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ABSTRACT

A maximum stellar surface density �max ∼ 3 × 105M⊙ pc−2 is observed across all classes of

dense stellar systems (e.g. star clusters, galactic nuclei, etc.), spanning ∼8 orders of magnitude

in mass. It has been proposed that this characteristic scale is set by some dynamical feedback

mechanism preventing collapse beyond a certain surface density. However, simple analytic

models and detailed simulations of star formation moderated by feedback from massive stars

argue that feedback becomes less efficient at higher surface densities (with the star formation

efficiency increasing as ∼�/�crit). We therefore propose an alternative model wherein stellar

feedback becomes ineffective at moderating star formation above some �crit, so the supply of

star-forming gas is rapidly converted to stars before the system can contract to higher surface

density. We show that such a model – with �crit taken directly from the theory – naturally

predicts the observed �max. We find �max ∼ 100�crit because the gas consumption time is

longer than the global free-fall time even when feedback is ineffective. Moreover, the predicted

�max is robust to spatial scale and metallicity, and is preserved even if multiple episodes of star

formation/gas inflow occur. In this context, the observed �max directly tells us where feedback

fails.

Key words: galaxies: active – galaxies: evolution – galaxies: formation – galaxies: star clus-

ters: general – galaxies: star formation – cosmology: theory.

1 IN T RO D U C T I O N

Hopkins et al. (2010, hereafter Paper I) showed that the central

surface densities of essentially all dense stellar systems exhibit

the same apparent upper limit �max ∼ 3 × 105M⊙ pc−2. This in-

cludes globular clusters (GCs), super-star clusters (SSCs), dwarf

and late-type galaxy nuclear star clusters (NSCs), young mas-

sive clusters (YMCs), ultra-compact dwarfs (UCDs), compact el-

lipticals (cEs), galactic bulges, nearby and high-redshift early-

type/elliptical galaxies, even nuclear stellar discs around Sgr A∗

and the Andromeda nuclear black hole. These span mass scales

of 104–1012 M⊙, spatial sizes 0.1 − 104 pc, three-dimensional den-

sities 1 − 105 M⊙ pc−3 (free-fall times ∼104–107 yr), N-body re-

laxation times ∼106–1017 yr, escape velocities ∼20–600 km s−1,

metallicities Z ∼ 0.01–5 Z⊙, and formation redshifts z ∼ 0–6, yet

agree in �max.

In Fig. 1, we compile more recent observations of dense stellar

systems of all classes, and find that this still holds largely true,

although some NSCs exceeding the fiducial value of �max by a

factor of a few have since been found. Fig. 2 is adapted from the

⋆ E-mail: mgrudich@caltech.edu

†Canada Research Chair in Astrophysics

original compilation of mass profiles of individual objects in Paper I

– it shows that even many systems with ‘effective’ surface densities

(measured at Reff) have central surface densities which approach

(but do not appear to exceed) �max, at least where resolved.

Paper I speculated that the universality of �max might owe to

stellar feedback processes.1 After all, it is widely recognized that

feedback plays an important role regulating star formation (SF) in

cold, dense molecular clouds (see Kennicutt & Evans 2012, for a

review). As gas collapses and forms stars, those stars inject energy

and momentum into the interstellar medium via protostellar heat-

ing and outflows, photoionization and photoelectric heating from

ultraviolet photons, stellar winds, radiation pressure, and supernova

explosions. All of these mechanisms may moderate SF, either by

contributing to the disruption of molecular clouds (Larson 1981;

Murray, Quataert & Thompson 2010; Hopkins, Quataert & Murray

2012; Krumholz et al. 2014; Grudić et al. 2018a) or the large-scale

1They also discussed some possible explanations related to e.g. mergers,

angular momentum transport processes, or dynamical relaxation, which they

showed could not explain �max across the wide range of systems observed

(e.g. dynamical relaxation cannot dominate the systems with relaxation

times much longer than a Hubble time, and global processes unique to

galaxy mergers cannot explain star cluster interiors).
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Explaining the maximum stellar surface density 5549

Figure 1. ‘Effective’ stellar surface density (�∗, eff ≡ M∗/(2πR2
eff )) as a function of stellar mass for various types of stellar systems. Late- and early-type

galaxies range from redshifts z = 0 − 3 and are taken from van der Wel et al. (2014). GCs, NSCs, UCDs, and cEs are from the compilation of Norris et al.

(2014). SSCs are from the populations in M82 (McCrady & Graham 2007), NGC 7252 (Bastian et al. 2013), NGC 34 (Schweizer & Seitzer 2007), and NGC

1316 (Bastian et al. 2006). YMCs are from the Milky Way (Portegies Zwart, McMillan & Gieles 2010) and M83 (Ryon et al. 2015) populations. Dashed:

fiducial maximum effective surface density �max = 3 × 105M⊙ pc−2.

Figure 2. Observed stellar surface density profiles �∗(r) as a function

of projected radius, within individual stellar systems – reproduced from

fig. 2 of Paper I. Lines show the median �∗(r) from each sample, and the

shaded range shows the ±1 σ range in �∗(r) from all profiles in the sample.

Samples are: Milky Way nuclear stellar disc (Lu et al. 2009), Cen A GCs

(Rejkuba et al. 2007), M82 SSCs (McCrady & Graham 2007), NSCs in

late-type (Sd) galaxy nuclei (Böker et al. 2004), NSCs in dwarf-Spheroidal

galaxy nuclei (Geha, Guhathakurta & van der Marel 2002), UCDs in Virgo

(Evstigneeva et al. 2007), early-type galaxies in Virgo (separated into low-

mass ‘dwarf ellipticals’ from Kormendy et al. 2009, and massive ‘cusp’/steep

profile or ‘core’/shallow-profile systems from Lauer et al. 2007). Although

many of these (e.g. the massive early-type galaxies) have �∗, eff (defined

at large radii � kpc) well below �max, all systems appear to approach

(and where resolved, saturate around) the fiducial maximum surface density

�max = 3 × 105M⊙ pc−2.

support of galaxies against vertical collapse (Thompson, Quataert &

Murray 2005; Ostriker & Shetty 2011; Faucher-Giguère, Quataert &

Hopkins 2013; Hopkins et al. 2014; Orr et al. 2018). These mecha-

nisms have various roles on different scales, but stellar feedback is

generally the only force strong enough to oppose gravity in dense,

star-forming regions, so the characteristic scale of a newly formed

stellar system should be determined by the balance point of feed-

back and gravity.

The specific possibility discussed in Paper I was that multiple

scattering of infrared (IR) photons might build up radiation pres-

sure to exceed the Eddington limit for dusty gas. However, the value

of �max predicted according to this argument is inversely propor-

tional to metallicity, so does not explain why �max is apparently the

same in SSCs in metal-rich starbursts (Keto, Ho & Lo 2005; Mc-

Crady & Graham 2007) (or super-solar massive elliptical centres)

and in metal-poor GCs (or metal-poor high-zand low-mass compact

galaxies). The argument therein also relied on scalings between IR

luminosity and star formation rate (SFR) valid only for continuous-

star-forming populations with duration longer than ∼10 − 30 Myr,

which exceeds the dynamical times of many of these systems. Fi-

nally, Norris et al. (2014) noted that this effect cannot prevent the

system from exceeding �max if SF occurs in multiple episodes.

Since then, various theoretical works have noted the importance

of surface density in setting the ratio between the momentum-

injection rate from massive stars and the force of self-gravity in

a star-forming cloud (Fall, Krumholz & Matzner 2010; Murray

et al. 2010; Dekel & Krumholz 2013; Thompson & Krumholz 2016;

Raskutti, Ostriker & Skinner 2016; Grudić et al. 2018a). For a cloud

with total mass M and stellar mass M⋆ = εintM,

Fgravity

Ffeedback

∼

GM2

R2

ǫintM〈 Ṗ⋆

M⋆
〉

∼
�

�crit

, (1)

where 〈 Ṗ⋆

M⋆
〉 is the specific momentum-injection rate from stellar

feedback assuming a simple stellar population with a well-sampled

initial mass function (IMF), which is ∼103 L⊙

M⊙c
for the first 3Myr

after SF, and �crit ∼ 〈 Ṗ⋆

M⋆
〉/G ≈ 3000 M⊙ pc−2 is the characteristic

surface density that parametrizes the strength of feedback. If the

final SF efficiency (SFE) εint is ultimately set by the balance of

feedback and gravity, one expects that εint → 1 for � ≫ �crit

(Fall et al. 2010). The detailed simulations of Grudić et al. (2018a,

MNRAS 483, 5548–5553 (2019)
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5550 M. Y. Grudić et al.

Figure 3. Schematic of our proposed ‘best-case’ scenario for the formation

of a dense stellar system (Section 2.1). A star-forming gas cloud of initial

gas mass M is localized within a sphere of radius R. It collapses coherently at

the free-fall velocity vff =

√

2GM
R

, while fragmenting locally and forming

stars in dense sub-regions. In this ‘best case’, no dynamical mechanism

slows the collapse significantly.

Paper II) showed that this argument is valid across a wide range

of metallicities, surface densities and spatial scales, and the final

SFE of a molecular cloud is a function mainly of �, with weak

dependence upon other factors. Paper II also found that the final

ratio of stellar mass to initial gas mass, εint, is proportional to the

fraction of gas converted to stars within a free-fall time, εff, because

a giant molecular cloud tends to form enough stars to destroy itself

within a few free-fall times. Thus, � should parametrize the per-

free-fall efficiency of SF in a manner insensitive to spatial scale and

metallicity.

In this paper, we show that if gas contracts globally (for any

reason), as it becomes denser (� increases), and gravity becomes

stronger relative to stellar feedback, gas is converted more and more

rapidly into stars (above a characteristic surface density �crit). This

exhausts the gas supply, preventing any significant fraction of the

inflow from reaching surface densities >�max. We calculate �max in

terms of �crit and show that the observed �max ∼ 3 × 105M⊙ pc−2

is naturally predicted by the value �crit = 3000M⊙ pc−2 set by feed-

back from massive stars (Fall et al. 2010; Grudić et al. 2018a).

2 D ERIVATION

2.1 Set-up and assumptions

Consider a discrete SF episode involving a finite collapsing gas mass

M, as illustrated in Fig. 3. At a given time, the mass is localized

within a radius R, so that its mean surface density is:

� =
M

πR2
. (2)

It is forming stars at some SFR, which we can parametrize with the

SFE:

SFR ≡
dM∗

dt
=

ǫffMgas

tff
, (3)

where εff is the (possibly variable) per-free-fall SFE and tff =

π

2

√

R3

2GM
is the free-fall time.

Now, since we are only interested in the maximum stellar surface

density such a system might reach, we will assume the ‘best-case’

scenario for forming a dense stellar system. Specifically, assume:

(i) The gas cloud is collapsing at a speed on the order of the

escape velocity:

dR

dt
= −xff

√

2GM

R
, (4)

where xff is a constant of order unity.

(ii) There is no support against collapse from large-scale turbu-

lent motions,2 tidal forces, rotation, shear, magnetic fields, cosmic

rays, or the dynamical effects of stellar feedback. We neglect all of

these because we are interested in the best-case scenario for pro-

ducing a dense stellar system according to a give SFE law – any of

these may be present, but they will only slow collapse, making a

lower density system in the end.

This is an idealization, but Kim et al. (2018) did find that bound

star clusters do form in a coherent collapse with velocity on the order

of the free-fall velocity in cosmological simulations, and stellar

feedback does not greatly affect the dynamics until a significant

fraction of the gas mass has been converted to stars.

2.2 Star formation efficiency law

We shall assume that εff has some explicit dependence upon �, as

is motivated by previous work. Accounting for radiation pressure,

stellar winds, photoionization heating, and SN explosions, Paper II

found

ǫff = ǫff(�) =

(

1

ǫmax
ff

+
�crit

�

)−1

, (5)

where �crit = 3000M⊙ pc−2 is set by the strength of these feedback

mechanisms. The dimensionless quantity ǫmax
ff is the maximum per-

free-fall SFE attained as � → ∞. In star-forming clouds supported

at a fixed mean surface density, Paper II (see their equation 13

and fig. 5) found that ǫff ≈ 0.34 ǫint (where εint is the fraction of

gas turned into stars over the entire integrated SF history, which of

course just saturates at ǫmax
int = 1 as � → ∞). However, this was

the median over the entire SF history including initial collapse and

eventual blowout. Therefore – in our ‘best-case’ coherent collapse

scenario, we are only interested in the ‘peak SFR’ event, so ǫmax
ff

should be somewhat greater, ∼0.5 (see Paper II, fig. 3), and subject

to further order-unity corrections due to the different collapse ge-

ometry from these simulations. In general, ǫmax
ff should be similar

that predicted by turbulent molecular cloud simulations that do not

include stellar feedback, which have generally found εff ∼ 0.5−1

in the limit of large turbulent Mach number and realistic turbulent

forcing (Federrath & Klessen 2012).

Adding turbulence and magnetic fields in succession, but without

feedback initially, Federrath (2015) found average values of εff ∼

0.1 and ∼0.25 respectively, somewhat lower values than discussed

above. These simulations were stopped at an arbitrary integrated

SFE of 20 per cent as εff, just as εff peaked, which may have reduced

the measured average efficiency. These simulations were also at a

much lower Mach number, M ∼ 5, than the high-efficiency clouds

in Paper II, M ∼ 30–300, and both analytic theory and simulation

2Note that some amount of turbulence must be assumed if stars are forming.

We assume that such turbulent eddies are small compared to R, and thus are

advected with the large-scale collapse without strongly opposing it.

MNRAS 483, 5548–5553 (2019)
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Explaining the maximum stellar surface density 5551

results find lower values of εff in this M range when feedback is

not present (e.g. Hopkins 2012, fig. 11). Notwithstanding, Feder-

rath (2015) also showed that feedback from protostellar jets could

maintain a small εff over several free-fall times. However, we again

do not expect this moderation to scale up for clouds of greater

M, due to the dimensional scaling of the feedback mechanism.

Assuming that outflows coupled a momentum 〈P⋆/M⋆〉 per stellar

mass formed, the value of εff required to support the cloud scales

∝

√

GM

R
/〈P⋆/M⋆〉 ∝ M, so it is unlikely that protostellar feedback

can maintain a low εff in the progenitor clouds of the dense, massive

stellar systems considered here (generally with velocity dispersions

corresponding to M > 30).

Overall, for the progenitor clouds of the types of system plotted

in Fig. 1, we favour values in the range εff, max ∼ 0.3–0.5. We

acknowledge some amount of uncertainty when generalizing to

various geometries and turbulence properties such as solenoidal

versus compressive driving.

2.3 Solution

The SFR of the cloud is

dM∗

dt
= ǫff

Mgas

tff
=

Mgas
(

ǫmax
ff

)−1
+ �crit

�

√

8GM

π
2R3

, (6)

where Mgas is the gas mass that has not been converted to stars at

time t. The differential equation for the gas mass converted to stars

when the cloud has radius R follows:

dMgas

dR
= −

dM∗

dt

dt

dR
= −

2

πxffR

Mgas
(

ǫmax
ff

)−1
+ πR2�crit

M

. (7)

The solution for the fraction of the gas mass surviving to radii <R

is

Mgas (< R)

M
=

(

1 −
M

M + ǫmax
ff πR2�crit

)ǫmax
ff

/πxff

. (8)

Thus, as R → 0, we see that Mgas → 0, i.e. the gas is exhausted

as the system contracts to surface densities � ≫ �crit. The stellar

system formed will subsequently undergo a period of relaxation,

but energy conservation requires that the stars remain on orbits with

apocentres on the order of the radius R at which they formed .3 We

may thus construct a radial stellar density profile as the superpo-

sition of the top-hat mass distributions formed at each radius. The

corresponding projected stellar surface density profile is

�∗ (R) = 2

∫ ∞

R

√

R′2 − R2
dMgas

(

< R′
)

dR′
/

(

4π

3
R′3

)

dR′, (9)

which we plot for various values of ǫmax
ff and xff in Fig. 4. In general,

we find that the characteristic stellar surface densities for plausible

values of ǫmax
ff and xff span the range of surface densities found in

dense stellar systems (Figs 1 and 2). Furthermore, if xff = 1 then ef-

fective surface densities ∼105 M⊙ pc−2 are obtained, corresponding

to the maximum observed.

It should be noted that the inner surface density profile plotting

in Fig. 4 is � ∝ R
−2+

2ǫmax
ff

πxff , which is nearly as steep as R−2 for

the physically plausible parameters ǫmax
ff = 0.5 and xff = 1, ie. the

3We have verified with collisionless Monte Carlo simulations that the func-

tional form of equation (8) does closely match the final stellar mass distri-

bution after violent relaxation to virial equilibrium, provided that the initial

virial parameter 2Ekin/|Egrav| ∼ 1.

Figure 4. Radial stellar surface density profiles computed from the cloud

collapse model described in Section 2.1 for various values of the maximum

per-free-fall SFE ǫmax
ff and the rate of collapse relative to free fall xff, with

radius in units of the half-mass radius Reff. The point on each curve gives the

effective stellar surface density �∗,eff = M∗/
(

2πR2
eff

)

of the model. The

characteristic surface densities obtained over the parameter ranges ǫmax
ff ∼

0.5 − 1 and xff ∼ 0.1−1 span the range 103 − 106 M⊙ pc−2 in which most

dense stellar systems lie (see Fig. 1). To form a system with �∗,eff >>

3 × 105 M⊙ pc−2 would require ǫmax
ff << 0.5 or xff > >1, both of which

are unphysical.

Figure 5. Maximum effective surface density �max predicted by the model

in Section 2.1 as a function of the parameter ǫmax
ff (maximum SFE per-free-

fall time, as � → ∞), assuming �crit ≈ 3000 M⊙ pc−2. Simulations and

analytic theory give ǫmax
ff ≈ 0.5 − 1 (Hopkins 2012; Federrath & Klessen

2012). Different lines compare different models for how the efficiency εff

scales at finite �. Solid: our fiducial model (equation 5), where εff scales with

�/�crit as expected from simple analytic comparison of feedback and gravity

(equation 1) or detailed SF simulations (Paper II). Dashed: a model where εff

scales as a step function, with εff = 0.01 when � < �crit, and ε = εmax when

� > �crit. This gives similar results to the fiducial case, demonstrating that

the details of how εff scales do not matter here, so long as it rises efficiently

above ∼�crit. Dotted: a model with constant ǫff = ǫmax
ff , independent of

surface density �. This gives a very steep dependence and can only be

reconciled with the observed �max if we fine-tune ǫmax
ff to a value outside

the range predicted by analytic theory and numerical simulations [assuming

other mechanisms not considered here cannot reduce it, see Federrath (2015)

and discussion in Section 2.2].
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5552 M. Y. Grudić et al.

profile has nearly constant mass per interval in log R. In such a case,

a non-negligible fraction of the mass can be concentrated on scales

<0.1pc. Such a high degree of central concentration is not generally

found in any type of stellar system, so the inner profiles in this model

are an unphysical artefact of the imposed condition of unopposed,

spherically-symmetric collapse. This is never realized in nature

because even an initially monolithic supersonic collapse is unstable

to fragmentation (Guszejnov et al. 2018), and the subsequent violent

relaxation of stars produces a much shallower (typically flat) inner

density profile (Klessen & Burkert 2001; Bonnell, Bate & Vine

2003; Grudić et al. 2018b). Thus, our free-collapse model lacks the

physics necessary to establish a hard limit upon the central stellar

surface density,4 although it should scale in a similar way to the

effective surface density when combined with the action of the

scale-free physics of gravity and turbulence during SF.

In Fig. 5, we consdier the maximally free-falling case xff = 1

to plot the dependence of �max on ǫmax
ff . We find that if �crit =

3000M⊙ pc−2 and the plausible range for ǫmax
ff is 0.5−1, the pre-

dicted �max lies within an order of magnitude of the observed

�max ∼ 3 × 105M⊙ pc−2 (Fig. 1). We also present results for two

alternate models for εff(�): a constant value, and a step function

equal to 0.01 (e.g. Kennicutt 1998; Krumholz, Dekel & McKee

2012) below �crit and ǫmax
ff above �crit. First, we note that while our

preferred model gives �max independently of initial cloud surface

density, these do not – we therefore take the initial density to be

100M⊙ pc−2, typical of local GMCs (Bolatto et al. 2008). Second,

we see the ‘εff = constant’ model predicts a �max that is more sen-

sitive to the chosen εff (and the ‘preferred’ value, ∼0.2, is small).

The step-function model, however, gives very similar results to our

default model, so we see that the conclusions are not specific to the

details of how εff scales, so long as εff is small when � < �crit

and grows to a value of order unity above � ∼ �crit. Ultimately,

the 2 dex separation between �crit and �max can be understood as

follows: the system forms stars slowly until reaching � ∼ �crit, and

only then does significant SF happen, during which global collapse

still proceeds. Thus, this system is significantly denser than �crit at

the median SF time.

3 D ISCUSSION

We have shown that the observed, apparently universal maximum

stellar surface density of dense stellar systems is a natural con-

sequence of feedback-regulated SF physics. Specifically, assum-

ing standard stellar evolution and feedback physics (from e.g. the

combination of stellar winds, radiation pressure, SNe, etc.), then

as surface densities (�) increase, the strength of gravity relative

to feedback (assuming some fixed fraction of gas has turned into

stars) increases in direct proportion to � (equation 1; see refer-

ences in Introduction). Essentially, the strength of gravity scales

∝ G M2/R2 ∝ M �, while the strength of feedback is proportional

to the number of massive stars ∝ M. So SF becomes more effi-

cient, until the gas depletion time-scale becomes comparable to the

free-fall time, and the gas is exhausted before it can collapse to yet

higher densities (even if it is getting denser as rapidly as possible, by

collapsing at the escape velocity). Adopting standard scalings for

the efficiency of feedback from simulations of star-forming clouds

4Indeed, there is at least one YMC in M83 with central surface density in

excess of 106M⊙ pc−2 in the catalogue of Ryon et al. (2015), suggesting

that the same bound for central surface density might not strictly hold.

that span the relevant range of densities (Paper II), we show this

predicts a �max in good agreement with that observed.

This explanation has several advantages over the previously pro-

posed explanations of the maximum surface density from Paper I.

As Paper II found that the parameters ǫmax
ff and �crit were insensitive

to spatial scale below ∼1 kpc, our explanation applies equally well

across the entire range of sizes of observed stellar systems in Fig. 1.

Paper II also found SFE to be relatively insensitive to metallicity,

so the �max we calculate is not specific to a particular metallicity.

The main effect of metallicity is the aforementioned opacity to re-

processed FIR emission, but radiation hydrodynamics simulations

of SF in the IR-thick limit (Skinner & Ostriker 2015; Tsang &

Milosavljević 2018) have shown that this can only reduce εff by

∼30 per cent, down to levels consistent with Paper II. At fixed �,

this explanation is also insensitive to the three-dimensional density,

N-body relaxation time, formation redshift, and escape velocity of

the stellar systems (see e.g. fig. 4 in Paper II).

This model also explains why SF in a pre-existing dense stellar

system does not generally drive �∗ beyond �max – in other words,

if one continuously or repeatedly ‘trickled’ gas into e.g. a galaxy

centre, why could not one continuously add new stars to the central

cusp, eventually exceeding �max? The key here is that the pre-

existing stellar mass still contributes to the binding force of gravity:

recall, � in our model is the total mass, of gas + stars. This drives

up the SFE whenever the total surface density exceeds �crit. Thus,

for example, if fresh gas falls coherently into the centre of a bulge

or dwarf nucleus with � ∼ �max, then the total surface density

will exceed �crit out at larger radii, driving the SFE to high values

and exhausting the gas. Multiple SF episodes would therefore be

expected to build up the stellar mass by increasing the radius inside

of which � ∼ �max, not by increasing �max.

We also stress, of course, that �max is not a ‘hard’ limit, either in

observations (Figs 1 and 2), or in our model (Fig. 4). Some gas can

survive to reach higher densities (and must, to fuel supermassive

black holes, for example), and some gas may be re-injected by

stellar mass loss in these dense nuclei. And the key parameters of

our model (the efficiency of feedback, which appears in �crit, and

ǫmax
ff ) are not expected to be precisely universal, as e.g. variations

in IMF sampling (since massive stars dominate the feedback) will

alter �crit and the exact geometry of collapse will alter ǫmax
ff (at the

tens of per cent level).
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