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ABSTRACT

We study the non-linear evolution of the acoustic ‘resonant drag instability’ (RDI) using

numerical simulations. The acoustic RDI is excited in a dust–gas mixture when dust grains

stream through gas, interacting with sound waves to cause a linear instability. We study

this process in a periodic box by accelerating neutral dust with an external driving force.

The instability grows as predicted by linear theory, eventually breaking into turbulence and

saturating. As in linear theory, the non-linear behaviour is characterized by three regimes –

high, intermediate, and low wavenumbers – the boundary between which is determined by

the dust–gas coupling strength and the dust-to-gas mass ratio. The high and intermediate

wavenumber regimes behave similarly to one another, with large dust-to-gas ratio fluctuations

while the gas remains largely incompressible. The saturated state is highly anisotropic: dust

is concentrated in filaments, jets, or plumes along the direction of acceleration, with turbulent

vortex-like structures rapidly forming and dissipating in the perpendicular directions. The

low-wavenumber regime exhibits large fluctuations in gas and dust density, but the dust and

gas remain more strongly coupled in coherent ‘fronts’ perpendicular to the acceleration.

These behaviours are qualitatively different from those of dust ‘passively’ driven by external

hydrodynamic turbulence, with no back-reaction force from dust on to gas. The virulent

nature of these instabilities has interesting implications for dust-driven winds in a variety of

astrophysical systems, including around cool stars, in dusty torii around active-galactic-nuclei,

and in and around giant molecular clouds.

Key words: instabilities – turbulence – planets and satellites: formation – ISM: kinematics

and dynamics – galaxies: formation.

1 IN T RO D U C T I O N

Since its discovery by Trumpler (1930), astrophysical dust has

been recognized as important in nearly all areas of astronomy. In

addition to its extinction and scattering effects, dust dynamics are

important for star and planet formation (Käufl & Siebenmorgen

1996; Chiang & Youdin 2010), the evolution of cool stars (Norris

et al. 2012), stellar and AGN ‘feedback processes’ (e.g. radiation

pressure-driven winds; Thompson, Quataert & Murray 2005), cool-

ing in the ISM and protostellar discs, and chemical evolution (Draine

2003). Because dust is a collection of (often charged) aerodynamic

particles that are imperfectly coupled to the gas, its dynamics cannot

be trivially related to the better understood gas dynamics.

In, for example, planetesimal formation – perhaps the best-

studied astrophysical application where non-trivial dust dynamics

⋆ E-mail: moseley@princeton.edu

play a crucial role – the imperfect dust–gas coupling produces

phenomena such as dust ‘traps’ (in e.g. vortices and pressure

bumps; Johansen et al. 2014), turbulent concentration of grains,

and the ‘streaming instability’ (Youdin & Goodman 2005). It

is increasingly believed that these dust-clustering mechanisms,

especially the streaming instability, may resolve the decades-old

problem of how to aggregate or grow grains from millimeter sizes

through to planetesimals (see e.g. Johansen, Youdin & Mac Low

2009; Bai & Stone 2010b; Yang, Johansen & Carrera 2017).

A recent series of papers, Squire & Hopkins (2018a,b) and

Hopkins & Squire (2018a,b), have demonstrated the existence

of a generic superclass of instabilities that appear whenever dust

moves through gas. These instabilities, termed ‘Resonant Drag

Instabilities’ (RDIs), generalize the streaming instability to a wide

variety of astrophysical scenarios and systems, suggesting that dust–

gas mixtures are usually unstable. RDIs typically have growth rates

which are maximized at ‘resonant’ angles and wavenumbers, where

the phase velocity of some wave in the underlying gas medium

C© 2019 The Author(s)
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(e.g. acoustic, magnetosonic, or Alfvén waves) matches that of the

dust drift. In fact, a unique set of RDI sub-families appears for

every possible ‘resonant pair’ of dust and gas modes. For example,

the ‘streaming instability’ of Youdin & Goodman (2005) can be

understood to arise due to the resonance of dust drift and gas

epicyclic modes.

The purpose of this paper is to move beyond the linear analyses

of Squire & Hopkins (2018a,b), Hopkins & Squire (2018a,b), and

study the non-linear regime of the RDI using numerical simulations.

We consider one of the simplest set-ups possible: neutral dust,

drifting under the influence of a constant driving force through

a neutral (hydrodynamic), homogeneous gas medium. Physically,

this situation can arise when the dust, but not the gas, is subject

to an external force, such as radiation pressure. The gas supports

undamped sound waves, which can resonate with the drifting dust,

destabilizing the ‘acoustic RDI.’ The linear regime of this instability

was studied in detail in Hopkins & Squire (2018b), but simula-

tions are required to study the non-linear regime, including RDI-

generated turbulence and orbit crossing in the dust. Although the set-

up is simple, it is important to understand the non-linear saturation

of these instabilities because (1) they can provide fundamental

insights into the behaviours of other, more complicated RDIs, and

(2) the acoustic RDI may represent the fastest-growing RDI in

many physical regimes and objects, including dusty cool-star (AGB

or red giant) winds, dust in dense molecular clouds and cores, and

the obscuring ‘torus’ around AGN (see Hopkins & Squire 2018a

for extensive discussion).

We emphasize that the set-up and simulations in this work

are fundamentally distinct from previous theoretical works that

consider dust as a ‘passive’ entity in an externally turbulent medium

(e.g. Hogan, Cuzzi & Dobrovolskis 1999; Cuzzi, Hogan & Bottke

2010; Hopkins & Lee 2016; Lee, Hopkins & Squire 2017). In such

studies, the gas is unaffected by the dust, viz, the momentum back-

reaction of the dust on the gas is ignored, an assumption that is

truly valid only in the zero dust-to-gas mass ratio limit. In contrast,

this dust back-reaction is a crucial ingredient in causing RDIs, and

without it, the ensuing behaviour is qualitatively different.

In Section 2, we introduce the equations and numerical methods.

Section 3 outlines some theoretical expectations. Section 4 describes

the results of our simulations, providing brief comparison to the

theory. We conclude in Section 5.

2 M E T H O D S

As described above, our simulations are designed to study the basic

physics of the acoustic RDI in the simplest setting possible. We thus

consider a homogeneous mixture of dust and gas in a periodic box,

with an external force acting on the dust only. Because of the drag

between the gas and dust, this force accelerates the gas as well as

the dust, driving a mean velocity offset between the two phases. The

box is thus simulating a small ‘patch’ of a dust–gas mixture being

accelerated by some external force (such as radiation pressure) that

acts differently upon the gas and dust.

2.1 Equations solved

We directly integrate the equation of motion for a population of

aerodynamic dust grains, each of which individually obeys

dvd

dt
= − ws

ts
+ a, (1)

where d
dt

is the Lagrangian (co-moving) derivative, a is the external

force/acceleration, ts is the drag coefficient or stopping time, and

ws ≡ vd − ug is the drift velocity, defined as the difference between

grain velocity (vd) and gas velocity (ug). We use angle brackets 〈 ·

〉 to denote a volume average.

We will assume Epstein drag, with ts given by (see Draine &

Salpeter 1979)

ts(ρg, ws) ≡
√

πγ

8

ρi
d
ǫd

ρg cs

(

1 +
9πγ

128

w2
s

c2
s

)−1/2

, (2)

where ρg is the gas density evaluated at the position of the grain, γ

is the gas adiabatic index ∂log P/∂log ρg (with P the gas pressure),

ρi
d is the internal density of the grain, ǫd is the grain radius, and cs is

the sound speed given by
√

∂P/∂ρg. We denote the ratio of dust to

gas mass density as μ ≡ 〈ρd〉/〈ρg〉. Technically, this expression

is an approximation to the more general Epstein drag law, but

the difference using a numerically exact expression is completely

negligible here (Draine & Salpeter 1979).

The gas obeys the usual Euler equations, but momentum conser-

vation requires that we add the ‘back-reaction’ term (drag force of

grains on gas) to the momentum equation:

ρg

(

∂

∂t
+ ug · ∇

)

ug = −∇P +

∫

d3vd fd(vd)
ws

ts
. (3)

The latter term is simply the opposite of the force imparted by

gas on grains, integrated over all dust grains at a given position.

Here fd(x, vd) is the phase-space density distribution of dust – i.e.

differential mass of grains per element d3x d3vd – so the volumetric

mass density of dust grains at a given position x is ρd(x) ≡
∫

d3vdfd(vd).

For this system, the grain properties are entirely specified by

ρi
d ǫd (the grain surface density). Because our primary goal is

understanding the non-linear behaviour of the instabilities, we will

assume all grains in a given simulation have the same size, i.e.

a single value of ρi
d ǫd. In future work (in preparation) we will

generalize to the more physical, but less easy-to-interpret, case of a

general spectrum of grain sizes.

Critically, note that we do not make any fluid or ‘local terminal

velocity’ approximation for the dust, but integrate the trajectories

of a population of grains directly. This is necessary to capture non-

linear phenomena such as orbit crossings in the dust (otherwise, the

non-linear outcomes would be unphysical).

2.2 Numerical methods

We solve equations (1)–(3) using the multimethod code GIZMO

(Hopkins 2014),1 using the second-order Lagrangian finite-volume

‘meshless finite volume’ (MFV) method for the hydrodynamics,

which has been well-tested on problems involving multifluid insta-

bilities and shock-capturing. We model dust using the usual ‘super-

particle’ method (e.g. Youdin & Johansen 2007; Carballido, Stone &

Turner 2008; Bai & Stone 2010a; Pan et al. 2011), whereby the

motion of each ‘dust particle’ in the simulation follows equation (1),

but each represents an ensemble of dust grains of size ǫd (in other

words, we sample some finite, computationally feasible number of

grains). The numerical methods for this integration are described

and tested in Hopkins & Lee (2016). The numerical implementaion

1A public version of the code, including all methods used in this paper, is

available at http://www.tapir.caltech.edu/ phopkins/Site/GIZMO.html
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of the back-reaction and other aspects of our methods are described

in detail in Appendix B.

The gas and dust integration capabilities of GIZMO have been

extensively validated in Hopkins (2014) and Hopkins & Lee (2016).

For this work, we have also run various resolution tests (see Fig. B3)

and compared to analytic solutions in the linear regime of the RDI.

In addition, we have run several simulations which are identical to

others in our suite, except for numerical methods. Such tests include

(1) a different hydrodynamic solver (the meshless-finite-mass or

‘MFM’ method), (2) a different time integration and reconstruction

scheme for the grains (a less accurate cell-centred scheme), (3)

different initial conditions (using a glass-like, instead of regular,

initial cell configuration), (4) different box geometries (boxes more

extended in the drift direction by a factor ∼2–8). As discussed in

more detail in Appendix B, these changes do not significantly affect

our conclusions. We have also run a large suite of 2D simulations

(reaching ∼2 × 20482 resolution), which we do not present here, but

produce qualitatively largely similar behaviour in the dust, despite

the (expected) different non-linear behaviour of the induced gas

turbulent cascade.

Our default simulations adopt a resolution Ngas = 1283 gas

elements, with an equal number of dust elements Ndust. We have

confirmed our major results with higher resolution simulations at

N = 2563, and in fact also find similar behaviour in lower resolution

(N = 643) simulations run for testing purposes. Additional numer-

ical details of our methods, and code validation/convergence tests,

are given in Appendix B.

2.3 Equilibrium solution and initial conditions

In our simulations, only the dust is driven by the (constant) external

radiation force (a), while the dust back-reaction on the gas acts

to accelerate the gas. As discussed in detail Hopkins & Squire

(2018b), this leads to a quasi-equilibrium solution where the entire

dust–gas system accelerates. Simultaneously, there is also a mean

velocity offset between the dust and gas that balances the drag force

against the radiation force and the system’s own inertia. Because the

acceleration of the system as a whole is constant, the physics of the

RDI in this accelerating reference frame is unchanged as compared

to an intertial frame. That is to say, any fictitious force that emerges

in the equations of motion appears in the equations for both dust

and gas, and thus does not affect the interplay between the two. To

ensure numerical accuracy, we have checked this explicitly in our

simulations by adding a constant external force to both the gas and

dust to keep the mean velocity of the system as zero. For analysis

purposes, we transform back into the reference frame where the

system is stationary.

In detail, the quasi-equilibrium steady-state solution, from which

our simulations are initialized, is homogeneous, with uniform mean

dust-to-gas ratio μ ≡ 〈ρd〉/〈ρg〉, equilibrium gas velocity 〈ug〉, and

drift velocity 〈ws〉 ≡ 〈vd〉 − 〈ug〉 given by,

〈ug〉 = 〈u〉(t = 0) + a t μ/(1 + μ) (4)

〈ws〉 = a 〈ts〉/(1 + μ), (5)

where 〈ts〉 = ts(〈ρg〉, 〈ws〉) is the stopping time at the equilibrium

drift velocity, and its dependence of on ws implies that the equilib-

rium drift velocity depends on the detailed form of the Epstein drag

law, equation (2). From here on, we shall denote this equilibrium

value of ws as ws, eq. This should be distinguished from the value

measured in the saturated state of a simulation 〈ws〉sat, which can

differ from ws, eq due to the RDI-generated turbulence.

Our simulations begin from these equilibrium solutions at t =

0: we initialize a 3D periodic (cubic) box of side length L0 with

uniform dust and gas densities, 〈u〉(t = 0) = 0, and vd = ws =

ws,eq = a 〈ts〉/(1 + μ) for all dust particles.

2.4 Units

A convenient unit system for our simulations is formed using

the equilibrium gas sound speed 〈cs〉 and gas density 〈ρg〉, and

box size L0. In these units, the initial conditions and outcome of

the simulations are (at a given resolution) entirely determined by

three dimensionless parameters: the mean dust-to-gas ratio μ, the

acceleration

ā ≡ a L0/〈cs〉
2, (6)

and the grain size parameter

ǭd ≡ ρi
d ǫd/〈ρg〉L0. (7)

From the equilibrium solutions above, we see that these are equiva-

lent to specifying the dimensionless equilibrium drift Mach number

〈ws〉/〈cs〉, the stopping time 〈ts〉 〈cs〉/L0, and μ. For convenience,

we define the smallest wavenumber that can fit in the box, k0 ≡

2π /L0.

2.5 Simulations

Table 1 lists the ‘production’ simulations that we have run as part

of this study. In most simulations, the equilibrium dust drift is

supersonic (ws, eq/〈 cs〉 � 1). Although various different RDIs may

be important even when the drift is highly subsonic (for e.g. the

‘streaming instability’ and ‘settling instability’ with gas epicyclic

waves; Squire & Hopkins 2018b), the acoustic RDI studied here

grows fastest when the drift is supersonic, and we only expect it

to dominate over other RDIs in this regime. Consequently, in our

default simulations, we adopt an isothermal equation of state (EOS)

for the gas (γ = 1), which is appropriate for GMCs and dense,

neutral gas where cooling times are short and motions are often

highly supersonic (and where dust charge, which couples grains to

magnetic fields, can often be neglected).2

Because of its greater astrophysical interest, most simulations

study the gas-dominated regime with μ < 1. For completeness,

we also run a number of dust-dominated (μ ≥ 1) simulations, but

provide only a cursory analysis of these because they do not exhibit

any obviously interesting differences in behaviour compared to the

μ < 1 cases.

2.6 Analysis

Unless otherwise noted, all statistics computed here are volume

weighted. Gas statistics can be computed directly from GIZMO

output, using the fact that a gas resolution element a has volume

ma
gas/ρ

a
gas. Dust statistics are computed in the same way, using

the local dust density in the vicinity of each dust superparticle,

ρa
dust, and the mass of the superparticle ma

p = Mdust/Ndust (where

Mdust = μMgas is the total dust mass in the box). Because ρa
dust

is not used directly in the GIZMO calculation, it is computed

2Because our default equation of state is isothermal, we note that cs = 〈 cs〉

is constant, and we can use cs and 〈 cs〉 interchangeably.
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328 E. R. Moseley, J. Squire, and P. F. Hopkins

Table 1. Simulations studied here. We list: (1) Simulation name. (2) Total dust-to-gas mass ratio μ. (3) Differential acceleration a imposed between dust and

gas (in dimensionless units of box size L0 and isothermal sound speed 〈 cs〉). (4) Dimensionless grain size/surface density parameter ǭd, which determines

the strength of the drag forces. (5) Regime of the simulation (low, mid, or high-k, or a mix), calculated from the 6 longest wavelength modes in the box for

simulations with μ < 1. (6) Initial stopping time (drag coefficient) ts of grains in the homogeneous equilibrium setup: the ratio csts/L0 defines the ‘low’-k

versus ‘mid’/‘high’-k regimes. (7) Mean drift velocity of grains relative to gas 〈 ws〉, measured in the saturated turbulent state – especially large values indicate

systems where grains ‘draft’ through narrow channels carved in the gas. (8) Volume-weighted standard-deviation of gas velocity in the box, measured in the

saturated state. (9) Volume-weighted standard-deviation of logarithmic gas density (log 10(ρg/〈ρ g〉)), again measured in the saturated state. (10) Same for dust

density. Bold names denote the ‘case studies’ used in Figs 1–6. Grey names indicate that the simulation is likely affected by the numerical issues discussed in

Appendix A.

1 2 3 4 5 6 7 8 9 10

Name μ ≡
〈ρd〉
〈ρg〉

ā ≡
|a| L0

〈cs〉2 ǭd ≡
ρi

d
ǫd

〈ρg〉L0
Regime

〈cs〉〈ts〉0
L0

〈ws〉sat
〈cs〉

〈δu2
gas〉

1/2
sat

〈cs〉
σ sat

log ρgas
σ sat

log ρdust

μ0.001-ā100-ǭd0.1 0.001 100 0.1 Mid-k 0.034 3.5 0.051 0.00052 0.14

μ0.001-ā1e3-ǭd0.001 0.001 1000 0.001 Mid-k 0.00060 0.84 0.19 0.074 0.21

μ0.001-ā1e3-ǭd0.01 0.001 1000 0.01 Mid-k 0.0034 3.7 0.34 0.042 0.39

μ0.001-ā1e3-ǭd0.1 0.001 1000 0.1 Mid-k 0.011 12 0.13 0.030 0.19

μ0.01-ā1-ǭd0.1 0.01 1 0.1 Mid-k 0.063 0.063 0.013 0.00030 0.11

μ0.01-ā1-ǭd1 0.01 1 1 Mid-k 0.60 0.60 0.012 0.00027 0.046

μ0.01-ā1-ǭd10 0.01 1 10 Mid–high 3.3 3.3 0.013 0.00027 0.045

μ0.01-ā10-ǭd0.1 0.01 10 0.1 Mid-k 0.060 0.60 0.013 0.00027 0.048

μ0.01-ā10-ǭd1 0.01 10 1 Mid-k 0.33 3.3 0.097 0.0030 0.31

μ0.01-ā100-ǭd0.01 0.01 100 0.01 Mid-k 0.0060 0.73 0.12 0.034 0.13

μ0.01-ā100-ǭd0.1-LR 0.01 100 0.1 Mid-k 0.033 3.3 0.35 0.028 0.071

μ0.01-ā100-ǭd 0.1 0.01 100 0.1 Mid-k 0.033 3.3 0.33 0.025 0.37

μ0.01-ā100-ǭd0.1-HR 0.01 100 0.1 Mid-k 0.033 3.3 0.32 0.033 0.43

μ0.01-ā1e3-ǭd0.001 0.01 1000 0.001 Low–mid 0.00060 0.85 0.53 0.14 0.23

μ0.01-ā1e3-ǭd0.1 0.01 1000 0.1 Mid-k 0.011 11.8 0.88 0.063 0.37

μ0.01-ā1e3-ǭd0.1-γ 5/3 0.01 1000 0.1 Mid-k 0.012 10 0.69 0.032 0.26

μ0.01-ā1e3-ǭd1 0.01 1000 1 Mid-k 0.036 37 0.51 0.024 0.17

μ0.01-ā1e4-ǭd0.001-LR 0.01 10000 0.001 Low-k 0.00033 4.6 3.5 0.20 0.33

μ0.01-ā1e4-ǭd 0.001 0.01 10000 0.001 Low-k 0.00033 4.6 3.4 0.22 0.40

μ0.01-ā1e4-ǭd0.001-HR 0.01 10000 0.001 Low-k 0.00033 4.2 3.0 0.23 0.43

μ0.01-ā1e4-ǭd0.1 0.01 10000 0.1 Mid-k 0.0036 37 20 0.19 0.50

μ0.01-ā1e5-ǭd0.1 0.01 100000 0.1 Low–mid 0.0011 100 127 0.32 0.55

μ0.01-ā1e6-ǭd0.001 0.01 1000000 0.001 Low-k 0.000036 44 94 0.29 0.40

μ0.1-ā1-ǭd10 0.1 1 10 High-k 3.2 3.0 0.013 0.00027 0.046

μ0.1-ā10-ǭd0.1 0.1 10 0.1 Mid-k 0.060 0.55 0.013 0.00027 0.050

μ0.1-ā10-ǭd 1 0.1 10 1 Mid–high 0.32 3.2 0.33 0.021 0.46

μ0.1-ā10-ǭd10 0.1 10 10 Mid–high 1.1 2.2 0.76 0.047 0.32

μ0.1-ā100-ǭd0.1 0.1 100 0.1 Mid-k 0.032 3.2 1.6 0.11 0.45

μ0.1-ā1e3-ǭd0.001 0.1 1000 0.001 Low-k 0.00060 0.86 1.8 0.16 0.20

μ0.1-ā1e3-ǭd0.1 0.1 1000 0.1 Low–mid 0.011 2.4 32 0.17 0.51

μ1-ā10-ǭd0.1 1 10 0.1 0.056 0.37 1.1 0.079 0.41

μ1-ā100-ǭd0.1 1 100 0.1 0.025 1.9 8.2 0.12 0.43

μ1-ā1e3-ǭd0.001 1 1000 0.001 0.00056 0.54 6.9 0.24 0.26

μ1-ā1e3-ǭd0.1 1 1000 0.1 0.0081 11 58 0.22 0.86

μ10-ā100-ǭd0.1 10 100 0.1 0.011 1.1 6.1 0.1 0.33

μ10-ā1e3-ǭd0.001 10 1000 0.001 0.00032 0.14 1.4 0.16 0.15

μ10-ā1e3-ǭd0.1 10 1000 0.1 0.0034 3.6 15 0.18 0.38

μ100-ā10-ǭd0.1 100 10 0.1 0.011 0.13 0.24 0.025 0.13

μ100-ā100-ǭd0.1 100 100 0.1 0.0036 0.19 1.1 0.15 0.27

μ100-ā1e3-ǭd0.1 100 1000 0.1 0.0011 0.86 1.6 0.20 0.20

in post-processing using an SPH-like local kernel density es-

timator: ρa
dust =

∑

b mb
p W (xa − xb, Ha), where W (xa − xb, Ha)

is the usual cubic spline kernel with radius of compact sup-

port 2 Ha and Ha = (ma
p/ρa

dust)
1/3 is the local mean interparticle

spacing.

All simulations are run well past saturation to confirm they have

reached steady state, and all ‘saturated’ quantities plotted are time-

averaged across all snapshots after saturation (the exact cut used

makes little difference to the values).

3 TH E O R E T I C A L E X P E C TAT I O N S

3.1 Linear theory: the three regimes

Hopkins & Squire (2018b) considered a linear stability analysis of

the equations solved here, adopting the usual Fourier decomposition

of perturbations δf ∝ exp [i (k · x − ω t)] (for some field f, such as

ug or ρg). They showed that the behaviour of the interesting unstable

solutions depended critically on the dimensionless wavenumber pa-

MNRAS 489, 325–338 (2019)
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Non-linear RDI 329

rameter k 〈cs〉〈ts〉 ≡ |k| cs〈ts〉 of the mode. Three regimes emerge:
⎧

⎨

⎩

k 〈cs〉〈ts〉 � μ (Low-k),

μ � k 〈cs〉〈ts〉 � μ−1 (Mid-k),

k 〈cs〉〈ts〉 � μ−1 (High-k).

(8)

The linear behaviour of the mid-k and high-k regimes is qualitatively

similar, albeit with somewhat different scalings for the growth rates

and mode structure. In both cases the fastest-growing modes are

those that are ‘resonant,’ with k̂ · 〈ws〉 = ±cs, i.e. with the drift

velocity in the direction of the mode matching the sound speed. We

can also see above that as μ → 0, the mid-k regime extends to all

k; it is therefore also the ‘low-μ’ regime.

In the low-k regime, in contrast, the fastest-growing mode is the

so-called ‘pressure-free’ mode. In this regime, the bulk force from

dust on gas becomes larger than pressure forces, so the gas becomes

highly compressible, and the fastest-growing modes are those with

k̂ aligned with a (or 〈ws〉).

If μ � 1, the definition of these regimes deteriorates, because

the idea of the resonance between dust and sound waves becomes

ill defined since sound waves are strongly damped. However, the

linear mode structure of the low-k and high-k regimes remains

broadly unchanged (Hopkins & Squire 2018b), and our simulations

at μ ≥ 1 appear broadly similar to the μ < 1 simulations. Because

we lack a theory for the physics of the high-μ regime, and given

its lesser physical interest, we provide only cursory analysis of μ ≥

1 simulations and do not consider it in the simple analytic scalings

derived below.

These regimes also apply formally only to individual wavenum-

ber parameters k〈 cs〉〈 ts〉. As a result, a simulation that spans a range

of wavenumbers may technically fall into more than one regime.

For ease of discussion, we have adopted the convention that the

regime a simulation falls into (cf. Tab. 1, col. 5) is that which

the six longest wavelength modes k ∈ [k0, 6k0] fall into (where k0

≡ 2π /L0, with L0 being the size of the simulation box). Note that

our choice to use the six longest wavelength modes is somewhat

arbitrary. If some of these modes are in one regime while the rest are

in another, they are classified as being in both regimes (e.g. Table 1,

row 26).

The definition of the regimes given in the expression (8) suggests

that the parameter μ/(k0〈cs〉〈ts〉) may be useful for predicting and

discussing the behaviour of simulations. That the behaviour of a

simulation would change with this parameter can be understood

intuitively by noting that μ/(k0〈cs〉〈ts〉) is the ratio of the force that

dust drifting at ws ∼ cs exerts on the gas to the pressure forces

on the gas (for a mode of scale k). We will thus sometimes term

μ/(k0〈cs〉〈ts〉) as the ‘force parameter.’ As the mass of dust goes up

or down, so does this force; similarly, at smaller scales, the pressure

forces become more significant thus decreasing μ/(k0〈cs〉〈ts〉). The

mid-k and low-k regimes are separated by μ/(k0〈cs〉〈ts〉) = 1.

The linear growth rates of the fastest-growing modes in each

regime are approximately given by (Hopkins & Squire 2018b)

ℑ(ω) 〈ts〉 ∼

⎧

⎨

⎩

μ1/3 (k 〈cs〉〈ts〉)
2/3 (〈ws〉/cs)

2/3 (Low-k),

μ1/2 (k 〈cs〉〈ts〉)
1/2 at 〈ws〉 > cs (Mid-k),

μ1/3 (k 〈cs〉〈ts〉)
1/3 at 〈ws〉 > cs (High-k),

(9)

where here 〈ws〉 and other quantities refer, of course, to their values

in the equilibrium, homogeneous solution. In equations (8)–(9) we

simplified by taking μ ≪ 1, which is chosen for most of the cases

we consider here due to its greater astrophysical relevance. Growth

rates for subsonic drift (〈ws〉 < cs) in the mid- and high-k regimes

are significantly lower and depend on details of the equation of

state and dust drag (Hopkins & Squire 2018b). From equations (6)–

(7) or Table 1 (see column 6, which lists 〈cs〉〈ts〉/L0), we see that

simulations with smaller (larger) ǭd or larger (smaller) ā will have

smaller (larger) dimensionless wavenumbers k 〈cs〉〈ts〉.

3.2 Expected turbulent scalings

Here we give simple, quasi-linear estimates for the amplitude of the

turbulence driven by the acoustic RDI. We see below (Section 4)

that these match the measured saturated states of the simulations

relatively well.

The basic idea of the argument is to match the turnover time of

the turbulence on the largest scale in the box to the growth rate of

the RDI. Given the predicted growth rates ℑ(ω), and assuming that

the saturated state is turbulent, then when the turnover time of the

largest eddies is smaller than their growth time 1/ℑ(ω), all scales in

the box are mixed before they can grow. Thus, a reasonable estimate

for the saturation amplitude of RDI generated turbulence is when

t−1
eddy ∼ k0 δugas ∼ k0 δvdust ∼ ℑ(ω), giving,

δugas

cs

∼

⎧

⎨

⎩

μ1/3 (〈ws〉/cs)
2/3 (k0 〈cs〉〈ts〉)

−1/3 (Low-k)

μ1/2 (k0 〈cs〉〈ts〉)
−1/2 (Mid-k)

μ1/3 (k0 〈cs〉〈ts〉)
−2/3 (High-k).

(10)

Combining the regime definitions (equation 8) with these expres-

sions, we see that the mid-k and high-k regimes can generate only

subsonic gas turbulence when μ < 1, with μ � δugas/cs � 1 in the

mid-k regime, and δugas/cs � μ in the high-k regime. In contrast,

turbulence generated by the low-k mode can be supersonic in the gas

for sufficiently low-k or high 〈ws〉/cs (with δugas/cs � (〈ws〉/cs)
2/3).

From this, we can speculate further about gas density statistics. In

isothermal turbulence, the gas develops an approximately lognormal

density distribution with variance,

σ 2(log10 ρ) ≈ (ln 10)−2 ln [1 + (b δugas/cs)
2], (11)

where b ∼ 1/4 − 1, depending on the forcing (e.g. Federrath,

Klessen & Schmidt 2008). From the above (and assuming b ∼

1/3), we obtain, for each of the regimes,

σ (log10 ρ) ≈

{

0.1(δugas/cs) (Mid-/High-k)

0.43 ln[1 + 1
9
(δugas/cs)

2]1/2 (Low-k).
(12)

For the mid-/high-k regimes, σ (log10ρ) ≪ 1 always, while in the

low-k regime, σ (log10ρ) can be larger than 1, but because of the

square-root/logarithmic suppression should lie in the range ∼0.1–

0.6 for all parameters simulated here.

In the saturated state for the low- and mid-k regimes of the RDI

(though not necessarily the high-k regime), the dust stopping length

is shorter than the size of the largest gas eddies. Given this, it is

reasonable to assume that dust and gas are well mixed and efficiently

share energy locally with respect to the local mean drift. This

implies that that two should have similar velocity dispersions, δvdust

∼ δugas. However, the corresponding dust density fluctuations are

more difficult to predict, because the dust is pressure-free, meaning

its density fluctuations need not be linked straightforwardly to

its velocity dispersion. A detailed theory of dust fluctuations in

saturated RDI turbulence will be explored in future work.

4 R ESULTS

4.1 Representative case studies

We find that the three regimes from linear theory extend to describe

many features of the non-linear saturation as well, so we frame

our discussion around these. Every simulation box contains a range

MNRAS 489, 325–338 (2019)
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330 E. R. Moseley, J. Squire, and P. F. Hopkins

Figure 1. Evolution of the acoustic RDI in three representative case studies (Tab. 1) at high-k (top), mid-k (middle), and low-k (bottom). Colours show gas

density in a 2D slice through the 3D simulation box (colour scale shown), with dust in slice shown as dots. Columns (1, 2, 4) show ‘side-on’ slices (along

direction of acceleration a), while column (3) shows a ‘face-on’ slice (perpendicular to a); for clarity the direction of a is labelled in the upper right corner

of each column. From left-to-right, panels show evolution into turbulence (times in units of equilibrium-state dust stopping time 〈ts〉), illustrating (1) linear

(or near-linear) initial evolution (modest dust and gas fluctuations); (2) the early non-linear regime (fluctuations are regular and resemble extreme linear

instabilities); (3) and (4) fully non-linear regimes (with saturated box-scale turbulence). Dust and gas density fluctuations are less (more) strongly coupled on

small/high-k (large/low-k) scales. Dotted lines show the predicted wavefront orientation for the fastest-growing mode angle in linear theory. The modes visible

in these figures are somewhat long wavelengths. This is because of the time we have chosen to show. It is sufficiently late that the smaller wavelength modes

are no longer visible, as longer wavelengths have appreciably grown over them. Had we chosen an earlier time, the perturbations would not be visible with our

chosen colour scheme.

of wavenumbers, of course, but given our finite resolution, it is

typically the case that most of the resolved modes with 2π /L0 � k

� 1/�x (where �x ≡ L0/N1/3 is the grid scale) lie in one particular

regime for a given run. We therefore identify one simulation

primarily within each regime (μ0.01-ā1e4-ǭd0.001, μ0.01-ā100-

ǭd0.1, and μ0.1-ā10-ǭd1) as representative of those in our parameter

survey (although the longest wavelength modes of μ0.1-ā10-ǭd1 lie

in the mid-k regime, due to numerical difficulties in capturing the

high-k instability; see Appendix A).

4.1.1 Linear growth of the instability

At early times, the acoustic RDI behaves as predicted in Hopkins &

Squire (2018b). As seen in the first column of Fig. 1, the insta-

bility begins as sinusoidal oscillations, with the dominant (fastest-

growing) wavevector clearly aligned along a characteristic angle.

For the mid-k and high-k modes this is the predicted ‘resonant angle’

(k̂ · 〈ws〉 = ±cs), while for the low-k this is aligned with the drift

k̂ ‖ 〈ws〉, as expected.

Further, as seen in Fig. 2, the growth rate of the instabilities at

early times agrees well with the linear theory predictions assuming a

fastest-growing wavenumber kmax between ∼1/�x and ∼3/�x. Note

that because the predicted growth rates of this instability increase

without limit with k, the fastest-growing mode will always be the

highest wavenumber resolved. This is not exactly defined, but occurs

at some multiple of the grid scale. The gas velocity and density

fluctuations in the mid- and high-k cases grow at approximately

this rate until saturation, which is perhaps not surprising since they

saturate in a quasi-linear regime. In the low-k case the growth rates

slow down, but do not vanish, as the perturbations become more

strongly non-linear (δugas/cs → 1).

In all cases the dust density perturbations, which do not incur

any restoring pressure forces, become strongly non-linear well

MNRAS 489, 325–338 (2019)
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Non-linear RDI 331

Figure 2. Time evolution of velocity dispersion in dust and gas versus

time (in units of equilibrium stopping time 〈ts〉). Panels show high/mid/low-

k representative ‘case study’ simulations as Fig. 1. In each, the shaded

fan shows the range of growth rates from linear theory (equation 9), from

wavenumbers k = (1 − 128) 2π/L0 (where N = 128 is the linear resolution),

which is consistent with the early growth rates. Statistics of the turbulence

are measured in the saturated states as identified.

before the gas. This can be clearly seen in the second column of

Fig. 1.

Note that in certain simulations at high k and low μ – e.g. μ0.01-

ā1-ǭd10 – the instability does not grow as expected from linear

theory, which we attribute to numerical difficulties associated with

resolving the resonant angle. This is explained in more detail in

Appendix A. Certain other simulations (e.g. μ0.01-ā1-ǭd0.1), which

are at mid- or high-k but with subsonic dust drift (〈ws〉 < cs), remain

laminar because the RDI is stable, or has very low growth rates, at

these parameters.

4.1.2 Dust and gas distributions

Figs 3 and 4 show the distributions of dust and gas (time-averaged

in the saturated state). In the low-k regime, dust and gas densities

remain broadly proportional to one another in saturated state, even

as they vary over ∼1–2 dex together (albeit with a 1σ dispersion of

∼ 0.3–0.6 dex at fixed ρg). This agrees with our expectation that

the gas is effectively highly compressible and moves with the dust

at these wavenumbers. As discussed in Hopkins & Lee (2016), it

is well-known that the standard numerical method of integrating

trajectories of a finite number of ‘superparticles’ can produce some

numerical or ‘sampling’ noise in the ratio ρd/ρg; there we show

this is at the level of ∼0.05 dex even when the gas is externally

stirred with δugas/cs ∼ 10 (the noise is still smaller for sub-sonic

flows). This is negligible for any simulation here which develops

non-laminar behaviour (note the effects on δugas and σ (log10(ρg))

are much smaller still, < 0.01 dex).

In contrast, at mid and high-k, the gas is largely incompressible

(with a small range in ρg, as expected from our arguments above),

while the dust occupies a range of densities remarkably similar to the

low-k case. This results in larger dust-to-gas ratio fluctuations. At

the same time, low gas density, rarefied regions in the mid/high-

k regimes are typically evacuated of dust. This is evidenced

by the skewing of the low density tail in the right two panels

of Fig. 3.

Note that in simulations that lie near the ‘border’ between the

low-k and mid-k regimes, the joint gas–dust PDFs show the skewed

shape of the incompressible high-k PDF, but with some elongation

in ρg correlated with ρd as in the low-k PDF.

The one-dimensional PDFs of ρd/ρg are shown in Fig. 4. In the

mid-k and high-k regimes, these PDFs are similar in shape to the

PDF of ρd because fluctuations in ρd are larger than those in ρg.

Because the gas turbulence is more vigorous in the low-k regime,

there is only a weak trend towards wider distributions at lower

k (higher μ/(k0 〈cs〉〈ts〉)). The distributions are very crudely of a

lognormal shape, although many have strong high-ρd/ρg tails.

4.1.3 Comparison to ‘passive dust’ simulations

Comparing the bivariate PDFs in Fig. 3 to those for simulations of

‘passive’ dust clustering in externally driven isothermal turbulence

in Hopkins & Lee (2016)3 (see also Hogan et al. 1999; Pan &

Padoan 2013; Lee et al. 2017), it is clear that the PDFs for the

mid-k and high-k regimes here are qualitatively different from the

PDFs in those ‘passive dust’ experiments, at any turbulent Mach

number.

Even the low-k PDF, which broadly resembles some ‘passive

dust’ cases at higher Mach number, differs qualitatively in detail.

For example, in passive dust simulations (see e.g. fig. 9 of Hopkins &

Lee 2016), the bivariate PDF always tapers noticeably to ρd ≈ μ ρg

as ρg increases, because the dust is more tightly coupled to the gas

in dense regions. Here, as seen in the left-hand panel of Fig. 3,

this does not occur. This is because the RDI operates on all density

scales and it is the dust that drives the large density fluctuations in

the first place.

Moreover, the global, strong anisotropy of RDI turbulence is

clear in all regimes in Fig. 1, and is quite different from externally

driven turbulence. Specifically, the dust is arranged into filaments

with a preferred direction along the characteristic mode angles of

the RDI, even in the non-linear, turbulent state. Likewise, the dust

morphology is quite different, with ‘plumes’ and ‘jets’ of dust as

opposed to ridge-lines between gas vortices.

We have also confirmed these conclusions directly by running

a simulation with parameters otherwise identical to an RDI sim-

ulation, but with ‘passive’ dust (μ → 0), and externally driven

turbulence tuned to produce the same δugas/cs as the RDI run

(using the turbulent-driving scheme of Hopkins & Lee 2016). As

expected, the bivariate PDFs, morphology, anisotropy, and other

key properties have almost nothing in common.

Not surprisingly, higher order diagnostics (e.g. dust–dust and

dust–gas correlation functions) differ even more dramatically be-

3Note that Hopkins & Lee (2016) used the same simulation code/numerical

methods, and analysis methods.
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332 E. R. Moseley, J. Squire, and P. F. Hopkins

Figure 3. Volume-weighted joint probability density functions (PDF) of gas and dust density for the simulations in Fig. 1. At low-k, dust and gas are relatively

well-correlated. The white dashed line in this panel is where dust and gas fluctuate exactly together, ρd ∝ ρg. At mid/high-k, an asymmetric PDF develops

where gas develops a long tail at low densities (characteristic of subsonic turbulence), while dust remains relatively symmetric with a much larger density

dispersion.

Figure 4. PDFs of the ratio of dust density to gas density (normalized) for

all simulations, separated into simulations with μ < 1 (upper panel), and

simulations with μ≥ 1 (lower panel). We colour μ< 1 simulations according

to the ‘force parameter’ μ/(k0 〈cs〉〈ts〉), as discussed in Section 3.1. μ

≥ 1 simulations are coloured according to the dust drift velocity in the

saturated state, 〈ws〉
sat/〈cs〉, as the force parameter is not necessarily as

physically meaningful for this regime. There is some trend towards larger

ρd/ρg fluctuations at larger μ/(k0 〈cs〉〈ts〉) (low-k regime), although there is

significant variation around this. This should be expected because similar

ρd/ρg fluctuations can arise either through large local dust fluctuations in

a relatively quiescent gas (for simulations in the mid- and high-k regimes),

or through correlated gas and dust density fluctuations in more vigorous

turbulence (in the low-k regime). See also Fig. 3 and the bottom-right

panel of Fig. 7. The PDFs mostly have lognormal-like shapes, although

generally with significant high-density tails. Some distinctly non-Gaussian

features (for instance, bumps) occur, particularly in the high-μ regime,

due to the dominance of individual large-scale structures in the saturated

state.

Figure 5. Standard deviation of logarithmic gas density, versus gas velocity

dispersion. Plotted line is the standard scaling from Federrath et al. (2008)

with b = 1/3. This provides a reasonable fit for δugas ≪ 3 cs, but the

simulations here produce weaker density fluctuations when δugas � 3 cs,

as these extreme cases tend to involve gas moving rapidly with dust along

‘channels’ (rather than e.g. isotropic compressible turbulence in the gas).

tween RDI- and externally driven turbulence simulations. These

will be studied in detail in future work.

4.2 Non-linear/saturated scalings

A simple diagnostic of the gas turbulence in the saturated state is

shown in Fig. 5, which plots the gas density dispersion versus its

velocity dispersion for all simulations, comparing to the expected

statistics from driven turbulence simulations equation (11). We see a

reasonable fit for lower Mach numbers, indicating the gas turbulence

is broadly similar to standard (solenoidally) forced turbulence.

There are, however, significant differences once δugas � 3cs, which

is likely because in this high-Mach-number regime the system

becomes highly anisotropic, with strong channels of high-velocity

gas driven by dust columns (see Section 4.3 and Fig. 8).

Fig. 6 compares the saturated dust and gas velocity dispersions.

As expected from equipartition arguments, δvdust ≈ δugas in nearly

all simulations.

Fig. 7 shows the saturated values of δugas/cs, for our full set

of simulations. We compare to the predicted mid-k and low-k

scalings from Section 3 (equation 10), which do a surprisingly

good job explaining the non-linear behaviour, at least at the order-of-

MNRAS 489, 325–338 (2019)
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Non-linear RDI 333

Figure 6. Gas versus dust velocity dispersions, with the dashed black line

being equivalence. In saturation, the two are comparable with relatively

small scatter. In most cases, the mean/bulk drift velocity 〈ws〉/〈cs〉 of the

saturated state (colours, as labelled) does not correlate strongly with the

fluctuations δugas, δvdust in either dust or gas. The most extreme cases,

however, do have large fluctuations and large drift velocities. The six

simulations marked by ‘x’s in the bottom left failed to go turbulent due to

reasons discussed in Section A. They reside within a greyed out, numerically

limited region. They are also listed and greyed out in Table 1.

magnitude level. Performing a maximum-likelihood fit to the data in

each regime, modelling δugas/cs ∝ μαμ (k 〈cs〉〈ts〉)
αk (〈ws〉/cs)

αw , we

find ‘best-fitting’ power laws consistent with our predicted scaling

within the ∼1σ range, but with large uncertainties arising from the

limited statistics.

It is worth noting that the mass-weighted statistics conform better

to the scalings, but for consistency with the rest of the figures

we have chosen to display volume-weighted statistics. Our low-k

scalings, while holding broadly, have a large scatter for δugas/cs. The

predictions for σ [log10(ρg/〈ρ g〉)] are somewhat too high at low- k,

although they are more accurate for the mid- and high-k regimes.

This is reflective of an apparent plateau in σ [log10(ρg/〈ρ g〉)] at

σ [log 10(ρg/〈ρ g〉)] ∼ 0.2 (see also Fig. 5).

We did not have an a priori prediction for the magnitude of

dust density fluctuations (σ [log10(ρd)] or σ [log10(ρd/ρg)], which

are similar), but Fig. 7 shows they increase both with μ/(k 〈cs〉〈ts〉)

and 〈ws〉/cs, reaching a maximum of ∼0.5–0.6 dex dispersion.

4.3 Extreme cases: decoupling of dust ‘jets’

In extreme, high-ws simulations, we observe a phenomenon we

term ‘dust drafting,’ where dust aligns into narrow filaments in the

direction of motion. These filaments drag a small fraction of the

gas along with them, leaving the rest of the gas behind. A minority

of the gas gets a majority of the force, μa, causing these filaments

effectively decouple from the rest of the gas (cf. equation 2).

Fig. 8 shows one example: μ0.01-ā1e5-ǭd0.1, with ws, eq/cs ∼

100, the highest in all our simulations. A small amount of gas

remains tightly coupled to the dust and is dragged along with

it, such that within the filaments, the drift velocity ws is closer

to its equilibrium value. This is reflected in Fig. 8’s upper panel,

where the volume-weighted drift velocity (termed 〈ws〉vol.) differs

from the mass-weighted drift velocity (termed 〈ws〉mass) by more

than a factor of four. We have observed this phenomenon only

for simulations with ws, eq/cs � 10, and the onset is more rapid at

higher μ.

In our simulations, once a filament forms it continues accelerating

indefinitely, although in reality there could be stronger Kelvin–

Helmholtz instabilities or viscous dissipation induced by the strong

shear at the boundary of the filament (because the width of the

filament becomes very small and may depend on resolution, such

effects are difficult to resolve numerically). The mass-weighted

〈ws〉 continues to grow, reaching 〈ws〉mass/cs ∼ 400 at the time

shown, while the volume-weighted 〈ws〉 is approximately constant.

The density statistics remain stable as this happens, while δugas/cs

continues to marginally increase.

Of course, this phenomenon is partly an artefact of using a

finite, periodic simulation domain. In a global simulation with more

realistic dust physics, these filaments might be driven out of the gas

altogether, or trigger the onset of secondary effects like dust self-

shielding and/or grain collisions.

4.4 Effects of the gas equation of state

Our default simulations adopt an isothermal equation of state (EOS)

for the reasons discussed above (Section 2). However we have also

re-run the simulation μ0.01-ā1e3-ǭd0.1 using a strictly polytropic

(constant-entropy) EOS with P = γ −1 〈cs〉
2 〈ρg〉 (ρg/〈ρg〉)

γ , with

γ = 5/3 (this is labelled with the suffix ‘-γ 5/3’ in Table 1). Note

that we effectively assume that the gas reverts instantaneously to

the polytropic EOS aftershocks, rather than allowing the entropy

to increase (otherwise the box-averaged pressure and sound speed

would increase in time without limit). In the linear regime, the

different EOS modifies only an order-unity pre-factor in the RDI

growth rate and we find qualitatively similar results in the simulation

here.

In the saturated state, we find the gas turbulence and resulting gas

density fluctuations are modestly suppressed for the stiffer EOS, as

expected, but this is again an order-unity effect (note that turbulent

Mach numbers are sub-sonic here). Further, the PDF of ρg/ρd is

narrower in the γ = 5/3 case than in the γ = 1.

5 C O N C L U S I O N S

In this paper, we present the first study of the non-linear regime of

the acoustic RDI. We focus on the simple case of dust grains in

a homogeneous medium, coupled via aerodynamic (Epstein) drag,

with a constant differential acceleration between gas and dust. We

find that the acoustic RDI grows robustly at all scales, eventually

breaking up into internally generated turbulence and saturating at

large amplitudes. The turbulence is highly anisotropic, with dust

concentrated in filaments, plumes, or jets along the direction of

acceleration. Strongly non-linear structures occur consistently in

the dust, necessitating numerical simulations that can follow the

velocity distribution function of the grains. We show the simulations

can be conveniently characterized by three dimensionless numbers,

and survey the parameter space to characterize the saturated

states.

The linear growth rates and structure (e.g. wavenumbers and

their ‘resonant angles’) of the fastest-growing modes agree with

the predictions from linear theory (Hopkins & Squire 2018b). The

resonant angles are sufficiently virulent to persist well into the non-

linear state, and can be clearly seen in the turbulence. The behaviour

in the linear regime can be organized into three regimes based on

the range of wavenumber k 〈cs〉〈ts〉 (‘low,’ ‘mid,’ and ‘high’-k), and

we find this division persists in the non-linear regime.

The mid and high-k regimes seem qualitatively similar (but

quantitatively distinct): the turbulence driven in the gas is sub-

sonic, and only weakly compressible. Although the dust and gas

local velocity dispersions reach rough equipartition in saturation,

the dust density structure is strongly modified, with the aforemen-

tioned plumes and filaments appearing. This generates a distribu-

tion of ρd/ρg which has an approximate lognormal (or perhaps

MNRAS 489, 325–338 (2019)
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Figure 7. Standard deviation of gas velocity, (log) gas density, dust density, and dust-to-gas mass ratio versus μ/(k0〈 cs〉〈 ts〉). Note that μ/( k0〈 cs〉〈 ts〉)

divides the mid/low- k regimes at unity, and the mid/high-k regimes at μ/(k0〈 cs〉〈 ts〉) = μ 2. Top Left: Dotted lines compare the quasi-linear theory prediction

(Section 3), which provides a remarkably good fit except when μ ≫ 1 (where several of the assumptions there break down). Note that the prediction depends on

〈 ws〉/〈 cs〉 in the low- k regime (hence separate lines for different values of 〈 ws〉 sat/〈 cs〉, coloured as labelled), but does not in the mid/high- k regime, a feature

that also appears to be present in the simulation data for 〈δu2
gas〉

1/2
sat . Large velocity fluctuations are produced at low-k and large 〈 ws〉/〈 cs〉. The dust velocity

scales similarly, per Fig. 6. Bottom Left: Dotted lines show σ (log10(ρgas)), calculated using the predicted δugas (see Fig. 5). Larger velocity fluctuations

correlate with larger density fluctuations. Top Right: Dust density fluctuations. There is no obvious predictive relation for the pressure-free dust-density

fluctuations. Bottom Right: Dust-to-gas-ratio fluctuations. These largely trace the ρd fluctuations, but are weaker at low-k than would be expected in the case

of dust and gas being strictly uncorrelated. That is to say, we observe σ (log10(ρdust/ρgas))
2 < σ (log10(ρdust/〈ρ dust〉))

2 + σ (log10(ρgas/〈ρ gas〉))
2 at low-k due

to some non-zero covariance between dust and gas density.

power law-like in the tails) shape, with 1σ dispersions reaching

∼ 0.3–0.6 dex (reaching orders-of-magnitude fluctuations, in the

tails).

The low-k regime is essentially defined by wavenumbers where

the pressure gradient forces in equilibrium are weak compared

to the bulk force exerted by dust on gas. This makes the gas

more compressible, and it is driven by the dust into large density

fluctuations, and even shocks. To leading order dust and gas

densities are correlated, albeit with significant scatter at any ρg.

The fastest-growing mode structures are distinct, with wavenumber

aligned with the acceleration direction, producing long-wavelength

‘arcs’ or ‘shells’ in dust and gas. We see broadly similar behaviour

in the dust-dominated regime with ρd/ρg ≥ 1, consistent with the

idea that the character of the instability is similar in this regime

(Hopkins & Squire 2018b).

In all cases, we note that the non-linear behaviour is qualitatively

different from the results of ‘passive’ dust simulations, in which the

dust is treated as a pure tracer population (i.e. the gas does not ‘feel’

the dust), with externally driven turbulence.

These simulations form a first step towards studying the effects of

the acoustic RDI on astrophysical phenomena. Certainly, the large

dust density and velocity fluctuations and non-linear, anisotropic

concentrations produced, will alter critical properties such as dust-

gas chemistry, dust growth and collision rates, extinction and effec-

tive/observable attenuation curves, and more. Future work will con-

sider detailed applications to specific astrophysical environments –

e.g. cool-star winds, AGN torii, and dense GMCs – but these require

additional physics (e.g. radiative cooling, or global simulations

with outflow boundaries) that break the scale-free nature of our

studies here. While we work in dimensionless problem units here,

in Hopkins & Squire (2018b) we discuss how these translate to

physical units in the astrophysical environments mentioned above.

For reference, the boundary between low- and mid-k regimes (long

and mid-wavelength modes) occurs around scales of ∼0.001–0.1 pc

in GMCs, ∼1–100 au in AGN torii, and ∼103–105 km in cool-

star wind environments, for typical parameters. In all cases, these

are relatively small scales compared to those of the systems in

question.

In this paper, in order to aid physical understanding, we simplified

by assuming a single grain size in each simulation. This implies that

quantities like the stopping time, resonant angle, and drift velocity

are single-valued. In future work, we will explore the more physical

case with a spectrum of grain sizes. We will also explore higher

order diagnostics, e.g. grain clustering and collision kernels. Finally,

a wide variety of other RDIs remain to be explored in the non-

linear regime, with many (e.g. magnetohydrodynamical RDIs, or
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Figure 8. Dust drafting in simulation μ0.01-ā1e5-ǭd0.1. Top: Volume and

mass-weighted dust drift velocities (〈ws〉) and gas velocity dispersion (δugas)

versus time. Bottom: Face/side-on slices of the simulation (as Fig. 1). When

〈ws〉 and μ are sufficiently large, dust aligns into filaments along the acceler-

ation direction a, with particles drafting (upstream particles accelerating the

gas to reduce the drag force on downstream particles). This allows the dust

and gas to reach very high speed in the filaments relative to the gas and dust

outside of the filaments. These filaments become increasingly concentrated

with time. This means the mass-weighted 〈ws〉mass/cs increases, while the

volume-weighted 〈ws〉vol./cs remains relatively constant. The gas δugas also

continues to grow, but this is increasingly driven by the small volume of gas

being entrained in the filaments being rapidly accelerated by high-density

dust.

the epicyclic RDI) likely to have qualitatively different non-linear

behaviour and saturation mechanisms.
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APPENDI X A : NUMERI CAL LI MI TATI ONS IN

T H E H I G H - WAV E N U M B E R R E G I M E

In some simulations – in particular those at high dimensionless

wavenumber, k 〈cs〉〈ts〉 – the RDI does not grow as expected from

linear theory, with the gas remaining laminar (or nearly so) over

the duration of the simulation. We do not believe this to be a

physical effect, but rather due to finite resolution and numerical

dissipation/noise. We discuss the possible causes for this here,

in order to motivate further study of this regime. The affected

simulations are shown with grey text in Table 1 (recall that there are

also some simulations, e.g. μ0.01-ā1-ǭd0.1, that do not go turbulent

because they are subsonic and in the mid-k or high-k regime, where

growth rates are very low; see Hopkins & Squire 2018b).

A particular challenge for simulating the RDI in the high k 〈cs〉〈ts〉

regime is resolving the resonant angle. While we can always

construct a box that resolves arbitrarily high k 〈cs〉〈ts〉 by changing

the simulation parameters (ā and ǭd ), as shown in Hopkins & Squire

(2018b), the linear growth rates become increasingly sharply peaked

around the resonant angle (where k̂ · ws,eq = cs) with increasing

k 〈cs〉〈ts〉. More precisely, defining the longest wavelength mode in

the box as k0 = ξ/(μ cs 〈ts〉) (where ξ > 1 is required to be in the
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high-k regime), the growth rate drops by orders of magnitude outside

some width in mode angle, � cos θk ∼ �θk ∼ μ ξ−1/3 (〈ws〉/cs)
−1

(in the high-k regime, assuming 〈ws〉 ≫ cs). At finite resolution,

any angular structure smaller than �θ ∼ �x/L0 = N−1/3 will be

unable to be resolved. At our fiducial resolution of N1/3 = 128,

this means we can only barely resolve resonant angles in the

high-k regime for marginally high-k boxes (ξ ∼ 1), relatively low

〈ws〉/cs ∼ 1–10, and relatively high μ ∼ 0.1. Examination of the

parameters in Table 1 shows that almost all simulations that fail

to become turbulent do indeed have very narrow RDI resonances.

Unfortunately, this numerical issue is difficult to overcome (e.g.

fixed-grid-based codes almost certainly face the same issues) and

even significant increases in resolution allow only modest gains

in the resolvable resonant angles (and thus the k 〈cs〉〈ts〉 that is

possible to simulate). Two-dimensional simulations, which allow

much higher resolutions, could thus be particularly helpful for study

of the high-k regime.

There is another numerical issue, again primarily affecting the

high-k regime, which is more specific to the Lagrangian finite-

volume method used here. In the linear regime, at increasing k, the

back-reaction from drag becomes an increasingly small perturbation

compared to pressure forces (as ∇P ∼ k P ). Non-linearly, as

discussed in Section 3, this translates to the predicted δugas/cs: again

defining k0 = ξ/(μcs 〈ts〉), then in the high-k regime, we see that

δugas/cs ∼ μξ−2/3, which is very small (see equation 10). It is well-

known that both finite-volume and Lagrangian numerical hydrody-

namics methods have difficulty accurately capturing very low Mach

number, nearly incompressible turbulence: the Riemann solver

introduces numerical diffusion and the constant re-arrangement of

the grid introduces ‘remeshing noise,’ which launches sound waves,

both of which make it difficult to follow highly subsonic effects. In

Hopkins (2014), we show specifically for the numerical methods

here that sub-sonic effects can be numerically overdamped below

turbulent Mach numbers ≪0.01.

To capture RDI-induced turbulence at such low δugas/cs, other,

lower-noise, numerical methods may be required. Note that in every

case tested where the instabilities failed to grow, either the predicted

δugas/cs ≪ 0.01, or the resonant angle was unresolved (usually both).

A P P E N D I X B: A D D I T I O NA L N U M E R I C A L

DETA ILS AND TESTS

B1 Numerical implementation

As noted in the main text, the salient equations (1)–(3) are solved

using the code GIZMO (Hopkins 2014). The numerical scheme for

hydrodynamics and magneto-hydrodynamics (i.e. the gas equations,

absent dust) in GIZMO has been extensively described and tested

in previous work (e.g. Gaburov & Nitadori 2011; Hopkins 2014;

Hopkins 2016, 2017; Hopkins & Raives 2016; Zhu & Li 2016;

Deng, Mayer & Meru 2017; Hubber, Rosotti & Booth 2018).

Likewise, the scheme for integrating the trajectories of dust particles

within gas is described and validated in detail in previous studies

(e.g. Hopkins & Lee 2016; Lee et al. 2017).

The only added numerical element in GIZMO in this study is the

‘back-reaction’ term to the gas equation-of-motion, i.e. the force

from dust on gas. Our implementation follows standard well-tested

methods from e.g. Youdin & Johansen (2007) and Bai & Stone

(2010a): after calculating the change to the velocity/momentum

of a given dust superparticle �pa (which is integrated semi-

implicitly over the entire time-step, as described in Hopkins &

Lee 2016), the momentum is subtracted from the surrounding

gas elements according to the weighted kernel function �pb =

−�pa W (xb − xa, Ha)/
∑

c W (xc − xa, Ha), where W is the same

kernel function used to define both the hydrodynamic operations

and the interpolation of gas properties to the grain superparticle

position (unlike grid or spectral hydrodynamics methods, since our

code is particle based, there is no ambiguity about the appropriate

‘matching’ kernel function). In this study we adopt the standard

cubic spline for W, with radius of compact support Ha set to twice the

kernel-averaged gas element neighbour distance (this is identical to

the hydrodynamic search, see Hopkins 2014). The normalization of

W ensures total momentum conservation is machine-accurate, and

because our hydrodynamic method is finite-volume, the momentum

flux �pb is treated like any other hydrodynamic flux in the drift-kick

operations and time-step restrictions for gas.

In Fig. B1, we consider two common numerical validation tests

for coupled dust–gas dynamics, variants of the ‘dustybox’ and

‘dustywave’ problems from Laibe & Price (2011). In both, we

initialize a homogeneous 3D periodic box (size unity) with mean

〈ρd〉 = 〈ρg〉 = cs = Lbox = ts = 1. In the first, we set ug =

0, vd = v0 x̂; this has a trivial analytic solution where the dust

decelerates, while accelerating the gas, until the two reach the

same velocity =v0/2. In the second, we initialize an adiabatic

travelling coupled linear dust–gas wave with δv/cs = 2 δρ/ρ =

10−4 sin(2π x) in dust and gas; this corresponds to a coupled dust–

gas wave system where the two waves come in and out of phase

while gradually damping (analytic solutions here are less trivial,

but are described in detail in Laibe & Price 2011). Both exhibit the

expected behaviour and convergence rates.

Similar algorithms have been studied extensively in the liter-

ature (for some examples in astrophysical applications, see e.g.

Youdin & Johansen 2007; Bai & Stone 2010a, or for examples

of widespread applications in laboratory/terrestrial particle-laden

turbulence, see Yeung & Pope 1988; Elghobashi & Truesdell 1993;

Kulick, Fessler & Eaton 1994; Pan & Banerjee 1996; Sundaram &

Collins 1997; Boivin, Simonin & Squires 1998; Sundaram & Collins

1999; Ferrante & Elghobashi 2003; Lucci, Ferrante & Elghobashi

2010; Ireland & Desjardins 2017). For readers interested in the

exact numerical implementation details (because it is impossible to

be complete in describing all aspects of the code parallelization and

other aspects), we make our methods public and distribute them

directly in the public GIZMO source code, alongside detailed user

guide and test problem setups.4 We stress that this includes all

algorithms used here and can reproduce all our results in this paper.

B2 Robustness to numerical methods and initial conditions

Unfortunately, the acoustic RDI studied here is not amenable to

idealized ‘validation’ tests, or is there a well-defined convergence

criterion or error norm. Exact analytic non-linear solutions or any

other ‘reference solution’ against which to compare do not exist,

hence our motivation for this study. Even in the linear regime, the

problem fundamentally is that all wavelengths are unstable with

a growth rate that increases monotonically and without limit with

decreasing wavelength.5 In other words, the ‘fastest-growing mode’

4See http://www.tapir.caltech.edu/ phopkins/Site/GIZMO.html
5Consider for example running a linear-regime test problem with a ‘seeded’

mode in the low-k regime at wavelength λ = 5 �x0 (�x0 the initial

resolution scale), run for just one e-folding time. If we surveyed a factor

of just ∼32 in linear resolution, then grid-scale modes (seeded e.g. by

integration error) in the highest resolution case should (according to the

MNRAS 489, 325–338 (2019)
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Figure B1. Validation tests of the dust–gas coupling algorithm used in the

main text. Top: Uniform box of dust and gas (no external acceleration)

with non-zero initial vd (but ug = 0). We plot the box-averaged velocity

versus time (in code units), for both gas (circles) and dust (squares), for

3D boxes with different resolution (labelled). Convergence to the exact

solution is rapid (at time 1.5, the L1 error norm at N = 43 [163] is ∼0.01

[∼0.001]). Bottom: Damped, coupled linear dust–gas acoustic waves, at

time t = 1.2 λ/cs. Convergence in the dust wave (squares) is extremely

rapid. The gas wave (circles) converges more slowly owing to its sensitivity

to the ‘smearing’ of the momentum ‘back-reaction’ force from dust on to

gas (which is only first order). Still, even at N = 43, all qualitative features

of the waves are captured, and by N = 323 the deviations from the exact

solution are nearly indistinguishable.

is always at the grid-scale, and we should expect to obtain different

solutions at different resolution (at any time).

This is a uniquely challenging aspect of these studies, which

merits further exploration in future work. For now, however, we

can ask a simpler question: whether the bulk properties of the

boxes simulated are especially sensitive to the details of the

numerical method or resolution adopted (over the range of what

is computationally feasible).

As a test of how robust our statistics are to variations in numerical

methods, we have run several different 2D simulations, each with

the same parameters as our mid-k case study, μ0.01-ā100-ǭd0.1.

PDFs of the ratio of dust density to gas density are shown in Fig. B2,

averaged over the saturated state. In one simulation, the box is twice

as long in the direction of acceleration a. As expected, there are no

notable changes in this case. In another simulation, we have used the

second-order Lagrangian finite-mass ‘meshless finite-mass’ (MFM)

method for the hydrodynamics instead of our preferred ‘meshless

extrapolation of linear theory) grow in amplitude by a factor of ∼1013 in the

same time.

Figure B2. Various 2D numerical tests validating that our methods are

robust for study of the RDI. All have 2562 gas particles and, other than being

two dimensional, are share parameters with the simulation μ0.01-ā100-ǭd0.1

(cf. Tab. 1). These PDFs are computed identically to those in Fig. B3. Top:

These simulations are identical except for a varying number of dust particles.

The legend shows the ratio of dust to gas particles, with the lowest number

being just 1/16 as many dust particles as gas particles, and the highest being

4 times as many. The PDF does not notably change aside from becoming

noisier as we use fewer dust particles. Bottom: Depicted here are the results

from doubling the box length (Long), using an alternative numerical method

(MFM), and starting from lattice-like initial conditions, rather than glass-

like (Lattice ICs). All PDFs are again quite similar. Statistical fluctuations

likely account for any discrepancies.

Figure B3. The volume weighted PDFs of dust density over gas density

for the simulations μ0.01-ā1e4-ǭd0.001(low-k), μ0.01-ā100-ǭd0.1(mid-k)

and their high/low resolution counterparts μ0.01-ā1e4-ǭd0.001-HR/LR and

μ0.01-ā100-ǭd0.1-HR/LR. In the majority of our simulations, we have 1283

dust and gas particles. In order to test the effects of resolution on our results,

we have run and examined two simulations with 2563 dust and gas particles

and two with 643. The particular parameters of these simulations (i.e. μ,

ǭ, and ā) are identical to those of μ0.01-ā1e4-ǭd0.001and μ0.01-ā100-

ǭd0.1. We find that our results seem relatively well converged at 1283. The

low-density tails of the PDFs here are not sampled quite as well in the 1283

simulations as in the 2563, while on the high-density end the PDFs are better

resolved. In the low resolution, 643 simulations, the high- and low-density

regions are more poorly sampled, and the simulations fail to accurately

capture the non-Gaussian structure of the PDFs. Other statistics associated

with the saturated state of the simulations are also mostly unchanged when

increasing the resolution (c.f. Table 1).
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finite-volume’ (MFV) method. As particles have constant mass in

this method, the high-density regions are better sampled, while at

the same time the low-density regions are poorly sampled, and

noisy. Even so, the results are consistent with the results obtained

with MFV. We have also tried initializing gas and dust particles at

grid points, rather than random positions. The results obtained are,

within statistical fluctuations, identical to the glass-like, randomly

sampled initial conditions.

B3 Robustness to numerical resolution

In Fig. B3, we illustrate the dependence of the density PDFs on

resolution for the low-k and mid-k simulations, which are not

strongly affected by the numerical difficulties discussed above. We

see that the differences between the 1283 and 2563 simulations

are minimal, although, perhaps unsurprisingly, the highest and

lowest ρd/ρg are somewhat unresolved at 1283. At 643 the PDFs

look significantly more Gaussian, illustrating that aspects of the

turbulence may not be well-resolved. We note, however, that the

general characteristics of the RDI – e.g. the resonant angle and

general structure of the instability – look very similar at all three

resolutions (not shown).

In addition to studying resolution effects in 3D, we have examined

the effects of using various different numbers of dust particles in

2D simulations. PDFs of the dust-to-gas mass ratio are shown in the

top panel of Fig. B2. It is important to note that these PDFs differ

substantially from the three-dimensional case, as should be expected

due to the different properties of turbulence in two dimensions. For

this reason, we have chosen to isolate the two-dimensional tests

rather than present them all together. Even when using 1/16 as

many dust particles as gas particles, the PDF remains, while noisier,

relatively similar to when higher numbers of dust particles are used.

Thus, including a greater or lesser number of dust particles does not

seem to dramatically impact our results.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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