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ABSTRACT

A maximum stellar surface density . ~ 3 x 10°Mg pc~2 is observed across all classes of
dense stellar systems (e.g. star clusters, galactic nuclei, etc.), spanning ~8 orders of magnitude
in mass. It has been proposed that this characteristic scale is set by some dynamical feedback
mechanism preventing collapse beyond a certain surface density. However, simple analytic
models and detailed simulations of star formation moderated by feedback from massive stars
argue that feedback becomes less efficient at higher surface densities (with the star formation
efficiency increasing as ~ /% ). We therefore propose an alternative model wherein stellar
feedback becomes ineffective at moderating star formation above some ¥, so the supply of
star-forming gas is rapidly converted to stars before the system can contract to higher surface
density. We show that such a model — with X taken directly from the theory — naturally
predicts the observed X,,x. We find ¥ ,x ~ 100X because the gas consumption time is
longer than the global free-fall time even when feedback is ineffective. Moreover, the predicted
¥ max 18 robust to spatial scale and metallicity, and is preserved even if multiple episodes of star
formation/gas inflow occur. In this context, the observed X .« directly tells us where feedback
fails.

Key words: galaxies: active —galaxies: evolution — galaxies: formation — galaxies: star clus-
ters: general — galaxies: star formation —cosmology: theory.

1 INTRODUCTION

Hopkins et al. (2010, hereafter Paper I) showed that the central
surface densities of essentially all dense stellar systems exhibit
the same apparent upper limit T, ~ 3 X 10°Mg pc2. This in-
cludes globular clusters (GCs), super-star clusters (SSCs), dwarf
and late-type galaxy nuclear star clusters (NSCs), young mas-
sive clusters (YMCs), ultra-compact dwarfs (UCDs), compact el-
lipticals (cEs), galactic bulges, nearby and high-redshift early-
type/elliptical galaxies, even nuclear stellar discs around Sgr Ax
and the Andromeda nuclear black hole. These span mass scales
of 10°~10"> M, spatial sizes 0.1 — 10* pc, three-dimensional den-
sities 1 — 10° M pe™ (free-fall times ~10*-107 yr), N-body re-
laxation times ~10°—10'7 yr, escape velocities ~20-600kms~!,
metallicities Z ~ 0.01-5Z, and formation redshifts z ~ 0-6, yet
agree in X -

In Fig. 1, we compile more recent observations of dense stellar
systems of all classes, and find that this still holds largely true,
although some NSCs exceeding the fiducial value of X, by a
factor of a few have since been found. Fig. 2 is adapted from the
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original compilation of mass profiles of individual objects in Paper |
— it shows that even many systems with ‘effective’ surface densities
(measured at Re) have central surface densities which approach
(but do not appear to exceed) X ,.«, at least where resolved.

Paper I speculated that the universality of X, might owe to
stellar feedback processes.! After all, it is widely recognized that
feedback plays an important role regulating star formation (SF) in
cold, dense molecular clouds (see Kennicutt & Evans 2012, for a
review). As gas collapses and forms stars, those stars inject energy
and momentum into the interstellar medium via protostellar heat-
ing and outflows, photoionization and photoelectric heating from
ultraviolet photons, stellar winds, radiation pressure, and supernova
explosions. All of these mechanisms may moderate SF, either by
contributing to the disruption of molecular clouds (Larson 1981;
Murray, Quataert & Thompson 2010; Hopkins, Quataert & Murray
2012; Krumholz et al. 2014; Grudi¢ et al. 2018a) or the large-scale

IThey also discussed some possible explanations related to e.g. mergers,
angular momentum transport processes, or dynamical relaxation, which they
showed could not explain ¥ . across the wide range of systems observed
(e.g. dynamical relaxation cannot dominate the systems with relaxation
times much longer than a Hubble time, and global processes unique to
galaxy mergers cannot explain star cluster interiors).
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Figure 1. ‘Effective’ stellar surface density (X, off = M, /(271R§ff)) as a function of stellar mass for various types of stellar systems. Late- and early-type
galaxies range from redshifts z = 0 — 3 and are taken from van der Wel et al. (2014). GCs, NSCs, UCDs, and cEs are from the compilation of Norris et al.
(2014). SSCs are from the populations in M82 (McCrady & Graham 2007), NGC 7252 (Bastian et al. 2013), NGC 34 (Schweizer & Seitzer 2007), and NGC
1316 (Bastian et al. 2006). YMCs are from the Milky Way (Portegies Zwart, McMillan & Gieles 2010) and M83 (Ryon et al. 2015) populations. Dashed:

fiducial maximum effective surface density Siax = 3 x 10°Mg pc=2.
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Figure 2. Observed stellar surface density profiles ¥,(r) as a function

of projected radius, within individual stellar systems — reproduced from
fig. 2 of Paper I. Lines show the median X (r) from each sample, and the
shaded range shows the 1 o range in X,.(r) from all profiles in the sample.
Samples are: Milky Way nuclear stellar disc (Lu et al. 2009), Cen A GCs
(Rejkuba et al. 2007), M82 SSCs (McCrady & Graham 2007), NSCs in
late-type (Sd) galaxy nuclei (Boker et al. 2004), NSCs in dwarf-Spheroidal
galaxy nuclei (Geha, Guhathakurta & van der Marel 2002), UCDs in Virgo
(Evstigneeva et al. 2007), early-type galaxies in Virgo (separated into low-
mass ‘dwarf ellipticals’ from Kormendy et al. 2009, and massive ‘cusp’/steep
profile or ‘core’/shallow-profile systems from Lauer et al. 2007). Although
many of these (e.g. the massive early-type galaxies) have X, o (defined
at large radii = kpc) well below X, all systems appear to approach
(and where resolved, saturate around) the fiducial maximum surface density
Tmax = 3 X IOSMO pc’z.

support of galaxies against vertical collapse (Thompson, Quataert &
Murray 2005; Ostriker & Shetty 2011; Faucher-Giguere, Quataert &
Hopkins 2013; Hopkins et al. 2014; Orr et al. 2018). These mecha-
nisms have various roles on different scales, but stellar feedback is
generally the only force strong enough to oppose gravity in dense,
star-forming regions, so the characteristic scale of a newly formed

stellar system should be determined by the balance point of feed-
back and gravity.

The specific possibility discussed in Paper I was that multiple
scattering of infrared (IR) photons might build up radiation pres-
sure to exceed the Eddington limit for dusty gas. However, the value
of ¥ . predicted according to this argument is inversely propor-
tional to metallicity, so does not explain why X .« is apparently the
same in SSCs in metal-rich starbursts (Keto, Ho & Lo 2005; Mc-
Crady & Graham 2007) (or super-solar massive elliptical centres)
and in metal-poor GCs (or metal-poor high-zand low-mass compact
galaxies). The argument therein also relied on scalings between IR
luminosity and star formation rate (SFR) valid only for continuous-
star-forming populations with duration longer than ~10 — 30 Myr,
which exceeds the dynamical times of many of these systems. Fi-
nally, Norris et al. (2014) noted that this effect cannot prevent the
system from exceeding X, if SF occurs in multiple episodes.

Since then, various theoretical works have noted the importance
of surface density in setting the ratio between the momentum-
injection rate from massive stars and the force of self-gravity in
a star-forming cloud (Fall, Krumholz & Matzner 2010; Murray
etal. 2010; Dekel & Krumholz 2013; Thompson & Krumholz 2016;
Raskutti, Ostriker & Skinner 2016; Grudi¢ et al. 2018a). For a cloud
with total mass M and stellar mass M, = &, M,

GM?
F, gravity R2 - X (1)
Feedback €M { AI;' ) erit '
where ( P, ) is the specific momentum-injection rate from stellar

M,
feedback assuming a simple stellar population with a well-sampled

initial mass function (IMF), which is ~103% for the first 3Myr

after SF, and X ~ ( 151 )/G =~ 3000 M pc_2 is the characteristic
surface density that parametrizes the strength of feedback. If the
final SF efficiency (SFE) ¢, is ultimately set by the balance of
feedback and gravity, one expects that g, — 1 for ¥ > X 5

(Fall et al. 2010). The detailed simulations of Grudi¢ et al. (2018a,
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Figure 3. Schematic of our proposed ‘best-case’ scenario for the formation
of a dense stellar system (Section 2.1). A star-forming gas cloud of initial
gas mass M is localized within a sphere of radius R. It collapses coherently at
the free-fall velocity v = 4/ ZGTM, while fragmenting locally and forming
stars in dense sub-regions. In this ‘best case’, no dynamical mechanism

slows the collapse significantly.

Paper II) showed that this argument is valid across a wide range
of metallicities, surface densities and spatial scales, and the final
SFE of a molecular cloud is a function mainly of X, with weak
dependence upon other factors. Paper II also found that the final
ratio of stellar mass to initial gas mass, &jy, is proportional to the
fraction of gas converted to stars within a free-fall time, e, because
a giant molecular cloud tends to form enough stars to destroy itself
within a few free-fall times. Thus, ¥ should parametrize the per-
free-fall efficiency of SF in a manner insensitive to spatial scale and
metallicity.

In this paper, we show that if gas contracts globally (for any
reason), as it becomes denser (X increases), and gravity becomes
stronger relative to stellar feedback, gas is converted more and more
rapidly into stars (above a characteristic surface density X ). This
exhausts the gas supply, preventing any significant fraction of the
inflow from reaching surface densities > X ,,,,. We calculate ¥, in
terms of X and show that the observed Z . ~ 3 x 10°Mg pc~2
is naturally predicted by the value X; = 3000Mg, pc~2 set by feed-
back from massive stars (Fall et al. 2010; Grudi¢ et al. 2018a).

2 DERIVATION

2.1 Set-up and assumptions

Consider a discrete SF episode involving a finite collapsing gas mass
M, as illustrated in Fig. 3. At a given time, the mass is localized
within a radius R, so that its mean surface density is:

M
T=—. @)

TR?

It is forming stars at some SFR, which we can parametrize with the
SFE:
dm. % Eff M gas

SFR = = R 3
dr ti )

where g is the (possibly variable) per-free-fall SFE and fy =

P R3 .
51/ 3631 18 the free-fall time.
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Now, since we are only interested in the maximum stellar surface
density such a system might reach, we will assume the ‘best-case’
scenario for forming a dense stellar system. Specifically, assume:

(i) The gas cloud is collapsing at a speed on the order of the
escape velocity:

dR 2GM
? = —Xff TR “4)
where x is a constant of order unity.

(ii) There is no support against collapse from large-scale turbu-
lent motions,? tidal forces, rotation, shear, magnetic fields, cosmic
rays, or the dynamical effects of stellar feedback. We neglect all of
these because we are interested in the best-case scenario for pro-
ducing a dense stellar system according to a give SFE law — any of
these may be present, but they will only slow collapse, making a
lower density system in the end.

This is an idealization, but Kim et al. (2018) did find that bound
star clusters do form in a coherent collapse with velocity on the order
of the free-fall velocity in cosmological simulations, and stellar
feedback does not greatly affect the dynamics until a significant
fraction of the gas mass has been converted to stars.

2.2 Star formation efficiency law

We shall assume that e has some explicit dependence upon X, as
is motivated by previous work. Accounting for radiation pressure,
stellar winds, photoionization heating, and SN explosions, Paper 11
found

1 Ecrit -
e = et(X) = | T+ , ()
€5 p))

where X = 3000M,, pc~ is set by the strength of these feedback
mechanisms. The dimensionless quantity €;** is the maximum per-
free-fall SFE attained as ¥ — o0. In star-forming clouds supported
at a fixed mean surface density, Paper II (see their equation 13
and fig. 5) found that €5 &~ 0.34 €, (Where &y is the fraction of
gas turned into stars over the entire integrated SF history, which of
course just saturates at €[> = 1 as ¥ — 00). However, this was
the median over the entire SF history including initial collapse and
eventual blowout. Therefore — in our ‘best-case’ coherent collapse
scenario, we are only interested in the ‘peak SFR’ event, so €™
should be somewhat greater, ~0.5 (see Paper 11, fig. 3), and subject
to further order-unity corrections due to the different collapse ge-
ometry from these simulations. In general, g™ should be similar
that predicted by turbulent molecular cloud simulations that do not
include stellar feedback, which have generally found &g ~ 0.5—1
in the limit of large turbulent Mach number and realistic turbulent
forcing (Federrath & Klessen 2012).

Adding turbulence and magnetic fields in succession, but without
feedback initially, Federrath (2015) found average values of eg ~
0.1 and ~0.25 respectively, somewhat lower values than discussed
above. These simulations were stopped at an arbitrary integrated
SFE of 20 per cent as &g, just as eg peaked, which may have reduced
the measured average efficiency. These simulations were also at a
much lower Mach number, M ~ 5, than the high-efficiency clouds

in Paper II, M ~ 30-300, and both analytic theory and simulation

2Note that some amount of turbulence must be assumed if stars are forming.
We assume that such turbulent eddies are small compared to R, and thus are
advected with the large-scale collapse without strongly opposing it.
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results find lower values of eg in this M range when feedback is
not present (e.g. Hopkins 2012, fig. 11). Notwithstanding, Feder-
rath (2015) also showed that feedback from protostellar jets could
maintain a small e over several free-fall times. However, we again
do not expect this moderation to scale up for clouds of greater
M, due to the dimensional scaling of the feedback mechanism.
Assuming that outflows coupled a momentum (P,/M,) per stellar
mass formed, the value of e required to support the cloud scales
% % /{P./M,) o< M, soitisunlikely that protostellar feedback
can maintain a low & in the progenitor clouds of the dense, massive
stellar systems considered here (generally with velocity dispersions
corresponding to M > 30).

Overall, for the progenitor clouds of the types of system plotted
in Fig. 1, we favour values in the range &g max ~ 0.3-0.5. We
acknowledge some amount of uncertainty when generalizing to
various geometries and turbulence properties such as solenoidal
versus compressive driving.

2.3 Solution

The SFR of the cloud is
M, _ My _ Mgy, SGM ©
dr e (gf“gﬂx)71 + Zau 2R3’

where M,,, is the gas mass that has not been converted to stars at
time 7. The differential equation for the gas mass converted to stars
when the cloud has radius R follows:

dMgs  dM. dr 2 Mgy
dR ~  dt dR ~ 7'[)CffR ( mﬂX) 1 + ﬂRi/[Zcril ' )
The solution for the fraction of the gas mass surviving to radii <R
is
Mgzls (< R) - (1 M G /T ®)
M - M + €I TR Sy '

Thus, as R — 0, we see that My, — 0, i.e. the gas is exhausted
as the system contracts to surface densities ¥ > X .;. The stellar
system formed will subsequently undergo a period of relaxation,
but energy conservation requires that the stars remain on orbits with
apocentres on the order of the radius R at which they formed .> We
may thus construct a radial stellar density profile as the superpo-
sition of the top-hat mass distributions formed at each radius. The
corresponding projected stellar surface density profile is

, (R)—z/ Ny R)/ (4“R’3> dr',  (9)

drR’ 3

max

which we plot for various values of e®* and x;; in Fig. 4. In general,
we find that the characteristic stellar surface densities for plausible
values of €™ and xi span the range of surface densities found in
dense stellar systems (Figs 1 and 2). Furthermore, if xg = 1 then ef-
fective surface densities ~10° M, pc~2 are obtained, corresponding
to the maximum observed.

It should be noted that the inner surface density profile plotting

Zemax
in Fig. 4 is ¥ « R_2+#ff, which is nearly as steep as R~2 for
the physically plausible parameters ef®* = 0.5 and xi = 1, ie. the

3We have verified with collisionless Monte Carlo simulations that the func-
tional form of equation (8) does closely match the final stellar mass distri-
bution after violent relaxation to virial equilibrium, provided that the initial
virial parameter 2Ein/|Egray| ~ 1.
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Figure 4. Radial stellar surface density profiles computed from the cloud
collapse model described in Section 2.1 for various values of the maximum
per-free-fall SFE €™ and the rate of collapse relative to free fall x¢, with
radius in units of the half-mass radius Refr. The point on each curve gives the
effective stellar surface density Xy eff = M/ (27tR§ff of the model. The
characteristic surface densities obtained over the parameter ranges e
0.5 — 1 and x¢r ~ 0.1—1 span the range 10° — 10° M pc~2 in which most
dense stellar systems lie (see Fig. 1). To form a system with Xy cff >>
3% 10° Mg pc~? would require €™ << 0.5 or xgr > >1, both of which
are unphysical.
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Figure 5. Maximum effective surface density X mnax predicted by the model
in Section 2.1 as a function of the parameter e{f** (maximum SFE per-free-
fall time, as ¥ — 00), assuming X ~ 3000 M pc’2 Simulations and
analytic theory give €™ ~ 0.5 — 1 (Hopkins 2012; Federrath & Klessen
2012). Different lines compare different models for how the efficiency &g
scales at finite X. Solid: our fiducial model (equation 5), where & scales with
¥/ X i as expected from simple analytic comparison of feedback and gravity
(equation 1) or detailed SF simulations (Paper IT). Dashed: a model where e
scales as a step function, with egf = 0.01 when £ < X, and &€ = emax When
¥ > Y. This gives similar results to the fiducial case, demonstrating that
the details of how e scales do not matter here, so long as it rises efficiently
above ~Xr. Dotted: a model with constant ey = e®*, independent of
surface density X. This gives a very steep dependence and can only be
reconciled with the observed X if we fine-tune €f™* to a value outside
the range predicted by analytic theory and numerical simulations [assuming
other mechanisms not considered here cannot reduce it, see Federrath (2015)
and discussion in Section 2.2].
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profile has nearly constant mass per interval in log R. In such a case,
a non-negligible fraction of the mass can be concentrated on scales
<0.1pc. Such a high degree of central concentration is not generally
found in any type of stellar system, so the inner profiles in this model
are an unphysical artefact of the imposed condition of unopposed,
spherically-symmetric collapse. This is never realized in nature
because even an initially monolithic supersonic collapse is unstable
to fragmentation (Guszejnov et al. 2018), and the subsequent violent
relaxation of stars produces a much shallower (typically flat) inner
density profile (Klessen & Burkert 2001; Bonnell, Bate & Vine
2003; Grudic et al. 2018b). Thus, our free-collapse model lacks the
physics necessary to establish a hard limit upon the central stellar
surface density,* although it should scale in a similar way to the
effective surface density when combined with the action of the
scale-free physics of gravity and turbulence during SF.

In Fig. 5, we consdier the maximally free-falling case xy; = 1
to plot the dependence of X, on €. We find that if X4 =
3000M, pc~2 and the plausible range for €2 is 0.5—1, the pre-
dicted X« lies within an order of magnitude of the observed
Smax ~ 3 x 103Mg pc~2 (Fig. 1). We also present results for two
alternate models for eg(X): a constant value, and a step function
equal to 0.01 (e.g. Kennicutt 1998; Krumholz, Dekel & McKee
2012) below X and €™ above X . First, we note that while our
preferred model gives ¥, independently of initial cloud surface
density, these do not — we therefore take the initial density to be
100M, pc~2, typical of local GMCs (Bolatto et al. 2008). Second,
we see the ‘e = constant’ model predicts a ¥, that is more sen-
sitive to the chosen e (and the ‘preferred’ value, ~0.2, is small).
The step-function model, however, gives very similar results to our
default model, so we see that the conclusions are not specific to the
details of how ey scales, so long as gg is small when ¥ < X4
and grows to a value of order unity above ¥ ~ X;. Ultimately,
the 2 dex separation between X and X« can be understood as
follows: the system forms stars slowly until reaching ¥ ~ X, and
only then does significant SF happen, during which global collapse
still proceeds. Thus, this system is significantly denser than X at
the median SF time.

3 DISCUSSION

We have shown that the observed, apparently universal maximum
stellar surface density of dense stellar systems is a natural con-
sequence of feedback-regulated SF physics. Specifically, assum-
ing standard stellar evolution and feedback physics (from e.g. the
combination of stellar winds, radiation pressure, SNe, etc.), then
as surface densities (X) increase, the strength of gravity relative
to feedback (assuming some fixed fraction of gas has turned into
stars) increases in direct proportion to X (equation 1; see refer-
ences in Introduction). Essentially, the strength of gravity scales
o« G M?/R? o« M X, while the strength of feedback is proportional
to the number of massive stars o« M. So SF becomes more effi-
cient, until the gas depletion time-scale becomes comparable to the
free-fall time, and the gas is exhausted before it can collapse to yet
higher densities (even if it is getting denser as rapidly as possible, by
collapsing at the escape velocity). Adopting standard scalings for
the efficiency of feedback from simulations of star-forming clouds

4Indeed, there is at least one YMC in M83 with central surface density in
excess of 106M® pc=2 in the catalogue of Ryon et al. (2015), suggesting
that the same bound for central surface density might not strictly hold.
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that span the relevant range of densities (Paper II), we show this
predicts a ¥, in good agreement with that observed.

This explanation has several advantages over the previously pro-
posed explanations of the maximum surface density from Paper 1.
As Paper II found that the parameters €;f** and X were insensitive
to spatial scale below ~1kpc, our explanation applies equally well
across the entire range of sizes of observed stellar systems in Fig. 1.
Paper II also found SFE to be relatively insensitive to metallicity,
so the X,x we calculate is not specific to a particular metallicity.
The main effect of metallicity is the aforementioned opacity to re-
processed FIR emission, but radiation hydrodynamics simulations
of SF in the IR-thick limit (Skinner & Ostriker 2015; Tsang &
Milosavljevi¢ 2018) have shown that this can only reduce &g by
~30 per cent, down to levels consistent with Paper II. At fixed X,
this explanation is also insensitive to the three-dimensional density,
N-body relaxation time, formation redshift, and escape velocity of
the stellar systems (see e.g. fig. 4 in Paper II).

This model also explains why SF in a pre-existing dense stellar
system does not generally drive X, beyond X .« — in other words,
if one continuously or repeatedly ‘trickled” gas into e.g. a galaxy
centre, why could not one continuously add new stars to the central
cusp, eventually exceeding ¥.,,,? The key here is that the pre-
existing stellar mass still contributes to the binding force of gravity:
recall, ¥ in our model is the fotal mass, of gas + stars. This drives
up the SFE whenever the roral surface density exceeds X Thus,
for example, if fresh gas falls coherently into the centre of a bulge
or dwarf nucleus with ¥ ~ X, then the total surface density
will exceed X out at larger radii, driving the SFE to high values
and exhausting the gas. Multiple SF episodes would therefore be
expected to build up the stellar mass by increasing the radius inside
of which ¥ ~ X4, not by increasing X .

‘We also stress, of course, that X, is not a ‘hard’ limit, either in
observations (Figs 1 and 2), or in our model (Fig. 4). Some gas can
survive to reach higher densities (and must, to fuel supermassive
black holes, for example), and some gas may be re-injected by
stellar mass loss in these dense nuclei. And the key parameters of
our model (the efficiency of feedback, which appears in X, and
€;™) are not expected to be precisely universal, as e.g. variations
in IMF sampling (since massive stars dominate the feedback) will
alter ¥, and the exact geometry of collapse will alter €** (at the
tens of per cent level).
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