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ABSTRACT

Modelling the turbulent diffusion of thermal energy, momentum, and metals is required in
all galaxy evolution simulations due to the ubiquity of turbulence in galactic environments.
The most commonly employed diffusion model, the Smagorinsky model, is known to be
overdiffusive due to its strong dependence on the fluid velocity shear. We present a method
for dynamically calculating a more accurate, locally appropriate, turbulent diffusivity: the
dynamic localized Smagorinsky model. We investigate a set of standard astrophysically rel-
evant hydrodynamical tests, and demonstrate that the dynamic model curbs overdiffusion in
non-turbulent shear flows and improves the density contrast in our driven turbulence experi-
ments. In galactic discs, we find that the dynamic model maintains the stability of the disc by
preventing excessive angular momentum transport, and increases the metal-mixing time-scale
in the interstellar medium. In both our isolated Milky Way-like galaxies and cosmological
simulations, we find that the interstellar and circumgalactic media are particularly sensitive
to the treatment of turbulent diffusion. We also examined the global gas enrichment frac-
tions in our cosmological simulations, to gauge the potential effect on the formation sites
and population statistics of Population III stars and supermassive black holes, since they are
theorized to be sensitive to the metallicity of the gas out of which they form. The dynamic
model is, however, not for galaxy evolution studies only. It can be applied to all astrophysical
hydrodynamics simulations, including those modelling stellar interiors, planetary formation,
and star formation.

Key words: diffusion—hydrodynamics — turbulence —methods: numerical —galaxies: inter-
galactic medium — galaxies: ISM.

references). The problem lies in the large number of complex in-

1 INTRODUCTION . . .
terconnected processes involved, and the huge dynamic range in

Galaxies form at the confluence of gas streams and cooling flows at
the centres of virialized haloes and evolve via a constant exchange of
baryons with their environments. Despite significant recent progress
on understanding the details of this picture, developing predictive
models for the evolution and observed properties of galaxies has
proven to be an immense challenge (see, for example, Guedes et al.
2011; Hopkins et al. 2014; Vogelsberger et al. 2014; Schaye et al.
2015; Genel 2016; Davé et al. 2017; — see also Somerville & Davé
2015 and Naab & Ostriker 2017 for a recent review and additional
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spatio-temporal scales over which they operate.

One important interplay involves the interstellar medium (ISM),
the gas that permeates a galaxy and provides fuel for star forma-
tion, and circumgalactic medium (CGM), the gas that cocoons the
galaxy. The amount of gas in the CGM and the efficiency with
which it can cool, fall into the galaxy and replenish the ISM, are
important variables in setting the duration and the rate of star for-
mation (Somerville & Davé 2015). Stellar winds and supernova
explosions (SNe) — processes directly related to star formation —
provide competition for gas cooling (Springel & Hernquist 2003b;
Oppenheimer & Davé 2008). These deposit energy and momentum
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into the ISM, engendering outflows of gas. If these outflows are
sufficiently powerful, they not only heat the CGM, but also expel
most of the CGM from the galaxy’s halo. This ongoing competition
between gas into and out of galaxies provides a basic framework for
understanding a number of observed properties (Shen et al. 2012;
Crain et al. 2013; Christensen et al. 2016; Oppenheimer et al. 2016;
Sokotowska et al. 2016).

The cooling efficiency and ionization state of the gas in the CGM
depend sensitively not only on the spatial injection and redistribu-
tion of thermal energy and momentum (Suresh et al. 2017), but also
on the metals that are transported from the galaxy via the galactic
outflows (Davé, Finlator & Oppenheimer 2006; Oppenheimer &
Davé 2006; Finlator & Davé 2008; Hani et al. 2018). Metals, al-
though negligible in terms of mass fraction, play an out-sized role
in galaxy evolution because they can dramatically alter the CGM’s
cooling profile (van de Voort et al. 2012; Oppenheimer & Schaye
2013; Sokotowska et al. 2017) and, hence, the delicate balance
between gas in- and outflow.

In addition to cooling, the redistribution of metals can impact
other processes, such as the sites and formation history of the pu-
tative Population III (Pop III) stars and supermassive black holes
(SMBHs). Pop 111 stars are associated with star formation involving
near-pristine gas with an upper limit on metallicities somewhere in
the range [Z] ~ —6 to [Z] ~ —3 (Sarmento, Scannapieco & Pan
2016). As for SMBHs, a number of authors (e.g. Volonteri 2010
and for use in recent simulations Tremmel et al. 2017) postulate
that they form via direct collapse of gas clouds with metallicity [Z]
< —4.0, with the idea that very low metallicity would prevent the
gas from cooling rapidly and fragmenting into Pop III stars during
collapse. It is therefore crucial to identify which physical processes
redistribute thermal energy, momentum, and metals in galactic envi-
ronments spatially, and to include these accurately in the numerical
galaxy evolution experiments.

One critical, often overlooked, redistribution mechanism is gas
turbulence. Turbulence occurs when inertial forces dominate vis-
cous forces in a gaseous environment, and Kinetic energy injected on
large scales cannot immediately dissipate as heat. This leads to the
formation of a kinetic energy cascade, as coherent turbulent eddies
on large scales spawn eddies on successively smaller scales, un-
til the energy thermalizes. Galactic environments, for example, are
expected to be highly turbulent (Evoli & Ferrara 2011; Iapichino,
Viel & Borgani 2013). In the case of the CGM, this is strongly
suggested by the kinematic complexity revealed by absorption and
emission line measurements (Tumlinson, Peeples & Werk 2017)
and it has long been recognized that the cold ISM is also highly tur-
bulent. The susceptibility of a medium to turbulence is quantified
by its dimensionless Reynolds number,! Re. The Reynolds number
for the cold ISM has been estimated to be as high as Re ~ 107
(Elmegreen & Scalo 2004), whereas the onset of turbulence usually
occurs at Re ~ 10°. The Reynolds number is also a measure of the
separation of scales in the energy cascade and, in the case of in-
compressible turbulence, L/n ~ Re¥*, where L is the kinetic energy
injection scale, and 7 is the dissipation scale.> Therefore the de-
grees of freedom in a 3D simulation scales as Re®*, and simulating
a Re ~ 107 flow would require 10'° fluid elements! Contemporary
cosmological simulations have reached ~10'? fluid elements and
a dynamic range typically of the order ~10° (Somerville & Davé

IDefined as the ratio of inertial forces to viscous (dissipative) forces.
2In compressible turbulence, the scaling is much steeper (see Kritsuk et al.
2007; Federrath 2013).
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2015), with the smallest scale being the resolution limit /. Therefore
all cosmological simulations that involve turbulence — independent
of hydrodynamical method — have a natural cut-off scale 4, in the
range n < h < L, where discretization truncates the turbulent cas-
cade.

Physically, small-scale turbulent fluctuations, by promoting mix-
ing, provide a transport mechanism for the fluid properties such as
momentum, thermal energy, and metals. In numerical simulations,
this implies that turbulence on scales smaller than / can potentially
impact the resolved properties of the flow and consequently must
be accounted for (Germano et al. 1991). The crux of the issue is
that, as stated above, the kinetic energy flux down the turbulent
cascade is truncated at / in the simulations whereas, in reality, the
kinetic energy cascade should continue to smaller scales until it is
dissipated. Numerical simulations break the physical coupling be-
tween the scales that are resolved (>#4) and unresolved (<#), and,
therefore, they require models of (i) the kinetic energy flux from
the resolved to the unresolved scales, (ii) the effect of unresolved
eddies on the resolved scales, and (iii) the transport properties of
kinetic energy on unresolved scales. Typically, this is done using
the turbulent eddy-diffusion models that treat sub-grid turbulent
eddy motion as a diffusive process. Several implementations of this
approach have been proposed (cf. Schmidt & Federrath 2011; Di
Mascio et al. 2017; Wadsley, Keller & Quinn 2017; — see Sagaut
2006 and Garnier, Adams & Sagaut 2009 for extensive lists); none
the less, many cosmological hydrodynamical simulation studies
assume that numerical diffusion adequately accounts for sub-grid
turbulent transport (Schmidt 2015). Numerical diffusion, however,
can lead to diffusive behaviour that poorly represents turbulent flow
statistics (Sagaut 2006).

Extensive effort has been devoted towards developing models
for treating turbulent diffusion in Eulerian cosmological simula-
tions, which employ grids to discretize the fluid. Here we refer
the reader to Scannapieco & Briiggen (2008), Pan, Scannapieco &
Scalo (2013), Federrath (2013), Schmidt et al. (2014), Schmidt
(2015), Semenov, Kravtsov & Gnedin (2016), and Sarmento et al.
(2016). In this paper we focus on the Lagrangian hydrodynamical
approach.

Within the Lagrangian framework, the fluid equations of motion
are approximated by tracking individual fluid elements as they move
with the flow. Commonly used Lagrangian methods in computa-
tional cosmology include smoothed particle hydrodynamics (SPH)
(Gingold & Monaghan 1977; Lucy 1977; Hernquist & Katz 1989),
moving-meshes (MM) (Springel 2010), and higher order mesh-free
methods (MF) (Lanson & Vila 2008a,b; Gaburov & Nitadori 2011;
Hopkins 2015) — see Springel (2010) and Hopkins (2015) for ex-
tensive discussion.

SPH has no inherent diffusion and therefore, by construction,
explicitly requires additional transport terms, one benefit of which
is full control over the strength of mixing. In MM and MF meth-
ods, numerical diffusion arises as a by-product of the numerical
scheme used to solve the Riemann problem between fluid elements.
However, as noted above, inherent numerical diffusion does not, in
general, reproduce the correct turbulent properties of a simulated
flow. The key problem here is: how can we address this? Or, more
precisely, how do we model the interaction between the unresolved
and the resolved scales?

A common approach is to assume that the interaction between
the resolved and the unresolved scales reduces to a local transfer of
kinetic energy from the large to the small scales. If we additionally
assume that the kinetic energy transfer mechanism is analogous to a
diffusive process, where kinetic energy is redistributed on progres-
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sively smaller scales via momentum diffusion, then we can treat
the action of unresolved eddies in a similar fashion to molecular
viscosity. Under this equivalency, on scales close to the resolution
scale h, the unresolved eddies extract kinetic energy from the re-
solved flow via momentum diffusion, and simultaneously allow for
the dissipation of kinetic energy. This is the eddy-viscosity hypoth-
esis, and is fundamentally a model assumption that describes the
simplest view of the interactions between the scales. The action of
the unresolved eddies can then be modelled by a viscous term in
the fluid equations of motion — diffusing momentum and dissipating
kinetic energy (Pope 2000). The above assumptions lead to a simple
model but it does not provide guidance about the appropriate choice
for the effective diffusivity/viscosity.

In a turbulent cascade, the diffusive action of the eddies depends
on their velocity and length-scale. On the sub-grid level, this in-
volves estimating the velocity scale that transports fluid properties
over the resolution scale & (Wadsley, Veeravalli & Couchman 2008;
Greif et al. 2009). In the simplest model, the Smagorinsky model
(Smagorinsky 1963), this velocity is assumed to be proportional to
the gradients of the velocity field. In this model, the sub-grid ed-
dies both diffuse (characterized by diffusivity D) and dissipate via
eddy viscosity, v, given by v, =D = (Ch)?|Sx|, where |Sx| is
the norm of the trace-free shear tensor, and C; is the Smagorinsky
model constant. Contemporary fluid mechanics literature notes that
in general C needs to be tuned to a value between 0.1 and 0.2 for
optimal results under different flow conditions (Garnier et al. 2009).

The main advantage of the Smagorinsky model is its simplic-
ity and as a result, many researchers have started to incorporate
this model into their cosmological simulation codes — specifically
as a model for the diffusivity when treating thermal energy and
metal mixing (Shen, Wadsley & Stinson 2010; Brook et al. 2014;
Williamson, Martel & Kawata 2016; Sokotowska et al. 2017; Trem-
mel et al. 2017; Escala et al. 2018). The model, however, has some
drawbacks: (i) A single valued C; is incapable of correctly de-
scribing different types of turbulent flows. Studies show that the
Smagorinsky model introduces too much diffusion into the flow
in almost all cases except for homogeneous, isotropic turbulence
(Garnier et al. 2009). And, (ii) the sub-grid eddy viscosity does not
vanish for laminar shear flows where there ought to be no diffu-
sion due to turbulence. Overdiffusion is especially worrisome given
the push to resolve the multiphase structure in the ISM and CGM
at greater levels, and the recent results that differential, localized
metal mixing could change our understanding of galactic chemical
evolution (Emerick et al. 2018).

As noted above, most implementations of the Smagorinsky model
only consider thermal energy and metal diffusion, but not momen-
tum diffusion because the latter drawback above is a concern for dif-
ferentially rotating structures, such as galactic discs. Specifically, it
results in undesired angular momentum transport and, consequently,
unphysical flows in the discs. Most galaxy evolution studies ignore
momentum diffusion in order to avoid this viscous instability. The
crux of the problem is that a constant C; cannot automatically adjust
to either the local conditions or the changing character of the flow
with time. This led Germano et al. (1991) to propose the dynamic
Smagorinsky model where C; is a function of space and time, i.e.
Cs = Cy(x, 1).

The dynamic Smagorinsky model has, to our knowledge, not
yet been implemented and investigated in cosmological simula-
tions. The model has, however, been validated extensively in the
fluid simulation community by comparing to the results of standard
numerical tests and experiment data, and has been shown to im-
prove upon the constant-coefficient model (Kirkpatrick et al. 2006;
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Kleissl et al. 2006; Benhamadouche, Arenas & Malouf 2017; Lee &
Cant 2017; Kara & Caglar 2018; Taghinia, Rahman & Lu 2018).
In the dynamic model, the sub-grid properties of a turbulent fluid
are computed under two assumptions®: (i) the behaviour of the
largest unresolved eddies is entirely determined by their interac-
tions with the eddies on the smallest resolved scales, and (ii) these
interactions are analogous to those between the fluid motions on the
smallest resolved scale and the motions on larger scales. In prac-
tice, determining the characteristics of these interactions involves
filtering (or smoothing) the resolved velocity field on two different
scales. When the sub-grid turbulent properties are calculated based
on the local fluid properties, Cy(x, t) reduces to zero (i.e. the eddy
viscosity/diffusivity vanishes) in non-turbulent (or laminar) shear
flows (Piomelli & Liu 1995). Consequently, this allows for the self-
consistent treatment of momentum diffusion, along with thermal
energy and metal diffusion, in numerical studies of cosmic baryons
and galaxy evolution.

In this study, we introduce an implementation of the dynamic
Smagorinsky model for the first time in Lagrangian astrophysical
simulations, focusing on the higher order MF approach. We discuss
the implementation details in Section 2. In order to test the impact
of dynamic localized turbulent mixing on the galactic ecosystem
we run a series of hydrodynamical and physical experiments rele-
vant to galaxy evolution. In Section 3 we show the results for a set
of standard hydrodynamic tests and explicitly check on the extent
of sub-grid diffusion in laminar shear flows. We then go on to ex-
amine the effects of dynamic mixing in an isolated disc galaxy in
Section 4, followed by a set of cosmological simulations in Sec-
tion 5. We investigated SPH and performed all of the experiments
presented below, but we do not include them in this paper because
the results are qualitatively similar to the MF results, as we mention
in Section 6.

2 METHODS

2.1 Hydrodynamics

In order to test the impact and robustness of the localized turbu-
lent diffusion model, we employ a modified version of the GIzZMO
gravity plus hydrodynamics solver code (Hopkins 2015). GIzMO
builds on the GADGET-3 code base (Springel 2005), with improve-
ments in numerical accuracy and includes an implementation of the
novel mesh-free finite mass (MFM) method, in addition to various
implementations of SPH methods.

The MFM method evolves the fluid equations of motion in a
Lagrangian manner similar to SPH. However, while the fluid mass
elements in SPH are discretized into particles and their motions are
determined by fluid properties smoothed over neighbouring par-
ticles, the conservation laws in MFM are evolved by calculating
the flux of basic variables between neighbouring particles.* These
fluxes depend on the effective face area between the two particles
and are determined by solving the Riemann problem along the line
connecting them. This removes the need for additional terms, such
as artificial viscosity and conductivity as is necessary in SPH to

3The two assumptions are often combined together and referred to as the
scale-similarity hypothesis.

4We refer to any fluid element as a particle, for simplicity. Fluid elements in
the MFM method are not particles in an SPH sense, and are defined by the
effective geometrical faces moving along lines connecting cells enclosing a
finite mass.
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ensure proper treatment of shocks. The numerical Riemann solvers
have inherent numerical dissipation,” hence improved shock captur-
ing capabilities. We, therefore, focus on the use of the MFM method
in our investigation of the dynamic diffusion model. For a thorough
exposition of GIZMO and an extensive comparison between MFM
and SPH, see Hopkins (2015).

2.2 Sub-grid turbulent diffusion terms

GIZMO solves the conservation equations for momentum, energy,
and mass using the MFM method, and like other hydrodynamic
methods, it is limited in resolution down to a scale 4. The minimum
resolution limits the ability to resolve high Reynolds number flows
down to the viscous dissipation scale, impacting its ability to resolve
the turbulent cascade. As mentioned in Section 1, the interaction
of the resolved and unresolved scales must be modelled. These
models apply to the additional sub-grid scale terms that appear in
the equations of motion when treating discretization as a filtering
process (Sagaut 2006; Garnier et al. 2009; Schmidt 2015). In this
section, we detail the origin of the sub-grid scale terms and discuss
which terms we include in the GIZMO code.

Discretization of the conservation equations is equivalent to ap-
plying a low-pass filter, damping out high-frequency turbulent fluc-
tuations. When we discuss filtering, we refer to the definition of a
general filtered scalar field f(x),

f@) E/ fENG(x" — x|, h)dx', €9)
D

where G(|x’ — x|, &) is a filter function. 7 is the characteristic size
of the filtering operation below which fluctuations are damped (es-
sentially the resolution scale, in the present context), dx’ is a volume
element, and the integral is evaluated over the entire domain. We
discuss our filtering implementation in more detail, in Section 2.4.
We now apply this equation to the conservation equations in order
to see that additional terms in the hydrodynamical equations are
required.

The momentum conservation equation for a compressible fluid
follows® (Landau & Lifshitz 1987),

0 0
E(Pui) + Ej[ﬁ”i”_;‘ + pdij1 =0, 2

where u; = u;(x,t) is the fluid velocity vector in the i = {x, y,
z} direction, p = p(x, t) is the fluid density, and p = p(x,1) is
the pressure. When we filter the momentum equation, assuming
the filtering operation and derivatives commute, we end up with an
extra term t;,

9 _ 0 _ .
E(Pui) + E[Tij + pdij + pi;i ] =0, (3)
where we have also switched to density weighted variables such
that ii; = pu;/p. t; is the subgrid-scale turbulent stress tensor or
residual stress tensor and is defined as,

Ty = pluiuj — il ). “

This term must be modelled because u;u; is unknown at the time
of simulation, i.e. the system of equations is not closed. A common

SRiemann solver dissipation arises from the high, even-order, truncated
terms in the Taylor series expansion of the basic variables in the conservation
equations.

OWe follow this Einstein notation throughout this paper.
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model, or closure, involves the eddy-viscosity assumption where
the sub-grid scales impart a momentum flux on the resolved scales
that is linearly dependent on the rate of strain of the resolved scale,

Tij = —2PVsgs S*ij, Q)

where v is the sub-grid eddy viscosity, and S ij 1s the trace-free
resolved rate of strain tensor. The same logic can be applied to
any of the conservation equations and any filtered multiplicative
terms require modelling. In the derivations below, we model (as in
equation 5 above) the unknown terms under the assumption that
they act as diffusive processes.

There is a similar term when filtering the total energy equation
(e is the specific total energy),

0 d

E(,Oe) + aTj[,Ouje +u;p] =0. (6)

leads to additional terms,

0 _ ad o

a(pe)—l—g[Qj-l—Pj-i-puje-i-ujp]=0, (7
J

where e = 6 + %|u|2 (0 is the specific internal energy). We also
have defined:

Q,=pluje —i;8), P, =1u;p—u;p. ®)

In this study, we ignore the term associated with pressure, P;, and the
term in Q; that arises from %|u|2 in e, and focus on the application
of the dynamic model to the sub-grid momentum term working in
concert with the widely employed thermal energy term (Shen et al.
2013; Brook et al. 2014; Tremmel et al. 2017; Wadsley et al. 2017),
[
q; =p(u;0 —i;0) = —/)ngs(.)Tj- )
Not only are there additional terms for momentum and thermal
energy, but any scalar quantities, such as the concentration of dif-
ferent metal species, in the gas should be transported in a turbulent
flow. In order to model this, we treat metal concentrations, ¢, as
passive scalars that obey a diffusion equation (Pope 2000; Shen
et al. 2010),

3. 9 [ 0o.
- = — sas —— | - 10
at 8Xj <pV € 8x_,») (10)

For a detailed description of the incorporation of these fluxes into
GIZMO, see Hopkins (2017).

Throughout this paper, we refer to the action of the terms in equa-
tions (5), (9), and (10) as turbulent diffusion because they contribute
to the conservation equations as V?f, where f is the flux quantity.
Additionally, when we mention energy diffusion, we are referring
to the term V - ¢ (thermal energy diffusion), and, similarly, when
we mention momentum diffusion we are referring to the action of
the stress tensor through V - 7, along with the corresponding kinetic
energy dissipation.

2.3 Diffusivity

Physically, turbulent mixing can be modelled as a diffusive process
with diffusivity D and, in the simplest model, the fluid properties
are assumed to mix over the resolution scale 7 with a velocity
h|S*|, where |S*| is the norm of the trace-free shear tensor. This
is, as we mentioned in Section 1 the Smagorinsky model and the
corresponding diffusivity is parametrized as D = vy = (Csh)2|S*|.

The Smagorinsky model inherently assumes that the kinetic en-
ergy transfer rate down the turbulent cascade is equal on all scales,
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and is equal to the physical dissipation rate (i.e. the flow is in local
equilibrium). In simulations, the resolution scale 4 inhibits kinetic
energy from moving to progressively smaller scales, and results
in a build-up of kinetic energy at the resolution scale — so long
as numerical dissipation cannot extract kinetic energy sufficiently
rapidly. The Smagorinsky model combined with the local equilib-
rium assumption only provides a model for the turbulent stress, 7,
and dissipation in the flow, ¥ = 7;; S’j; and ignores the additional
terms we discuss in Section 2.2. In order to consistently model all
of the energetic terms, one must relax the local equilibrium assump-
tion and follow the sub-grid kinetic energy, K, directly. It is possible
to derive a one-equation model for K that includes a third-order
term for the transport of K on sub-grid scales (Schmidt 2015), and
self-consistently follows all of the sub-grid quantities. Each sub-
grid term can then be modelled using diffusive terms similar to the
models in Section 2.2, in order to close the system of equations.

If the Smagorinsky model only considers the turbulent stress, is it
then valid to apply this model (as we have done following Shen et al.
2010) to the thermal energy and metal sub-grid terms? In order for
this to be possible, the local equilibrium condition must be approx-
imately true in the regime of interest. We are specifically interested
in cosmological-scale gas, and Schmidt et al. (2016) show that the
local equilibrium condition holds — on average — in a cosmological-
scale volume. Introducing the dynamic model on top of these ap-
proximations further supports our model assumption, because the
dynamic model inherently accounts for the deviations from local
equilibrium.

The Smagorinsky model diffusivity is parametrized in GIzMO for
a particle ‘a’ as,

Dy = pa(Csho)?[S™a, (an

where C; is the Smagorinsky constant, /, is the mean inter-particle
spacing in the kernel, and |Sx|, is the magnitude of the trace-free
symmetric shear tensor. Note that we absorb the densities p from
Section 2.2 into Vg Via p,. D, is used in the diffusion equations for
thermal energy, momentum, and metal mass fractions as described
in Hopkins (2017). There are a myriad of values quoted for Cj
in the literature (see section 5 of Sagaut 2006 for an extensive
list), but we choose the value calibrated for fully eveloped isotropic
turbulence, Cs = 0.2 (Clark, Ferziger & Reynolds 1979), because
the Smagorinsky model was developed for this specific regime.

In order to compare our Cs with other values in the literature, it
is important to consider the definitions of the quantities in equa-
tion (11). In many SPH studies, the length-scale in the diffusion
coefficient definition is taken as the kernel-support radius, hspy,
which is the maximum extent from a particle that gives a non-zero
weight. In contrast, as we mentioned above, we employ the mean
inter-particle spacing within the kernel or 4, ~ 0.5hspy. Addition-
ally, some studies use C = ﬁCsz whereas for this study V2 is
absorbed into our definition of the norm of the shear tensor (see
equation 13 below), closely following the fluid simulation literature
(Piomelli & Liu 1995). Using these definitions, our adopted value
of C is lower than those quoted in the astrophysics literature. For
example, the value C = 0.05 (see Shen et al. 2010, 2013; Brook
et al. 2014), corresponds to Cy = 0.37 whereas C = 0.03 corre-
sponds to Cy =0.29 (see Wadsley et al. 2017). However, our Cj
is higher than the value recently calibrating from studying metal
mixing in dwarf galaxies, where Escala et al. (2018) found Cs =
0.046 reproduced more realistic stellar metal distribution functions
(MDFs) via supersonic mixing in the ISM.

MNRAS 483, 3810-3831 (2019)

We compute the trace-free symmetric shear tensor via the high-
order accurate gradient estimators in GIZMO,

1/ du; ou ; 1 Jug
Si=3 ol Bt et 12
ol 2<axj+ax,~) 377 ax 12

where u; is the fluid velocity vector and x; the spatial coordinate,
and i, j = {x, y, z}. The magnitude of equation (12) is implemented
using the Frobenius norm (Piomelli & Liu 1995),

|S* = /28] 85, (13)

We note that in GIzMO, Escala et al. (2018) impose an ad hoc
cap on the diffusivity based on the expected maximum mass flux
between resolution elements. The cap does not, however, mitigate
the fact that the constant Smagorinsky model induces diffusion
whenever there is shear, regardless of whether the fluid is laminar
or turbulent. It is only intended to prevent unphysical mass/energy
transport that can potentially arise due to the excessive diffusiv-
ity of the Smagorinsky model. We adopt the same limiter in this
study, but note that the diffusivity rarely reaches the maximum
limit.

2.4 Dynamic model

The Smagorinsky model provides an approximate model of sub-
grid mixing for fully developed, homogeneous turbulence but it is
far too simple for complex flows. In fact, in laminar shear flows, the
constant-coefficient Smagorinsky model predicts a non-zero diffu-
sivity through its dependence on the shear strength (equation 11).
However, in this situation, the diffusivity should be zero since the
fluid is not turbulent. In more complex flows, such as those in astro-
physical contexts, the value of the constant ought to depend on the
spatio-temporal coordinates Cs = C(x, t) (Germano et al. 1991).
Piomelli & Liu (1995) showed that by assuming scale-similarity
(cf. Section 1), the local Smagorinsky constant in a neighbourhood
can be calculated at each point (at a fixed simulation time-step) as
follows:

1 (Lij = 2C4 . Bij)aj

2
Cyyn(x) = C5 = 2 P 14
Here L; is the Leonard tensor,

Ly =, — i, (15)

nyn is the value of Cyy, at the previous time-step, and «;; and B;;
are defined as,

/\222
o = h*|S* S*,",
=PI 06
B = 0|57 5%

Here f represents a filtering (or smoothing) operation on f over a
length-scale /, and f represents smoothing on a scale h.h usually
is equated with the lowest resolvable scale, and extensive work
has been done in the fluid simulation community to show that the
optimal value for his h=2h (Germano et al. 1991; Piomelli &
Liu 1995; Spyropoulos & Blaisdell 1996; Schmidt, Niemeyer &
Hillebrandt 2006; Grete et al. 2017). For this work, we choose 7 to
be the compact support radius of the kernel, and h=2h.
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More precisely, we smooth a scalar field f(x) by convolving it
with the filter function G(|x’ — x|, /) over the domain,’

fx)= / f(xNG(|x" — x|, k) dx'. (17)
D
This is similar to the SPH method of interpolating a scalar function,

with G(|x" — x|, ﬁ)ﬁsharing the same properties as the smoothing
kernel W(|x' — x|, h),

/G(lx’ — x|, h)dx' =1,

lim G(]x’ — x|, h) = 6(]x' — x|).
h—0

18)

The MFM method employs a similar technique for evaluating inte-
grals and in order to be consistent, we choose G = W. The integral in
equation (17) is expensive, but we simplify the computation using
XSPH smoothing (Monaghan 1989, 2005, 2011),

f)=fx)+e /D(f(X') — fEDW(x" — x|, h)dx". 19

Following Monaghan (2011), the Fourier coefficients ay of the ve-
locity satisfy ay = ax[1 + e(é(k) — 1)] where ay are the coeffi-
cients of the smoothed field, é(k) is the Fourier transform of the
filter function, and k is the spatial frequency k = 27/x. In the limit
k — oo, the coefficients satisfy ax — (1 — €)ag. The value of ¢
controls the magnitude of the smoothing on a scale of < h, and is
constrained to 0 < ¢ < 1. We choose ¢ = 0.8 to be consistent with
the tests in Monaghan (2011).
We discretize equation (19) as,

Fa=tated
b

m

" (fo = SIW(Ixa — X1, rap), (20)
(Pab)h

where f, represents the quantity at particle a, h,p is the arithmetic
mean of i1, and 15,3 (p,p)7; is the harmonic mean of the densities p,,
and p,,° and the sum is taken over b nearest neighbours. We also re-
quire doubly filtered quantities, which involves another application
of equation (20) to the singly filtered quantities,

Fu=Tute > 0 (Fy = FOW(ixa = X5], Frs). @1

b <pah>ﬁ

~|

In order to calculate the average densities, or weights, in equa-
tions (20) and (21), we require the density at each particle for a
given scale,

Pu=Y_ myW(lxa — X3, ha),
b

R (22)
Pa= Y _ myW(lxa — X!, o).
b

It is important to note that the values of S*; and S*;; are built
from the smoothed velocity field and are not smoothed versions
of the trace-free symmetric shear tensor in equation (12) (Schmidt

7Our filtering implementation naturally density-weights quantities because
we follow the hydrodynamical weighting scheme.

8Taken as hyp = %(ﬁa + hyp) in order to equally weight each smoothing
scale.

9The harmonic mean is of the form (p);; = 25,P»/(P, + Pp) and weights
towards the lowest value. This allows high-density particles to have a fair
contribution to the differences within the kernel.
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2015). They have the following corresponding equations:

& L om o 1, o
E) ox; 0x; 37 9x
@__1(35,- aﬁ,)_l 3,

ij_i 8Xj Bx,» g UaTck'

(23)

The magnitudes | S*| and |S*| are given via equation (13).

The dynamic method relies on local scale-similarity in the neigh-
bourhood of a point x, which in turn implies that the Smagorinsky
model is an accurate description of the flow, albeit with a variable
constant. This assumption breaks down in highly complex flows
and in some cases, the dynamic model predicts negative values (Pi-
omelli & Liu 1995; Urzay et al. 2013). Negative values of Cqyy, are
usually explained as backscatter in the cascade (Piomelli etal. 1991;
Piomelli & Liu 1995; Meneveau & Katz 2000; Vreman 2004; Urzay
et al. 2013) where in some circumstances a fraction of the energy
cascading to small scales can return to large scales as smaller eddies
unite to form larger eddies. An alternate explanation for Cs <0 is
that the Smagorinsky model fails, and a more appropriate model
should be employed. For now, we adopt the latter view and follow
the usual approach in restricting Cgy, to the range Cyy, € [0, C]
with values Cyyn < 0 set to Cyyn = 0 (Garnier et al. 2009; Schmidt
2015). The upper limit is imposed since large values are thought
to be due to numerical instability. For the remainder of this paper,
we identify and discuss C; = |/Cayy. The distinction between the
simple and dynamic model is distinguishable based on context.

3 HYDRODYNAMICAL TESTS

As indicated previously, a number of studies have carried out robust
validation of the dynamic Smagorinsky model against, for example,
experimental results within the fluid mechanics community (Kleissl
et al. 2006; Benhamadouche et al. 2017; Lee & Cant 2017; Kara &
Caglar 2018; Taghinia et al. 2018) and the model has also been
adopted by other users, including researchers studying atmospheric
phenomena (e.g. Kirkpatrick et al. 2006). To motivate its use in
cosmological and astrophysical simulations, we start by discussing
the model within the context of three hydrodynamical tests.

First, we investigate the distribution of predicted C values in
homogeneous driven turbulence, and the sensitivity of the distribu-
tions to variations in the smoothing parameter, €. Next, we examine
the evolution of a Keplerian disc where turbulence is not expected
to develop a priori yet numerical instabilities and noise lead to dis-
order in the velocity fields, and subsequent artificially enhanced
diffusivities via the trace-free shear strength, |Sx|. Last, we con-
sider the linear regime of the Kelvin—Helmholtz instability which
suffers from similar challenges as the Keplerian disc. In both cases,
numerical instability causes the constant-coefficient Smagorinsky
model to fail, and we investigate whether the dynamic model can
mitigate spurious sub-grid turbulent mixing.

3.1 Homogeneous turbulence

We investigate homogeneous, isotropic, driven turbulence to deter-
mine to what degree the dynamic model predicts different diffusiv-
ities on a per particle basis.

We initialize periodic boxes of side length L = 1 with 643, 1283,
and 256 equal mass particles of an ideal isothermal gas, initial
density p = 1, and energy per unit mass u = 1000, placed on uni-
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Table 1. We compare five mixing models involving combinations of the
standard implementation, dynamic implementation, as well as the mixing of
energy, velocity, and metals. We prefix models using the standard implemen-
tation by S-, and those involving the dynamic model by D-. Models which
mix thermal energy, velocity (momentum), or metals have combinations of
the suffixes u, v, or z, respectively.

Name Dynamic  Thermal energy Velocity Metals
None N/A X X X
S-uz X v X v
D-uz v v X v
S-uvz X v v v
D-uvz v v v v

form Cartesian grids.'” Following the methods of Bauer & Springel
(2012) and Hopkins (2015), as the system is driven, the thermal
energy of the gas particles are reset to the initial value in order to
simulate isothermal turbulence. We investigate the five combina-
tions of mixing models described in Table 1, and examine subsonic
(M =~ 0.3) and supersonic (M ~ 8.4) test cases.

In order to mix the fluid over time, we use an identical forc-
ing routine as in Bauer & Springel (2012). The accelerations are
calculated in Fourier space and only contain power over a small
range of modes corresponding to a spatial range ¢ € [L/2, L] (i.e.
the largest scales), and the Fourier mode phases are drawn from
an Ornstein—Uhlenbeck process. In the subsonic case, the forcing
is purely solenoidal (or incompressible) since the compressive part
of the acceleration is removed via a Helmholtz decomposition in
Fourier space. It is important to note that Grete, O’Shea & Beck-
with (2018) showed that this is not completely correct, and that
compressive modes still exist even with purely solenoidal forcing.
However, we are comparing the effects of the dynamic model using
the same forcing methodology across all of our test cases, and ad-
ditionally we construct the shear and sub-grid scale stress tensor to
be trace-free, removing any contributions from compression of the
fluid. We use the exact parameters in table 1 of Bauer & Springel
(2012), and point the interested reader to their section 2.2 for the
precise details of the driving routine. The systems enter an approx-
imate steady state after > 5. We measure the probability density
functions (PDFs) of Cy in each test in order to determine its sensi-
tivity to the smoothing parameter ¢ in equation (20). In addition, we
measure the PDF of the density field in order to gauge the ability of
each model to resolve different density ranges in the turbulent flow.

The left-hand panel in Fig. 1 shows the distribution of C; in the
subsonic case as predicted with the dynamic model for three separate
resolutions: 64°, 1283, and 256°. The median value and the shape
of the distributions do not change much with resolution, indicating
excellent convergence. At 64° resolution we find a median value
Cs = 0.1 and approximately 9.61 per cent of the particles have C; =
0. In the fluid mechanics literature, as many as 50 per cent of the
fluid elements have been reported to have C; = 0 (Piomelli et al.
1991; Urzay et al. 2013). We also test for convergence in supersonic
turbulence (see the middle plot in Fig. 1). Compared to the subsonic
case, the dynamic model predicts more particles at C; = 0, with a
total fraction below 50 per cent. The median value is much lower
than in the subsonic case, Cs = 0.066. The lower median agrees with
calibration results from Colbrook et al. (2017) who found that Cg
~ (.05 reproduces the turbulent scaling relationships in supersonic
turbulence.

10Units are arbitrary code units.
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We also investigate the sensitivity of the C; to the smoothing
parameter, ¢, from equation (20). The right plot in Fig. 1 shows the
PDFs of Cg in homogeneous, subsonic turbulence using the MFM
method. We vary ¢ between 0.2 and 1.0 since & cannot be greater
than 1.0, as itis derived from a series expansion, and should be >0in
order to have positive kinetic energies in the smoothed fields (Mon-
aghan 2011). Values in the range 0.7 < ¢ < 1.0 produce comparable
distributions with medians Cs & 0.1. Monaghan (2011) found, using
a version of SPH with smoothed velocities, that ¢ = 0.8 reproduced
turbulent flow trends in decaying wall-bounded turbulence. For this
reason we employ & = 0.8 in all of our tests.

Turning to the gas properties, Fig. 2 shows histograms of the gas
densities in the 64° homogeneous subsonic turbulence simulations,
averaged at 150 equally spaced times from ¢t = 10 to = 25 (inclu-
sive), normalized such that each maximum is Ny,,x = 1. After t = 10,
each turbulent field across all models is in an approximate statisti-
cally stationary state with p & 1. Although the model labels include
the -z flag, we do not include metal mixing in our driven turbu-
lence simulations. We retain the suffix for cross-comparison across
the different cases in paper, and point the reader to Section 3.3 for
a discussion of turbulent metal mixing in an idealized experiment.
We note that the None and S-uz cases coincide and the lines in
the figure overlap, indicating that internal energy diffusion with a
global C; value has no effect on the density distribution.

First, using the None case as a reference curve, the D-uz case
shows a narrower distribution between 0.75 < p < 1.15 with a
prominent extended tail towards higher densities. This indicates
that the D-uz case can represent a wider range of densities in the
turbulent cascade. Since the S-uz case follows the None case ex-
actly, this suggests that the localization of the diffusivity D impacts
the density resolution much more than the dependence on velocity
shear.

Introducing momentum diffusion alters the density distributions
significantly compared to the None case. In the S-uvz case, the
density distribution is tighter and exhibits no apparent wings, with
the majority of densities falling in the range 0.75 < p < 1.2. Here the
increased diffusivity destroys any small-scale structure by causing
densities to remain closer to the mean. However, when we employ
the D-uvz model, we find the opposite effect — localizing momen-
tum diffusion leads to a wider range of densities in the turbulent
gas compared to the all other cases. The effect is strongest at higher
densities and therefore we can conclude that the dynamic model is
able to resolve higher densities in a turbulent flow at the same mass
resolution.

3.2 Keplerian disc

In numerical studies of galaxy formation, inherent or artificial dis-
sipation in the hydrodynamical method can cause gas to lose an-
gular momentum and flow radially inwards (Hosono, Saitoh &
Makino 2016), i.e. the viscous instability. Numerical simulations
require sub-grid diffusive terms as they cannot resolve the viscous
scale, however, additional momentum diffusion enhances the vis-
cous instability. This is an important consideration for the constant-
coefficient Smagorinsky model: in a simulation of a gaseous disc
where the rotational velocity curve depends on the radius, includ-
ing momentum diffusion will trigger the viscous instability even if
there is no turbulence as the radial velocity gradient contributes to
|S|. A quick analytic calculation demonstrates this. Let us consider
a 2D idealized rotating gaseous disc with constant surface density
that follows a Keplerian velocity profile v, oc #~2. For this disc,
|S*| oc =2 and inserting this into equation (11) with & = const.,
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Figure 1. (Left) Probability density function of C, calculated with the dynamic model, in homogeneous subsonic turbulence at three resolutions — 643, 1283,
and 256 particles. The MEM method with a cubic spline kernel is employed, with Ningb = 32. Median values of the predicted Smagorinsky constant are
Cse4 = 0.1005, Cs 128 = 0.1017, Cs256 = 0.1009 and are well within 2 per cent at maximum difference. (Middle) Supersonic, homogeneous turbulence at
three resolutions, with Cs g4 = 0.0668, Cs 128 = 0.0632, C; 256 = 0.0679. (Right) Probability density function of Cs as we vary the smoothing parameter, ¢, in
homogeneous, subsonic turbulence using the MFM method, with a quintic spline kernel and Npgp = 64.
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Figure 2. Histograms of the density field in homogeneous subsonic turbu-
lence (647 case), normalized to the bin with the maximum particle count.
Density measurements taken from 150 snapshots between 1 = 10 and 1 =
25. Here, the None and S-uz cases coincide. The particle density contrast
in the S-uvz case is much tighter than the other cases with particles closer
to the mean density (o = 1). The D-uvz case is able to represent the widest
range of densities, including much higher density regions, with the same
number of fluid elements.

we find D o r~32. Generally, for any non-constant velocity profile
vy = vy(r), D o 0,v4 in the constant density case.

In a Keplerian disc, particles near the inner radii of a rotating
disc will diffuse the strongest in the standard Smagorinsky model
as the difference in velocity between each concentric ring is much
higher in this region; leading to the rapid break-up of the disc.
One could mitigate the overdiffusion by using a smaller value of
C; in equation (11) but then the model would lose its advantages
in turbulent flows. The dynamic model provides a solution to this
problem.

We use the 2D idealized Keplerian disc as a representative case
of an astrophysical laminar shearing flow to illustrate the afore-
mentioned overdiffusion and compare to the results of the dynamic
model. We simulate a gas annulus of constant surface density using
the MFM method, with particles initialized on circular orbits about
the centre. We smooth the inner and outer edges of the annulus in
order to suppress numerical instabilities that occur at sharp bound-
aries. The particles are subject to an external softened gravitational

acceleration [a = —r(r? + €2)~3/?] directed towards the centre of
the annulus, and follow a corresponding Keplerian velocity profile.
This initial condition (IC) is identical to that in section 4.2.4 of Hop-
kins (2015), with surface density as a function of radial distance,
r,

@r)? r<20.5,
Tr)y=+<1 05<r <2, (24)
(I4+10(r =2)73 r>2.

In the ideal case, the disc should remain intact at any time 7 > 0.
We study the surface densities of the test cases involving thermal
energy and momentum diffusion, described in Table 1. As with the
driven turbulence experiments, we do not include metals despite the
model suffix - z. We include the suffix to allow for cross-comparison
across the various physical tests. The leftmost plot in Fig. 3 shows
the surface density of the disc in the None model at # & 2t ,—;. We
focus on relatively early times to decouple the effects of inherent
numerical diffusion in the MFM method with those of the turbulent
mixing models. In the None case, we see that the inner half of
the disc is noisy and in the outer region, there are density waves
propagating outward, similar to the results in Hopkins (2015). The
noise in the inner region, where the orbital time is short, is due
to numerical diffusion randomizing the particle motions; short of
altering the hydrodynamical solver, this effect is unavoidable and
is present in all of the tests we investigate here, with or without
mixing. We therefore use the None model as a baseline experiment
to compare the four mixing models.

In the rest of the four panels in Fig. 3, we show the point-wise
difference in surface density between the model in question, X;(r),
and the None case, X nope(7), normalized to the mean surface density
in the None case; i.e. AZ(r)/{Znone) = (Zi(r) — ZNone () (X None ) -
This allows us to compare the diffusion of energy and momentum
spatially, by observing the differences directly on the surface of the
disc.

In the mixing tests without momentum diffusion, S-uz (second
panel in Fig. 3) and D-uz (third panel, Fig. 3), the inner region
(0.5 < r < 1.0) of each annulus shows differences compared to the
None case. These are due to the false identification of turbulence
caused by two effects: (i) both models identify random particle
motions, like those in the central region, with turbulence and (ii)
the diffusivity scales as D oc r~¥? in the S-uz case. The advantage
of the dynamic model is that the radial extent of the affected region
is significantly smaller compared to the S-uz case. D-uz predicts
much smaller values of Cs (median of Cg &~ 0.026 in the D-uz case
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S-uvz D-uvz
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Figure 3. Normalized surface density differences between each mixing model. The leftmost plot shows the surface density profile of the None case for
comparison. The S- models lead to a more rapid break-up of the disc, especially in the case including momentum diffusion (S-uvz). The D-uz model
minimizes the difference to the None case. The dynamic diffusion of thermal energy and momentum (D-uvz) leads to an equivalent amount of differences to
the S-uz case but the break-up of the disc, due to the overdiffusive S-uvz case, is avoided.
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Figure 4. The azimuthally averaged differences in surface density for the
Keplerian disc experiments, between each mixing model i and the None case
at t & 2top. The D-uz, D-uvz, and S-uz cases show small fluctuations
around the None case whereas the S-uvz model causes large differences
due to overdiffusing momentum.

compared to Cy = 0.2 in S-uz) and, therefore, the differences with
the None case are mostly limited to the relatively noisy central
annulus.

From Fig. 3 we see that the addition of momentum diffusion (the
S-uvz and D-uvz cases, two rightmost panels) causes increased
noise throughout the disc. Specifically for the S-uvz case, the noise
in the disc extends radially to the outer boundary, and the material
spreads into the central region, compared to the None case (notice
the faint pink annulus). There is also a corresponding deficit of gas
at R =~ 0.5 (blue ring) showing that gas has collapsed due to the
viscous instability. Comparing D-uvz to the None case, we see
that the differences do not extend to the boundary, but rather follow
the density waves in the disc caused by natural dissipation in MFM.
The central noisy region has the same extent as in the S-uz case but
with no apparent in-fall of material into the central region. These
results indicate that the dynamic model allows momentum diffusion
in laminar shear flows without instigating the viscous instability.

In Fig. 4, we show the azimuthally averaged difference between
the surface density in each mixing model, ¥;, and the None case,
Y Nones 1N Order to get a more quantitative estimate of the extent
of overdiffusion. Both S-uz and D-uz are nearly identical to the
None case, except in the innermost region (R < 1 for S-uz and R
< 0.7 for D-uz) where there are slight fluctuations about the None
value. The differences compared to the None case are reduced
because of the azimuthal averaging.

Introducing momentum diffusion results in greater quantitative
differences in the disc. The S-uvz model results in significant

MNRAS 483, 3810-3831 (2019)

flows (inwards and outwards) in the annulus relative to the None
case. For example, angular momentum transport causes some of the
material at R &~ 0.5 — 0.6 to flow inwards due to loss of angular
momentum, and some to flow outward. This occurs throughout
the disc, resulting in fluctuations extending to the outer edge of
the disc. These flows lead to the S-uvz case showing regions
of higher densities between 0.6 < R < 1.8. Comparatively, the
small fluctuations in the D-uvz case are similar to the models
without momentum diffusion. The dynamic model clearly reduces
the impact of the viscous instability, but a question then arises:
why does the dynamic model not eliminate the viscous instability
completely?

The dynamic model formally predicts C; = O for all of the gas
particles. Prior to t & 0.4ty virtually all of the particles have a
near zero value of C;. However, by ¢ &~ 2t,,,, turbulent momentum
diffusion and the inherent noise in the inner regions lead to a small
non-zero distribution centred at approximately C ~ 0.04 (ignoring
particles with Cy = 0). Overall, the particles have a median value
of Cs &~ 0.026 when including the 21.4 per cent of particles at Cy =
0. Although we cannot avoid the inherent numerical noise, due to
MFM’s Riemann solver, the dynamic method does minimize the
damage: in standard implementations, Cs is in the range ~0.1—0.2
(Garnier et al. 2009) while in the dynamic model, only a small
fraction (*7 per cent) of the particles attain such values.

These tests show that in the case of a rotating, laminar shear flow,
the dynamic model (D-uvz) can indeed minimize turbulent mixing
of thermal energy and momentum — preventing unphysical viscous
flows within the disc. Therefore, we recommend incorporating the
dynamic Smagorinsky model in all numerical simulations involv-
ing rotating galactic discs which simultaneously include turbulent
mixing models.

3.3 The Kelvin—-Helmholtz instability

In a fluid with high-velocity shear, or at the shearing interface
between two fluids, rapidly growing perturbations cause mixing
within the fluid. In the case of a shear interface, the perturbations
cause the two fluids to encroach the boundary, transporting and
mixing fluid properties such as thermal energy, momentum, and
metals. This is the Kelvin—Helmholtz (KH) instability, and the time-
scale characterizing the growth of perturbations is given by,

_(otp) A

JPipr Av’

where p1, p, are the densities of the two fluids, Awv is the velocity dif-
ference, and A is the wavelength of the perturbation (Chandrasekhar
1961). In the ¢ < tgy regime (the linear regime), the flow has not
completely transitioned to turbulence and sub-grid turbulent mixing
does not dominate the resolved mixing.
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Shear flows, and hence KH instabilities, are ubiquitous in galac-
tic environments: ram pressure stripping of galaxies falling into
groups and clusters, galaxy mergers, galactic winds streaming into
the CGM, and a myriad of other processes involve the KH insta-
bility. The constant-coefficient Smagorinsky model overdiffuses in
such situations because it identifies shearing motion with turbu-
lence, as discussed in Section 3.2, and the presence of high shear
increases the diffusivity to the maximum at the interface. Ideally,
sub-grid turbulent mixing models that better reflect physical real-
ity are preferable. More precisely, models that capture unresolved
mixing in turbulent situations and avoid diffusion in laminar shear
flows.

We investigate a simple 2D KH test in order to demonstrate
the overdiffusive nature of the standard Smagorinsky model and
determine if the dynamic model mitigates the problem. We set up
a 2D configuration of 2567 ideal gas particles in a square (L = 1)
domain, with constant pressure, and with an initial density profile,

p2— (Ap/2)expl(y — 1/4)/Ayl, 0<y<1/4
o1+ (Ap/2)exp(1/4 —y)/Ay], 1/4<y<1/2
p1+(Ap/2)exp(y —3/4)/Ay], 1/2<y <3/4
p2— (Ap/2)expl(3/4 —y)/Ayl, 3/4<y<1

ply) =

(26)
and initial velocity profile,

—1/24+1/2)exp[(y = 1/4)/Ay], 0<y <1/4
1/2—=(1/2)exp[(1/4 = y)/Ayl.  1/4<y<1/2
1/2=(1/2)exp[(y —3/4)/Ay],  1/2<y <3/4
—1/24+1/2)exp[(3/4 = y)/Ayl, 3/4<y <l
(€2))

ve(y) =

We choose p; =2, p; = 1, and Ay = 0.025, and introduce a sine
wave velocity perturbation, with period 7 = 2 and amplitude A =
0.01, at = 0. This gives a perturbation wavelength A = 1/2, and
therefore Ty & 0.71. In addition, we add a uniform passive scalar
tracer of concentration Q = 1 to all gas particles in the range 0 <y
< 1/4 and 3/4 <y < 1, which is the higher density gas. We focus
our analysis on the evolution of the tracer concentration Q.

Fig. 5 shows the tracer concentration at + = 0.28tgy (i.e. in
the linear regime). The five panels show the five mixing models
described in Table 1. We first consider the None case. The tracer
concentration Q follows the high-density regions of the experiment
and we see individual particles advecting across the shear interface.
Although there appears to be less tracer on this interface (orange-red
line), it is impossible for particles to exchange tracer in the None
case. The interpolation method we employ causes this effect as it
smooths the particle properties over the resolution scale /4, leading
to a minuscule amount of artificial mixing.

When we allow for the turbulent mixing of the tracer in the S-
and D- cases, we see diffusion occurring along the shear interface.
In both S- models, Q ~ 1072 at the interface and the tracer engulfs
the initially pristine, lower density gas in the whorls. This is in
contrast to the two D- cases where the majority of diffusion occurs
in the whorls themselves with comparatively little along the rest of
the interface. The constant-coefficient Smagorinsky model diffuses
the most because of the false identification of strong turbulence
through the norm of the shear tensor |Sx|. The velocity profile
in equation (27) shows that although the flow is laminar, there
is a gradient, |dv,/dy| > 0, across the entire domain. Based on
our arguments for the Keplerian disc in Section 3.2, the fact that
D o |0v,/dy| directly leads to the overdiffusion of the tracer. The
diffusion coefficient D also depends on |Sx| in the D- models but in
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the dynamic model most of the values of C are near zero. Only in
the whorls do we find values of Cy as large as Cs = 0.2 but these are
limited to this region — where the transition to turbulence begins.

Overdiffusion in non-turbulent shear flows can have important
consequences for the gas in numerical studies of galaxy formation. If
the KH time-scale is longer than the gas cooling time, then the gas is
susceptible to overcooling in the whorls due to metals transferred to
the region. This does not accurately capture what physically occurs
at the sub-grid level; in the linear regime, the fluids do not mix
completely. The dynamic model solves this issue by minimizing
mixing along the interfaces while allowing it to proceed in the
whorls where, in principle, the KH instability continues down to
unresolved scales.

4 ISOLATED DISC GALAXY

Here we investigate an isolated galaxy in order to test the effects of
localized diffusion in a more realistic, physical environment.

4.1 Initial conditions

We follow the method outlined in Springel, Di Matteo & Hernquist
(2005) to set up the ICs, using the GALSTEP package'! (Ruggiero &
Lima Neto 2017) in combination with DICE'?> (Perret et al. 2014).
The galaxy is a Milky Way-like system (Sokotowska et al. 2016)
consisting of a dark matter halo of mass My, = 10'> M, a gaseous
halo of mass Mg, =3 x 10'° M, a stellar bulge of mass M;, = 10'°
M@, and gas and stellar discs of masses M, = 10'° Mg and M, =
5 x 10" Mo, respectively. The dark matter and bulge components
follow a Hernquist density profile with scale factors a = 47 kpc and
a = 1.5 kpc, respectively. The stellar and gaseous discs follow an
exponential density profile with a radial scale Ry = 3.5 kpc, and
the scale heights for these components are zo = 0.7 kpc and zp =
0.0175 kpc, respectively. We initialize the gaseous halo metallicity
at Zg, = 1073 Z, and the gaseous disc metallicity at Z, = Z/3,
with Zo = 0.02 (Anders & Grevesse 1989). Our fiducial run is
carried out at a gas mass resolution of My,es = 5 x 10* My, along
with the softening values specified in Table 2. We evolve the disc
for 2 Gyr in an isolated (non-cosmological) setting.

4.2 Galactic physics

4.2.1 Star formation and cooling

We employ the sub-grid multiphase ISM model of Springel & Hern-
quist (2003a), which places the ISM gas (ny > 7. crir, Where 7, crit
is the star formation density threshold) on an effective equation
of state (EoS). This model has been used extensively in numerical
galaxy formation studies (for recent examples, see Genel et al. 2014;
Schaye et al. 2015; Grand et al. 2017), and provides well-converged
results (Springel et al. 2005). For primordial and metal-line cool-
ing, we use the GRACKLE-2.1 cooling library (Smith et al. 2017) in
combination with the UV background from Faucher-Giguere et al.
(2009).

In this sub-grid model, stars form stochastically, on a star forma-
tion time-scale f;, from gas that reaches a density 7, . Here we
take 71, g = 0.1 cm =2 and tg; = 2.1 Gyr, which give a good fit to the
Kennicutt law (Kennicutt 1998; Springel & Hernquist 2003a). We

https://github.com/ruggiero/galstep
2https://bitbucket.org/vperret/dice
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Figure 5. A comparison of tracer concentrations Q, in the 2D Kelvin—Helmbholtz instability test at f = 0.28 Ty, simulated with the MFM method. The columns
represent the five turbulent mixing models. In the None case, gas particles cannot exchange the tracer concentrations and the interface of the instability remain
unsmoothed. In this case, inter-fluid mixing only occurs when particles move across the boundary. The S- cases diffuse rapidly due to the presence of strong
shear at the boundary, and the tracer engulfs the whorls during the early evolution of the instability. The D- cases provide a compromise between the two
situations — they limit diffusion strictly to the interface between the two fluids, and the internal structure of the whorls are distinguishable.

Table 2. Parameters for the isolated galaxy.

Component Particle mass (M) Min. softening (pc) Npart

Gas 5.0 x 10° 1.4 8 x 10°
Halo 5.0 x 10° 12.0 2 x 100
Disc 5.0 x 10 32 1 x 10°
Bulge 2.5 x 10 1.4 4 x 10*

differ from the original model in the choice of the initial mass func-
tion (IMF). We assume the Chabrier IMF (Chabrier 2003) instead
of the Salpeter IMF (Salpeter 1955).

4.2.2 Feedback

Due to lack of resolution, it is necessary to include a sub-grid model
for feedback from stars, including the effects of supernovae, stellar
radiation, and stellar winds.

For massive stars, we adopt the scheme used in the MUFASA
simulations (Davé, Thompson & Hopkins 2016; Davé et al. 2017)
and refer the reader to these references for a detailed description. In
brief, stellar feedback is expected to drive galactic outflows and, in
the MUFASA approach, stellar feedback directly launches a kinetic
wind via a two-parameter model that characterizes the net effect of
stellar feedback into a mass loading factor n, and the wind speed vy,.
These parameters are calibrated to the FIRE wind scalings (Muratov
et al. 2015), where 71 scales with the stellar mass of the host galaxy
and v,, scales with the galaxy’s circular velocity. We fix n and vy, to
the values for our isolated system based on equations 6 and 7 in Davé
et al. (2016). At launch, the outflow hydro-dynamically decouples,
and only recouples if the wind speed drops to 50 percent of the
local sound speed, the density of the ambient medium is 1 per cent
of the ISM density, or the outflow has travelled for 2 percent of
the Hubble time at launch (Davé et al. 2016). For a more detailed
description of the decoupled outflow model, see Springel et al.
(2005), Oppenheimer & Davé (2008), Liang et al. (2016), and Davé
et al. (2016).

The contribution from supernovae type la (SNla) are modelled
following Scannapieco & Bildsten (2005) as a prompt and delayed
component, where the prompt component occurs simultaneously
with SNII, and the delayed component begins 0.7 Gyr after the star
formation time. The prompt component is assumed to release 103!
erg of thermal energy to the star-forming gas, whereas the delayed
component is added in a kernel-weighted manner to the nearest 16
gas particles.

MNRAS 483, 3810-3831 (2019)

4.2.3 Chemical enrichment

The chemical enrichment of gas is paramount to the study of tur-
bulent mixing as the metallicity follows the mixing of energy and
momentum, and, therefore, provides a tracer for the diffusion equa-
tion. We track 11 chemical elements in our isolated and cosmolog-
ical simulations: H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe. These
elements are produced from three sources in the simulations: SNIa,
SNII, and the winds from AGB stars.

For SNIa, the prompt component returns mass to the ISM and
enriches the star-forming gas instantaneously. Each SNIa is assumed
torelease 1.4 M, of metals, with yields from Iwamoto et al. (1999).
For the delayed component, stars deposit metals over their nearest
16 neighbouring gas particles in a kernel-weighted fashion.

SNII return mass and enrich the gas via the instantaneous recy-
cling approximation (Springel & Hernquist 2003a; Oppenheimer &
Davé 2008; Davé et al. 2016) following,

AZi= (1= fo) 3(2)- 22, (28)
Tsir

where fsy is the fraction of stars in the Chabrier IMF expected to
go supernova, y;(Z) is the metallicity dependent yield of species
i, At is the time-step, and zy; is the aforementioned star forma-
tion time-scale. The SNII yields follow Nomoto et al. (2006) and
are a function of the metallicity of the gas receiving the metals.
Following Davé et al. (2016), the SNII yields are reduced by a
factor of 0.5 in order to match the mass—metallicity relationship.
SNII also return mass into the gas via the instantaneous recycling
approximation.

For AGB stars, chemical enrichment is done in a kernel-weighted
fashion over the nearest 16 neighbours. AGB yields are obtained
from a lookup table as a function of age and metallicity based on the
study in Oppenheimer & Davé (2008). The mass-loss rates of the
AGB stars are calculated from a lookup table based on Bruzual &
Charlot (2003) stellar models.

4.3 Results: disc stability

Fig. 6 shows radial disc profiles of the surface density (left-hand
panel) and entropy'? (right-hand panel) in our isolated galaxies
after 1.27 Gyr of evolution. The dotted line represents the IC for all
models. The differences between models only appear after 1 Gyr
(&4 rotations in the mid-disc) and continue until star formation
consumes the bulk of the gas after 2 Gyr.

13The entropy scales as S o< In(P/p”"), and therefore our measure is off by a
multiplicative constant.
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Figure 6. Isolated galaxy radial disc profiles at t = 1.27 Gyr, averaged azimuthally and vertically between £0.5 kpc from the plane of the disc. (Left) The gas
surface density. (Right) A monotonic measure of the gas entropy. The dotted line in both plots represents the corresponding profile in the IC, which is identical
for all models. Over time, the normalization of the surface density decreases due to gas consumption and stellar feedback. The dynamic model with thermal
energy and momentum diffusion (D-uvz) produces a more stable disc whereas the constant-coefficient model (S-uvz) shows a more concentrated central

region.

First, we consider the None case. The radial surface density
(left-hand panel, Fig. 6) gives a measure of the stability of the
disc. We see that by t+ = 1.27 Gyr, compared to the shape of the
IC density profile, the gas has moved inwards towards the centre,
especially within R < 3 kpc. A combination of the bar instability and
inherent numerical dissipation causes the gas to concentrate inside
R =~ 2 kpc, whereas gas consumption and galactic winds due to
supernova feedback cause the difference in normalization compared
to the IC. Correspondingly in the right-hand panel, there is an order-
of-magnitude increase in entropy from R = 1 kpc to R = 3 kpc.

In the S-uz and D-uz models, we see only minor difference
in the surface density and entropy compared to the None case.
Evidently, thermal energy diffusion, combined with metal diffusion,
has negligible impact on the structure of the disc.

When we introduce momentum diffusion in the S-uvz and D-
uvz cases, the differences compared to the None case at t =
1.27 Gyr are more significant. Fig. 6 shows that in the S-uvz
case there is an order-of-magnitude deficit of gas surface density
(left plot) between R = 1 kpc and R = 3 kpc with a corresponding
jump in entropy (right plot). Overdiffusion of momentum due to the
diffusivity scaling strongly with the shear causes the inward flowing
gas to be more centrally concentrated compared to the None case,
and also engenders an outward flow leading to slightly higher den-
sity (again, compared to None) at R & 4-7 kpc. Once the instability
occurs, the effect accelerates and the trend remains throughout the
evolution of the disc. However, with the dynamic model (D-uvz),
less gas gets redistributed. From the surface density, we see that the
disc stabilizes when momentum is diffused locally, based on the
turbulent character of the flow.

4.4 Results: metal distribution functions

Supernovae and stellar winds inject energy and metals into the
ISM, engendering turbulent motion that mixes and spreads ther-
mal energy, momentum, and metals throughout the medium. These
processes also drive a galactic-scale wind that deposits metals and
drives turbulence in CGM (Evoli & Ferrara 2011).

In order to obtain a measure of energy and metal mixing in the
five models under consideration (see Table 1), we examine MDFs
in three phases of gas: (1) gas with density above the star formation

critical density (ng > 0.1 cm™3) —i.e. the ISM gas, (2) warm CGM
gas in the halo in the range 10° K <7 < 10°K, and (3) hot CGM
gas with T > 10° K. The gas density in the latter two phases is ny
< 0.1 cm™3. In our isolated system, we find that the cool, non-star-
forming gas (T < 10* K) is mostly at the outskirts of the halo and
that there are no significant variation in its MDFs between models.
Therefore, we do not discuss this phase further in the isolated case.
Fig. 7 shows the MDFs for the ISM, the warm CGM, and the hot
CGM, at three separate evolutionary times: ¢ = 0.25 Gyr (top row),
0.50 Gyr (middle row), and 0.75 Gyr (bottom row) after the ICs for
the MFM method. Henceforth, we use [Z] = log (Z/Z¢) as a proxy
for metallicity.

First, we focus on the ISM shown in the left column of Fig. 7. At
t = 0.25 Gyr, the MDF of the None case is bimodal with a narrow
peak at [Z] &~ —0.3, a broad distribution at [Z] < —0.5 with a peak
at [Z] = —1.2, and a dearth at [Z] = —0.5. Gas in the ISM with
metallicity lower than the initial [Z] ~ —0.5 comes from the lower
metallicity (initial [Z] = —3.0) halo gas that cools on to the disc
and is steadily enriched. Recall that in the None case, gas cannot
exchange metals between particles and therefore it gives an upper
bound on the mixing time-scale for a given metal injection rate from
stars. The D- cases follow the None case with minimal differences,
therefore we conclude that the D- cases provide minimal turbulent
mixing in the ISM. The S- cases share the basic shape as the other
cases but the lower metallicity component is narrower (there is very
little gas with [Z] < —2.0), and is shifted to the right, with peak
[Z] ~ —0.9. The overdiffusivity of the S- cases is apparent and is
caused by the high levels of shearing motion in the supersonic ISM,
leading to high values of the diffusivity D, similar to the Keplerian
disc in Section 3.2.

At t = 0.5 Gyr in the ISM (left column, middle row), the low-
metallicity component of the MDF for all cases has narrowed and
shifted towards higher metallicity. In the None case, the tightening
is due to stars depositing metals into the medium and driving all
of the gas towards highly metallicities. Here, the D- cases follow
the None case closely — as at t = 0.25 Gyr — while the S- cases
have a smaller spread. We attribute the differences between the D-
and S- cases to the dynamic model predicting median diffusivities
orders-of-magnitude lower than the constant-coefficient Smagorin-
sky model in the ISM at # > 0.25 Gyr.

MNRAS 483, 3810-3831 (2019)
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Figure 7. The MDFs for the isolated disc galaxy in solar units (Z) = 0.02). Each column represents a specific region of 7—p phase space. The leftmost
column represents the ISM, whereas the middle and rightmost columns show the MDFs for the warm (10° K <T < 10° K) and hot (T > 10° K) CGM,
respectively. Each row represents a different time in Gyr: t = 0.25 Gyr, 0.50 Gyr, and 0.75 Gyr from top to bottom, respectively. Dynamic diffusion slows
metal mixing in the ISM and causes increased mixing in the CGM, at approximately the same levels as the constant-coefficient Smagorinsky model.

By t = 0.75 Gyr, all cases have tight distributions with very
few particles having [Z] < —1.5. None and D- cases continue to
exhibit very similar distributions with a larger spread compared to
the S- cases.

Now we consider the MDFs of the warm CGM, in the middle
column of Fig. 7. In the None case at t = 0.25 Gyr, the distribution
is bimodal with peaks at [Z] ~ —0.5 and [Z] = —3.0. The peak at
[Z] = —3.0 is the initial halo metallicity whereas the peak at [Z] ~
—0.5 is due to enriched gas either pushed out of the ISM by stellar
winds or at the interface between the CGM and ISM. The D- and
S- cases closely follow the None case, but with a slight spread
towards [Z] > —3.0 for the low-metallicity gas.

Next we consider the = 0.5 Gyr and # = 0.75 Gyr cases. In all
of the experiments, the flow of the enriched ISM gas into the CGM
results in an increase in the fraction of particles near [Z] &~ —0.5. The
differences near [Z] = —3.0 between the None and S-/D- cases are
due to the inability of the gas in former case to mix metals. For the
None case, a spread only occurs if the gas enters the CGM at [Z]
> —3.0 from the ISM, or the CGM gas at the ISM—CGM boundary
becomes enriched via the kernel-weighting approach associated
with delayed SNIa and AGB wind feedback. Recall that in this
implementation, metals are deposited in a kernel-weighted fashion
over the nearest 16 neighbouring particles. Therefore, gas classified
as CGM, that is spatially adjacent to the star-forming gas in the
ISM, can be enriched at low levels. The gas in the turbulent mixing
cases consistently exchange metals if the value of C; is non-zero,
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and the gas-phase metals in the halo further mix — leading to the
greater spread in the lower peak at [Z] = —3.0, corresponding to
the bulk of the initial gas. The D- cases show the aforementioned
spread in the metallicity in the range —3.0 < [Z] < —1.75, indicating
increased mixing due to sub-grid turbulence, but then coincides with
the None case for metallicities [Z] > —2.0. The S- and D- cases
share a similar distribution below [Z] < —2.25 but the S- cases
show more particles with metallicities in the range —2.25 < [Z] <
—0.75, indicating even greater mixing than the D- cases.

The MDFs in the hot CGM, the rightmost column of Fig. 7, follow
similar trends to the those in the warm CGM. At r = 0.25 Gyr for
the None case, the peak due to enriched ([Z] &~ —0.3) ISM gas
entering the halo is prominent. There is also a small spread at [Z] =
—3.0 for reasons already noted.

Att > 0.5 Gyr, the None case undergoes slight evolution and by
t = 0.75 Gyr, a mild positive slope develops in the range —2.5 <
[Z] < —0.75. The D- and S- cases follow near identical evolution
at these later stages of the simulation, each with a spread in the
distribution at [Z] = —3.0. Here the differences between the S- and
D- cases are minimal since the hot gaseous halo is turbulent and
dominated by random motions, driven by the galactic outflows.

Our isolated experiment demonstrates that by endowing parti-
cles with diffusivities based on the local fluid properties, we ob-
tain significant differences in the ISM. The constant-coefficient
Smagorinsky model causes the MDFs in the ISM to rapidly tighten
towards the mean value, whereas the dynamic model predicts

610z Jequisldag g0 uo Jesn ABojouyos] Jo a1nyisu| eluioled Aq 0¥28£2S/0 1 8E/S/S8/10BNSqe-a]0IUE/SeIUW/WOD dnoolwapeoe//:sdiy Woll papeojumod



diffusivities orders-of-magnitude smaller and the corresponding
MDFs closely follow the None case. Simultaneously, in the hot
turbulent halo, the constant-coefficient and dynamic Smagorinsky
models produce similar distributions by # = 0.5 Gyr due to the lat-
ter having higher values of Cs. Overall, for the constant-coefficient
model, non-negligible shear in all gas phases causes the rapid diffu-
sion of fluid properties, whereas the dynamic model allows different
regions of phase space to undergo unique evolution in terms of the
MDFs. We stress the importance of the unique evolution of both
phases of gas: with a constant C, it is impossible to capture the
decreased mixing in the ISM while simultaneously capturing the
high level of mixing in the hot turbulent halo. The dynamic model
provides an interesting avenue for follow-up study with zoom-in
simulations, in order to gauge the impact on the ISM and CGM in
a cosmological context.

5 COSMOLOGICAL VOLUMES

As we demonstrate in the previous section, turbulent mixing can
alter the distribution of metals in various gas phases of an isolated
disc experiment depending on the localization of C;. In a realistic
cosmological environment, the evolution of galaxies is much more
complex due to interactions between the galaxies and their envi-
ronments. These interactions include galaxy mergers, gas inflows
and outflows, tidal interactions, ram pressure stripping, etc. — all
of which contribute to the production of turbulence in the galac-
tic environments (Iapichino et al. 2013; Schmidt et al. 2016). The
resulting turbulence redistributes thermal energy, momentum, and
metals, and must be included in numerical studies of galaxy evo-
lution in order to have a self-consistent treatment of the physical
models.

In contemporary Lagrangian-based numerical cosmological ex-
periments, SPH has been employed in simulation programs such
as EAGLE (Schaye et al. 2015), OWLS (Schaye et al. 2010), and
Romulus (Tremmel et al. 2017), whereas recently MFM method has
been employed in the MUFASA (Davé et al. 2016, 2017) simula-
tions. These experiments have produced a wealth of results for un-
derstanding galaxy evolution and gas properties (see Somerville &
Davé 2015; Naab & Ostriker 2017 for a summary), despite the fact
that it is not possible for contemporary models to include all of
the relevant physics.'* Including sub-grid turbulent mixing could
alter the results of such large-scale simulations. Indeed, Tremmel
et al. (2018) argue that turbulent mixing is critical for efficient re-
distribution of thermal energy released during active galactic nuclei
episodes, and in previous sections, we showed that metal redistri-
bution is also affected by turbulent mixing. In models where the
overdiffusive Smagorinsky model is used, the dynamic model can
lead to differences in, for example, gas-phase metal abundances
and hence, stellar abundances. In principle, the differences in the
manner and the rate at which metals are distributed could also affect
the formation sites and population statistics of Population III stars
and direct collapse seed SMBHs (see Section 1).

In this section, we examine a set of cosmological simulations
in order to test the effects of the dynamic model on the global
gas enrichment levels and distributions. In what follows, we adopt
the MUFASA model (Davé et al. 2016) in combination with the
diffusion models we describe in Table 1. We choose to use the
MUFASA model partly because it is the only cosmological model
that has been implemented using the MFM method at the present.

14For several examples see Naab & Ostriker (2017).
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Table 3. Parameters for the cosmological simulations. We use the Planck
Collaboration XIII (2015) cosmological model.

Simulation parameters

L 25 Mpch™!

N 2 x 2563

mg 1.26 x 10’ My h™!
Mdm 6.88 x 10’ My h™!
Esoft,min 0.5 kpC h71

Zinit 70

Tinit 59K

Cosmological model

Qmo 0.308

Qa0 0.692

Qb0 0.048

h 0.678

o3 0.815

ng 0.968

The ICs were created using a modified version of GRAFIC-2'3
(Bertschinger 2011) and the parameters describing our simulations
are listed in Table 3. In the following subsection, we briefly describe
the MUFASA models, and point interested readers to Davé et al.
(2016) and Davé et al. (2017) for a more detailed explanation of
the physical models. In Sections 5.3 and 5.4 we examine the global
gas-phase metallicity fractions and the MDFs, respectively, from
the simulation suite.

5.1 MUFASA

The MUFASA simulations include the sub-grid models we de-
scribed in Section 4.2 and sub-sections therein, with some modifi-
cations to the star formation recipe and feedback described in the
following sub-sections.

5.1.1 Star formation

Star formation is based on the molecular gas model of Krumholz,
McKee & Tumlinson (2009), and the implementation dynamically
calculates the fraction of molecular hydrogen in gas particles, fu,,
based on the gas surface density and the metallicity. For more precise
details, see Davé et al. (2016) and Krumholz et al. (2009). The star
formation rate follows,
dp* P f H>

= €. s
dr " tagn

(29)

where tgyn = (Gp)~ "2 is the local dynamical time, p is the density of
the gas, and ¢, = 0.02 is the efficiency of star formation (Kennicutt
1998). The critical density of star formation is taken at n, ¢ =
0.2 cm~ following Davé et al. (2016).

For our cosmological simulations, we do not employ the sub-
grid ISM model of Springel & Hernquist (2003a), however we still
require that the Jeans mass is resolved. Therefore, in order to prevent
numerical fragmentation at high densities, an artificial pressure is
applied above a density

3 (S \'/ 1Y
Ny = ) (30)
drtpumy, \ G umy NugbMg

IShttp://web.mit.edu/edbert/
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Table 4. We separate gas in our cosmological simulations into five phases:
the ISM, cool CGM, HHG, WHIM, and cool diffuse gas (DIFF). p. is the star
formation threshold, ny ¢ric = 0.2 cm ™3 and we give Phound in equation (33).

Name Density range Temperature range
ISM P> Py Any

CGM Ps > L > Pbound Below equation (36)
HHG £ > Pbound Above equation (36)
WHIM £ < Pbound T>10°K

DIFF P < Pbound T<10°K

where my is the gas particle mass, u = 1.22, Tp = 10* K, and Nygp =
64 is the number of neighbours. The pressure is applied in the form
of a minimum temperature (Teyssier et al. 2011; Davé et al. 2016),

n\ 13
TJMTZTO(*) . 31

Nih

5.1.2 Feedback

In Section 4.2.2, we described the decoupled-wind model for mas-
sive star feedback in addition to feedback from supernova type-la
(SNIa) and asymptotic giant branch (AGB) stars. We use the same
in the following experiments.

The simulations we present here do not include explicit active
galactic nucleus (AGN) feedback. AGN feedback is thought to be
necessary to prevent excessive cooling and quench star formation in
massive systems (see King & Pounds 2015 for a recent review), but
our smaller simulation volumes do not include many such systems.
We do, however, include an effective AGN feedback model from
the MUFASA simulations that mimics the action of AGN feedback,
and suppresses cooling of the diffuse halo gas. Specifically, gas
that is not self-shielded in haloes with My,, > My [where My =
(0.96 4+ 0.48z) x 10'? M@ ] is heated to 20 per cent above the virial
temperature of the halo (Mitra, Davé & Finlator 2015). The virial
temperature follows (Balogh, Babul & Patton 1999; Voit 2005),

2/3
Ty = 9.52 x 107 _ Mo )Y K. (32)
105Mgh-!

5.2 Gas phases

We define five separate gas phases for the following subsections,
and examine their properties in a global sense over the entire sim-
ulation volume. We give a summary in Table 4. The definitions are
largely from Davé et al. (2010), except for the definition of the
gas associated with the CGM of galaxies. For density, we cut the
gas phase space using two thresholds ppoung and p., with ppouna =
Poound(z) following,

pbound(z) 2 ( ( 1 >0‘9052)
—— =6m°( 1 +0.4093 —1 -1, 33)
Q(2)pc(2) Qm(2)
where
_ Quol+2)
= g o+ + ny G
3
Qu(2) = Qp0(1 +2) 35)

Qumo(l +2)3 +Qup

pe(z) = 3(H(2)/(87G), and H(z) = Ho\/Qmo(l + 2)* + Q-
For the second density cut, we adopt p, = 4.4 x 1072 gecm ™3,
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the star formation density threshold. We have also applied a single
temperature cut at Ts = 103 K to separate the warm-hot intergalac-
tic medium (WHIM) from the cold diffuse gas (DIFF). Following
Torrey et al. (2017), we apply a cut to distinguish the hot halo gas
(HHG) from the cool CGM,

T n
log [ —— ) =0.25log [ " 36
Og(1061<) Og(405cm—3)’ 36)

where T'is the gas temperature, and 7 is the gas density. We define
the HHG to be above the temperature threshold in equation (36),
and the CGM to be below.

It is important to note that these density and temperature cuts
do not distinguish gas domains that precisely correspond to their
associated galactic or inter-galactic regions. At high redshift (z
2 5), most of the gas classified as the WHIM phase is spatially
located in the region that mostly corresponds to the CGM/HHG, and
corresponds to outflowing galactic winds from early star formation,
which gives rise to low-density, high-temperature gas. Similarly, a
fraction of the gas classified as the CGM at z 2 1 is in the cores of
the cosmic filaments. However, by z = 0, the majority of what we
consider the CGM is indeed inside the haloes, and the cores of the
filaments eventually end up in the WHIM phase. This introduces a
transition from CGM to WHIM gas that might not be obvious at
first glance. We have not tried to address these trends or optimize
the phase cuts because the present study does not pertain to the
evolution of the phases per se, but rather the effect of differences in
mixing strength on approximately physical phase-space cuts.

5.3 Global gas evolution

Fig. 8 shows the enriched fraction as a function of redshift, i.e. the
ratio of the enriched gas mass to the total gas mass in each phase
for two metallicity cuts: [Z] > —5.0 (left) and [Z] > —3.0 (right).
We use [Z] = log ZIZ) as a proxy for metallicity, where Z is the
mass fraction of metals in a gas particle, and Z) = 0.02 is the solar
metal mass fraction (Anders & Grevesse 1989). The rows represent
the five phases defined in Table 4.

We first focus on the [Z] > —5.0 cut and start by examining
the ISM results in the top row of Fig. 8. In the None case, the
fraction of gas enriched to [Z] > —5.0 exceeds 90 per cent at z = 4,
reaches a peak at z = 0.5, and then very slightly downturns by z =0
due to accretion of low-metallicity gas. Note that, in the following
discussion, the differences between models are more important than
the absolute values. In the S- models, gas is enriched much earlier
and we see 95 per cent of gas above [Z] > —5.0 by z = 9. We do
not observe the same slight downturn as in the None case. This is
not surprising. The overdiffusive nature of the S- model leads to
a reduced fraction of low-metallicity gas. By z = 0, 100 per cent
of the gas is above [Z] > —5.0 in the S- models. Until z ~ 1, the
D- models show enrichment levels intermediate between the None
and S- cases. At z < 1, the D-uz case continues this trend while
the D-uvz model exhibits the biggest downturn.

In the CGM, the second row in Fig. 8, we notice similar trends
to the ISM, at enrichment levels [Z] > —5.0. For the None case,
the gas is 30 per cent enriched at z = 385 per cent (the peak) at z =
0.5, followed by a slight downturn. The S- models follow the same
qualitative trend but are at a constant 10 per cent above the None
case, while the D- models remain in between the S- and None
curves at all times.

We do not discuss the details of the trends in the following three
rows: the HHG, DIFF, and WHIM phases, respectively, but include
them for completeness. In these gas phases, the differences between
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Figure 8. The enriched fraction as a function of redshift, defined as the mass fraction of gas with Z > 1073 Zy (left) and Z > 1073 Z) (right) in each phase.
The phases are, from top to bottom: ISM, cool CGM, HHG, DIFF, and the WHIM. Dynamic diffusion results in higher enriched fraction at the [Z] > —5 level,
while maintaining a similar fraction to the no-mixing case above [Z] > —3. The constant-coefficient Smagorinsky model increases the enriched fractions at all
metallicity cuts.
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mixing models are qualitatively the same as the CGM, whereas the
S- and D- cases show significant increased enrichment above [Z]
> —5.0.

Now we focus on the higher metallicity cut, [Z] > —3.0, in the
ISM (top, right panel in Fig. 8). In the None case, gas is enriched
over 90 per cent starting at redshift z = 2, reaches a peak at z & 0.5,
and turns down by z = 0. The trend for the [Z] > —3.0 gas is similar
to that for the [Z] > —5.0 gas. The normalization of the curve is
lower than at the [Z] > —5.0 threshold, as expected, since gas is
enriched at higher metallicities later in cosmic evolution. In the S-
cases, gas is enriched above 90 percent (for the [Z] > —3.0 cut)
earlier compared to the None case, starting at z = 3, and remains
above the None case at all times. The S- cases show a similar
downturn to the None case near z &~ 0.5. Enrichment levels in the
D-uz case remain slightly above the None case, but in D-uvz,
there is a sharp downturn at z & 0.75 and the final enrichment
level is below the None case. The enrichment downturn in all of
the mixing models is due a fresh supply of lower metallicity gas
entering the medium, and the D-uvz model appears to amplify this
effect.

‘We now discuss the enrichment levels above [Z] > —3.0 for the
CGM in the right column of Fig. 8, in the second row from the top.
In the None case, the gas is enriched above 30 percent by z =~ 3,
rises to a maximum of 80 per cent at z & 0.4, and slightly decreases
to 75 per cent at z = 0. Compared to the None case at the [Z] > —5.0
metallicity cut, the qualitative trend remains the same while the nor-
malization has decreased, for the same reason we describe above.
In the S- cases, the gas reaches 30 per cent enrichment levels some-
what earlier, by z ~ 3.5, and reaches a maximum enrichment level
of 90 per cent at z &~ 0.4. The maximum enrichment is 10 per cent
higher in the S- cases compared to the None case showing that the
constant-coefficient Smagorinsky model affects higher and lower
metallicities equally. The enrichment levels of the gas in the D-
cases closely follow the None case for metallicities [Z] > —3.0,
with only a slight divergence at z = 0.

The HHG, DIFF, and WHIM phases follow the same qualitative
trends as the CGM and, as noted above, we do not examine them
in detail here. However, these phases show that the dynamic model
increases the gas enrichment levels above [Z] > —3.0 more so than
in the CGM, but only slightly.

As in the isolated galaxy experiment (see Section 4), the diffusiv-
ity plays a significant role in the enrichment levels of cosmic gas on a
global scale. The overdiffusive character of the constant-coefficient
Smagorinsky model consistently results in the highest gas enrich-
ment levels throughout the evolution of the simulations. Interest-
ingly, these same results also indicate that the dynamic model has
the most effect on the metallicities in the range —5.0 < [Z] < —3.0
while leaving those above [Z] > —3.0 near the no-mixing level.
Early star formation and SMBH formation are very sensitive to
metallicities in this range (see Section 1), and we have demonstrated
that the dynamic model maximally affects those metallicities. Al-
though we do not resolve early star formation or include SMBHs in
our simulations, our results show that the dynamic model ought to
be investigated further in cosmological simulations.

5.4 Global gas-phase metallicity

MDFs provide additional insight into the spatial redistribution of
metals when compared with global enriched fractions, and we there-
fore investigate the MDFs of galactic gas at three separate evolution-
ary times: z = 2, 1, 0. Our MDFs are probability density functions
(dn/d[Z], where n is the number of particles) and are normalized
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such that the area under each curve is unity. To facilitate plotting,
we set a metallicity minimum of [Z] = —10 for all gas particles.
Fig. 9 shows the MDFs in the ISM, CGM, and HHG in the columns,
left to right, and at z = 2, 1, and 0, from top to bottom. The narrow,
leftmost spike in the panels corresponds to the metallicity minimum.

First, as we mention at the end of Section 5.2, it is important to
note that the differences in the MDFs are not solely due to turbulent
mixing. There are transitions that occur across the sharp boundaries
of the phase cuts we use. In all of our mixing models, the cuts
mostly affect the gas that falls within the CGM region of phase
space and, in examining its spatial distribution at z > 1, we find
that the majority of the low-metallicity ([Z] < —3) gas in the CGM
is in the cosmic filaments. This gas is not spatially associated with
dark matter haloes, but has the correct density and temperature to
belong to the CGM phase. Conversely, the gas in the ISM and HHG
phase-space regions do correspond to what we consider their spatial
counterparts, and the differences in their MDFs across the evolution
of the simulation are dominated by turbulent mixing.

Turning to the distributions in Fig. 9, we first investigate the ISM.
The distributions across all models appear qualitatively similar, with
slight differences at lower metallicities. At z = 2, there is a peak at
[Z] &~ —1 in all models, and in the None case, there is also near-
pristine gas in the ISM. The D- cases show a slightly extended tail
covering the range —6 < [Z] < —4, compared to the S- and None
cases, corresponding to the slight enrichment of the low-metallicity
gas in the None case. In the S- cases, the enrichment process is
more efficient. By z = 1, the tail tightens and all the distributions
have negligible differences. At z = 0, however, the None and D-
cases share the same distribution whereas the S- models show a
tighter distribution. Additionally, there is much more gas at the
minimum metallicity in the None case compared to both the D-
and S- cases because metal enrichment of pristine particles in the
None case only occurs when they are spatially adjacent to the
stellar feedback sources. In the D- and S- cases, any particle that is
enriched acts as a local source of metals for neighbouring pristine
particles, driving down the number of particles at the metallicity
minimum. The trends here are similar to, and caused by, the same
effect we see in the ISM of the isolated galaxy in Section 4, where
the spread in the ISM MDF strongly depends on the diffusivity.

Next, we examine the MDFs of the CGM. In all models at z =
2, the gas in the CGM is a combination of the dense cores of the
cosmic filaments and the cool, dense gas within dark matter haloes.
In the None case, the MDF resembles the ISM distribution albeit
with a more extended tail towards lower metallicities and more gas
at the minimum metallicity. None the less, most of the enriched
gas is above [Z] > —6.0. The CGM distribution in the None case
builds from the galactic winds transporting metals into the medium,
sampling the underlying ISM distribution. Additionally, SNIa and
AGB stars contribute to varying metal distributions via the kernel-
weighting procedure as gas spatially adjacent to the ISM is enriched
at low levels. In the None case, the gas that is spatially in the cosmic
filaments is at the metallicity minimum. The z = 2 D- models show
a bi-modality with peaks at [Z] ~# —1.0 and [Z] = —5.5, and in
the S- models we also see a bi-modality but with peaks at [Z] ~
—1.0 and [Z] & —3.0. The higher metallicity peaks in the D- and
S- cases correspond to the peak metallicity in the ISM whereas the
lower peak in each case is due to the gas that is classified as the
CGM, yet is spatially in the cosmic filaments. The spatial location
of the gas does not change the effect of varying turbulent mixing
strength; at redshift z = 2, the increased diffusivity in the S- models
leads to a 2 - 3 order of magnitude shift compared to the D- models
in the secondary low-metallicity peak, indicating that the metals
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Figure 9. The MDFs across three global gas phases (columns) in the simulation volume, at three separate evolutionary times (rows from top to bottom): z =
2, 1, and 0. We set a minimum metallicity of [Z] = —10 in our simulations, in order to show the abundance of unenriched gas. The overall trends in each phase
do not change significantly over time, yet comparing between mixing models reveal slight differences in the distributions of gas-phase metals. Without metal
mixing (None), galactic winds build MDFs in the non-star-forming gas that are similar to the distribution of the ISM. Turbulent mixing allows for further
redistribution of metals once they arrive in the exterior media, altering the original distribution. The diffusivity has a larger role in this method rather than the

quantities diffused.

are much more dispersed in the S- cases. Comparing to the None
case, the question arises as to why the D- and S - cases have a broad
lower metallicity peak. At high redshift (z 2 2), in the D- and S-
cases, the metal-enriched galactic winds escape the galactic haloes
and under the action of turbulent mixing, contaminate the gas in the
filaments. This is evidenced by the lower amplitude spike at [Z] =
—101in these models. This does not occur in the None case, because
the particles are unable to exchange metals directly.

By z = 1 the fraction of CGM gas in the filaments has dropped as
the dense filament cores are heated and enter the WHIM. However,
there is still a small fraction of gas associated with the filaments.
The None case shows a qualitatively similar distribution compared
to z = 2 because the gas leaving the cosmic filaments is at the
metallicity minimum. In the D- cases, the previous peak at [Z] ~
—5.5 becomes a broad shelf between —5.0 < [Z] < —2.0. In the S-
cases there is also a shelf of gas at [Z] &~ —2.0 but the main peak
dominates. The strong bi-modality from z = 2 has disappeared by
z = 1 in the D- and S- models partly because the filamentary
structure is increasingly classified as the WHIM and partly be-
cause the metallicity of the gas particles continues increasing due to
mixing.

We turn now to the MDF of the CGM at z = 0. At this redshift,
most of the gas in the CGM region of phase space is associated
with dark matter haloes. The None case has a similar distribution
to z = 1 and z = 2. The D- MDFs have narrowed further, with
the low extended metallicity shelf at z = 1 transforming into a tail
that extends from [Z] ~ —7.5 to [Z] ~ —3.0, and a small shelf at
[Z] ~ —3.5. Above [Z] > —2.0, the D- MDFs coincide with the
None case. In the S- cases, the distribution also tightens and the
tail is approximately a power law from [Z] &~ —6.0 to [Z] =~ —1.0,
where the latter value is the peak of the distribution. The variations
in the MDFs between the None case and both the D- and S- cases
represent enriched fractions that have been altered via turbulent
mixing rather than the aforementioned transitions between phases.

Shifting focus to the HHG at z = 2, we find that the gas in
this phase is spatially associated with the dark matter haloes. We
emphasize again that in the None case it is not possible for gas
particles to exchange metals directly and consequently, the metal
distributions only change via direct enrichment, or if the gas from
the ISM reaches the phase under consideration via winds or via gas
cooling from the intergalactic medium. We see that the None case
shows a similar distribution to both the ISM and the CGM, albeit

MNRAS 483, 3810-3831 (2019)

610z Jequisldag g0 uo Jesn ABojouyos] Jo a1nyisu| eluioled Aq 0¥28£2S/0 1 8E/S/S8/10BNSqe-a]0IUE/SeIUW/WOD dnoolwapeoe//:sdiy Woll papeojumod



3828  D. Rennehan et al.

with a slightly broader low-metallicity tail. Like the z = 2 CGM
distributions, the D- MDFs for the HHG show a bi-modality with
peaks at [Z] = —5.0 and [Z] = —1.0 and a valley between —4.0
< [Z] < —2.0. Unlike the CGM MDF, the HHG low-metallicity
peak is broader and it is not due to gas transitioning from the HHG
phase, but rather it is due to inflowing, low-metallicity gas mixing
with the already enriched gas in the haloes. The S- cases share the
peak at [Z] &~ —1.0, but the distribution is flat between —6.0 < [Z]
< —2.0, before dropping-off towards low metallicities, in lockstep
with the D- results. The gap that is apparent in the D- cases has
disappeared, indicating that in the S- cases there is much more gas
with metallicities in the range —4.0 < [Z] < —2.0 than in the D-
cases, which is not surprising given the overdiffusive nature of the
constant-coefficient Smagorinsky model.

At z =1 in the HHG, the None case remains unchanged except
for a slight increase in the amount of gas near [Z] &~ —3.0, and the
tail has extended slightly towards lower metallicity. The latter is due
to less enriched gas from the WHIM and DIFF phases accreting on
to haloes, diluting the metal distribution, and this dilution continues
through to z = 0. In the D- and S- cases, the low-metallicity
feature (peak/shelf and extended tail) has shifted slightly towards
higher metallicity as turbulent mixing redistributes the metals from
the highly enriched particles.

Next, we examine the HHG at z = 0. The enrichment level, in the
None case, is decreasing as evidenced by the tail of the MDF due
to less enriched gas from the WHIM and DIFF phases accreting on
to haloes, diluting the metal distribution. In the D- and S- cases,
there are coincident peaks in the MDFs at [Z] ~ —6.0, although the
D- cases show more gas at lower metallicities.

Comparing across phases, the MDFs of the CGM gas are more
sensitive to non-zero turbulent mixing strength than the ISM or
the HHG. For instance, even though the bi-modalities at z = 2
in the CGM MDFs, in the S- and D- cases, disappear by z =
0 due to the CGM to WHIM transition, the dynamic model re-
sults in a residual extended tail in the CGM MDF as metals mix
throughout the medium, whereas the constant-coefficient Smagorin-
sky model tightens the distribution in this phase and the gas metal-
licities rapidly approach the mean. The peak in the CGM moves
towards higher metallicities as gas flows between phases (CGM to
WHIM).

The consequences of not including sub-grid turbulent mixing,
regardless of the diffusivity, are clear — complex structure in the
MDFs is highly dependent on the mixing strength. This is in contrast
to Su et al. (2017) and Escala et al. (2018), who found that turbulent
metal mixing strength had low-level effects in their simulated ISM.
We posit that the low-level effects were due the authourssx* use of
a constant value of Cj, rather than localizing the mixing strength to
the appropriate regions. We do not see the aforementioned trends
in the None case because it is not possible for gas particles to
exchange metals in our simulations. Our stellar feedback model
drives a decoupled wind from the ISM and that wind samples the
MDEF in the ISM, building up a similar metal distribution in the
other phases that cannot change over time, unless material flows
between the phases or due to delayed SNIa and AGB stars, via the
kernel-weighted enrichment procedure.

One important difference between the model we present and
realistic environments is that our winds do not mix as they free-
stream out of the galaxies. While the coupling and mixing strength
of galactic winds is uncertain, the wind could redistribute thermal
energy, momentum, and metals internally as a cohesive unit, even
if they do not couple strongly to the surrounding medium (Huang
& Katz, private communication). In our model, once the winds
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reach the criteria for recoupling in our simulations, they are free to
mix their fluid properties and this, subsequently, allows for diverse
MDFs in the gas phases exterior to the ISM.

We do not investigate the details of individual galaxies here but
note that the differences outlined above will impact the gas-phase
and stellar metallicities of those systems. Therefore, including the
dynamic model with a more accurate estimation of C; is necessary,
moving forward, in order to capture the physical redistribution of
metals in galaxy evolution.

6 CONCLUSIONS

All hydrodynamical methods that are used to investigate galaxy evo-
lution, whether Lagrangian or Eulerian, require additional sub-grid
thermal energy and momentum diffusion terms in order to account
for sub-grid turbulence. In Lagrangian methods, such as MFM and
SPH, metal diffusion is also required due to the inability of fluid el-
ements to exchange metals by construction. Most implementations
use the constant-coefficient Smagorinsky model — one that has been
shown to be overdiffusive in almost all cases, especially laminar
shear flows.

We implemented and investigated the impact of the localized
dynamic Smagorinsky model on global gas-phase properties in a
series of numerical experiments using the GIZMO code. In the dy-
namic case, the model coefficient depends on the local turbulent
flow conditions, hence on the spatio-temporal coordinates. This is
in contrast to the constant-coefficient Smagorinsky model where dif-
fusivities depend directly on the magnitude of the velocity shear in
the fluid. Compared to the constant-coefficient Smagorinsky model,
the dynamic model has been shown to produce more accurate repre-
sentations of fluid mechanical experiments (Kirkpatrick et al. 2006;
Kleissl et al. 2006; Khani & Waite 2015; Benhamadouche et al.
2017; Lee & Cant 2017; Kara & Caglar 2018; Taghinia et al. 2018).
While we focused on cosmological experiments, the dynamic model
has applications to any numerical experiment involving turbulent
astrophysical flows, including stellar interiors, planetary formation,
and star formation. Moreover, the method we describe in this pa-
per, following Germano et al. (1991) and Piomelli & Liu (1995), is
general and not only limited to Lagrangian hydrodynamics but also
applicable to the Eulerian cases (see Schmidt 2015).

For the MFM method, we showed that the dynamic model im-
proves the density contrast in subsonic turbulence, allowing higher
and lower density regions at fixed mass resolution. In an ideal-
ized Keplerian disc, an example of a laminar shear flow where
the Smagorinsky model is known to be overdiffusive from basic
analytic arguments, the dynamic model produced near-zero val-
ues of turbulent diffusivity. When we included thermal energy and
momentum diffusion, the lower diffusivities prevented the rapid
break-up of the disc due to excessive angular momentum transport.
We observed similar minimized diffusivities in a Kelvin—Helmholtz
instability experiment, where the constant-coefficient Smagorinsky
model smoothed, and rapidly diffused, our metal tracer, whereas
the dynamic model captured the fine level of mixing at the interface
of the two fluids.

We also investigated an isolated, Milky Way-like galaxy in order
to test the dynamic model in a more complex, but still controlled,
environment. The dynamic model in combination with momentum
diffusion improved the stability of the gaseous disc compared to the
constant-coefficient Smagorinsky model, and affected the spatial
metal distributions, as indicated by the MDFs, as shown in Fig. 7.
Rapid star formation early in the evolution of the disc leads to a
higher diffusivity of thermal energy, momentum, and metals, and
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the subsequent exponential decay of star formation lowers the dif-
fusivity in the dynamic model significantly. This results in a broader
MDF in the ISM in the dynamic case, pointing towards less mix-
ing in the ISM. When using the constant-coefficient Smagorinsky
model, the diffusivity remained high throughout the evolution of the
disc because of its strong dependence on the fluid velocity shear.
We found similar variations in the CGM for both the dynamic and
constant-coefficient Smagorinsky models that we attribute to the
turbulence generated from stellar feedback increasing the diffusiv-
ity in both cases.

We also examined the global gas enrichment fractions in a set
of cosmological simulations. Global gas enrichment fractions are
important for the formation of Population III stars and SMBHs
because they are theorized to be sensitive to the metal content in
the gas out of which they form (see Section 1 for more details). We
found that the dynamic model lowers overall enrichment compared
to the standard Smagorinsky model, and that it maximally impacts
metallicities in the range —5.0 < [Z] < —3.0. This is precisely the
metallicity regime that constrains the formation sites of SMBHs
and Population III stars (Volonteri 2010; Sarmento et al. 2016).
Specifically, the dynamic model increases the amount of gas above
[Z] > —5.0 while maintaining the same enriched fraction of gas
above [Z] > —3.0, compared to the no-mixing case. The standard
Smagorinsky model increased the enriched fraction at all metal
thresholds and in all gas phases.

In our cosmological simulations without turbulent mixing, we
found that each gas phase external to the ISM has a qualitatively
similar MDF to the ISM itself. Turbulent mixing allows for regions
to mix their metals, and introduces additional structure in MDFs of
each phase. We found that the diffusivity had a significant impact
on the MDFs of the ISM and CGM - the dynamic model shows
broader MDFs in both phases at z = 0. In these regions, we found
a bi-modality in the CGM at z = 2 which disappeared by z = 0 in
both cases, yet more lower metallicity gas remained in the dynamic
case. Our broad density and temperature phase-space criteria led to
the bi-modality, as we found low-temperature and dense gas in the
cores of the cosmic filaments at z ~ 2. These spatial regions were of
lower metallicity, and eventually return to the WHIM phase by z =
0. The peaks of the bi-modality, however, depend on the diffusivity:
the dynamic model produced more metal poor (by several orders of
magnitude) gas than the constant-coefficient Smagorinsky model.

Finally, we briefly touch on our conclusions for SPH. Most au-
thors apply the constant-coefficient Smagorinsky model to SPH
(Wadsley et al. 2008; Shen et al. 2010, 2013; Williamson et al.
2016; Tremmel et al. 2017; Wadsley et al. 2017) and only include
thermal energy and metal mixing. In reality, there are additional tur-
bulent transport terms that are unique to SPH (see Di Mascio et al.
2017 for an introduction and derivation) that must be included.'®
Introducing momentum diffusion (e.g. via turbulent mixing as in
D-uvz and S-uvz) in SPH is problematic because of unknown
interactions with artificial viscosity. Additionally, by construction,
the smoothing kernel in SPH acts to produce coherent flows rather
than fine structure observed in mesh-free or grid methods. When we
introduced momentum diffusion into SPH, the results from all of
the experiments in this study were amplified when compared to the
MFEM method, but the qualitative trends remained. Specifically, in
our cosmological experiments, we found that momentum diffusion
with the constant-coefficient model causes a delay in the formation

161t is possible to apply the dynamic model to the transport terms in Di
Mascio et al. (2017), further improving upon their work.
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of the ISM by ~1 Gyr, compared to the None case. The dynamic
model reduces the delay, but not to the no-mixing case. We attribute
this to momentum diffusion and dissipation causing the Jeans mass
to increase resulting in the damping of mass fluctuations.

While we note that the dynamic turbulent mixing model intro-
duced here is a step forward in understanding the redistribution of
fluid properties in Lagrangian codes, there are caveats that must
be explored. The dynamic model predicts the correct behaviour
in supersonic flows, but we did not include compressive mixing
terms into our equations of motion. It may be that compressive
sub-grid mixing models further improve supersonic turbulence in
the MFM method. Also, we justified using the Smagorinsky model
by assuming that the local equilibrium condition holds, where the
kinetic energy transfer rate down the turbulent cascade is equal on
all scales. While the assumption is approximately true on average in
the regimes we investigated (Schmidt et al. 2016), a fully consistent
turbulence model involves tracking the sub-grid kinetic energy via
an additional transport equation that includes all of the necessary,
higher order, sub-grid scale terms (Schmidt 2015). However, the
dynamic model mitigates the issue by inherently calculating the de-
viations from local equilibrium. Furthermore, the approximations
for filtering the fluid fields require care and attention. While Mon-
aghan’s filtering approximation (equation 19) holds on the singly
filtered quantities for variations on scales larger than the resolution
scale i, doubly filtered quantities may be over- or undersmoothed.
A more robust, efficient, filtering procedure will need to be de-
rived specifically for Lagrangian methods in the highly compress-
ible case, for filtering scales larger than &.

In summary, the dynamic Smagorinsky model localizes the
strength of turbulent mixing to only turbulent regions of the flow.
This provides a turbulent mixing model that does not rely on pre-
calibrated parameters — therefore simultaneously allowing near-zero
diffusion in laminar shear flows and the expected diffusion in tur-
bulent flows. The physical experiments to which we subjected the
model show that the dynamic model significantly alters the MDFs
of the ISM and CGM in a global sense. In future work we will ex-
amine the extent of small-scale differences associated with dynamic
diffusion, and its impact on galaxy properties.

ACKNOWLEDGEMENTS

This research was enabled in part by support provided by WestGrid
and Compute/Calcul Canada. DR and AB acknowledge support
from NSERC (Canada) through the Discovery Grant program. DR
thanks the organizers of the Computing the Universe: At the Inter-
section of Computer Science and Cosmology conference in Oaxaca,
Mexico for an invited talk, and also James Wadsley and Andrey
Kravtsov for their recommendations at the conference that led to the
further refinement of this research project. DR also thanks Valentin
Perret for the DICE code, and Fabrice Durier, Ondrea Clarkson,
Austin Davis, and Maan Hani for many useful discussions dur-
ing the course of this research. Support for PFH was provided by
an Alfred P. Sloan Research Fellowship, NSF Collaborative Re-
search Grant #1715847 and CAREER grant #1455342, and NASA
grants NNX15AT06G, JPL 1589742, 17-ATP17-0214. We would
also especially like to thank our referee, Wolfram Schmidt, for his
contributions in improving the final version of this study.

REFERENCES

Anders E., Grevesse N., 1989, Geochim. Cosmochim. Acta, 53, 197
Balogh M. L., Babul A., Patton D. R., 1999, MNRAS, 307, 463

MNRAS 483, 3810-3831 (2019)

610z Jequisldag g0 uo Jesn ABojouyos] Jo a1nyisu| eluioled Aq 0¥28£2S/0 1 8E/S/S8/10BNSqe-a]0IUE/SeIUW/WOD dnoolwapeoe//:sdiy Woll papeojumod



3830 D. Rennehan et al.

Bauer A., Springel V., 2012, MNRAS, 423, 2558

Benhamadouche S., Arenas M., Malouf W. J., 2017, Nucl. Eng. Des., 312,
128

Bertschinger E., 2011, Astrophysics Source Code Library . ascl:1106.008

Brook C. B., Stinson G., Gibson B. K., Shen S., Maccio A. V., Obreja A.,
Wadsley J., Quinn T., 2014, MNRAS, 443, 3809

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Chabrier G., 2003, PASP, 115, 763

Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability. Ox-
ford Univ. Press, London and New York

Christensen C. R., Davé R., Governato F., Pontzen A., Brooks A., Munshi
E, Quinn T., Wadsley J., 2016, ApJ, 824, 57

Clark R. A., Ferziger J. H., Reynolds W. C., 1979, J. Fluid Mech., 91, 1

Colbrook M. J., Ma X., Hopkins P. F., Squire J., 2017, MNRAS, 467, 2421

Crain R. A., McCarthy I. G., Schaye J., Theuns T., Frenk C. S., 2013,
MNRAS, 432, 3005

Davé R., Finlator K., Oppenheimer B. D., 2006, MNRAS, 370, 273

Davé R., Oppenheimer B. D., Katz N., Kollmeier J. A., Weinberg D. H.,
2010, MNRAS, 408, 2051

Davé R., Thompson R., Hopkins P. F., 2016, MNRAS, 462, 3265

Davé R., Rafieferantsoa M. H., Thompson R. J., Hopkins P. E, 2017,
MNRAS, 467, 115

Di Mascio A., Antuono M., Colagrossi A., Marrone S., 2017, Phys. Fluids,
29, 035102

Elmegreen B. G., Scalo J., 2004, ARA&A, 42,211

Emerick A., Bryan G. L., Mac Low M.-M., Coté B., Johnston K. V., O’Shea
B. W., 2018, ApJ, 869, 94

Escalal. etal., 2018, MNRAS, 474, 2194

Evoli C., Ferrara A., 2011, MNRAS, 413, 2721

Faucher-Giguere C.-A., Lidz A., Zaldarriaga M., Hernquist L., 2009, ApJ,
703, 1416

Federrath C., 2013, MNRAS, 436, 1245

Finlator K., Davé R., 2008, MNRAS, 385, 2181

Gaburov E., Nitadori K., 2011, MNRAS, 414, 129

Garnier E., Adams N., Sagaut P., 2009, Large Eddy Simulation for Com-
pressible Flows. Scientific Computation, Springer Netherlands, Dor-
drecht

Genel S., 2016, ApJ, 822, 107

Genel S. etal., 2014, MNRAS, 445, 175

Germano M., Piomelli U., Moin P., Cabot W. H., 1991, Phys. Fluids A, 3,
1760

Gingold R. A., Monaghan J. J., 1977, MNRAS, 181, 375

Grand R. J. J. etal., 2017, MNRAS, 207, 179

Greif T. H., Glover S. C. O., Bromm V., Klessen R. S., 2009, MNRAS, 392,
1381

Grete P., Vlaykov D. G., Schmidt W., Schleicher D. R., 2017, Phys. Rev. E,
95, 033206

Grete P., O’Shea B. W., Beckwith K., 2018, ApJ, 858, L19

Guedes J., Callegari S., Madau P., Mayer L., 2011, AplJ, 742, 76

Hani M. H., Sparre M., Ellison S. L., Torrey P., Vogelsberger M., 2018,
MNRAS, 475, 1160

Hernquist L., Katz N., 1989, ApJS, 70, 419

Hopkins P. F,, 2015, MNRAS, 450, 53

Hopkins P. E, 2017, MNRAS, 466, 3387

Hopkins P. F,, KereS D., Ofiorbe J., Faucher-Giguere C.-A., Quataert E.,
Murray N., Bullock J. S., 2014, MNRAS, 445, 581

Hosono N., Saitoh T. R., Makino J., 2016, ApJS, 224, 32

Tapichino L., Viel M., Borgani S., 2013, MNRAS, 432, 2529

Iwamoto K., Brachwitz F., Nomoto K., Kishimoto N., Umeda H., Hix W.
R., Thielemann F.-K., 1999, ApJS, 125, 439

Kara R., Caglar M., 2018, Appl. Math. Comput., 322, 89

Kennicutt R. C., 1998, ApJ, 498, 541

Khani S., Waite M. L., 2015, J. Fluid Mech., 773, 327

King A., Pounds K., 2015, ARA&A, 53, 115

Kirkpatrick M. P., Ackerman A. S., Stevens D. E., Mansour N. N., 2006, J.
Atmos. Sci., 63, 526

Kleissl J., Kumar V., Meneveau C., Parlange M. B., 2006, Water Resources
Res., 42,1

MNRAS 483, 3810-3831 (2019)

Kritsuk A. G., Norman M. L., Padoan P., Wagner R., 2007, ApJ, 665, 416

Krumholz M. R., McKee C. F., Tumlinson J., 2009, ApJ, 699, 850

Landau L., Lifshitz E., 1987, Course of Theoretical Physics. Vol. 6: Fluid
Mechanics. Pergamon Press, Oxford

Lanson N., Vila J.-P.,, 2008a, SIAM J. Numer. Anal., 46, 1912

Lanson N., Vila J.-P., 2008b, SIAM J. Numer. Anal., 46, 1935

Lee C. Y., Cant S., 2017, Flow Turbul. Combust., 98, 155

Liang L., Durier F., Babul A., Davé R., Oppenheimer B. D., Katz N., Fardal
M., Quinn T., 2016, MNRAS, 456, 4266

Lucy L. B., 1977, AJ, 82, 1013

Meneveau C., Katz J., 2000, Annu. Rev. Fluid Mech., 32, 1

Mitra S., Davé R., Finlator K., 2015, MNRAS, 452, 1184

Monaghan J. J., 1989, J. Computat. Phys., 82, 1

Monaghan J. J., 2005, Rep. Prog. Phys., 68, 1703

Monaghan J. J., 2011, Eur. J. Mech. B, 30, 360

Muratov A. L., Kere§ D., Faucher-Giguere C.-A., Hopkins P. F., Quataert
E., Murray N., 2015, MNRAS, 454, 2691

Naab T., Ostriker J. P., 2017, ARA&A, 55, 59

Nomoto K., Tominaga N., Umeda H., Kobayashi C., Maeda K., 2006, Nucl.
Phys. A, 777, 424

Oppenheimer B. D., Davé R., 2006, MNRAS, 373, 1265

Oppenheimer B. D., Davé R., 2008, MNRAS, 387, 577

Oppenheimer B. D., Schaye J., 2013, MNRAS, 434, 1043

Oppenheimer B. D. et al., 2016, MNRAS, 460, 2157

Pan L., Scannapieco E., Scalo J., 2013, ApJ, 775, 111

Perret V., Renaud F., Epinat B., Amram P., Bournaud F., Contini T., Teyssier
R., Lambert J.-C., 2014, A&A, 562, Al

Piomelli U., Liu J., 1995, Phys. Fluids, 7, 839

Piomelli U., Cabot W. H., Moin P,, Lee S., 1991, Phys. Fluids A, 3, 1766

Planck Collaboration XIII, 2015, A&A, 594, A13

Pope S., 2000, Turbulent Flows. Cambridge Univ. Press, Cambridge, UK

Ruggiero R., Lima Neto G. B., 2017, MNRAS, 468, 4107

Sagaut P., 2006, Large Eddy Simulation for Incompressible Flows. Scientific
Computation, Springer-Verlag, Berlin/Heidelberg

Salpeter E. E., 1955, ApJ, 121, 161

Sarmento R., Scannapieco E., Pan L., 2016, ApJ, 834, 23

Scannapieco E., Bildsten L., 2005, ApJ, 629, L85

Scannapieco E., Briiggen M., 2008, ApJ, 686, 927

Schaye J. etal., 2010, MNRAS, 402, 1536

Schaye J. etal., 2015, MNRAS, 446, 521

Schmidt W., 2015, Liv. Rev. Comput. Astrophys., 1, 64

Schmidt W., Federrath C., 2011, A&A, 528, A106

Schmidt W., Niemeyer J. C., Hillebrandt W., 2006, A&A, 450, 265

Schmidt W. et al., 2014, MNRAS, 440, 3051

Schmidt W., Engels J. F,, Niemeyer J. C., Almgren A. S., 2016, MNRAS,
459,701

Semenov V. A., Kravtsov A. V., Gnedin N. Y., 2016, ApJ, 826, 200

Shen S., Wadsley J., Stinson G., 2010, MNRAS, 407, 1581

Shen S., Madau P., Aguirre A., Guedes J., Mayer L., Wadsley J., 2012, ApJ,
760, 50

Shen S., Madau P., Guedes J., Mayer L., Prochaska J. X., Wadsley J., 2013,
Apl, 765, 89

Smagorinsky J., 1963, Mon. Weather Rev., 91, 99

Smith B. D. etal., 2017, MNRAS, 466, 2217

Sokotowska A., Mayer L., Babul A., Madau P., Shen S., 2016, ApJ, 819, 21

Sokotowska A., Babul A., Mayer L., Shen S., Madau P., 2018, ApJ, 867, 73

Somerville R. S., Davé R., 2015, ARA&A, 53, 51

Springel V., 2005, MNRAS, 364, 1105

Springel V., 2010, MNRAS, 401, 791

Springel V., Hernquist L., 2003a, MNRAS, 339, 289

Springel V., Hernquist L., 2003b, MNRAS, 339, 312

Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776

Spyropoulos E. T., Blaisdell G. A., 1996, AIAA J., 34, 990

Su K.-Y., Hopkins P. F., Hayward C. C., Faucher-Giguere C.-A., Keres$ D.,
Ma X., Robles V. H., 2017, MNRAS, 471, 144

Suresh J., Rubin K. H., Kannan R., Werk J. K., Hernquist L., Vogelsberger
M., 2017, MNRAS, 465, 2966

Taghinia J. H., Rahman M. M., Lu X., 2018, Energy Build., 170, 47

610z Jequisldag g0 uo Jesn ABojouyos] Jo a1nyisu| eluioled Aq 0¥28£2S/0 1 8E/S/S8/10BNSqe-a]0IUE/SeIUW/WOD dnoolwapeoe//:sdiy Woll papeojumod



Teyssier R., Moore B., Martizzi D., Dubois Y., Mayer L., 2011, MNRAS,
414, 195

Torrey P. et al., 2017, preprint(arXiv:1711.05261)

Tremmel M. et al., 2018, preprint(arXiv:1806.01282)

Tremmel M., Karcher M., Governato F., Volonteri M., Quinn T. R., Pontzen
A., Anderson L., Bellovary J., 2017, MNRAS, 470, 1121

Tumlinson J., Peeples M. S., Werk J. K., 2017, ARA&A, 55, 389

Urzay J., O’Brien J., Thme M., Moin P., Saghafian a., 2013, Center for
Turbulence Research, Annual Research Briefs, Stanford, p. 123

van de Voort F,, Schaye J., Altay G., Theuns T., 2012, MNRAS, 421, 2809

Vogelsberger M. et al., 2014, MNRAS, 444, 1518

Voit G. M., 2005, Adv. Space Res., 36, 701

Dynamic turbulent diffusion 3831

Volonteri M., 2010, A&AR, 18, 279

Vreman A. W., 2004, Phys. Fluids, 16, 3670

Wadsley J. W., Veeravalli G., Couchman H. M. P, 2008, MNRAS, 387, 427
Wadsley J. W., Keller B. W., Quinn T. R., 2017, MNRAS, 471, 2357
Williamson D., Martel H., Kawata D., 2016, ApJ, 822,91

This paper has been typeset from a TEX/IATEX file prepared by the author.

MNRAS 483, 3810-3831 (2019)

610z Jequisldag g0 uo Jesn ABojouyos] Jo a1nyisu| eluioled Aq 0¥28£2S/0 1 8E/S/S8/10BNSqe-a]0IUE/SeIUW/WOD dnoolwapeoe//:sdiy Woll papeojumod



