rasio 2016). Clearly, the de-
tailed early-dynamical evolution of realistic YMC models warrants
further study with more realistic initial conditions.

5.4 The outer NFW profile

We have established that the phase-space dilution caused by vio-
lent relaxation and phase mixing in the hierarchical merging of star
clusters generally drives clusters towards shallower mass profiles
approaching p oc #—3. Cold dark matter haloes also merge hierar-
chically and are generally well described by the Navarro, Frenk
& White (1996; NFW) profile in cosmological simulations, which
also has an r—* dependence. Indeed, it has long been established

9 Although they would still take longer than the initial formation of the
cluster.
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that such a profile has some relationship with hierarchical merging
(White 1979; Villumsen 1982; Duncan, Farouki & Shapiro 1983;
McGlynn ; Pearce, Thomas & Couchman 1993). To explain this, we
cannot invoke exactly the same argument as the one we have made
for star clusters in Section 3 because the NFW model has no max-
imum phase-space density to conserve. Nevertheless, the Dehnen
(2005) mixing theorem still implies that the hierarchical merging
of dark matter haloes cannot create steeper density profiles. Fur-
thermore, the outer density profile should behave in a manner that
is insensitive to the details of whether the inner profile is a core
or a cusp, so shallower density profiles should generally result in
mergers. We therefore argue that the o7~ outer NFW profile can
be understood as the endpoint of the same process of phase-space
dilution that we have argued drives star clusters to shallow density
profiles.

6 CONCLUSIONS

We arrive at the following conclusions about the formation of young
massive clusters:

(i) We compile observational data of young massive cluster pop-
ulations (Mackey & Gilmore 2003a,b; Ryon et al. 2015, 2017 ) and
find that the distribution of surface brightness profile slopes (Fig. 2)
is similar between different cluster populations, suggesting that it
is universal due to common star formation physics.

(ii) MHD star cluster formation simulations with resolved cool-
ing, fragmentation, and stellar feedback (Grudié et al. 2018) have
produced a population of star clusters with profile slopes that agree
with observations (Fig. 2), despite the fact that the simulations do
not resolve the formation of individual stars. To capture the es-
sential physics that determine the shapes of nascent massive star
clusters, it suffices to resolve some fraction of the dynamic range
of fragmentation.

(iii) Stellar feedback clearly has an important role in shaping
star clusters, as simulations without feedback are different from
observed YMCs in many ways. The role of stellar feedback in
setting star cluster structure should be elucidated in detailed cluster
formation simulations.

(iv) Based on the observational and simulation data mentioned
above, evidence is strong that a YMC'’s profile slope is established
when it is dynamically young so must be established in the cluster
formation process.

(v) We develop an analytic model for the evolution of a cluster’s
profile slope y in a sequence of collisionless pairwise mergers be-
tween star clusters modelled by the EFF model. Phase-space mixing
requires that the final slope is no shallower than that of either pro-
genitor. Furthermore, assuming conservation of mass, energy, and
maximum phase-space density, we find that mergers must always
shallow the slope towards 2 by some amount. Thus, a sufficiently
large number of hierarchical mergers will resultin y ~ 2, as argued
in Guszejnov et al. (2018) from more general considerations.

(vi) We perform collisionless N-body simulations of three iter-
ated star cluster mergers, starting with a pair of identical Plummer
(1911) models and then merging the result with a copy of itself
twice. The results of these simulations are in good agreement with
our analytic model: at most ~10 per cent of mass and energy are
ejected in each merger, the maximum phase-space density is con-
served, and the mergers drive y from 4 initially to a value close to
2 (Table 1). The collisionless merger of two EFF clusters produces
another cluster whose surface density profile is also well described
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by the EFF model, however, deviations from the model are more
apparent in the phase-space structure (Fig. 4).

(vii) We have performed N-body experiments following the col-
lisionless relaxation of a hierarchically clustered mass distribution
with spatial and kinematic scaling relations corresponding to those
observed in GMCs and young star clusters. We find that sub-clusters
rapidly merge hierarchically into steady-state star clusters with EFF-
like surface density profiles, despite no initial surface density model
being assumed. Thus, the EFF model is physically motivated within
the paradigm of hierarchical star cluster formation and indeed EFF’s
explanation in terms of dissipationless relaxation following rapid
star formation is venerated.

(viii) Because clusters resembling YMCs emerge so readily from
plausible star formation physics, a shallow EFF profile is a more
plausible model of a nascent star cluster than the commonly sim-
ulated Plummer (1911) or King (1966) models. This may have in-
teresting implications for the detailed dynamical evolution of dense
star clusters.
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APPENDIX A: CLUSTER FINDING
ALGORITHM

To identify bound star clusters from the star particle mass, velocity,
and position data of the Paper I simulations, we use an algorithm
based on identifying potential wells. This is generally more robust
than methods based on identifying density maxima because the
gravitational potential contains all necessary information for cluster
finding, while being inherently smoother and hence less susceptible
to noise. The algorithm is as follows:

(i) Determine some fixed number N,g, of each star particle’s
nearest neighbours of each star particle’s nearest neighbors neigh-
boursin

(ii) From each particle, move to the neighbour particle with the
lowest gravitational potential. Repeat until a local minimum in the
potential is found. This is the bottom of the potential well to which
the initial particle is now ‘associated’.

(iii) Compute the gravitational potential as sourced only by the
particles associated with this potential well in isolation.

(iv) Associated particles that are bound to the potential well are
considered bound members of the cluster.

In practice, we take Nyg, = 32, which is the number of neighbour
elements used for constructing the hydrodynamic mesh and force
softening in the simulations, so it is on the order the size of the
least massive self-gravitating structure that can exist in the simula-
tion. A larger value could potentially lump together distinct bound
star clusters, while smaller values generally increase the popula-
tion of spurious clusters. We find this algorithm to have satisfactory
accuracy for this problem; it has been tested on control data sets
for which the cluster associations are known a priori and stably
identifies the same cluster between different simulation snapshots.

APPENDIX B: (SEMI-) ANALYTIC
PROPERTIES OF THE EFF MODEL

Here, we derive useful quantities for calculations involving star clus-
ters modelled by the EFF density profile (equation 2) with arbitrary
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profile slope y:

2\ 5
p(r)=po <1+ﬁ> . (B1)

The quantities needed to construct a dynamical model with this
density profile are only generally expressible in closed form in the
special case y = 4, which is the Plummer (1911) model. This has
ensured its popularity as an initial condition for N-body simulations
that is easy to construct. However, as discussed in Section 2, a much
more typical initial condition for a star cluster would be y ~ 2—-3.
For those quantities that lack closed-form expressions, we provide
approximate expressions or upper and lower bounds for use with
numerical root solvers. The reader is also directed to Lupton et al.
(1989) for the derivation of the collisionless Jeans model.

B1 Cumulative mass distribution

The cumulative mass distribution for arbitrary y is

M(<r) = / 4rrp (r') dr’
0

dmpo 3415 2
F(2Y 220 B2
3 P\ T e (B2)

where »F(a, b; c; z) is the Gauss hypergeometric function (chapter
15, Abramowitz & Stegun 1965).

B2 Half-mass radius

The 3D half-mass radius R,y may be obtained by solving

M(<r)/M = 1/2. For the Plummer model (y = 4), the solution is

lt}:ﬁa ~ 1.3. For general y, there is no closed-form solution. We

may derive upper and lower bounds from the constant and power-
law parts of the density profile, respectively, from the expansions
of M(r) about 0 and co:

3m '3 ar ()"
(47_[100) < Regr < m a. (B3)

Equipped with these bounds, R.; can be computed efficiently
with a bounded root-finding algorithm such as Brent’s method.
In the limit y — 2, the solution will approach the upper bound,
as most of the mass will be in the power-law portion. Similarly
Reir — (3M /47tpg)'/? as y — oo because most of the mass will be
in the core. In Fig. B1 we plot these bounds in comparison with the
true solutino.

B3 Potential

The gravitational potential is given by the integral

o () = / GM ) 4

72
00 r

2 1 oy=1.3._r2
4nGapo 2 Fi (E’T’f’_ﬁ

= — . (B4)
y —1
The expansion of ®(r) about the centre is
2 a2
@ (r) = 4G po (3 - 1) +0(r"). (BS)
y —

The shortest possible orbital frequency in the cluster is that asso-
ciated with simple harmonic motion in the central potential well,
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Figure B1. 3D half-mass radius Refr as a function of y in units of the scale
radius a. The numerical solution is shown in blue, between the bounds given
in equation (B3).

which depends only on the central density:

[4nG
Quax = TC3 £o . (B6)

Expanding about r = oo, we see that the leading-order correction
to the monopole term — X s

r

r e Jar(3)
Thus, for larger values of y, the leading correction to the point mass
potential is ocr' ~7, which will be very small, so the potential is well
approximated by a Keplerian potential. This approximation will be
less valid for y — 2, as most of the mass will be in the power-law
portion of the profile.

GM GM F(VT_I) (r)lﬂ/

@ (r)+ (B7)

a

B4 Energy

A star cluster in dynamical equilibrium will satisfy the virial the-
orem: E = —W/2, where W is the magnitude of the gravitational
potential energy. The potential energy associated with the mass
distribution may be computed as the integral:

2

W= /Oo wmﬂp r)ydr =W(y) oM , (B8)
0 r a

where WW(y ) is adimensionless function of y, plotted in Fig. B2. For
the Plummer model, W(y) = 37t/32. The expression in terms of
the hypergeometric function is cumbersome, however, it is asymp-
totically oc(y — 2)%> as y — 2 and o< (y — 2)"/? as y — oo. It can
be very well approximated by the following expression:

Wo) = (et =27)" + (e -24)") " (B9)

with ¢; = 0.780, ¢, = 0.284, and o = —0.692. This expression
interpolates between the two asymptotic behaviours and is indistin-
guishable from J(y) as plotted in Fig. B2.
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Figure B2. WW(y) as afunction of y, where the gravitational binding energy
is given by W = W(y)Gl—’t”“. The function is very well approximated by

equation (B9). It is oc(y — 2)? in the limit y — 2 and o (y — 2)% in the
limit y — oo.

BS5 Phase-space distribution function

With the potential given by equation (B4) and assuming an isotropic
velocity distribution, the phase-space density f(x, v) is a function
of specific orbital energy alone. We may determine the phase-space
density f(&) with the usual integral formula (Binney & Tremaine
1987):

1 d =% dp
«/gTCz dé ¥=0 5—1//

where ¥ = —® and £ = (—® — Jv?). In the limit r >> Regy, we
may approximate f (&) by substituting the Keplerian potential and
the approximation p ~ por=" ~ ! In this limit,

L(y + DI (55)
V2T (52) T (v +5)

Remarkably, for the Plummer model (y = 4), this power-law
approximation holds exactly. For all other values this is not so,
and the integral and derivative in equation (B10) must be taken
numerically. The derivative in equation (B10) may be taken with a
high-order finite difference stencil, as the integral is smooth every-
where except at £ =  (0). Fig. B3 plots the numerically computed
f (&) for various values of y. It is clear that for the non-Plummer
models, the phase-space distribution for the lowest energy (largest
&) orbits deviates significantly from a power law. Fig. B4 shows
the dependence of the maximum phase-space density upon y. In
the usual units in terms of G, M, and a, the Plummer model has
the lowest maximum phase-space density, and with M and a held
constant fi,x increases without bound as y — 2 and y — oco. We
may roll the y dependence into a dimensionless function F(y),
such that fr.x = F(y) G=*M~1/2a=3/2. An approximation of F
with maximum error ~10~* over y € [2.01, 10] is

f&= , (B10)

o=

f~ (B11)

Fo)~ ((aly =2 + (v =272, (B12)

where ¢; = 0.0228, ¢; = 0.139, and o = 0.816.
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Figure B3. Phase-space density f () in units of G™32M~ Y2432 for
isotropic cluster models with different y. The Plummer model (y = 4)
is the only one that is a true power law o£’/2, hence its popularity as an
analytic model for N-body initial conditions.
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Figure B4. Maximum phase-space density fimax as a function of y, in units
of G=32M~124=32 The function is oc(y — 2)~"2 in the limit y — 2, oc(y
— 2)3* in the limit y — oo and minimized for the Plummer model (y = 4).
It is well approximated by equation (B12).

B6 Cumulative phase-space-density distribution M(< f)

M(< f), the amount of mass at phase-space density less than f, is a
useful diagnostic quantity in N-body simulations because it is robust
to noisy estimates of f from Monte Carlo particle data. It is also

MNRAS 481, 688-702 (2018)

useful for placing analytic constraints on merger products because
it strictly increases in collisionless evolution as phase mixing occurs.
For a spherically symmetric, isotropic cluster model, fis a mono-
tonic function of &, so it is convenient to compute M(< f) as the
integral
&
M(<f)= ; f(©)g©)de, (B13)

where &( f) is the inverse function of f(€) and g (£) d€ is the phase-
space volume within the interval [£, £ + d£], computable as

(&)
8 =f2(47r)2/ /Y (r) — Edr, (B14)
0
where again r (&) is the radius at which ¢ (r) = £. In the Keplerian
approximation, this gives
g (&) ~ V2MaSmE, (B15)
Combining this with B11, the asymptotic form of M(< f) is
3
o+ (42)

y =2

2y—4

M(<f) = oc farT,

(B16)

where f = f/(G™3?M~"2a=%?). In general, the integral B13
must be performed numerically. In Fig. BS, we plot M(< f) for
a sequence of EFF clusters with varying y but equal mass and
energy. Note how smaller values of y have a flatter distribution, so
their mass is effectively spread over more orders of magnitude in f.
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Y10t ]
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=
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Figure BS. Cumulative phase-space density distribution M(< f) for a series
of clusters varying y, while keeping mass and energy fixed. At equal-mass
and energy, the distribution is more spread-out for y values closer to 2 and
is asymptotically oc f27~4/2r =1,
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