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ABSTRACT

Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly

resolve the formation (or predict the main-sequence masses) of individual stars. So they must

use some prescription for the amount of feedback from an assumed population of massive stars

(e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of

a star-forming GMC with stellar feedback from UV radiation, varying only the prescription

for determining the luminosity of each stellar mass element formed (according to different

IMF sampling schemes). We show that different prescriptions can lead to widely varying

(factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-

to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer,

more-luminous sources has a greater effect for a given total luminosity. These differences can

dominate over other, more widely recognized differences between similar literature GMC-

scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields).

Moreover the differences in these methods are not purely numerical: some make different

implicit assumptions about the nature of massive star formation, and this remains deeply

uncertain in star formation theory.
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1 IN T RO D U C T I O N

Massive stars are rare, but their radiation, winds, and supernova

explosions dominate the energy liberated from a stellar population.

It is thought that feedback from massive stars is a crucial element

for regulating star formation on scales ranging from entire galaxies

to individual star clusters (McKee & Ostriker 2007; Naab &

Ostriker 2017). In the latter case, significant theoretical efforts

have been devoted to understanding how feedback from massive

stars sets the star formation efficiency (SFE) of star-forming giant

molecular clouds (GMCs), the fraction of the initial gas mass that is

converted to stars before feedback disrupts the cloud and halts star

formation. An understanding of the SFE of GMCs is important for

understanding the origins of the star cluster mass function and its

connection to the GMC mass function (Elmegreen & Efremov 1997;

Fall, Krumholz & Matzner 2010), the origins of gravitationally

bound globular clusters (Hills 1980; Baumgardt & Kroupa 2007;

Kruijssen 2012), and the distribution and pre-conditioning of su-

pernova explosions, which affects the efficiency of stellar feedback

on galactic scales (Keller et al. 2014; Fielding, Quataert & Martizzi

2018).

⋆ E-mail: mgrudich@caltech.edu

Significant progress has been made on this problem as the

necessary computational techniques have become available. Many

numerical experiments have been performed in which a self-

gravitating molecular cloud is evolved in isolation, subject to self-

gravity, hydrodynamics, stellar feedback, and possibly detailed

cooling and chemistry physics (Murray, Quataert & Thompson

2010; Vázquez-Semadeni et al. 2010; Dale, Ercolano & Bonnell

2012; Colı́n, Vázquez-Semadeni & Gómez 2013; Dale et al. 2013;

Dale et al. 2014; Skinner & Ostriker 2015; Howard, Pudritz &

Harris 2016, 2017; Raskutti, Ostriker & Skinner 2016; Dale

2017; Gavagnin et al. 2017; Kim et al. 2017; Vázquez-Semadeni,

González-Samaniego & Colı́n 2017; Grudić et al. 2018a; Kim,

Kim & Ostriker 2018b, for review see Krumholz et al. 2014;

Dale 2015). For GMC properties consistent with those found in

the local Universe (�gas ∼ 50 M⊙ pc−2, M ∼ 104–106 M⊙, Bolatto

et al. 2008), the most important feedback mechanism for regulating

star formation on GMC scales is generally agreed to be UV photons

from massive stars. UV photons heat and ionize the interstellar

medium (ISM) upon absorption by gas or dust, while also impart-

ing momentum upon absorption, creating expanding H II regions

that ultimately unbind the remaining gas in the cloud. However,

theoretical consensus on the specific SFE at which cloud disruption

occurs (or even whether it occurs at all, Howard et al. 2016) has been

slower to develop. As an extreme example, Raskutti et al. (2016)
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Massive stars and GMCs 2971

simulated a molecular cloud of initial mass 5 × 104 M⊙ and radius

15 pc and obtained an SFE of ∼ 40 per cent, while Grudić et al.

(2018a) simulated the same cloud model with nominally the same

feedback physics and obtained ∼ 4 per cent, an order of magnitude

smaller.

Discrepancies are not necessarily surprising when one considers

the compounded variations that can arise when using different

hydrodynamics methods, sink particle prescriptions, and perhaps

most importantly, radiative transfer approximations. Variations due

to these numerical details warrant some exploration, as studies

that compare radiative transfer methods while controlling for other

factors are few, and none are exhaustive. Raskutti et al. (2016)

performed simulations treating the effects of photon momentum

(i.e. radiation pressure) from UV photon absorption with an M1

radiation transfer scheme (Skinner & Ostriker 2013), which Kim

et al. (2017) subsequently compared to adaptive ray tracing results

using otherwise the same code, and found an SFE a factor of

∼2 smaller. Hopkins & Grudić (2019) also performed GMC

simulations comparing the ray-based LEBRON radiative transfer

approximation (Hopkins et al. 2018) with an M1 scheme (Rosdahl &

Teyssier 2015), and also found agreement at the factor of ∼2

level. Therefore, variations in radiative transfer techniques can

likely account for some of the variation found in the literature,

but probably not all of it. This motivates the consideration of other

factors.

Several of the studies cited above compared additional physics

(e.g. including or ignoring magnetic fields), or varying the cloud

initial conditions (e.g. considering clouds with or without pre-

initialized fully developed turbulence, with or without significant

rotational support, and with or without a global density profile): the

general conclusion is that these, too, can influence the predicted

SFE by at most a factor ∼2 (see references above and Klessen,

Heitsch & Mac Low 2000; Price & Bate 2008; Krumholz, Klein &

McKee 2011). Others have shown that including or excluding other

sources of feedback besides UV radiation alone, e.g. O/B stellar

winds (which carry a similar momentum flux to the UV radiation

field), can have a similar effect.

In Hopkins & Grudić (2019) we argued that another potential

error source can arise when using the most common method

for coupling radiation pressure to gas, which underestimates the

imparted momentum from a point source if the photon mean

free path is smaller than the fluid resolution. Krumholz (2018)

subsequently pointed out another previously overlooked numer-

ical pitfall: photon absorption around an accreting massive star

can occur deep in the potential well on scales smaller than the

resolution limit of most simulations, preventing it from imparting

momentum on larger scales. They argued that the failure to re-

solve this effect could also explain some of the discrepancy, and

proposed a subgrid model to approximate this effect in numerical

simulations.

This led us to consider the broader important question that

we will address here: how do the details of how the sources of

stellar feedback are modelled in simulations affect the cloud-scale

SFE? Clearly, when simulations attempt to model the formation of

massive stars self-consistently, the details of the initial mass function

(IMF) will become important for feedback, as UV luminosity is a

steep function of stellar mass. However, most GMC-scale and all

galaxy-scale hydrodynamics simulations either lack the resolution

or the physical realism to do this self-consistently, so feedback

is often treated with phenomenological prescription, assuming an

underlying stellar mass distribution that is being sampled in some

manner. In this work we will compare several such techniques, and

determine the effect of these numerical choices upon the cloud-scale

SFE in simulations.

2 SI MULATI ONS

2.1 Numerical methods

We simulate an isolated turbulent molecular cloud with GIZMO, a

multiphysics N-body and hydrodynamics code (Hopkins 2015).1 We

solve the equations of hydrodynamics with the Lagrangian Meshless

Finite Mass (MFM) method. We account for a wide range of ISM

heating and cooling physics, using the rates and implementations

used in the FIRE-2 simulations (Hopkins et al. 2018).2 Star formation

is treated with an accreting sink particle method described in

Guszejnov et al. (2018), which uses multiple checks for sink

formation and accretion, similar to Federrath et al. (2010). For

simplicity, we consider only the effects of feedback due to the

absorption of UV photons from stars, accounting for the effects of

photoheating and radiation pressure as in Hopkins et al. (2018).

2.2 Initial conditions

We replicate the initial conditions of the fiducial cloud model in

Kim et al. (2018b), a GMC with a top-hat density profile with mass

105 M⊙ and radius 20 pc. The initial velocity field is a solenoidal

Gaussian random field with power spectrum |ṽ (k) |2 ∝ k−4

(Gammie & Ostriker 1996), normalized so that the initial kinetic

energy is equal to the gravitational potential energy. The initial

metallicity of the cloud is normalized to solar abundances, ac-

counted for self-consistently in the cooling function and the dust

opacity to UV photons as in Hopkins et al. (2018). In all simulations

we resolve the initial gas mass in 1283 Lagrangian gas cells, for a

mass resolution of 0.048 M⊙. Initial conditions were generated with

the MAKECLOUD code.3

2.3 IMF sampling models

We perform simulations with a range of different prescriptions

for the specific bolometric and ionizing luminosities assigned to

the stellar mass elements (i.e. sink particles) in the simulation.

These are all intended to mimic certain aspects of the effect of

sampling a finite number of stars from an underlying probability

distribution function (i.e. the IMF). Each recovers the same net

specific luminosities in the limit M⋆ > >103, but each approaches

that limit in a different manner as stars form in the simulation.

All of these prescriptions have advantages and disadvantages – in

this work we remain agnostic about the relative physical realism of

these models, which is difficult to evaluate without a self-consistent

treatment of the physics of massive star formation. We consider

only models that work under the assumption that the IMF can

indeed be interpreted as probability distribution to be sampled from

until a given stellar mass reservoir is exhausted. This must break

down at some level, due to mass conservation if no other reason.

However, the details of how the IMF emerges are poorly understood,

and the stochastic sampling hypothesis is consistent with current

observations (Bastian, Covey & Meyer 2010; Fumagalli, da Silva &

Krumholz 2011; Offner et al. 2014).

1http://www.tapir.caltech.edu/ phopkins/Site/GIZMO.html
2https://fire.northwestern.edu/
3https://github.com/omgspace/MakeCloud
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2972 M. Y. Grudić and P. F. Hopkins

2.3.1 IMFMEAN: simple IMF-averaging

The simplest approach is to assume that all stellar mass elements in

the simulation have the same specific luminosity as a well-sampled

IMF, which for a very young stellar population with age ≪ 3.5 Myr

and a Kroupa (2002) IMF is approximately
〈

L⋆

M⋆

〉

IMF

= 1140L⊙ M−1
⊙ . (1)

This is approximately constant until t ≈ 3.5 Myr, then decreases

appropriately as massive stars die according to an adopted stellar

evolution model (e.g. Leitherer et al. 1999). The well-sampled

assumption is expected to be valid in systems where the total stellar

mass is >> 103 M⊙, and is a common choice for galaxy simulations

that might not even resolve mass scales smaller than this (Hopkins,

Quataert & Murray 2011; Agertz et al. 2013; Hopkins et al. 2018),

although it has also been used in smaller scale cluster formation

simulations (Grudić et al. 2018a,b; Kim et al. 2018a; Hopkins &

Grudić 2019). This is the only prescription that guarantees that

the specific luminosity is always equal to the ensemble over all

possible IMF samplings. However, this is not necessarily desirable

in all problems. The method has a serious drawback in the regime

of low-mass star cluster formation: when sampling an IMF from a

small reservoir of stellar mass, most realizations sample no massive

stars at all. Therefore, the mean specific luminosity is due to those

very few possible samplings that do contain massive stars and have

specific luminosities much greater than the mean. The effect of

this is to give a specific luminosity that is much larger than the vast

majority of possible realizations of low-mass clusters, and much less

than those few realizations that do, averaging out a major source of

physically real stochasticity.

In addition to the standard IMFMEAN scheme, we consider a

variant supplemented by the subgrid model introduced by Krumholz

(2018), IMFMEAN-K18. To mimic the effect of photon absorption

in a dust destruction front at unresolved scales, we simply switch off

UV feedback from a sink particle when its accretion rate exceeds

the threshold value

Ṁ

M⊙ yr−1
> 6.5 × 10−4

(

L

106L⊙

)3/4

. (2)

Because our sink particles accrete discrete Lagrangian gas cells,

we apply exponential smoothing to the accretion rate for this check,

with an e-folding time τaccr = 105 yr, motivated by the fiducial time-

scale for massive star formation. We have experimented with setting

this parameter to 104 and 106 yr and found that it has no important

effect on the SFE.

2.3.2 IMFMED: scaling to a median value

An alternative approach to using the IMF-averaged mean is to use

the median or most likely (which are close) value over the ensemble

of IMF samplings, assuming that the total stellar mass formed in

the simulation can be interpreted as a coeval stellar population.

Kim, Kim & Ostriker (2016) developed this approach by sampling

stellar populations with the SLUG code (da Silva, Fumagalli &

Krumholz 2012) for a range of cluster masses and deriving a

fitting formula to the median value sampled at each mass scale.

The median value is very small for star clusters less than a couple

100 M⊙, and scales steeply towards the well-sampled value once

M⋆ ∼ 1000 M⊙. This model was used in their subsequent RHD

simulations (Kim et al. 2017, 2018b), and is the one we implement

here.

The IMFMED model will give a value more representative of

a ‘typical’ sampling. The disadvantage of this approach is that it

lacks locality: star formation in one region of the cloud influences

the amount of feedback everywhere else, which is unphysical and

cannot generalize to more complicated systems in which the very

definition of a progenitor cloud, and hence which stars belong to

which coeval population, is ill-defined. It and IMFMEAN share

another disadvantage: every sink particle has the same light-to-

mass ratio, which is artificially smoother than the true distribution

of luminous sources in a star cluster. This motivates our next

prescription.

2.3.3 POISSON: Poisson-sampling quantized sources

To model the discreteness of luminous sources, we can sample a

quantized number of ‘O-stars’ in each sink particle, such that the

expectation value is still the IMF-averaged value. We adopt the

prescription of Su et al. (2018), which assigns to each sink particle

a number of ‘O-stars’ sampled from a Poisson distribution, with

expectation value

μ =
mparticle

�m
, (3)

where mparticle is the mass of the sink particle and �m was taken to

be 100 M⊙ in Su et al. (2018). Then, each ‘O-star’ is taken to have

luminosity

L = �m

〈

L⋆

M⋆

〉

IMF

. (4)

This technique has the advantage of giving a more realistic number

of feedback-injecting sources for a given amount of stellar mass. It

also captures the effect of undersampling the IMF, but stochastically

rather than causally as IMFmed. Although the version used in

Su et al. (2018) sampled only one species of ‘O-star’, it is in

principle extensible to an arbitrary number of species (Sormani

et al. 2017). The details of how the luminosity is discretized, i.e.

few sources versus many, is potentially important. Feedback from

a single luminous source might be more efficient than that of many

smaller sources because it is more concentrated and less subject

to momentum cancellation (e.g. Dale 2017; Kim et al. 2018b).

On the other hand, it could also be effectively weaker because

luminous sources are only likely to appear once a certain amount

of stellar mass has formed, at which point collapse may be more

advanced and the resulting structure more difficult to disrupt. We

consider two variants of this prescription, with �m = 100 M⊙

and �m = 1000 M⊙, denoted POISSON100 and POISSON1000,

respectively.

A notable omission from this section is the prescription of

Howard et al. (2016), which interprets each sink particle as an

individual cluster, and effectively applies an IMF sampling prescrip-

tion to each of these clusters individually. We have experimented

with a variant of this prescription and found it to be numerically

problematic in our simulation set-up, because the characteristic

mass of sink particles drops as a function of mass resolution, as has

generally been found in other simulations (Bate 2009; Federrath,

Krumholz & Hopkins 2017; Guszejnov et al. 2018). Thus in the

limit of high resolution, feedback is made effectively weaker, and

numerical convergence in the SFE is not achieved. We speculate

that this type of prescription can only converge for sink particle

algorithms that imprint a characteristic size or density scale other

than the numerical resolution, which requires certain assumptions

about the nature of star cluster formation, and indeed the very

MNRAS 488, 2970–2975 (2019)
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Massive stars and GMCs 2973

Figure 1. Left: Integrated star formation efficiency (fraction of cloud mass converted to stars) in the simulations as a function of time, for simulations run

with each of the different subgrid feedback models considered (Section 2.3). Right: bulk stellar light-to-mass ratio according to the different prescriptions,

normalized to the IMF-averaged value. Note that the IMFMEAN-K18 curve does not include the effect of turning off feedback according to equation (2), but

we find that the effect is small (see discussion in Section 3). The different prescriptions all approach the same IMF-averaged value in the limit M⋆ >> 103 M⊙,

but they differ in how they approach this limit.

definition of a star cluster, that are beyond the scope of this

investigation.

3 R ESULTS

The simulated clouds evolve according to the usual sequence of

events found in this type of simulation (e.g. Grudić et al. 2018a):

turbulence dissipates in shocks on the crossing time-scale, and the

cloud collapses into dense substructures that eventually form stars.

Eventually, the cumulative effect of stellar feedback is sufficient

to disrupt the cloud, halting star formation. In Fig. 1 we plot the

integrated SFE M⋆/M and the light-to-mass ratio as a function of

time for each of the five different prescriptions used.

The SFE varies considerably with the feedback prescription used:

IMFMED ended with an SFE of 12 per cent, while POISSON100

gave 4 per cent, with the others lying in between. This is despite

the fact that the final light-to-mass ratios from each prescription

all agreed within 10 per cent, as at least 4000 M⊙ forms in each

simulation. We therefore find that the details of IMF sampling

prescriptions for feedback can have a considerable effect on the

SFE of simulated molecular clouds. In particular, we find that the

IMFMEAN value of 5 per cent is reasonably consistent with Grudić

et al. (2018a), which used that prescription, while IMFMED gives an

SFE of 12 per cent, consistent with Kim et al. (2018b), explaining

the discrepancy between those specific works.

The IMFMEAN + K18 prescription gives results that are nearly

indistinguishable from the standard IMFMEAN prescription, despite

the fact that it always gives less feedback. We have generally found

that the fraction of time during which the criteria for turning off

feedback (equation 2) are satisfied is very short compared to the

lifetime of the GMC. Star particles accrete rapidly out of dense

cores, and accretion halts either when the gas is exhausted or when

the star particle is dynamically ejected out of its natal clump and

into a void. Once equation (2) is no longer satisfied, feedback

turns on and generally drives an outflow around the star. Once

this outflow has been initiated, it tends not to end. Therefore even

a brief lapse in the accretion rate can effectively end the accretion

history.

Even assuming an infinite reservoir for accretion, an upper bound

on the amount of time that equation (2) can apply can be derived

from the observed properties massive stars. To maximize this time,

we assume that equation (2) holds as an equality. The luminosity of

stars more massive than ∼ 20 M⊙ is

L

106L⊙

≈ 0.03
M

M⊙

. (5)

Substituting this into equation (2) gives

Ṁ

M⊙ yr−1
= 4.7 × 10−5

(

M

M⊙

)3/4

. (6)

Over the mass range of massive stars, the solution to this equation

is well approximated by exponential growth with an e-folding time

of 40 kyr, so within a few 100 kyr the maximum stellar mass on

the order of 100 M⊙ must be reached. Because this is much shorter

than even the shortest GMC lifetimes, the effect upon the cloud-

scale SFE is small. However, we emphasize that the prescription

could easily have more important effects on smaller scales or shorter

time-scales, such as influencing the accretion history of individual

protostars or the formation of a dense star cluster.

4 D ISCUSSION

We have shown that when simulating the evolution of an isolated

molecular cloud, the specific prescription for massive stellar feed-

back used can affect the SFE of the cloud (and by extension, the

properties of the star cluster formed) at least at the factor of ∼3 level.

This is despite the fact that all simulations eventually form at least

several 103 M⊙ in stars, so the IMFs in all cases are well-sampled

and the final light-to-mass ratios do not differ widely.

The simplest analytic estimate of the feedback-regulated SFE

of a molecular cloud can be obtained by simply equating the bulk

momentum injection rate due to feedback to the weight of the cloud

MNRAS 488, 2970–2975 (2019)
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2974 M. Y. Grudić and P. F. Hopkins

due to self-gravity. In the limit of small SFE (Fall, Krumholz &

Matzner 2010; Murray, Quataert & Thompson 2010; Hopkins,

Quataert & Murray 2012; Grudić et al. 2018a; Kim, Kim & Ostriker

2018b):

SFE ∝ �gas/
L⋆

M⋆

, (7)

where �gas is the mean surface density of the cloud. If this force

balance is assumed to hold at the time of cloud disruption, then

we would expect that the variation in SFE would not exceed the

variation in L⋆

M⋆
, but the simulations show that this is not the case:

all simulations end with the same L⋆

M⋆
within 10 per cent, yet the

variation in SFE is a factor of 3.

We generally find that prescriptions that take longer to approach

the fully sampled specific luminosity have SFE that can be a

factor 2–3 higher than the fiducial IMFMEAN prescription. The

physical reason for this is of course that the efficiency of feedback

does not depend only upon the bulk ionization or momentum

deposition rate: it also depends on where and when the absorption

event occurs, a point deftly illustrated in recent work (Jumper &

Matzner 2018; Krumholz 2018). Specifically, recombination and

cooling times are shorter at higher density, suppressing radiative

heating effects, while momentum imparted in a deeper potential

well provides less terminal momentum, and if the well is sufficiently

deep the momentum might not be sufficient to launch a wind

at all.

This raises a point that is more broadly important: the effective-

ness of feedback from massive stars depends on much more than

just the bulk light-to-mass ratio arising from the IMF – it depends

on when and under what conditions massive stars form. This should

hold quite generally, so although we have only considered schemes

for injecting feedback from an assumed IMF, this has implications

for calculations that attempt to resolve the IMF self-consistently.

The particulars of where massive stars form in the cloud, when

they form relative to other stars, and how long they take to form

should all influence the behaviour of stellar feedback. The resulting

influence on feedback influences the evolution of the entire cloud

and the stellar population that will form.

Counterintuitively, the POISSON1000 simulation had lower

SFE than the IMFMED simulation despite the fact that its light-to-

mass ratio was lower at all times. This implies that feedback in the

POISSON1000 was more effective for a given specific luminosity.

The effect is due to the different discretizations of luminosity among

the sink particles: with IMFMED, all sink particles have the same

specific luminosity, while for POISSON1000 the luminosity was

concentrated in only five sources at the time star formation ended.

Therefore, radiative feedback from fewer, more luminous sources

is more efficient, a result analogous to what has been found for

the clustering of supernova explosions (Keller et al. 2014; Fielding

et al. 2018). We can conjecture that the true IMF-resolved solution

is probably closer to the discrete limit, because the bolometric and

especially the ionizing luminosity will generally be dominated by

the few most massive stars.

We note that similar experiments to those shown here were

considered on a galactic scale in Su et al. (2018), who argued that

galaxy-averaged quantities (e.g. stellar masses, sizes, morphologies,

abundance patterns, statistics of their star formation histories) were

not strongly influenced by the IMF sampling scheme. This is not

surprising, as the spatial and time-scales of self-regulation via

feedback in those simulations are much longer (≫ 10 Myr), so

most of the dynamics occurs in the well-sampled IMF limit (even

in dwarf galaxies). Moreover other studies have shown that even

artificially raising or lowering the GMC-scale SFE by much larger

factors than those seen here produces relatively weak effects on

galactic properties, because of global self-regulation by outflows

and pressure balance in the ISM (Hopkins, Quataert & Murray

2011; Faucher-Giguère, Quataert & Hopkins 2013; Agertz &

Kravtsov 2015; Orr et al. 2018). However, our study here suggests

that subgalactic but still large-scale quantities, e.g. properties of

star clusters and lifetime/mass of molecular gas at any given

time, could be significantly influenced by the physics discussed

here.

It is of course possible to develop more sophisticated IMF-

sampling schemes (see e.g. Hu et al. 2016; Fujimoto, Krumholz &

Tachibana 2018; Emerick, Bryan & Mac Low 2019), coupled to

more detailed stellar evolution models for feedback, and this can

provide some improvements for coarse-grained IMF prescriptions

(especially for phenomena like SNe occurring on much longer

time-scales). However, we stress that on the spatial and time-

scales of GMCs, this is not obviously ‘more correct’: the real

issue is not the statistical method by which the IMF is sampled.

Rather, it is the fact that these (and all of the methods discussed

here) are fundamentally assigning the question of where and when

massive stars form to a ‘subgrid’ model, which does not know

about the local (resolved) conditions in the GMC/ISM. Most of

the stellar mass will form wherever nature can form a ∼ 0.1 M⊙

star – but low-mass cores in low-density environments almost

certainly cannot form the � 40 M⊙ stars that dominate the UV

production in a massive cluster. And allowing massive stars to form

‘stochastically’ in such environments may likely overestimate their

effects. It is also not obvious that neglecting the accretion/formation

and protostellar/pre-main-sequence evolution of such stars is

a valid approximation on the ∼1 Myr time-scales of interest

here.

As such, what we have shown is that significant, intrinsic

uncertainties clearly still exist about the effects of stellar feedback

at the GMC scale, at least at the level demonstrated here. These

uncertainties will remain until the emergence of the IMF from

GMC dynamics is understood in a self-consistent framework.

Subgrid feedback prescriptions should ultimately be informed by

simulations that are able to follow the formation of a stellar

population at the level of resolution required to model the formation

of individual massive stars in an accurate and robust manner, so that

one can model in a physically motivated manner when and where

in a simulation massive stars form.
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Colı́n P., Vázquez-Semadeni E., Gómez G. C., 2013, MNRAS, 435, 1701

da Silva R. L., Fumagalli M., Krumholz M., 2012, ApJ, 745, 145

Dale J. E., 2015, New Astron. Rev., 68, 1

Dale J. E., 2017, MNRAS, 467, 1067

Dale J. E., Ercolano B., Bonnell I. A., 2012, MNRAS, 424, 377

Dale J. E., Ngoumou J., Ercolano B., Bonnell I. A., 2013, MNRAS, 436,

3430

Dale J. E., Ngoumou J., Ercolano B., Bonnell I. A., 2014, MNRAS, 442,

694

Elmegreen B. G., Efremov Y. N., 1997, ApJ, 480, 235

Emerick A., Bryan G. L., Mac Low M.-M., 2019, MNRAS, 482, 1304

Fall S. M., Krumholz M. R., Matzner C. D., 2010, ApJ, 710, L142

Faucher-Giguère C.-A., Quataert E., Hopkins P. F., 2013, MNRAS, 433,

1970

Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269

Federrath C., Krumholz M., Hopkins P. F., 2017, J. Phys.: Conf. Ser., 837, 1

Fielding D., Quataert E., Martizzi D., 2018, MNRAS, 481, 3325

Fujimoto Y., Krumholz M. R., Tachibana S., 2018, MNRAS, 480, 4025

Fumagalli M., da Silva R. L., Krumholz M. R., 2011, ApJ, 741, L26

Gammie C. F., Ostriker E. C., 1996, ApJ, 466, 814

Gavagnin E., Bleuler A., Rosdahl J., Teyssier R., 2017, MNRAS, 472, 4155
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Vázquez-Semadeni E., Colı́n P., Gómez G. C., Ballesteros-Paredes J.,

Watson A. W., 2010, ApJ, 715, 1302
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