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ABSTRACT

Modelling the turbulent diffusion of thermal energy, momentum, and metals is required in

all galaxy evolution simulations due to the ubiquity of turbulence in galactic environments.

The most commonly employed diffusion model, the Smagorinsky model, is known to be

overdiffusive due to its strong dependence on the fluid velocity shear. We present a method

for dynamically calculating a more accurate, locally appropriate, turbulent diffusivity: the

dynamic localized Smagorinsky model. We investigate a set of standard astrophysically rel-

evant hydrodynamical tests, and demonstrate that the dynamic model curbs overdiffusion in

non-turbulent shear flows and improves the density contrast in our driven turbulence experi-

ments. In galactic discs, we find that the dynamic model maintains the stability of the disc by

preventing excessive angular momentum transport, and increases the metal-mixing time-scale

in the interstellar medium. In both our isolated Milky Way-like galaxies and cosmological

simulations, we find that the interstellar and circumgalactic media are particularly sensitive

to the treatment of turbulent diffusion. We also examined the global gas enrichment frac-

tions in our cosmological simulations, to gauge the potential effect on the formation sites

and population statistics of Population III stars and supermassive black holes, since they are

theorized to be sensitive to the metallicity of the gas out of which they form. The dynamic

model is, however, not for galaxy evolution studies only. It can be applied to all astrophysical

hydrodynamics simulations, including those modelling stellar interiors, planetary formation,

and star formation.

Key words: diffusion – hydrodynamics – turbulence – methods: numerical – galaxies: inter-

galactic medium – galaxies: ISM.

1 IN T RO D U C T I O N

Galaxies form at the confluence of gas streams and cooling flows at

the centres of virialized haloes and evolve via a constant exchange of

baryons with their environments. Despite significant recent progress

on understanding the details of this picture, developing predictive

models for the evolution and observed properties of galaxies has

proven to be an immense challenge (see, for example, Guedes et al.

2011; Hopkins et al. 2014; Vogelsberger et al. 2014; Schaye et al.

2015; Genel 2016; Davé et al. 2017; – see also Somerville & Davé

2015 and Naab & Ostriker 2017 for a recent review and additional

⋆ E-mail: douglas.rennehan@gmail.com

references). The problem lies in the large number of complex in-

terconnected processes involved, and the huge dynamic range in

spatio-temporal scales over which they operate.

One important interplay involves the interstellar medium (ISM),

the gas that permeates a galaxy and provides fuel for star forma-

tion, and circumgalactic medium (CGM), the gas that cocoons the

galaxy. The amount of gas in the CGM and the efficiency with

which it can cool, fall into the galaxy and replenish the ISM, are

important variables in setting the duration and the rate of star for-

mation (Somerville & Davé 2015). Stellar winds and supernova

explosions (SNe) – processes directly related to star formation –

provide competition for gas cooling (Springel & Hernquist 2003b;

Oppenheimer & Davé 2008). These deposit energy and momentum
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Dynamic turbulent diffusion 3811

into the ISM, engendering outflows of gas. If these outflows are

sufficiently powerful, they not only heat the CGM, but also expel

most of the CGM from the galaxy’s halo. This ongoing competition

between gas into and out of galaxies provides a basic framework for

understanding a number of observed properties (Shen et al. 2012;

Crain et al. 2013; Christensen et al. 2016; Oppenheimer et al. 2016;

Sokołowska et al. 2016).

The cooling efficiency and ionization state of the gas in the CGM

depend sensitively not only on the spatial injection and redistribu-

tion of thermal energy and momentum (Suresh et al. 2017), but also

on the metals that are transported from the galaxy via the galactic

outflows (Davé, Finlator & Oppenheimer 2006; Oppenheimer &

Davé 2006; Finlator & Davé 2008; Hani et al. 2018). Metals, al-

though negligible in terms of mass fraction, play an out-sized role

in galaxy evolution because they can dramatically alter the CGM’s

cooling profile (van de Voort et al. 2012; Oppenheimer & Schaye

2013; Sokołowska et al. 2017) and, hence, the delicate balance

between gas in- and outflow.

In addition to cooling, the redistribution of metals can impact

other processes, such as the sites and formation history of the pu-

tative Population III (Pop III) stars and supermassive black holes

(SMBHs). Pop III stars are associated with star formation involving

near-pristine gas with an upper limit on metallicities somewhere in

the range [Z] ∼ −6 to [Z] ∼ −3 (Sarmento, Scannapieco & Pan

2016). As for SMBHs, a number of authors (e.g. Volonteri 2010

and for use in recent simulations Tremmel et al. 2017) postulate

that they form via direct collapse of gas clouds with metallicity [Z]

� −4.0, with the idea that very low metallicity would prevent the

gas from cooling rapidly and fragmenting into Pop III stars during

collapse. It is therefore crucial to identify which physical processes

redistribute thermal energy, momentum, and metals in galactic envi-

ronments spatially, and to include these accurately in the numerical

galaxy evolution experiments.

One critical, often overlooked, redistribution mechanism is gas

turbulence. Turbulence occurs when inertial forces dominate vis-

cous forces in a gaseous environment, and kinetic energy injected on

large scales cannot immediately dissipate as heat. This leads to the

formation of a kinetic energy cascade, as coherent turbulent eddies

on large scales spawn eddies on successively smaller scales, un-

til the energy thermalizes. Galactic environments, for example, are

expected to be highly turbulent (Evoli & Ferrara 2011; Iapichino,

Viel & Borgani 2013). In the case of the CGM, this is strongly

suggested by the kinematic complexity revealed by absorption and

emission line measurements (Tumlinson, Peeples & Werk 2017)

and it has long been recognized that the cold ISM is also highly tur-

bulent. The susceptibility of a medium to turbulence is quantified

by its dimensionless Reynolds number,1 Re. The Reynolds number

for the cold ISM has been estimated to be as high as Re ∼ 107

(Elmegreen & Scalo 2004), whereas the onset of turbulence usually

occurs at Re ∼ 103. The Reynolds number is also a measure of the

separation of scales in the energy cascade and, in the case of in-

compressible turbulence, L/η ∼ Re3/4, where L is the kinetic energy

injection scale, and η is the dissipation scale.2 Therefore the de-

grees of freedom in a 3D simulation scales as Re9/4, and simulating

a Re ∼ 107 flow would require 1015 fluid elements! Contemporary

cosmological simulations have reached ∼1012 fluid elements and

a dynamic range typically of the order ∼106 (Somerville & Davé

1Defined as the ratio of inertial forces to viscous (dissipative) forces.
2In compressible turbulence, the scaling is much steeper (see Kritsuk et al.

2007; Federrath 2013).

2015), with the smallest scale being the resolution limit h. Therefore

all cosmological simulations that involve turbulence – independent

of hydrodynamical method – have a natural cut-off scale h, in the

range η ≪ h ≪ L, where discretization truncates the turbulent cas-

cade.

Physically, small-scale turbulent fluctuations, by promoting mix-

ing, provide a transport mechanism for the fluid properties such as

momentum, thermal energy, and metals. In numerical simulations,

this implies that turbulence on scales smaller than h can potentially

impact the resolved properties of the flow and consequently must

be accounted for (Germano et al. 1991). The crux of the issue is

that, as stated above, the kinetic energy flux down the turbulent

cascade is truncated at h in the simulations whereas, in reality, the

kinetic energy cascade should continue to smaller scales until it is

dissipated. Numerical simulations break the physical coupling be-

tween the scales that are resolved (>h) and unresolved (<h), and,

therefore, they require models of (i) the kinetic energy flux from

the resolved to the unresolved scales, (ii) the effect of unresolved

eddies on the resolved scales, and (iii) the transport properties of

kinetic energy on unresolved scales. Typically, this is done using

the turbulent eddy-diffusion models that treat sub-grid turbulent

eddy motion as a diffusive process. Several implementations of this

approach have been proposed (cf. Schmidt & Federrath 2011; Di

Mascio et al. 2017; Wadsley, Keller & Quinn 2017; – see Sagaut

2006 and Garnier, Adams & Sagaut 2009 for extensive lists); none

the less, many cosmological hydrodynamical simulation studies

assume that numerical diffusion adequately accounts for sub-grid

turbulent transport (Schmidt 2015). Numerical diffusion, however,

can lead to diffusive behaviour that poorly represents turbulent flow

statistics (Sagaut 2006).

Extensive effort has been devoted towards developing models

for treating turbulent diffusion in Eulerian cosmological simula-

tions, which employ grids to discretize the fluid. Here we refer

the reader to Scannapieco & Brüggen (2008), Pan, Scannapieco &

Scalo (2013), Federrath (2013), Schmidt et al. (2014), Schmidt

(2015), Semenov, Kravtsov & Gnedin (2016), and Sarmento et al.

(2016). In this paper we focus on the Lagrangian hydrodynamical

approach.

Within the Lagrangian framework, the fluid equations of motion

are approximated by tracking individual fluid elements as they move

with the flow. Commonly used Lagrangian methods in computa-

tional cosmology include smoothed particle hydrodynamics (SPH)

(Gingold & Monaghan 1977; Lucy 1977; Hernquist & Katz 1989),

moving-meshes (MM) (Springel 2010), and higher order mesh-free

methods (MF) (Lanson & Vila 2008a,b; Gaburov & Nitadori 2011;

Hopkins 2015) – see Springel (2010) and Hopkins (2015) for ex-

tensive discussion.

SPH has no inherent diffusion and therefore, by construction,

explicitly requires additional transport terms, one benefit of which

is full control over the strength of mixing. In MM and MF meth-

ods, numerical diffusion arises as a by-product of the numerical

scheme used to solve the Riemann problem between fluid elements.

However, as noted above, inherent numerical diffusion does not, in

general, reproduce the correct turbulent properties of a simulated

flow. The key problem here is: how can we address this? Or, more

precisely, how do we model the interaction between the unresolved

and the resolved scales?

A common approach is to assume that the interaction between

the resolved and the unresolved scales reduces to a local transfer of

kinetic energy from the large to the small scales. If we additionally

assume that the kinetic energy transfer mechanism is analogous to a

diffusive process, where kinetic energy is redistributed on progres-
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3812 D. Rennehan et al.

sively smaller scales via momentum diffusion, then we can treat

the action of unresolved eddies in a similar fashion to molecular

viscosity. Under this equivalency, on scales close to the resolution

scale h, the unresolved eddies extract kinetic energy from the re-

solved flow via momentum diffusion, and simultaneously allow for

the dissipation of kinetic energy. This is the eddy-viscosity hypoth-

esis, and is fundamentally a model assumption that describes the

simplest view of the interactions between the scales. The action of

the unresolved eddies can then be modelled by a viscous term in

the fluid equations of motion – diffusing momentum and dissipating

kinetic energy (Pope 2000). The above assumptions lead to a simple

model but it does not provide guidance about the appropriate choice

for the effective diffusivity/viscosity.

In a turbulent cascade, the diffusive action of the eddies depends

on their velocity and length-scale. On the sub-grid level, this in-

volves estimating the velocity scale that transports fluid properties

over the resolution scale h (Wadsley, Veeravalli & Couchman 2008;

Greif et al. 2009). In the simplest model, the Smagorinsky model

(Smagorinsky 1963), this velocity is assumed to be proportional to

the gradients of the velocity field. In this model, the sub-grid ed-

dies both diffuse (characterized by diffusivity D) and dissipate via

eddy viscosity, νsgs, given by νsgs = D = (Csh)2|S∗|, where |S∗| is

the norm of the trace-free shear tensor, and Cs is the Smagorinsky

model constant. Contemporary fluid mechanics literature notes that

in general Cs needs to be tuned to a value between 0.1 and 0.2 for

optimal results under different flow conditions (Garnier et al. 2009).

The main advantage of the Smagorinsky model is its simplic-

ity and as a result, many researchers have started to incorporate

this model into their cosmological simulation codes – specifically

as a model for the diffusivity when treating thermal energy and

metal mixing (Shen, Wadsley & Stinson 2010; Brook et al. 2014;

Williamson, Martel & Kawata 2016; Sokołowska et al. 2017; Trem-

mel et al. 2017; Escala et al. 2018). The model, however, has some

drawbacks: (i) A single valued Cs is incapable of correctly de-

scribing different types of turbulent flows. Studies show that the

Smagorinsky model introduces too much diffusion into the flow

in almost all cases except for homogeneous, isotropic turbulence

(Garnier et al. 2009). And, (ii) the sub-grid eddy viscosity does not

vanish for laminar shear flows where there ought to be no diffu-

sion due to turbulence. Overdiffusion is especially worrisome given

the push to resolve the multiphase structure in the ISM and CGM

at greater levels, and the recent results that differential, localized

metal mixing could change our understanding of galactic chemical

evolution (Emerick et al. 2018).

As noted above, most implementations of the Smagorinsky model

only consider thermal energy and metal diffusion, but not momen-

tum diffusion because the latter drawback above is a concern for dif-

ferentially rotating structures, such as galactic discs. Specifically, it

results in undesired angular momentum transport and, consequently,

unphysical flows in the discs. Most galaxy evolution studies ignore

momentum diffusion in order to avoid this viscous instability. The

crux of the problem is that a constant Cs cannot automatically adjust

to either the local conditions or the changing character of the flow

with time. This led Germano et al. (1991) to propose the dynamic

Smagorinsky model where Cs is a function of space and time, i.e.

Cs = Cs(x, t).

The dynamic Smagorinsky model has, to our knowledge, not

yet been implemented and investigated in cosmological simula-

tions. The model has, however, been validated extensively in the

fluid simulation community by comparing to the results of standard

numerical tests and experiment data, and has been shown to im-

prove upon the constant-coefficient model (Kirkpatrick et al. 2006;

Kleissl et al. 2006; Benhamadouche, Arenas & Malouf 2017; Lee &

Cant 2017; Kara & Çağlar 2018; Taghinia, Rahman & Lu 2018).

In the dynamic model, the sub-grid properties of a turbulent fluid

are computed under two assumptions3: (i) the behaviour of the

largest unresolved eddies is entirely determined by their interac-

tions with the eddies on the smallest resolved scales, and (ii) these

interactions are analogous to those between the fluid motions on the

smallest resolved scale and the motions on larger scales. In prac-

tice, determining the characteristics of these interactions involves

filtering (or smoothing) the resolved velocity field on two different

scales. When the sub-grid turbulent properties are calculated based

on the local fluid properties, Cs(x, t) reduces to zero (i.e. the eddy

viscosity/diffusivity vanishes) in non-turbulent (or laminar) shear

flows (Piomelli & Liu 1995). Consequently, this allows for the self-

consistent treatment of momentum diffusion, along with thermal

energy and metal diffusion, in numerical studies of cosmic baryons

and galaxy evolution.

In this study, we introduce an implementation of the dynamic

Smagorinsky model for the first time in Lagrangian astrophysical

simulations, focusing on the higher order MF approach. We discuss

the implementation details in Section 2. In order to test the impact

of dynamic localized turbulent mixing on the galactic ecosystem

we run a series of hydrodynamical and physical experiments rele-

vant to galaxy evolution. In Section 3 we show the results for a set

of standard hydrodynamic tests and explicitly check on the extent

of sub-grid diffusion in laminar shear flows. We then go on to ex-

amine the effects of dynamic mixing in an isolated disc galaxy in

Section 4, followed by a set of cosmological simulations in Sec-

tion 5. We investigated SPH and performed all of the experiments

presented below, but we do not include them in this paper because

the results are qualitatively similar to the MF results, as we mention

in Section 6.

2 M E T H O D S

2.1 Hydrodynamics

In order to test the impact and robustness of the localized turbu-

lent diffusion model, we employ a modified version of the GIZMO

gravity plus hydrodynamics solver code (Hopkins 2015). GIZMO

builds on the GADGET-3 code base (Springel 2005), with improve-

ments in numerical accuracy and includes an implementation of the

novel mesh-free finite mass (MFM) method, in addition to various

implementations of SPH methods.

The MFM method evolves the fluid equations of motion in a

Lagrangian manner similar to SPH. However, while the fluid mass

elements in SPH are discretized into particles and their motions are

determined by fluid properties smoothed over neighbouring par-

ticles, the conservation laws in MFM are evolved by calculating

the flux of basic variables between neighbouring particles.4 These

fluxes depend on the effective face area between the two particles

and are determined by solving the Riemann problem along the line

connecting them. This removes the need for additional terms, such

as artificial viscosity and conductivity as is necessary in SPH to

3The two assumptions are often combined together and referred to as the

scale-similarity hypothesis.
4We refer to any fluid element as a particle, for simplicity. Fluid elements in

the MFM method are not particles in an SPH sense, and are defined by the

effective geometrical faces moving along lines connecting cells enclosing a

finite mass.
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Dynamic turbulent diffusion 3813

ensure proper treatment of shocks. The numerical Riemann solvers

have inherent numerical dissipation,5 hence improved shock captur-

ing capabilities. We, therefore, focus on the use of the MFM method

in our investigation of the dynamic diffusion model. For a thorough

exposition of GIZMO and an extensive comparison between MFM

and SPH, see Hopkins (2015).

2.2 Sub-grid turbulent diffusion terms

GIZMO solves the conservation equations for momentum, energy,

and mass using the MFM method, and like other hydrodynamic

methods, it is limited in resolution down to a scale h. The minimum

resolution limits the ability to resolve high Reynolds number flows

down to the viscous dissipation scale, impacting its ability to resolve

the turbulent cascade. As mentioned in Section 1, the interaction

of the resolved and unresolved scales must be modelled. These

models apply to the additional sub-grid scale terms that appear in

the equations of motion when treating discretization as a filtering

process (Sagaut 2006; Garnier et al. 2009; Schmidt 2015). In this

section, we detail the origin of the sub-grid scale terms and discuss

which terms we include in the GIZMO code.

Discretization of the conservation equations is equivalent to ap-

plying a low-pass filter, damping out high-frequency turbulent fluc-

tuations. When we discuss filtering, we refer to the definition of a

general filtered scalar field f (x),

f (x) ≡
∫

D

f (x′)G(|x′ − x|, h) dx′, (1)

where G(|x′ − x|, h) is a filter function. h is the characteristic size

of the filtering operation below which fluctuations are damped (es-

sentially the resolution scale, in the present context), dx′ is a volume

element, and the integral is evaluated over the entire domain. We

discuss our filtering implementation in more detail, in Section 2.4.

We now apply this equation to the conservation equations in order

to see that additional terms in the hydrodynamical equations are

required.

The momentum conservation equation for a compressible fluid

follows6 (Landau & Lifshitz 1987),

∂

∂t
(ρui) +

∂

∂xj

[ρuiuj + pδij ] = 0, (2)

where ui = ui(x, t) is the fluid velocity vector in the i = {x, y,

z} direction, ρ = ρ(x, t) is the fluid density, and p = p(x, t) is

the pressure. When we filter the momentum equation, assuming

the filtering operation and derivatives commute, we end up with an

extra term τ ij,

∂

∂t
(ρũi) +

∂

∂xj

[τij + pδij + ρũi ũj ] = 0, (3)

where we have also switched to density weighted variables such

that ũi = ρui/ρ. τ ij is the subgrid-scale turbulent stress tensor or

residual stress tensor and is defined as,

τij ≡ ρ(ũiuj − ũi ũj ). (4)

This term must be modelled because ũiuj is unknown at the time

of simulation, i.e. the system of equations is not closed. A common

5Riemann solver dissipation arises from the high, even-order, truncated

terms in the Taylor series expansion of the basic variables in the conservation

equations.
6We follow this Einstein notation throughout this paper.

model, or closure, involves the eddy-viscosity assumption where

the sub-grid scales impart a momentum flux on the resolved scales

that is linearly dependent on the rate of strain of the resolved scale,

τij = −2ρνsgsS̃∗
ij , (5)

where νsgs is the sub-grid eddy viscosity, and S̃∗
ij is the trace-free

resolved rate of strain tensor. The same logic can be applied to

any of the conservation equations and any filtered multiplicative

terms require modelling. In the derivations below, we model (as in

equation 5 above) the unknown terms under the assumption that

they act as diffusive processes.

There is a similar term when filtering the total energy equation

(e is the specific total energy),

∂

∂t
(ρe) +

∂

∂xj

[ρuje + ujp] = 0. (6)

leads to additional terms,

∂

∂t
(ρẽ) +

∂

∂xj

[Qj + Pj + ρũj ẽ + ujp] = 0, (7)

where e = θ + 1
2
|u|2 (θ is the specific internal energy). We also

have defined:

Qj ≡ ρ(ũje − ũj ẽ), Pj ≡ ujp − ujp. (8)

In this study, we ignore the term associated with pressure, Pj, and the

term in Qj that arises from 1
2
|u|2 in e, and focus on the application

of the dynamic model to the sub-grid momentum term working in

concert with the widely employed thermal energy term (Shen et al.

2013; Brook et al. 2014; Tremmel et al. 2017; Wadsley et al. 2017),

qj ≡ ρ(ũjθ − ũj θ̃ ) = −ρνsgs

∂θ̃

∂xj

. (9)

Not only are there additional terms for momentum and thermal

energy, but any scalar quantities, such as the concentration of dif-

ferent metal species, in the gas should be transported in a turbulent

flow. In order to model this, we treat metal concentrations, φz, as

passive scalars that obey a diffusion equation (Pope 2000; Shen

et al. 2010),

∂φz

∂t
=

∂

∂xj

(
ρνsgs

∂φz

∂xj

)
. (10)

For a detailed description of the incorporation of these fluxes into

GIZMO, see Hopkins (2017).

Throughout this paper, we refer to the action of the terms in equa-

tions (5), (9), and (10) as turbulent diffusion because they contribute

to the conservation equations as ∇2f, where f is the flux quantity.

Additionally, when we mention energy diffusion, we are referring

to the term ∇ · q (thermal energy diffusion), and, similarly, when

we mention momentum diffusion we are referring to the action of

the stress tensor through ∇ · τ , along with the corresponding kinetic

energy dissipation.

2.3 Diffusivity

Physically, turbulent mixing can be modelled as a diffusive process

with diffusivity D and, in the simplest model, the fluid properties

are assumed to mix over the resolution scale h with a velocity

h|S∗|, where |S∗| is the norm of the trace-free shear tensor. This

is, as we mentioned in Section 1 the Smagorinsky model and the

corresponding diffusivity is parametrized as D = νsgs = (Csh)2|S∗|.
The Smagorinsky model inherently assumes that the kinetic en-

ergy transfer rate down the turbulent cascade is equal on all scales,

MNRAS 483, 3810–3831 (2019)
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3814 D. Rennehan et al.

and is equal to the physical dissipation rate (i.e. the flow is in local

equilibrium). In simulations, the resolution scale h inhibits kinetic

energy from moving to progressively smaller scales, and results

in a build-up of kinetic energy at the resolution scale – so long

as numerical dissipation cannot extract kinetic energy sufficiently

rapidly. The Smagorinsky model combined with the local equilib-

rium assumption only provides a model for the turbulent stress, τ ij,

and dissipation in the flow, � = τij S̃
∗
ij , and ignores the additional

terms we discuss in Section 2.2. In order to consistently model all

of the energetic terms, one must relax the local equilibrium assump-

tion and follow the sub-grid kinetic energy, K, directly. It is possible

to derive a one-equation model for K that includes a third-order

term for the transport of K on sub-grid scales (Schmidt 2015), and

self-consistently follows all of the sub-grid quantities. Each sub-

grid term can then be modelled using diffusive terms similar to the

models in Section 2.2, in order to close the system of equations.

If the Smagorinsky model only considers the turbulent stress, is it

then valid to apply this model (as we have done following Shen et al.

2010) to the thermal energy and metal sub-grid terms? In order for

this to be possible, the local equilibrium condition must be approx-

imately true in the regime of interest. We are specifically interested

in cosmological-scale gas, and Schmidt et al. (2016) show that the

local equilibrium condition holds – on average – in a cosmological-

scale volume. Introducing the dynamic model on top of these ap-

proximations further supports our model assumption, because the

dynamic model inherently accounts for the deviations from local

equilibrium.

The Smagorinsky model diffusivity is parametrized in GIZMO for

a particle ‘a’ as,

Da = ρa(Csha)2|S∗|a, (11)

where Cs is the Smagorinsky constant, ha is the mean inter-particle

spacing in the kernel, and |S∗|a is the magnitude of the trace-free

symmetric shear tensor. Note that we absorb the densities ρ from

Section 2.2 into νsgs via ρa. Da is used in the diffusion equations for

thermal energy, momentum, and metal mass fractions as described

in Hopkins (2017). There are a myriad of values quoted for Cs

in the literature (see section 5 of Sagaut 2006 for an extensive

list), but we choose the value calibrated for fully eveloped isotropic

turbulence, Cs = 0.2 (Clark, Ferziger & Reynolds 1979), because

the Smagorinsky model was developed for this specific regime.

In order to compare our Cs with other values in the literature, it

is important to consider the definitions of the quantities in equa-

tion (11). In many SPH studies, the length-scale in the diffusion

coefficient definition is taken as the kernel-support radius, hSPH,

which is the maximum extent from a particle that gives a non-zero

weight. In contrast, as we mentioned above, we employ the mean

inter-particle spacing within the kernel or ha ≈ 0.5hSPH. Addition-

ally, some studies use C ≡
√

2Cs
2 whereas for this study

√
2 is

absorbed into our definition of the norm of the shear tensor (see

equation 13 below), closely following the fluid simulation literature

(Piomelli & Liu 1995). Using these definitions, our adopted value

of Cs is lower than those quoted in the astrophysics literature. For

example, the value C = 0.05 (see Shen et al. 2010, 2013; Brook

et al. 2014), corresponds to Cs = 0.37 whereas C = 0.03 corre-

sponds to Cs =0.29 (see Wadsley et al. 2017). However, our Cs

is higher than the value recently calibrating from studying metal

mixing in dwarf galaxies, where Escala et al. (2018) found Cs =
0.046 reproduced more realistic stellar metal distribution functions

(MDFs) via supersonic mixing in the ISM.

We compute the trace-free symmetric shear tensor via the high-

order accurate gradient estimators in GIZMO,

S∗
ij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
−

1

3
δij

∂uk

∂xk

, (12)

where ui is the fluid velocity vector and xi the spatial coordinate,

and i, j = {x, y, z}. The magnitude of equation (12) is implemented

using the Frobenius norm (Piomelli & Liu 1995),

|S∗| =
√

2S∗
ijS

∗
ij . (13)

We note that in GIZMO, Escala et al. (2018) impose an ad hoc

cap on the diffusivity based on the expected maximum mass flux

between resolution elements. The cap does not, however, mitigate

the fact that the constant Smagorinsky model induces diffusion

whenever there is shear, regardless of whether the fluid is laminar

or turbulent. It is only intended to prevent unphysical mass/energy

transport that can potentially arise due to the excessive diffusiv-

ity of the Smagorinsky model. We adopt the same limiter in this

study, but note that the diffusivity rarely reaches the maximum

limit.

2.4 Dynamic model

The Smagorinsky model provides an approximate model of sub-

grid mixing for fully developed, homogeneous turbulence but it is

far too simple for complex flows. In fact, in laminar shear flows, the

constant-coefficient Smagorinsky model predicts a non-zero diffu-

sivity through its dependence on the shear strength (equation 11).

However, in this situation, the diffusivity should be zero since the

fluid is not turbulent. In more complex flows, such as those in astro-

physical contexts, the value of the constant ought to depend on the

spatio-temporal coordinates Cs = Cs(x, t) (Germano et al. 1991).

Piomelli & Liu (1995) showed that by assuming scale-similarity

(cf. Section 1), the local Smagorinsky constant in a neighbourhood

can be calculated at each point (at a fixed simulation time-step) as

follows:

Cdyn(x) = C2
s = −

1

2

(Lij − 2Ĉ
p

dynβij )αij

αmnαmn

. (14)

Here Lij is the Leonard tensor,

Lij = ûiuj − ûi ûj , (15)

C
p

dyn is the value of Cdyn at the previous time-step, and αij and β ij

are defined as,

αij ≡ ĥ2|Ŝ∗|Ŝ∗
ij ,

βij ≡ h
2|S∗|S∗

ij .
(16)

Here f represents a filtering (or smoothing) operation on f over a

length-scale h, and f̂ represents smoothing on a scale ĥ. h usually

is equated with the lowest resolvable scale, and extensive work

has been done in the fluid simulation community to show that the

optimal value for ĥ is ĥ = 2h (Germano et al. 1991; Piomelli &

Liu 1995; Spyropoulos & Blaisdell 1996; Schmidt, Niemeyer &

Hillebrandt 2006; Grete et al. 2017). For this work, we choose h to

be the compact support radius of the kernel, and ĥ = 2h.

MNRAS 483, 3810–3831 (2019)
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Dynamic turbulent diffusion 3815

More precisely, we smooth a scalar field f (x) by convolving it

with the filter function G(|x ′ − x|, h) over the domain,7

f (x) =
∫

D

f (x′)G(|x′ − x|, h) dx′. (17)

This is similar to the SPH method of interpolating a scalar function,

with G(|x′ − x|, h) sharing the same properties as the smoothing

kernel W (|x′ − x|, h),
∫

G(|x′ − x|, h) dx′ = 1,

lim
h→0

G(|x′ − x|, h) = δ(|x′ − x|).
(18)

The MFM method employs a similar technique for evaluating inte-

grals and in order to be consistent, we choose G = W. The integral in

equation (17) is expensive, but we simplify the computation using

XSPH smoothing (Monaghan 1989, 2005, 2011),

f (x) = f (x) + ǫ

∫

D

(f (x′) − f (x))W (|x′ − x|, h) dx′. (19)

Following Monaghan (2011), the Fourier coefficients ak of the ve-

locity satisfy ak = ak[1 + ǫ(G̃(k) − 1)] where ak are the coeffi-

cients of the smoothed field, G̃(k) is the Fourier transform of the

filter function, and k is the spatial frequency k = 2π /x. In the limit

k → ∞, the coefficients satisfy ak → (1 − ǫ)ak. The value of ε

controls the magnitude of the smoothing on a scale of ≤ h, and is

constrained to 0 < ε ≤ 1. We choose ε = 0.8 to be consistent with

the tests in Monaghan (2011).

We discretize equation (19) as,

f a = fa + ǫ
∑

b

mb

〈ρab〉h
(fb − fa)W (|xa − xb|, hab), (20)

where fa represents the quantity at particle a, hab is the arithmetic

mean of ha and hb,8 〈ρab〉h is the harmonic mean of the densities ρa

and ρb,9 and the sum is taken over b nearest neighbours. We also re-

quire doubly filtered quantities, which involves another application

of equation (20) to the singly filtered quantities,

f̂ a = f a + ǫ
∑

b

mb

〈ρab〉ĥ
(f b − f a)W (|xa − xb|, ĥab). (21)

In order to calculate the average densities, or weights, in equa-

tions (20) and (21), we require the density at each particle for a

given scale,

ρa =
∑

b

mbW (|xa − xb|, ha),

ρ̂a =
∑

b

mbW (|xa − xb|, ĥa).
(22)

It is important to note that the values of S∗
ij and Ŝ∗

ij are built

from the smoothed velocity field and are not smoothed versions

of the trace-free symmetric shear tensor in equation (12) (Schmidt

7Our filtering implementation naturally density-weights quantities because

we follow the hydrodynamical weighting scheme.
8Taken as hab = 1

2
(ha + hb) in order to equally weight each smoothing

scale.
9The harmonic mean is of the form 〈ρab〉h = 2ρaρb/(ρa + ρb) and weights

towards the lowest value. This allows high-density particles to have a fair

contribution to the differences within the kernel.

2015). They have the following corresponding equations:

S∗
ij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
−

1

3
δij

∂uk

∂xk

,

Ŝ∗
ij =

1

2

(
∂ûi

∂xj

+
∂ûj

∂xi

)
−

1

3
δij

∂ûk

∂xk

.

(23)

The magnitudes |S∗| and |Ŝ∗| are given via equation (13).

The dynamic method relies on local scale-similarity in the neigh-

bourhood of a point x, which in turn implies that the Smagorinsky

model is an accurate description of the flow, albeit with a variable

constant. This assumption breaks down in highly complex flows

and in some cases, the dynamic model predicts negative values (Pi-

omelli & Liu 1995; Urzay et al. 2013). Negative values of Cdyn are

usually explained as backscatter in the cascade (Piomelli et al. 1991;

Piomelli & Liu 1995; Meneveau & Katz 2000; Vreman 2004; Urzay

et al. 2013) where in some circumstances a fraction of the energy

cascading to small scales can return to large scales as smaller eddies

unite to form larger eddies. An alternate explanation for Cs <0 is

that the Smagorinsky model fails, and a more appropriate model

should be employed. For now, we adopt the latter view and follow

the usual approach in restricting Cdyn to the range Cdyn ∈ [0, Cs]

with values Cdyn < 0 set to Cdyn = 0 (Garnier et al. 2009; Schmidt

2015). The upper limit is imposed since large values are thought

to be due to numerical instability. For the remainder of this paper,

we identify and discuss Cs =
√

Cdyn. The distinction between the

simple and dynamic model is distinguishable based on context.

3 H Y D RO DY NA M I C A L T E S T S

As indicated previously, a number of studies have carried out robust

validation of the dynamic Smagorinsky model against, for example,

experimental results within the fluid mechanics community (Kleissl

et al. 2006; Benhamadouche et al. 2017; Lee & Cant 2017; Kara &

Çağlar 2018; Taghinia et al. 2018) and the model has also been

adopted by other users, including researchers studying atmospheric

phenomena (e.g. Kirkpatrick et al. 2006). To motivate its use in

cosmological and astrophysical simulations, we start by discussing

the model within the context of three hydrodynamical tests.

First, we investigate the distribution of predicted Cs values in

homogeneous driven turbulence, and the sensitivity of the distribu-

tions to variations in the smoothing parameter, ε. Next, we examine

the evolution of a Keplerian disc where turbulence is not expected

to develop a priori yet numerical instabilities and noise lead to dis-

order in the velocity fields, and subsequent artificially enhanced

diffusivities via the trace-free shear strength, |S∗|. Last, we con-

sider the linear regime of the Kelvin–Helmholtz instability which

suffers from similar challenges as the Keplerian disc. In both cases,

numerical instability causes the constant-coefficient Smagorinsky

model to fail, and we investigate whether the dynamic model can

mitigate spurious sub-grid turbulent mixing.

3.1 Homogeneous turbulence

We investigate homogeneous, isotropic, driven turbulence to deter-

mine to what degree the dynamic model predicts different diffusiv-

ities on a per particle basis.

We initialize periodic boxes of side length L = 1 with 643, 1283,

and 2563 equal mass particles of an ideal isothermal gas, initial

density ρ = 1, and energy per unit mass u = 1000, placed on uni-

MNRAS 483, 3810–3831 (2019)
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3816 D. Rennehan et al.

Table 1. We compare five mixing models involving combinations of the

standard implementation, dynamic implementation, as well as the mixing of

energy, velocity, and metals. We prefix models using the standard implemen-

tation by S-, and those involving the dynamic model by D-. Models which

mix thermal energy, velocity (momentum), or metals have combinations of

the suffixes u, v, or z, respectively.

Name Dynamic Thermal energy Velocity Metals

None N/A × × ×
S-uz × ✓ × ✓

D-uz ✓ ✓ × ✓

S-uvz × ✓ ✓ ✓

D-uvz ✓ ✓ ✓ ✓

form Cartesian grids.10 Following the methods of Bauer & Springel

(2012) and Hopkins (2015), as the system is driven, the thermal

energy of the gas particles are reset to the initial value in order to

simulate isothermal turbulence. We investigate the five combina-

tions of mixing models described in Table 1, and examine subsonic

(M ≈ 0.3) and supersonic (M ≈ 8.4) test cases.

In order to mix the fluid over time, we use an identical forc-

ing routine as in Bauer & Springel (2012). The accelerations are

calculated in Fourier space and only contain power over a small

range of modes corresponding to a spatial range ℓ ∈ [L/2, L] (i.e.

the largest scales), and the Fourier mode phases are drawn from

an Ornstein–Uhlenbeck process. In the subsonic case, the forcing

is purely solenoidal (or incompressible) since the compressive part

of the acceleration is removed via a Helmholtz decomposition in

Fourier space. It is important to note that Grete, O’Shea & Beck-

with (2018) showed that this is not completely correct, and that

compressive modes still exist even with purely solenoidal forcing.

However, we are comparing the effects of the dynamic model using

the same forcing methodology across all of our test cases, and ad-

ditionally we construct the shear and sub-grid scale stress tensor to

be trace-free, removing any contributions from compression of the

fluid. We use the exact parameters in table 1 of Bauer & Springel

(2012), and point the interested reader to their section 2.2 for the

precise details of the driving routine. The systems enter an approx-

imate steady state after t � 5. We measure the probability density

functions (PDFs) of Cs in each test in order to determine its sensi-

tivity to the smoothing parameter ε in equation (20). In addition, we

measure the PDF of the density field in order to gauge the ability of

each model to resolve different density ranges in the turbulent flow.

The left-hand panel in Fig. 1 shows the distribution of Cs in the

subsonic case as predicted with the dynamic model for three separate

resolutions: 643, 1283, and 2563. The median value and the shape

of the distributions do not change much with resolution, indicating

excellent convergence. At 643 resolution we find a median value

Cs = 0.1 and approximately 9.61 per cent of the particles have Cs =
0. In the fluid mechanics literature, as many as 50 per cent of the

fluid elements have been reported to have Cs = 0 (Piomelli et al.

1991; Urzay et al. 2013). We also test for convergence in supersonic

turbulence (see the middle plot in Fig. 1). Compared to the subsonic

case, the dynamic model predicts more particles at Cs = 0, with a

total fraction below 50 per cent. The median value is much lower

than in the subsonic case, Cs = 0.066. The lower median agrees with

calibration results from Colbrook et al. (2017) who found that Cs

≈ 0.05 reproduces the turbulent scaling relationships in supersonic

turbulence.

10Units are arbitrary code units.

We also investigate the sensitivity of the Cs to the smoothing

parameter, ε, from equation (20). The right plot in Fig. 1 shows the

PDFs of Cs in homogeneous, subsonic turbulence using the MFM

method. We vary ε between 0.2 and 1.0 since ε cannot be greater

than 1.0, as it is derived from a series expansion, and should be ≥0 in

order to have positive kinetic energies in the smoothed fields (Mon-

aghan 2011). Values in the range 0.7 ≤ ε < 1.0 produce comparable

distributions with medians Cs ≈ 0.1. Monaghan (2011) found, using

a version of SPH with smoothed velocities, that ε = 0.8 reproduced

turbulent flow trends in decaying wall-bounded turbulence. For this

reason we employ ε = 0.8 in all of our tests.

Turning to the gas properties, Fig. 2 shows histograms of the gas

densities in the 643 homogeneous subsonic turbulence simulations,

averaged at 150 equally spaced times from t = 10 to t = 25 (inclu-

sive), normalized such that each maximum is Nmax = 1. After t = 10,

each turbulent field across all models is in an approximate statisti-

cally stationary state with ρ ≈ 1. Although the model labels include

the -z flag, we do not include metal mixing in our driven turbu-

lence simulations. We retain the suffix for cross-comparison across

the different cases in paper, and point the reader to Section 3.3 for

a discussion of turbulent metal mixing in an idealized experiment.

We note that the None and S-uz cases coincide and the lines in

the figure overlap, indicating that internal energy diffusion with a

global Cs value has no effect on the density distribution.

First, using the None case as a reference curve, the D-uz case

shows a narrower distribution between 0.75 < ρ < 1.15 with a

prominent extended tail towards higher densities. This indicates

that the D-uz case can represent a wider range of densities in the

turbulent cascade. Since the S-uz case follows the None case ex-

actly, this suggests that the localization of the diffusivity D impacts

the density resolution much more than the dependence on velocity

shear.

Introducing momentum diffusion alters the density distributions

significantly compared to the None case. In the S-uvz case, the

density distribution is tighter and exhibits no apparent wings, with

the majority of densities falling in the range 0.75 <ρ < 1.2. Here the

increased diffusivity destroys any small-scale structure by causing

densities to remain closer to the mean. However, when we employ

the D-uvz model, we find the opposite effect – localizing momen-

tum diffusion leads to a wider range of densities in the turbulent

gas compared to the all other cases. The effect is strongest at higher

densities and therefore we can conclude that the dynamic model is

able to resolve higher densities in a turbulent flow at the same mass

resolution.

3.2 Keplerian disc

In numerical studies of galaxy formation, inherent or artificial dis-

sipation in the hydrodynamical method can cause gas to lose an-

gular momentum and flow radially inwards (Hosono, Saitoh &

Makino 2016), i.e. the viscous instability. Numerical simulations

require sub-grid diffusive terms as they cannot resolve the viscous

scale, however, additional momentum diffusion enhances the vis-

cous instability. This is an important consideration for the constant-

coefficient Smagorinsky model: in a simulation of a gaseous disc

where the rotational velocity curve depends on the radius, includ-

ing momentum diffusion will trigger the viscous instability even if

there is no turbulence as the radial velocity gradient contributes to

|S∗|. A quick analytic calculation demonstrates this. Let us consider

a 2D idealized rotating gaseous disc with constant surface density

that follows a Keplerian velocity profile vφ ∝ r−1/2. For this disc,

|S∗| ∝ r−3/2 and inserting this into equation (11) with h = const.,

MNRAS 483, 3810–3831 (2019)
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Dynamic turbulent diffusion 3817

Figure 1. (Left) Probability density function of Cs, calculated with the dynamic model, in homogeneous subsonic turbulence at three resolutions – 643, 1283,

and 2563 particles. The MFM method with a cubic spline kernel is employed, with Nngb = 32. Median values of the predicted Smagorinsky constant are

Cs,64 = 0.1005, Cs,128 = 0.1017, Cs,256 = 0.1009 and are well within 2 per cent at maximum difference. (Middle) Supersonic, homogeneous turbulence at

three resolutions, with Cs,64 = 0.0668, Cs,128 = 0.0632, Cs,256 = 0.0679. (Right) Probability density function of Cs as we vary the smoothing parameter, ε, in

homogeneous, subsonic turbulence using the MFM method, with a quintic spline kernel and Nngb = 64.

Figure 2. Histograms of the density field in homogeneous subsonic turbu-

lence (643 case), normalized to the bin with the maximum particle count.

Density measurements taken from 150 snapshots between t = 10 and t =
25. Here, the None and S-uz cases coincide. The particle density contrast

in the S-uvz case is much tighter than the other cases with particles closer

to the mean density (ρ = 1). The D-uvz case is able to represent the widest

range of densities, including much higher density regions, with the same

number of fluid elements.

we find D ∝ r−3/2. Generally, for any non-constant velocity profile

vφ = vφ(r), D ∝ ∂ rvφ in the constant density case.

In a Keplerian disc, particles near the inner radii of a rotating

disc will diffuse the strongest in the standard Smagorinsky model

as the difference in velocity between each concentric ring is much

higher in this region; leading to the rapid break-up of the disc.

One could mitigate the overdiffusion by using a smaller value of

Cs in equation (11) but then the model would lose its advantages

in turbulent flows. The dynamic model provides a solution to this

problem.

We use the 2D idealized Keplerian disc as a representative case

of an astrophysical laminar shearing flow to illustrate the afore-

mentioned overdiffusion and compare to the results of the dynamic

model. We simulate a gas annulus of constant surface density using

the MFM method, with particles initialized on circular orbits about

the centre. We smooth the inner and outer edges of the annulus in

order to suppress numerical instabilities that occur at sharp bound-

aries. The particles are subject to an external softened gravitational

acceleration [a = −r(r2 + ǫ2)−3/2] directed towards the centre of

the annulus, and follow a corresponding Keplerian velocity profile.

This initial condition (IC) is identical to that in section 4.2.4 of Hop-

kins (2015), with surface density as a function of radial distance,

r,

�(r) =

⎧
⎨
⎩

(2r)3 r < 0.5,

1 0.5 � r � 2,

(1 + 10(r − 2))−3 r > 2.

(24)

In the ideal case, the disc should remain intact at any time t > 0.

We study the surface densities of the test cases involving thermal

energy and momentum diffusion, described in Table 1. As with the

driven turbulence experiments, we do not include metals despite the

model suffix-z. We include the suffix to allow for cross-comparison

across the various physical tests. The leftmost plot in Fig. 3 shows

the surface density of the disc in the Nonemodel at t ≈ 2torb,r=1. We

focus on relatively early times to decouple the effects of inherent

numerical diffusion in the MFM method with those of the turbulent

mixing models. In the None case, we see that the inner half of

the disc is noisy and in the outer region, there are density waves

propagating outward, similar to the results in Hopkins (2015). The

noise in the inner region, where the orbital time is short, is due

to numerical diffusion randomizing the particle motions; short of

altering the hydrodynamical solver, this effect is unavoidable and

is present in all of the tests we investigate here, with or without

mixing. We therefore use the None model as a baseline experiment

to compare the four mixing models.

In the rest of the four panels in Fig. 3, we show the point-wise

difference in surface density between the model in question, �i(r),

and theNone case, �None(r), normalized to the mean surface density

in the None case; i.e. ��(r)/〈�None〉 = (�i(r) − �None(r))/〈�None〉.
This allows us to compare the diffusion of energy and momentum

spatially, by observing the differences directly on the surface of the

disc.

In the mixing tests without momentum diffusion, S-uz (second

panel in Fig. 3) and D-uz (third panel, Fig. 3), the inner region

(0.5 < r < 1.0) of each annulus shows differences compared to the

None case. These are due to the false identification of turbulence

caused by two effects: (i) both models identify random particle

motions, like those in the central region, with turbulence and (ii)

the diffusivity scales as D ∝ r−3/2 in the S-uz case. The advantage

of the dynamic model is that the radial extent of the affected region

is significantly smaller compared to the S-uz case. D-uz predicts

much smaller values of Cs (median of Cs ≈ 0.026 in the D-uz case

MNRAS 483, 3810–3831 (2019)
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3818 D. Rennehan et al.

Figure 3. Normalized surface density differences between each mixing model. The leftmost plot shows the surface density profile of the None case for

comparison. The S- models lead to a more rapid break-up of the disc, especially in the case including momentum diffusion (S-uvz). The D-uz model

minimizes the difference to the None case. The dynamic diffusion of thermal energy and momentum (D-uvz) leads to an equivalent amount of differences to

the S-uz case but the break-up of the disc, due to the overdiffusive S-uvz case, is avoided.

Figure 4. The azimuthally averaged differences in surface density for the

Keplerian disc experiments, between each mixing model i and theNone case

at t ≈ 2torb. The D-uz, D-uvz, and S-uz cases show small fluctuations

around the None case whereas the S-uvz model causes large differences

due to overdiffusing momentum.

compared to Cs = 0.2 in S-uz) and, therefore, the differences with

the None case are mostly limited to the relatively noisy central

annulus.

From Fig. 3 we see that the addition of momentum diffusion (the

S-uvz and D-uvz cases, two rightmost panels) causes increased

noise throughout the disc. Specifically for theS-uvz case, the noise

in the disc extends radially to the outer boundary, and the material

spreads into the central region, compared to the None case (notice

the faint pink annulus). There is also a corresponding deficit of gas

at R ≈ 0.5 (blue ring) showing that gas has collapsed due to the

viscous instability. Comparing D-uvz to the None case, we see

that the differences do not extend to the boundary, but rather follow

the density waves in the disc caused by natural dissipation in MFM.

The central noisy region has the same extent as in the S-uz case but

with no apparent in-fall of material into the central region. These

results indicate that the dynamic model allows momentum diffusion

in laminar shear flows without instigating the viscous instability.

In Fig. 4, we show the azimuthally averaged difference between

the surface density in each mixing model, �i, and the None case,

�None, in order to get a more quantitative estimate of the extent

of overdiffusion. Both S-uz and D-uz are nearly identical to the

None case, except in the innermost region (R � 1 for S-uz and R

� 0.7 for D-uz) where there are slight fluctuations about the None

value. The differences compared to the None case are reduced

because of the azimuthal averaging.

Introducing momentum diffusion results in greater quantitative

differences in the disc. The S-uvz model results in significant

flows (inwards and outwards) in the annulus relative to the None

case. For example, angular momentum transport causes some of the

material at R ≈ 0.5 − 0.6 to flow inwards due to loss of angular

momentum, and some to flow outward. This occurs throughout

the disc, resulting in fluctuations extending to the outer edge of

the disc. These flows lead to the S-uvz case showing regions

of higher densities between 0.6 � R � 1.8. Comparatively, the

small fluctuations in the D-uvz case are similar to the models

without momentum diffusion. The dynamic model clearly reduces

the impact of the viscous instability, but a question then arises:

why does the dynamic model not eliminate the viscous instability

completely?

The dynamic model formally predicts Cs = 0 for all of the gas

particles. Prior to t ≈ 0.4torb, virtually all of the particles have a

near zero value of Cs. However, by t ≈ 2torb, turbulent momentum

diffusion and the inherent noise in the inner regions lead to a small

non-zero distribution centred at approximately Cs ≈ 0.04 (ignoring

particles with Cs = 0). Overall, the particles have a median value

of Cs ≈ 0.026 when including the 21.4 per cent of particles at Cs =
0. Although we cannot avoid the inherent numerical noise, due to

MFM’s Riemann solver, the dynamic method does minimize the

damage: in standard implementations, Cs is in the range ≈0.1−0.2

(Garnier et al. 2009) while in the dynamic model, only a small

fraction (≈7 per cent) of the particles attain such values.

These tests show that in the case of a rotating, laminar shear flow,

the dynamic model (D-uvz) can indeed minimize turbulent mixing

of thermal energy and momentum – preventing unphysical viscous

flows within the disc. Therefore, we recommend incorporating the

dynamic Smagorinsky model in all numerical simulations involv-

ing rotating galactic discs which simultaneously include turbulent

mixing models.

3.3 The Kelvin–Helmholtz instability

In a fluid with high-velocity shear, or at the shearing interface

between two fluids, rapidly growing perturbations cause mixing

within the fluid. In the case of a shear interface, the perturbations

cause the two fluids to encroach the boundary, transporting and

mixing fluid properties such as thermal energy, momentum, and

metals. This is the Kelvin–Helmholtz (KH) instability, and the time-

scale characterizing the growth of perturbations is given by,

τKH =
(ρ1 + ρ2)
√

ρ1ρ2

λ

�v
, (25)

where ρ1, ρ2 are the densities of the two fluids, �v is the velocity dif-

ference, and λ is the wavelength of the perturbation (Chandrasekhar

1961). In the t < τKH regime (the linear regime), the flow has not

completely transitioned to turbulence and sub-grid turbulent mixing

does not dominate the resolved mixing.
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Dynamic turbulent diffusion 3819

Shear flows, and hence KH instabilities, are ubiquitous in galac-

tic environments: ram pressure stripping of galaxies falling into

groups and clusters, galaxy mergers, galactic winds streaming into

the CGM, and a myriad of other processes involve the KH insta-

bility. The constant-coefficient Smagorinsky model overdiffuses in

such situations because it identifies shearing motion with turbu-

lence, as discussed in Section 3.2, and the presence of high shear

increases the diffusivity to the maximum at the interface. Ideally,

sub-grid turbulent mixing models that better reflect physical real-

ity are preferable. More precisely, models that capture unresolved

mixing in turbulent situations and avoid diffusion in laminar shear

flows.

We investigate a simple 2D KH test in order to demonstrate

the overdiffusive nature of the standard Smagorinsky model and

determine if the dynamic model mitigates the problem. We set up

a 2D configuration of 2562 ideal gas particles in a square (L = 1)

domain, with constant pressure, and with an initial density profile,

ρ(y) =

⎧
⎪⎪⎨
⎪⎪⎩

ρ2 − (�ρ/2) exp [(y − 1/4)/�y], 0 � y < 1/4

ρ1 + (�ρ/2) exp [(1/4 − y)/�y], 1/4 � y < 1/2

ρ1 + (�ρ/2) exp [(y − 3/4)/�y], 1/2 � y < 3/4

ρ2 − (�ρ/2) exp [(3/4 − y)/�y], 3/4 � y < 1

(26)

and initial velocity profile,

vx(y) =

⎧
⎪⎪⎨
⎪⎪⎩

−1/2 + (1/2) exp [(y − 1/4)/�y], 0 � y < 1/4

1/2 − (1/2) exp [(1/4 − y)/�y], 1/4 � y < 1/2

1/2 − (1/2) exp [(y − 3/4)/�y], 1/2 � y < 3/4

−1/2 + (1/2) exp [(3/4 − y)/�y], 3/4 � y < 1.

(27)

We choose ρ2 = 2, ρ1 = 1, and �y = 0.025, and introduce a sine

wave velocity perturbation, with period T = 2 and amplitude A =
0.01, at t = 0. This gives a perturbation wavelength λ = 1/2, and

therefore τKH ≈ 0.71. In addition, we add a uniform passive scalar

tracer of concentration Q = 1 to all gas particles in the range 0 ≤ y

< 1/4 and 3/4 ≤ y < 1, which is the higher density gas. We focus

our analysis on the evolution of the tracer concentration Q.

Fig. 5 shows the tracer concentration at t = 0.28τKH (i.e. in

the linear regime). The five panels show the five mixing models

described in Table 1. We first consider the None case. The tracer

concentration Q follows the high-density regions of the experiment

and we see individual particles advecting across the shear interface.

Although there appears to be less tracer on this interface (orange-red

line), it is impossible for particles to exchange tracer in the None

case. The interpolation method we employ causes this effect as it

smooths the particle properties over the resolution scale h, leading

to a minuscule amount of artificial mixing.

When we allow for the turbulent mixing of the tracer in the S-

and D- cases, we see diffusion occurring along the shear interface.

In both S- models, Q ∼ 10−2 at the interface and the tracer engulfs

the initially pristine, lower density gas in the whorls. This is in

contrast to the two D- cases where the majority of diffusion occurs

in the whorls themselves with comparatively little along the rest of

the interface. The constant-coefficient Smagorinsky model diffuses

the most because of the false identification of strong turbulence

through the norm of the shear tensor |S∗|. The velocity profile

in equation (27) shows that although the flow is laminar, there

is a gradient, |∂vx/∂y| > 0, across the entire domain. Based on

our arguments for the Keplerian disc in Section 3.2, the fact that

D ∝ |∂vx/∂y| directly leads to the overdiffusion of the tracer. The

diffusion coefficient D also depends on |S∗| in the D- models but in

the dynamic model most of the values of Cs are near zero. Only in

the whorls do we find values of Cs as large as Cs = 0.2 but these are

limited to this region – where the transition to turbulence begins.

Overdiffusion in non-turbulent shear flows can have important

consequences for the gas in numerical studies of galaxy formation. If

the KH time-scale is longer than the gas cooling time, then the gas is

susceptible to overcooling in the whorls due to metals transferred to

the region. This does not accurately capture what physically occurs

at the sub-grid level; in the linear regime, the fluids do not mix

completely. The dynamic model solves this issue by minimizing

mixing along the interfaces while allowing it to proceed in the

whorls where, in principle, the KH instability continues down to

unresolved scales.

4 ISOLATED DI SC GALAXY

Here we investigate an isolated galaxy in order to test the effects of

localized diffusion in a more realistic, physical environment.

4.1 Initial conditions

We follow the method outlined in Springel, Di Matteo & Hernquist

(2005) to set up the ICs, using the GALSTEP package11 (Ruggiero &

Lima Neto 2017) in combination with DICE12 (Perret et al. 2014).

The galaxy is a Milky Way-like system (Sokołowska et al. 2016)

consisting of a dark matter halo of mass Mh = 1012 M⊙, a gaseous

halo of mass Mgh = 3 × 1010 M⊙, a stellar bulge of mass Mb = 1010

M⊙, and gas and stellar discs of masses Mg = 1010 M⊙ and Ms =
5 × 1010 M⊙, respectively. The dark matter and bulge components

follow a Hernquist density profile with scale factors a = 47 kpc and

a = 1.5 kpc, respectively. The stellar and gaseous discs follow an

exponential density profile with a radial scale Rd = 3.5 kpc, and

the scale heights for these components are z0 = 0.7 kpc and z0 =
0.0175 kpc, respectively. We initialize the gaseous halo metallicity

at Zgh = 10−3 Z⊙, and the gaseous disc metallicity at Zg = Z⊙/3,

with Z⊙ = 0.02 (Anders & Grevesse 1989). Our fiducial run is

carried out at a gas mass resolution of Mg,res = 5 × 103 M⊙, along

with the softening values specified in Table 2. We evolve the disc

for 2 Gyr in an isolated (non-cosmological) setting.

4.2 Galactic physics

4.2.1 Star formation and cooling

We employ the sub-grid multiphase ISM model of Springel & Hern-

quist (2003a), which places the ISM gas (nH > n∗,crit, where n∗,crit

is the star formation density threshold) on an effective equation

of state (EoS). This model has been used extensively in numerical

galaxy formation studies (for recent examples, see Genel et al. 2014;

Schaye et al. 2015; Grand et al. 2017), and provides well-converged

results (Springel et al. 2005). For primordial and metal-line cool-

ing, we use the GRACKLE-2.1 cooling library (Smith et al. 2017) in

combination with the UV background from Faucher-Giguère et al.

(2009).

In this sub-grid model, stars form stochastically, on a star forma-

tion time-scale tsfr, from gas that reaches a density n∗,crit. Here we

take n∗,crit = 0.1 cm−3 and tsfr = 2.1 Gyr, which give a good fit to the

Kennicutt law (Kennicutt 1998; Springel & Hernquist 2003a). We

11https://github.com/ruggiero/galstep
12https://bitbucket.org/vperret/dice
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3820 D. Rennehan et al.

Figure 5. A comparison of tracer concentrations Q, in the 2D Kelvin–Helmholtz instability test at t = 0.28τKH, simulated with the MFM method. The columns

represent the five turbulent mixing models. In the None case, gas particles cannot exchange the tracer concentrations and the interface of the instability remain

unsmoothed. In this case, inter-fluid mixing only occurs when particles move across the boundary. The S- cases diffuse rapidly due to the presence of strong

shear at the boundary, and the tracer engulfs the whorls during the early evolution of the instability. The D- cases provide a compromise between the two

situations – they limit diffusion strictly to the interface between the two fluids, and the internal structure of the whorls are distinguishable.

Table 2. Parameters for the isolated galaxy.

Component Particle mass (M⊙) Min. softening (pc) Npart

Gas 5.0 × 103 1.4 8 × 106

Halo 5.0 × 105 12.0 2 × 106

Disc 5.0 × 105 3.2 1 × 105

Bulge 2.5 × 105 1.4 4 × 104

differ from the original model in the choice of the initial mass func-

tion (IMF). We assume the Chabrier IMF (Chabrier 2003) instead

of the Salpeter IMF (Salpeter 1955).

4.2.2 Feedback

Due to lack of resolution, it is necessary to include a sub-grid model

for feedback from stars, including the effects of supernovae, stellar

radiation, and stellar winds.

For massive stars, we adopt the scheme used in the MUFASA

simulations (Davé, Thompson & Hopkins 2016; Davé et al. 2017)

and refer the reader to these references for a detailed description. In

brief, stellar feedback is expected to drive galactic outflows and, in

the MUFASA approach, stellar feedback directly launches a kinetic

wind via a two-parameter model that characterizes the net effect of

stellar feedback into a mass loading factor η, and the wind speed vw.

These parameters are calibrated to the FIRE wind scalings (Muratov

et al. 2015), where η scales with the stellar mass of the host galaxy

and vw scales with the galaxy’s circular velocity. We fix η and vw to

the values for our isolated system based on equations 6 and 7 in Davé

et al. (2016). At launch, the outflow hydro-dynamically decouples,

and only recouples if the wind speed drops to 50 per cent of the

local sound speed, the density of the ambient medium is 1 per cent

of the ISM density, or the outflow has travelled for 2 per cent of

the Hubble time at launch (Davé et al. 2016). For a more detailed

description of the decoupled outflow model, see Springel et al.

(2005), Oppenheimer & Davé (2008), Liang et al. (2016), and Davé

et al. (2016).

The contribution from supernovae type Ia (SNIa) are modelled

following Scannapieco & Bildsten (2005) as a prompt and delayed

component, where the prompt component occurs simultaneously

with SNII, and the delayed component begins 0.7 Gyr after the star

formation time. The prompt component is assumed to release 1051

erg of thermal energy to the star-forming gas, whereas the delayed

component is added in a kernel-weighted manner to the nearest 16

gas particles.

4.2.3 Chemical enrichment

The chemical enrichment of gas is paramount to the study of tur-

bulent mixing as the metallicity follows the mixing of energy and

momentum, and, therefore, provides a tracer for the diffusion equa-

tion. We track 11 chemical elements in our isolated and cosmolog-

ical simulations: H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe. These

elements are produced from three sources in the simulations: SNIa,

SNII, and the winds from AGB stars.

For SNIa, the prompt component returns mass to the ISM and

enriches the star-forming gas instantaneously. Each SNIa is assumed

to release 1.4 M⊙ of metals, with yields from Iwamoto et al. (1999).

For the delayed component, stars deposit metals over their nearest

16 neighbouring gas particles in a kernel-weighted fashion.

SNII return mass and enrich the gas via the instantaneous recy-

cling approximation (Springel & Hernquist 2003a; Oppenheimer &

Davé 2008; Davé et al. 2016) following,

�Zi = (1 − fSN) · yi(Z) ·
�t

tsfr

, (28)

where fSN is the fraction of stars in the Chabrier IMF expected to

go supernova, yi(Z) is the metallicity dependent yield of species

i, �t is the time-step, and tsfr is the aforementioned star forma-

tion time-scale. The SNII yields follow Nomoto et al. (2006) and

are a function of the metallicity of the gas receiving the metals.

Following Davé et al. (2016), the SNII yields are reduced by a

factor of 0.5 in order to match the mass–metallicity relationship.

SNII also return mass into the gas via the instantaneous recycling

approximation.

For AGB stars, chemical enrichment is done in a kernel-weighted

fashion over the nearest 16 neighbours. AGB yields are obtained

from a lookup table as a function of age and metallicity based on the

study in Oppenheimer & Davé (2008). The mass-loss rates of the

AGB stars are calculated from a lookup table based on Bruzual &

Charlot (2003) stellar models.

4.3 Results: disc stability

Fig. 6 shows radial disc profiles of the surface density (left-hand

panel) and entropy13 (right-hand panel) in our isolated galaxies

after 1.27 Gyr of evolution. The dotted line represents the IC for all

models. The differences between models only appear after 1 Gyr

(≈4 rotations in the mid-disc) and continue until star formation

consumes the bulk of the gas after 2 Gyr.

13The entropy scales as S ∝ ln(P/ργ ), and therefore our measure is off by a

multiplicative constant.
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Dynamic turbulent diffusion 3821

Figure 6. Isolated galaxy radial disc profiles at t = 1.27 Gyr, averaged azimuthally and vertically between ±0.5 kpc from the plane of the disc. (Left) The gas

surface density. (Right) A monotonic measure of the gas entropy. The dotted line in both plots represents the corresponding profile in the IC, which is identical

for all models. Over time, the normalization of the surface density decreases due to gas consumption and stellar feedback. The dynamic model with thermal

energy and momentum diffusion (D-uvz) produces a more stable disc whereas the constant-coefficient model (S-uvz) shows a more concentrated central

region.

First, we consider the None case. The radial surface density

(left-hand panel, Fig. 6) gives a measure of the stability of the

disc. We see that by t = 1.27 Gyr, compared to the shape of the

IC density profile, the gas has moved inwards towards the centre,

especially within R < 3 kpc. A combination of the bar instability and

inherent numerical dissipation causes the gas to concentrate inside

R ≈ 2 kpc, whereas gas consumption and galactic winds due to

supernova feedback cause the difference in normalization compared

to the IC. Correspondingly in the right-hand panel, there is an order-

of-magnitude increase in entropy from R = 1 kpc to R = 3 kpc.

In the S-uz and D-uz models, we see only minor difference

in the surface density and entropy compared to the None case.

Evidently, thermal energy diffusion, combined with metal diffusion,

has negligible impact on the structure of the disc.

When we introduce momentum diffusion in the S-uvz and D-

uvz cases, the differences compared to the None case at t =
1.27 Gyr are more significant. Fig. 6 shows that in the S-uvz

case there is an order-of-magnitude deficit of gas surface density

(left plot) between R = 1 kpc and R = 3 kpc with a corresponding

jump in entropy (right plot). Overdiffusion of momentum due to the

diffusivity scaling strongly with the shear causes the inward flowing

gas to be more centrally concentrated compared to the None case,

and also engenders an outward flow leading to slightly higher den-

sity (again, compared to None) at R ≈ 4–7 kpc. Once the instability

occurs, the effect accelerates and the trend remains throughout the

evolution of the disc. However, with the dynamic model (D-uvz),

less gas gets redistributed. From the surface density, we see that the

disc stabilizes when momentum is diffused locally, based on the

turbulent character of the flow.

4.4 Results: metal distribution functions

Supernovae and stellar winds inject energy and metals into the

ISM, engendering turbulent motion that mixes and spreads ther-

mal energy, momentum, and metals throughout the medium. These

processes also drive a galactic-scale wind that deposits metals and

drives turbulence in CGM (Evoli & Ferrara 2011).

In order to obtain a measure of energy and metal mixing in the

five models under consideration (see Table 1), we examine MDFs

in three phases of gas: (1) gas with density above the star formation

critical density (nH > 0.1 cm−3) – i.e. the ISM gas, (2) warm CGM

gas in the halo in the range 105 K <T < 106 K, and (3) hot CGM

gas with T > 106 K. The gas density in the latter two phases is nH

≤ 0.1 cm−3. In our isolated system, we find that the cool, non-star-

forming gas (T < 104 K) is mostly at the outskirts of the halo and

that there are no significant variation in its MDFs between models.

Therefore, we do not discuss this phase further in the isolated case.

Fig. 7 shows the MDFs for the ISM, the warm CGM, and the hot

CGM, at three separate evolutionary times: t = 0.25 Gyr (top row),

0.50 Gyr (middle row), and 0.75 Gyr (bottom row) after the ICs for

the MFM method. Henceforth, we use [Z] ≡ log (Z/Z⊙) as a proxy

for metallicity.

First, we focus on the ISM shown in the left column of Fig. 7. At

t = 0.25 Gyr, the MDF of the None case is bimodal with a narrow

peak at [Z] ≈ −0.3, a broad distribution at [Z] < −0.5 with a peak

at [Z] = −1.2, and a dearth at [Z] = −0.5. Gas in the ISM with

metallicity lower than the initial [Z] ≈ −0.5 comes from the lower

metallicity (initial [Z] = −3.0) halo gas that cools on to the disc

and is steadily enriched. Recall that in the None case, gas cannot

exchange metals between particles and therefore it gives an upper

bound on the mixing time-scale for a given metal injection rate from

stars. The D- cases follow the None case with minimal differences,

therefore we conclude that the D- cases provide minimal turbulent

mixing in the ISM. The S- cases share the basic shape as the other

cases but the lower metallicity component is narrower (there is very

little gas with [Z] < −2.0), and is shifted to the right, with peak

[Z] ≈ −0.9. The overdiffusivity of the S- cases is apparent and is

caused by the high levels of shearing motion in the supersonic ISM,

leading to high values of the diffusivity D, similar to the Keplerian

disc in Section 3.2.

At t = 0.5 Gyr in the ISM (left column, middle row), the low-

metallicity component of the MDF for all cases has narrowed and

shifted towards higher metallicity. In the None case, the tightening

is due to stars depositing metals into the medium and driving all

of the gas towards highly metallicities. Here, the D- cases follow

the None case closely – as at t = 0.25 Gyr – while the S- cases

have a smaller spread. We attribute the differences between the D-

and S- cases to the dynamic model predicting median diffusivities

orders-of-magnitude lower than the constant-coefficient Smagorin-

sky model in the ISM at t > 0.25 Gyr.

MNRAS 483, 3810–3831 (2019)
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3822 D. Rennehan et al.

Figure 7. The MDFs for the isolated disc galaxy in solar units (Z⊙ = 0.02). Each column represents a specific region of T−ρ phase space. The leftmost

column represents the ISM, whereas the middle and rightmost columns show the MDFs for the warm (105 K <T < 106 K) and hot (T > 106 K) CGM,

respectively. Each row represents a different time in Gyr: t = 0.25 Gyr, 0.50 Gyr, and 0.75 Gyr from top to bottom, respectively. Dynamic diffusion slows

metal mixing in the ISM and causes increased mixing in the CGM, at approximately the same levels as the constant-coefficient Smagorinsky model.

By t = 0.75 Gyr, all cases have tight distributions with very

few particles having [Z] < −1.5. None and D- cases continue to

exhibit very similar distributions with a larger spread compared to

the S- cases.

Now we consider the MDFs of the warm CGM, in the middle

column of Fig. 7. In the None case at t = 0.25 Gyr, the distribution

is bimodal with peaks at [Z] ≈ −0.5 and [Z] = −3.0. The peak at

[Z] = −3.0 is the initial halo metallicity whereas the peak at [Z] ≈
−0.5 is due to enriched gas either pushed out of the ISM by stellar

winds or at the interface between the CGM and ISM. The D- and

S- cases closely follow the None case, but with a slight spread

towards [Z] > −3.0 for the low-metallicity gas.

Next we consider the t = 0.5 Gyr and t = 0.75 Gyr cases. In all

of the experiments, the flow of the enriched ISM gas into the CGM

results in an increase in the fraction of particles near [Z] ≈−0.5. The

differences near [Z] = −3.0 between the None and S-/D- cases are

due to the inability of the gas in former case to mix metals. For the

None case, a spread only occurs if the gas enters the CGM at [Z]

> −3.0 from the ISM, or the CGM gas at the ISM–CGM boundary

becomes enriched via the kernel-weighting approach associated

with delayed SNIa and AGB wind feedback. Recall that in this

implementation, metals are deposited in a kernel-weighted fashion

over the nearest 16 neighbouring particles. Therefore, gas classified

as CGM, that is spatially adjacent to the star-forming gas in the

ISM, can be enriched at low levels. The gas in the turbulent mixing

cases consistently exchange metals if the value of Cs is non-zero,

and the gas-phase metals in the halo further mix – leading to the

greater spread in the lower peak at [Z] = −3.0, corresponding to

the bulk of the initial gas. The D- cases show the aforementioned

spread in the metallicity in the range −3.0 < [Z] <−1.75, indicating

increased mixing due to sub-grid turbulence, but then coincides with

the None case for metallicities [Z] > −2.0. The S- and D- cases

share a similar distribution below [Z] < −2.25 but the S- cases

show more particles with metallicities in the range −2.25 < [Z] <

−0.75, indicating even greater mixing than the D- cases.

The MDFs in the hot CGM, the rightmost column of Fig. 7, follow

similar trends to the those in the warm CGM. At t = 0.25 Gyr for

the None case, the peak due to enriched ([Z] ≈ −0.3) ISM gas

entering the halo is prominent. There is also a small spread at [Z] =
−3.0 for reasons already noted.

At t ≥ 0.5 Gyr, the None case undergoes slight evolution and by

t = 0.75 Gyr, a mild positive slope develops in the range −2.5 ≤
[Z] ≤ −0.75. The D- and S- cases follow near identical evolution

at these later stages of the simulation, each with a spread in the

distribution at [Z] = −3.0. Here the differences between the S- and

D- cases are minimal since the hot gaseous halo is turbulent and

dominated by random motions, driven by the galactic outflows.

Our isolated experiment demonstrates that by endowing parti-

cles with diffusivities based on the local fluid properties, we ob-

tain significant differences in the ISM. The constant-coefficient

Smagorinsky model causes the MDFs in the ISM to rapidly tighten

towards the mean value, whereas the dynamic model predicts

MNRAS 483, 3810–3831 (2019)
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Dynamic turbulent diffusion 3823

diffusivities orders-of-magnitude smaller and the corresponding

MDFs closely follow the None case. Simultaneously, in the hot

turbulent halo, the constant-coefficient and dynamic Smagorinsky

models produce similar distributions by t = 0.5 Gyr due to the lat-

ter having higher values of Cs. Overall, for the constant-coefficient

model, non-negligible shear in all gas phases causes the rapid diffu-

sion of fluid properties, whereas the dynamic model allows different

regions of phase space to undergo unique evolution in terms of the

MDFs. We stress the importance of the unique evolution of both

phases of gas: with a constant Cs, it is impossible to capture the

decreased mixing in the ISM while simultaneously capturing the

high level of mixing in the hot turbulent halo. The dynamic model

provides an interesting avenue for follow-up study with zoom-in

simulations, in order to gauge the impact on the ISM and CGM in

a cosmological context.

5 C O S M O L O G I C A L VO L U M E S

As we demonstrate in the previous section, turbulent mixing can

alter the distribution of metals in various gas phases of an isolated

disc experiment depending on the localization of Cs. In a realistic

cosmological environment, the evolution of galaxies is much more

complex due to interactions between the galaxies and their envi-

ronments. These interactions include galaxy mergers, gas inflows

and outflows, tidal interactions, ram pressure stripping, etc. – all

of which contribute to the production of turbulence in the galac-

tic environments (Iapichino et al. 2013; Schmidt et al. 2016). The

resulting turbulence redistributes thermal energy, momentum, and

metals, and must be included in numerical studies of galaxy evo-

lution in order to have a self-consistent treatment of the physical

models.

In contemporary Lagrangian-based numerical cosmological ex-

periments, SPH has been employed in simulation programs such

as EAGLE (Schaye et al. 2015), OWLS (Schaye et al. 2010), and

Romulus (Tremmel et al. 2017), whereas recently MFM method has

been employed in the MUFASA (Davé et al. 2016, 2017) simula-

tions. These experiments have produced a wealth of results for un-

derstanding galaxy evolution and gas properties (see Somerville &

Davé 2015; Naab & Ostriker 2017 for a summary), despite the fact

that it is not possible for contemporary models to include all of

the relevant physics.14 Including sub-grid turbulent mixing could

alter the results of such large-scale simulations. Indeed, Tremmel

et al. (2018) argue that turbulent mixing is critical for efficient re-

distribution of thermal energy released during active galactic nuclei

episodes, and in previous sections, we showed that metal redistri-

bution is also affected by turbulent mixing. In models where the

overdiffusive Smagorinsky model is used, the dynamic model can

lead to differences in, for example, gas-phase metal abundances

and hence, stellar abundances. In principle, the differences in the

manner and the rate at which metals are distributed could also affect

the formation sites and population statistics of Population III stars

and direct collapse seed SMBHs (see Section 1).

In this section, we examine a set of cosmological simulations

in order to test the effects of the dynamic model on the global

gas enrichment levels and distributions. In what follows, we adopt

the MUFASA model (Davé et al. 2016) in combination with the

diffusion models we describe in Table 1. We choose to use the

MUFASA model partly because it is the only cosmological model

that has been implemented using the MFM method at the present.

14For several examples see Naab & Ostriker (2017).

Table 3. Parameters for the cosmological simulations. We use the Planck

Collaboration XIII (2015) cosmological model.

Simulation parameters

L 25 Mpc h−1

N 2 × 2563

mg 1.26 × 107 M⊙ h−1

mdm 6.88 × 107 M⊙ h−1

εsoft,min 0.5 kpc h−1

zinit 70

Tinit 59 K

Cosmological model

�m,0 0.308

��,0 0.692

�b,0 0.048

h 0.678

σ 8 0.815

ns 0.968

The ICs were created using a modified version of GRAFIC-215

(Bertschinger 2011) and the parameters describing our simulations

are listed in Table 3. In the following subsection, we briefly describe

the MUFASA models, and point interested readers to Davé et al.

(2016) and Davé et al. (2017) for a more detailed explanation of

the physical models. In Sections 5.3 and 5.4 we examine the global

gas-phase metallicity fractions and the MDFs, respectively, from

the simulation suite.

5.1 MUFASA

The MUFASA simulations include the sub-grid models we de-

scribed in Section 4.2 and sub-sections therein, with some modifi-

cations to the star formation recipe and feedback described in the

following sub-sections.

5.1.1 Star formation

Star formation is based on the molecular gas model of Krumholz,

McKee & Tumlinson (2009), and the implementation dynamically

calculates the fraction of molecular hydrogen in gas particles, fH2
,

based on the gas surface density and the metallicity. For more precise

details, see Davé et al. (2016) and Krumholz et al. (2009). The star

formation rate follows,

dρ∗

dt
= ǫ∗

ρfH2

tdyn

, (29)

where tdyn = (Gρ)−1/2 is the local dynamical time, ρ is the density of

the gas, and ε∗ = 0.02 is the efficiency of star formation (Kennicutt

1998). The critical density of star formation is taken at n∗,crit =
0.2 cm−3 following Davé et al. (2016).

For our cosmological simulations, we do not employ the sub-

grid ISM model of Springel & Hernquist (2003a), however we still

require that the Jeans mass is resolved. Therefore, in order to prevent

numerical fragmentation at high densities, an artificial pressure is

applied above a density

nth =
3

4πμmp

(
5kbT0

Gμmp

)3(
1

Nngbmg

)2

, (30)

15http://web.mit.edu/edbert/
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3824 D. Rennehan et al.

Table 4. We separate gas in our cosmological simulations into five phases:

the ISM, cool CGM, HHG, WHIM, and cool diffuse gas (DIFF). ρ∗ is the star

formation threshold, n∗,crit = 0.2 cm−3 and we give ρbound in equation (33).

Name Density range Temperature range

ISM ρ > ρ∗ Any

CGM ρ∗ > ρ > ρbound Below equation (36)

HHG ρ > ρbound Above equation (36)

WHIM ρ < ρbound T > 105 K

DIFF ρ < ρbound T < 105 K

where mg is the gas particle mass, μ = 1.22, T0 = 104 K, and Nngb =
64 is the number of neighbours. The pressure is applied in the form

of a minimum temperature (Teyssier et al. 2011; Davé et al. 2016),

TJMT = T0

(
n

nth

)1/3

. (31)

5.1.2 Feedback

In Section 4.2.2, we described the decoupled-wind model for mas-

sive star feedback in addition to feedback from supernova type-Ia

(SNIa) and asymptotic giant branch (AGB) stars. We use the same

in the following experiments.

The simulations we present here do not include explicit active

galactic nucleus (AGN) feedback. AGN feedback is thought to be

necessary to prevent excessive cooling and quench star formation in

massive systems (see King & Pounds 2015 for a recent review), but

our smaller simulation volumes do not include many such systems.

We do, however, include an effective AGN feedback model from

the MUFASA simulations that mimics the action of AGN feedback,

and suppresses cooling of the diffuse halo gas. Specifically, gas

that is not self-shielded in haloes with Mhalo > Mq [where Mq =
(0.96 + 0.48z) × 1012 M⊙] is heated to 20 per cent above the virial

temperature of the halo (Mitra, Davé & Finlator 2015). The virial

temperature follows (Balogh, Babul & Patton 1999; Voit 2005),

Tvir = 9.52 × 107

(
Mhalo

1015M⊙h−1

)2/3

K. (32)

5.2 Gas phases

We define five separate gas phases for the following subsections,

and examine their properties in a global sense over the entire sim-

ulation volume. We give a summary in Table 4. The definitions are

largely from Davé et al. (2010), except for the definition of the

gas associated with the CGM of galaxies. For density, we cut the

gas phase space using two thresholds ρbound and ρ∗, with ρbound =
ρbound(z) following,

ρbound(z)

�b(z)ρc(z)
= 6π2

(
1 + 0.4093

(
1

�m(z)
− 1

)0.9052)
− 1, (33)

where

�m(z) =
�m,0(1 + z)3

�m,0(1 + z)3 + ��,0

, (34)

�b(z) =
�b,0(1 + z)3

�m,0(1 + z)3 + ��,0

, (35)

ρc(z) = 3(H(z))2/(8πG), and H (z) = H0

√
�m,0(1 + z)3 + ��,0.

For the second density cut, we adopt ρ∗ = 4.4 × 10−25 g cm−3,

the star formation density threshold. We have also applied a single

temperature cut at T5 = 105 K to separate the warm-hot intergalac-

tic medium (WHIM) from the cold diffuse gas (DIFF). Following

Torrey et al. (2017), we apply a cut to distinguish the hot halo gas

(HHG) from the cool CGM,

log

(
T

106 K

)
= 0.25 log

(
n

405 cm−3

)
, (36)

where T is the gas temperature, and n is the gas density. We define

the HHG to be above the temperature threshold in equation (36),

and the CGM to be below.

It is important to note that these density and temperature cuts

do not distinguish gas domains that precisely correspond to their

associated galactic or inter-galactic regions. At high redshift (z

� 5), most of the gas classified as the WHIM phase is spatially

located in the region that mostly corresponds to the CGM/HHG, and

corresponds to outflowing galactic winds from early star formation,

which gives rise to low-density, high-temperature gas. Similarly, a

fraction of the gas classified as the CGM at z � 1 is in the cores of

the cosmic filaments. However, by z = 0, the majority of what we

consider the CGM is indeed inside the haloes, and the cores of the

filaments eventually end up in the WHIM phase. This introduces a

transition from CGM to WHIM gas that might not be obvious at

first glance. We have not tried to address these trends or optimize

the phase cuts because the present study does not pertain to the

evolution of the phases per se, but rather the effect of differences in

mixing strength on approximately physical phase-space cuts.

5.3 Global gas evolution

Fig. 8 shows the enriched fraction as a function of redshift, i.e. the

ratio of the enriched gas mass to the total gas mass in each phase

for two metallicity cuts: [Z] > −5.0 (left) and [Z] > −3.0 (right).

We use [Z] ≡ log Z/Z⊙ as a proxy for metallicity, where Z is the

mass fraction of metals in a gas particle, and Z⊙ = 0.02 is the solar

metal mass fraction (Anders & Grevesse 1989). The rows represent

the five phases defined in Table 4.

We first focus on the [Z] > −5.0 cut and start by examining

the ISM results in the top row of Fig. 8. In the None case, the

fraction of gas enriched to [Z] > −5.0 exceeds 90 per cent at z = 4,

reaches a peak at z = 0.5, and then very slightly downturns by z = 0

due to accretion of low-metallicity gas. Note that, in the following

discussion, the differences between models are more important than

the absolute values. In the S- models, gas is enriched much earlier

and we see 95 per cent of gas above [Z] > −5.0 by z = 9. We do

not observe the same slight downturn as in the None case. This is

not surprising. The overdiffusive nature of the S- model leads to

a reduced fraction of low-metallicity gas. By z = 0, 100 per cent

of the gas is above [Z] > −5.0 in the S- models. Until z ∼ 1, the

D- models show enrichment levels intermediate between the None

and S- cases. At z < 1, the D-uz case continues this trend while

the D-uvz model exhibits the biggest downturn.

In the CGM, the second row in Fig. 8, we notice similar trends

to the ISM, at enrichment levels [Z] > −5.0. For the None case,

the gas is 30 per cent enriched at z = 385 per cent (the peak) at z =
0.5, followed by a slight downturn. The S- models follow the same

qualitative trend but are at a constant 10 per cent above the None

case, while the D- models remain in between the S- and None

curves at all times.

We do not discuss the details of the trends in the following three

rows: the HHG, DIFF, and WHIM phases, respectively, but include

them for completeness. In these gas phases, the differences between

MNRAS 483, 3810–3831 (2019)
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Dynamic turbulent diffusion 3825

Figure 8. The enriched fraction as a function of redshift, defined as the mass fraction of gas with Z > 10−5 Z⊙ (left) and Z > 10−3 Z⊙ (right) in each phase.

The phases are, from top to bottom: ISM, cool CGM, HHG, DIFF, and the WHIM. Dynamic diffusion results in higher enriched fraction at the [Z] > −5 level,

while maintaining a similar fraction to the no-mixing case above [Z] > −3. The constant-coefficient Smagorinsky model increases the enriched fractions at all

metallicity cuts.

MNRAS 483, 3810–3831 (2019)
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3826 D. Rennehan et al.

mixing models are qualitatively the same as the CGM, whereas the

S- and D- cases show significant increased enrichment above [Z]

> −5.0.

Now we focus on the higher metallicity cut, [Z] > −3.0, in the

ISM (top, right panel in Fig. 8). In the None case, gas is enriched

over 90 per cent starting at redshift z = 2, reaches a peak at z ≈ 0.5,

and turns down by z = 0. The trend for the [Z] > −3.0 gas is similar

to that for the [Z] > −5.0 gas. The normalization of the curve is

lower than at the [Z] > −5.0 threshold, as expected, since gas is

enriched at higher metallicities later in cosmic evolution. In the S-

cases, gas is enriched above 90 per cent (for the [Z] > −3.0 cut)

earlier compared to the None case, starting at z = 3, and remains

above the None case at all times. The S- cases show a similar

downturn to the None case near z ≈ 0.5. Enrichment levels in the

D-uz case remain slightly above the None case, but in D-uvz,

there is a sharp downturn at z ≈ 0.75 and the final enrichment

level is below the None case. The enrichment downturn in all of

the mixing models is due a fresh supply of lower metallicity gas

entering the medium, and the D-uvzmodel appears to amplify this

effect.

We now discuss the enrichment levels above [Z] > −3.0 for the

CGM in the right column of Fig. 8, in the second row from the top.

In the None case, the gas is enriched above 30 per cent by z ≈ 3,

rises to a maximum of 80 per cent at z ≈ 0.4, and slightly decreases

to 75 per cent at z = 0. Compared to theNone case at the [Z] > −5.0

metallicity cut, the qualitative trend remains the same while the nor-

malization has decreased, for the same reason we describe above.

In the S- cases, the gas reaches 30 per cent enrichment levels some-

what earlier, by z ≈ 3.5, and reaches a maximum enrichment level

of 90 per cent at z ≈ 0.4. The maximum enrichment is 10 per cent

higher in the S- cases compared to the None case showing that the

constant-coefficient Smagorinsky model affects higher and lower

metallicities equally. The enrichment levels of the gas in the D-

cases closely follow the None case for metallicities [Z] > −3.0,

with only a slight divergence at z = 0.

The HHG, DIFF, and WHIM phases follow the same qualitative

trends as the CGM and, as noted above, we do not examine them

in detail here. However, these phases show that the dynamic model

increases the gas enrichment levels above [Z] > −3.0 more so than

in the CGM, but only slightly.

As in the isolated galaxy experiment (see Section 4), the diffusiv-

ity plays a significant role in the enrichment levels of cosmic gas on a

global scale. The overdiffusive character of the constant-coefficient

Smagorinsky model consistently results in the highest gas enrich-

ment levels throughout the evolution of the simulations. Interest-

ingly, these same results also indicate that the dynamic model has

the most effect on the metallicities in the range −5.0 < [Z] < −3.0

while leaving those above [Z] > −3.0 near the no-mixing level.

Early star formation and SMBH formation are very sensitive to

metallicities in this range (see Section 1), and we have demonstrated

that the dynamic model maximally affects those metallicities. Al-

though we do not resolve early star formation or include SMBHs in

our simulations, our results show that the dynamic model ought to

be investigated further in cosmological simulations.

5.4 Global gas-phase metallicity

MDFs provide additional insight into the spatial redistribution of

metals when compared with global enriched fractions, and we there-

fore investigate the MDFs of galactic gas at three separate evolution-

ary times: z = 2, 1, 0. Our MDFs are probability density functions

(dn/d[Z], where n is the number of particles) and are normalized

such that the area under each curve is unity. To facilitate plotting,

we set a metallicity minimum of [Z] = −10 for all gas particles.

Fig. 9 shows the MDFs in the ISM, CGM, and HHG in the columns,

left to right, and at z = 2, 1, and 0, from top to bottom. The narrow,

leftmost spike in the panels corresponds to the metallicity minimum.

First, as we mention at the end of Section 5.2, it is important to

note that the differences in the MDFs are not solely due to turbulent

mixing. There are transitions that occur across the sharp boundaries

of the phase cuts we use. In all of our mixing models, the cuts

mostly affect the gas that falls within the CGM region of phase

space and, in examining its spatial distribution at z � 1, we find

that the majority of the low-metallicity ([Z] < −3) gas in the CGM

is in the cosmic filaments. This gas is not spatially associated with

dark matter haloes, but has the correct density and temperature to

belong to the CGM phase. Conversely, the gas in the ISM and HHG

phase-space regions do correspond to what we consider their spatial

counterparts, and the differences in their MDFs across the evolution

of the simulation are dominated by turbulent mixing.

Turning to the distributions in Fig. 9, we first investigate the ISM.

The distributions across all models appear qualitatively similar, with

slight differences at lower metallicities. At z = 2, there is a peak at

[Z] ≈ −1 in all models, and in the None case, there is also near-

pristine gas in the ISM. The D- cases show a slightly extended tail

covering the range −6 � [Z] � −4, compared to the S- and None

cases, corresponding to the slight enrichment of the low-metallicity

gas in the None case. In the S- cases, the enrichment process is

more efficient. By z = 1, the tail tightens and all the distributions

have negligible differences. At z = 0, however, the None and D-

cases share the same distribution whereas the S- models show a

tighter distribution. Additionally, there is much more gas at the

minimum metallicity in the None case compared to both the D-

and S- cases because metal enrichment of pristine particles in the

None case only occurs when they are spatially adjacent to the

stellar feedback sources. In the D- and S- cases, any particle that is

enriched acts as a local source of metals for neighbouring pristine

particles, driving down the number of particles at the metallicity

minimum. The trends here are similar to, and caused by, the same

effect we see in the ISM of the isolated galaxy in Section 4, where

the spread in the ISM MDF strongly depends on the diffusivity.

Next, we examine the MDFs of the CGM. In all models at z =
2, the gas in the CGM is a combination of the dense cores of the

cosmic filaments and the cool, dense gas within dark matter haloes.

In the None case, the MDF resembles the ISM distribution albeit

with a more extended tail towards lower metallicities and more gas

at the minimum metallicity. None the less, most of the enriched

gas is above [Z] ≥ −6.0. The CGM distribution in the None case

builds from the galactic winds transporting metals into the medium,

sampling the underlying ISM distribution. Additionally, SNIa and

AGB stars contribute to varying metal distributions via the kernel-

weighting procedure as gas spatially adjacent to the ISM is enriched

at low levels. In the None case, the gas that is spatially in the cosmic

filaments is at the metallicity minimum. The z = 2 D-models show

a bi-modality with peaks at [Z] ≈ −1.0 and [Z] ≈ −5.5, and in

the S- models we also see a bi-modality but with peaks at [Z] ≈
−1.0 and [Z] ≈ −3.0. The higher metallicity peaks in the D- and

S- cases correspond to the peak metallicity in the ISM whereas the

lower peak in each case is due to the gas that is classified as the

CGM, yet is spatially in the cosmic filaments. The spatial location

of the gas does not change the effect of varying turbulent mixing

strength; at redshift z = 2, the increased diffusivity in the S-models

leads to a 2 - 3 order of magnitude shift compared to the D- models

in the secondary low-metallicity peak, indicating that the metals

MNRAS 483, 3810–3831 (2019)
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Dynamic turbulent diffusion 3827

Figure 9. The MDFs across three global gas phases (columns) in the simulation volume, at three separate evolutionary times (rows from top to bottom): z =
2, 1, and 0. We set a minimum metallicity of [Z] = −10 in our simulations, in order to show the abundance of unenriched gas. The overall trends in each phase

do not change significantly over time, yet comparing between mixing models reveal slight differences in the distributions of gas-phase metals. Without metal

mixing (None), galactic winds build MDFs in the non-star-forming gas that are similar to the distribution of the ISM. Turbulent mixing allows for further

redistribution of metals once they arrive in the exterior media, altering the original distribution. The diffusivity has a larger role in this method rather than the

quantities diffused.

are much more dispersed in the S- cases. Comparing to the None

case, the question arises as to why the D- and S- cases have a broad

lower metallicity peak. At high redshift (z � 2), in the D- and S-

cases, the metal-enriched galactic winds escape the galactic haloes

and under the action of turbulent mixing, contaminate the gas in the

filaments. This is evidenced by the lower amplitude spike at [Z] =
−10 in these models. This does not occur in the None case, because

the particles are unable to exchange metals directly.

By z = 1 the fraction of CGM gas in the filaments has dropped as

the dense filament cores are heated and enter the WHIM. However,

there is still a small fraction of gas associated with the filaments.

The None case shows a qualitatively similar distribution compared

to z = 2 because the gas leaving the cosmic filaments is at the

metallicity minimum. In the D- cases, the previous peak at [Z] ≈
−5.5 becomes a broad shelf between −5.0 < [Z] < −2.0. In the S-

cases there is also a shelf of gas at [Z] ≈ −2.0 but the main peak

dominates. The strong bi-modality from z = 2 has disappeared by

z = 1 in the D- and S- models partly because the filamentary

structure is increasingly classified as the WHIM and partly be-

cause the metallicity of the gas particles continues increasing due to

mixing.

We turn now to the MDF of the CGM at z = 0. At this redshift,

most of the gas in the CGM region of phase space is associated

with dark matter haloes. The None case has a similar distribution

to z = 1 and z = 2. The D- MDFs have narrowed further, with

the low extended metallicity shelf at z = 1 transforming into a tail

that extends from [Z] ≈ −7.5 to [Z] ≈ −3.0, and a small shelf at

[Z] ≈ −3.5. Above [Z] > −2.0, the D- MDFs coincide with the

None case. In the S- cases, the distribution also tightens and the

tail is approximately a power law from [Z] ≈ −6.0 to [Z] ≈ −1.0,

where the latter value is the peak of the distribution. The variations

in the MDFs between the None case and both the D- and S- cases

represent enriched fractions that have been altered via turbulent

mixing rather than the aforementioned transitions between phases.

Shifting focus to the HHG at z = 2, we find that the gas in

this phase is spatially associated with the dark matter haloes. We

emphasize again that in the None case it is not possible for gas

particles to exchange metals directly and consequently, the metal

distributions only change via direct enrichment, or if the gas from

the ISM reaches the phase under consideration via winds or via gas

cooling from the intergalactic medium. We see that the None case

shows a similar distribution to both the ISM and the CGM, albeit
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with a slightly broader low-metallicity tail. Like the z = 2 CGM

distributions, the D- MDFs for the HHG show a bi-modality with

peaks at [Z] ≈ −5.0 and [Z] ≈ −1.0 and a valley between −4.0

< [Z] < −2.0. Unlike the CGM MDF, the HHG low-metallicity

peak is broader and it is not due to gas transitioning from the HHG

phase, but rather it is due to inflowing, low-metallicity gas mixing

with the already enriched gas in the haloes. The S- cases share the

peak at [Z] ≈ −1.0, but the distribution is flat between −6.0 < [Z]

< −2.0, before dropping-off towards low metallicities, in lockstep

with the D- results. The gap that is apparent in the D- cases has

disappeared, indicating that in the S- cases there is much more gas

with metallicities in the range −4.0 < [Z] < −2.0 than in the D-

cases, which is not surprising given the overdiffusive nature of the

constant-coefficient Smagorinsky model.

At z = 1 in the HHG, the None case remains unchanged except

for a slight increase in the amount of gas near [Z] ≈ −3.0, and the

tail has extended slightly towards lower metallicity. The latter is due

to less enriched gas from the WHIM and DIFF phases accreting on

to haloes, diluting the metal distribution, and this dilution continues

through to z = 0. In the D- and S- cases, the low-metallicity

feature (peak/shelf and extended tail) has shifted slightly towards

higher metallicity as turbulent mixing redistributes the metals from

the highly enriched particles.

Next, we examine the HHG at z = 0. The enrichment level, in the

None case, is decreasing as evidenced by the tail of the MDF due

to less enriched gas from the WHIM and DIFF phases accreting on

to haloes, diluting the metal distribution. In the D- and S- cases,

there are coincident peaks in the MDFs at [Z] ≈ −6.0, although the

D- cases show more gas at lower metallicities.

Comparing across phases, the MDFs of the CGM gas are more

sensitive to non-zero turbulent mixing strength than the ISM or

the HHG. For instance, even though the bi-modalities at z = 2

in the CGM MDFs, in the S- and D- cases, disappear by z =
0 due to the CGM to WHIM transition, the dynamic model re-

sults in a residual extended tail in the CGM MDF as metals mix

throughout the medium, whereas the constant-coefficient Smagorin-

sky model tightens the distribution in this phase and the gas metal-

licities rapidly approach the mean. The peak in the CGM moves

towards higher metallicities as gas flows between phases (CGM to

WHIM).

The consequences of not including sub-grid turbulent mixing,

regardless of the diffusivity, are clear – complex structure in the

MDFs is highly dependent on the mixing strength. This is in contrast

to Su et al. (2017) and Escala et al. (2018), who found that turbulent

metal mixing strength had low-level effects in their simulated ISM.

We posit that the low-level effects were due the authours∗∗ use of

a constant value of Cs, rather than localizing the mixing strength to

the appropriate regions. We do not see the aforementioned trends

in the None case because it is not possible for gas particles to

exchange metals in our simulations. Our stellar feedback model

drives a decoupled wind from the ISM and that wind samples the

MDF in the ISM, building up a similar metal distribution in the

other phases that cannot change over time, unless material flows

between the phases or due to delayed SNIa and AGB stars, via the

kernel-weighted enrichment procedure.

One important difference between the model we present and

realistic environments is that our winds do not mix as they free-

stream out of the galaxies. While the coupling and mixing strength

of galactic winds is uncertain, the wind could redistribute thermal

energy, momentum, and metals internally as a cohesive unit, even

if they do not couple strongly to the surrounding medium (Huang

& Katz, private communication). In our model, once the winds

reach the criteria for recoupling in our simulations, they are free to

mix their fluid properties and this, subsequently, allows for diverse

MDFs in the gas phases exterior to the ISM.

We do not investigate the details of individual galaxies here but

note that the differences outlined above will impact the gas-phase

and stellar metallicities of those systems. Therefore, including the

dynamic model with a more accurate estimation of Cs is necessary,

moving forward, in order to capture the physical redistribution of

metals in galaxy evolution.

6 C O N C L U S I O N S

All hydrodynamical methods that are used to investigate galaxy evo-

lution, whether Lagrangian or Eulerian, require additional sub-grid

thermal energy and momentum diffusion terms in order to account

for sub-grid turbulence. In Lagrangian methods, such as MFM and

SPH, metal diffusion is also required due to the inability of fluid el-

ements to exchange metals by construction. Most implementations

use the constant-coefficient Smagorinsky model – one that has been

shown to be overdiffusive in almost all cases, especially laminar

shear flows.

We implemented and investigated the impact of the localized

dynamic Smagorinsky model on global gas-phase properties in a

series of numerical experiments using the GIZMO code. In the dy-

namic case, the model coefficient depends on the local turbulent

flow conditions, hence on the spatio-temporal coordinates. This is

in contrast to the constant-coefficient Smagorinsky model where dif-

fusivities depend directly on the magnitude of the velocity shear in

the fluid. Compared to the constant-coefficient Smagorinsky model,

the dynamic model has been shown to produce more accurate repre-

sentations of fluid mechanical experiments (Kirkpatrick et al. 2006;

Kleissl et al. 2006; Khani & Waite 2015; Benhamadouche et al.

2017; Lee & Cant 2017; Kara & Çağlar 2018; Taghinia et al. 2018).

While we focused on cosmological experiments, the dynamic model

has applications to any numerical experiment involving turbulent

astrophysical flows, including stellar interiors, planetary formation,

and star formation. Moreover, the method we describe in this pa-

per, following Germano et al. (1991) and Piomelli & Liu (1995), is

general and not only limited to Lagrangian hydrodynamics but also

applicable to the Eulerian cases (see Schmidt 2015).

For the MFM method, we showed that the dynamic model im-

proves the density contrast in subsonic turbulence, allowing higher

and lower density regions at fixed mass resolution. In an ideal-

ized Keplerian disc, an example of a laminar shear flow where

the Smagorinsky model is known to be overdiffusive from basic

analytic arguments, the dynamic model produced near-zero val-

ues of turbulent diffusivity. When we included thermal energy and

momentum diffusion, the lower diffusivities prevented the rapid

break-up of the disc due to excessive angular momentum transport.

We observed similar minimized diffusivities in a Kelvin–Helmholtz

instability experiment, where the constant-coefficient Smagorinsky

model smoothed, and rapidly diffused, our metal tracer, whereas

the dynamic model captured the fine level of mixing at the interface

of the two fluids.

We also investigated an isolated, Milky Way-like galaxy in order

to test the dynamic model in a more complex, but still controlled,

environment. The dynamic model in combination with momentum

diffusion improved the stability of the gaseous disc compared to the

constant-coefficient Smagorinsky model, and affected the spatial

metal distributions, as indicated by the MDFs, as shown in Fig. 7.

Rapid star formation early in the evolution of the disc leads to a

higher diffusivity of thermal energy, momentum, and metals, and
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the subsequent exponential decay of star formation lowers the dif-

fusivity in the dynamic model significantly. This results in a broader

MDF in the ISM in the dynamic case, pointing towards less mix-

ing in the ISM. When using the constant-coefficient Smagorinsky

model, the diffusivity remained high throughout the evolution of the

disc because of its strong dependence on the fluid velocity shear.

We found similar variations in the CGM for both the dynamic and

constant-coefficient Smagorinsky models that we attribute to the

turbulence generated from stellar feedback increasing the diffusiv-

ity in both cases.

We also examined the global gas enrichment fractions in a set

of cosmological simulations. Global gas enrichment fractions are

important for the formation of Population III stars and SMBHs

because they are theorized to be sensitive to the metal content in

the gas out of which they form (see Section 1 for more details). We

found that the dynamic model lowers overall enrichment compared

to the standard Smagorinsky model, and that it maximally impacts

metallicities in the range −5.0 < [Z] < −3.0. This is precisely the

metallicity regime that constrains the formation sites of SMBHs

and Population III stars (Volonteri 2010; Sarmento et al. 2016).

Specifically, the dynamic model increases the amount of gas above

[Z] > −5.0 while maintaining the same enriched fraction of gas

above [Z] > −3.0, compared to the no-mixing case. The standard

Smagorinsky model increased the enriched fraction at all metal

thresholds and in all gas phases.

In our cosmological simulations without turbulent mixing, we

found that each gas phase external to the ISM has a qualitatively

similar MDF to the ISM itself. Turbulent mixing allows for regions

to mix their metals, and introduces additional structure in MDFs of

each phase. We found that the diffusivity had a significant impact

on the MDFs of the ISM and CGM – the dynamic model shows

broader MDFs in both phases at z = 0. In these regions, we found

a bi-modality in the CGM at z = 2 which disappeared by z = 0 in

both cases, yet more lower metallicity gas remained in the dynamic

case. Our broad density and temperature phase-space criteria led to

the bi-modality, as we found low-temperature and dense gas in the

cores of the cosmic filaments at z ∼ 2. These spatial regions were of

lower metallicity, and eventually return to the WHIM phase by z =
0. The peaks of the bi-modality, however, depend on the diffusivity:

the dynamic model produced more metal poor (by several orders of

magnitude) gas than the constant-coefficient Smagorinsky model.

Finally, we briefly touch on our conclusions for SPH. Most au-

thors apply the constant-coefficient Smagorinsky model to SPH

(Wadsley et al. 2008; Shen et al. 2010, 2013; Williamson et al.

2016; Tremmel et al. 2017; Wadsley et al. 2017) and only include

thermal energy and metal mixing. In reality, there are additional tur-

bulent transport terms that are unique to SPH (see Di Mascio et al.

2017 for an introduction and derivation) that must be included.16

Introducing momentum diffusion (e.g. via turbulent mixing as in

D-uvz and S-uvz) in SPH is problematic because of unknown

interactions with artificial viscosity. Additionally, by construction,

the smoothing kernel in SPH acts to produce coherent flows rather

than fine structure observed in mesh-free or grid methods. When we

introduced momentum diffusion into SPH, the results from all of

the experiments in this study were amplified when compared to the

MFM method, but the qualitative trends remained. Specifically, in

our cosmological experiments, we found that momentum diffusion

with the constant-coefficient model causes a delay in the formation

16It is possible to apply the dynamic model to the transport terms in Di

Mascio et al. (2017), further improving upon their work.

of the ISM by ∼1 Gyr, compared to the None case. The dynamic

model reduces the delay, but not to the no-mixing case. We attribute

this to momentum diffusion and dissipation causing the Jeans mass

to increase resulting in the damping of mass fluctuations.

While we note that the dynamic turbulent mixing model intro-

duced here is a step forward in understanding the redistribution of

fluid properties in Lagrangian codes, there are caveats that must

be explored. The dynamic model predicts the correct behaviour

in supersonic flows, but we did not include compressive mixing

terms into our equations of motion. It may be that compressive

sub-grid mixing models further improve supersonic turbulence in

the MFM method. Also, we justified using the Smagorinsky model

by assuming that the local equilibrium condition holds, where the

kinetic energy transfer rate down the turbulent cascade is equal on

all scales. While the assumption is approximately true on average in

the regimes we investigated (Schmidt et al. 2016), a fully consistent

turbulence model involves tracking the sub-grid kinetic energy via

an additional transport equation that includes all of the necessary,

higher order, sub-grid scale terms (Schmidt 2015). However, the

dynamic model mitigates the issue by inherently calculating the de-

viations from local equilibrium. Furthermore, the approximations

for filtering the fluid fields require care and attention. While Mon-

aghan’s filtering approximation (equation 19) holds on the singly

filtered quantities for variations on scales larger than the resolution

scale h, doubly filtered quantities may be over- or undersmoothed.

A more robust, efficient, filtering procedure will need to be de-

rived specifically for Lagrangian methods in the highly compress-

ible case, for filtering scales larger than h.

In summary, the dynamic Smagorinsky model localizes the

strength of turbulent mixing to only turbulent regions of the flow.

This provides a turbulent mixing model that does not rely on pre-

calibrated parameters – therefore simultaneously allowing near-zero

diffusion in laminar shear flows and the expected diffusion in tur-

bulent flows. The physical experiments to which we subjected the

model show that the dynamic model significantly alters the MDFs

of the ISM and CGM in a global sense. In future work we will ex-

amine the extent of small-scale differences associated with dynamic

diffusion, and its impact on galaxy properties.
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Davé R., Finlator K., Oppenheimer B. D., 2006, MNRAS, 370, 273

Davé R., Oppenheimer B. D., Katz N., Kollmeier J. A., Weinberg D. H.,

2010, MNRAS, 408, 2051
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