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ABSTRACT
In this work, we review molecular simulation methods for stud-
ies of rare events. Specifically highlighted are recent advances
and biological applications of methods that utilize unbiased
sampling in full phase space to discover reactive trajectories
and their ensembles as well as methods that utilize biased sam-
pling along collective variables to efficiently sample free energy
landscapes. Among phase space methods, we discuss transi-
tion path sampling and its variants and highlight emerging
themes in analyses of reactive trajectories via transition path
theory, reactive islands, and Lagrangian descriptors. Among
collective variable methods, we discuss techniques that allow
efficient sampling in a high-dimensional CV space, either via
replica-based approaches or by invoking an independent sam-
pling protocol for each CV. Specifically, we highlight two vari-
ants of the metadynamics method, bias-exchange and parallel-
bias metadynamics, and a hybrid method termed temperature-
accelerated sliced sampling, that have been designed to over-
come limitations of related approaches.
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1. Introduction

Conformational dynamics and chemical reactions in complex molecular systems are often
studied via molecular simulation methods with an aim to fully characterize thermody-
namics and kinetics of underlying physicochemical processes. A key goal in these investi-
gations is to resolve details of rarely occurring transitions between two metastable states
of a system. Although the transition event itself is relatively rapid, it is rarely observed
due to the existence of high free energy barriers that limit system fluctuations at equi-
librium to long-lived metastable states. However, the observation and characterization of
transition events reveal the relevant degrees of freedom driving processes and as a result
provide mechanistic insights to enhance or diminish their rates of occurrence.

Specifically, major questions in atomic-scale simulation studies of rare events are cen-
tered around identification of key theoretical constructs (order parameters, collective
variables, and reaction coordinates) to monitor the progress of the transition process,
computation of free energy profiles along the postulated coordinates, and an estimation
of rates. Transition state theory, which defines the transition state as a saddle point on
the potential energy surface, was an early theoretical tool to study rare events [1-4]. How-
ever, it remains limited in studies of macromolecular systems [5], often due to the lack
of knowledge of complex potential energy surfaces and/or their surface features, thereby
making it difficult to unambiguously identify a single transition state or a unique tran-
sition state region; especially challenging is to identify the dividing hyperplane with the
maximum transmission coefficient.

The viewpoint that one can study the ensemble of transition paths instead of focusing
on the transition states is at the core of the transition path sampling (TPS) method that
employs a Monte Carlo (MC) sampling strategy to construct the transition path ensemble

(TPE) [6-8]. Importantly, TPS utilizes sampling in full phase space (configurational co-
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ordinates and momenta) to harvest reactive trajectories and does not necessitate a priori
knowledge of the reaction coordinate; generally it suffices to unambiguously demarcate
the initial (reactant) and final (product) states.

In contrast, a suite of techniques that rely extensively on the definition of a reaction
coordinate or a collective variable (CV) are rooted in the molecular mechanics based
approach of molecular dynamics (MD) simulation [9]. Primarily due to challenges in
directly observing rare events using conventional MD simulations, these approaches aim
to enhance the sampling in configuration space via biased potentials or coupling to a high-
temperature bath. Among many other methods in this class are umbrella sampling [10—
13], metadynamics [14], driven-adiabatic free energy dynamics (d-AFED) [15,16], and
temperature-accelerated molecular dynamics (TAMD) [17].

Given that several excellent reviews on theory and applications of these simulation
methods already exist [5,7,18-33], we mainly focus in this short review on methodological
advances that are recent and whose applications are just emerging or have not been high-
lighted in other reviews. Specifically in the context of applications to biological systems,
we discuss the TPS method, two-variants of the metadynamics method (bias-exchange

and parallel-bias), and a hybrid technique termed temperature-accelerated sliced sam-

pling (TASS).

2. Transition Path Sampling

2.1. Overview

TPS is an algorithm to generate reactive trajectories connecting an initial (reactant)
state and a final (product) state, which are generally considered separated by a high free-
energy barrier [6,7,34] and between which no other long-lived metastable state exists. The

method uses recursive MC sampling in trajectory space to create a new trajectory from
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an old one, and the repeated sampling in this way generates an ensemble of transition
paths in more probable regions. The transition path ensemble thus constructed is a set of
fully dynamical trajectories and therefore facilitates computation of rare-event kinetics.

In the following, we briefly describe key ingredients of a TPS simulation.

2.1.1. Definition of Stable States

Although the TPS method does not require any prior knowledge of a reaction coordinate
or a set of CVs, it does require precise definitions of reactant and product states. To define
these states, one should identify one or more low-dimensional order parameters along
which stable basins can be clearly distinguished. In principle, the regions defining stable
basins should be large enough to accommodate equilibrium fluctuations of the system and
should not overlap to prevent sampling of non-reactive trajectories. Therefore, defining
stable states is often a non-trivial task and it may require a substantial amount of trial
to determine the degree to which a given criterion can be relaxed.

While there is no general rule to identify order parameters or CVs to distinguish be-
tween the reactant and product states, as it often depends on the specific process/problem
under investigation, earlier studies on similar transition processes can provide useful in-
puts [33]. For example, in studies of chemical reactions, distances between the atoms
involved in the bond formation/breaking are usually used as order parameters to identify
the reactant and product states. In protein folding studies, number of native contacts,
radius of gyration, number of backbone hydrogen bonds, and solvent accessible surface
area are some common order parameters used to detect stable states. If unfolding of a
protein is studied, then the distances between the hydrophobic residues or the number
of water molecules within a cut-off distance of the hydrophobic residues can be consid-

ered to identify reactant and product states. For studying conformational fluctuations or
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isomerization in a specific residue, torsional angles can be used to distinguish between

reactant, product, and intermediate states.

2.1.2. Initial Reactive Trajectory

A key requirement in TPS is the need for an initial reactive trajectory connecting stable
basins that will serve as a seed trajectory to generate subsequent transition paths. The
initial transition path may be obtained by running a long conventional MD simulation,
but often it turns out to be unsuccessful as the processes to be observed are statistically
rare. There is no general recipe for obtaining an initial reactive trajectory, but biased
or high-temperature MD simulations are often used to obtain the initial transition path.
The trajectories generated in this way need not represent the TPE, because successive

sampling during TPS moves these trajectories toward regions of high probability.

2.1.3. Transition Path Ensemble

Starting from an initial reactive trajectory, the TPS algorithm generates an ensemble of
unbiased trajectories, connecting the predefined initial and final states, using a random
walk MC procedure in trajectory space. First, a time-slice on the initial reactive trajectory
is randomly selected and momenta of all atoms at this time-slice are slightly perturbed,
keeping the positions of all atoms fixed. This step is followed by the conservation of total
energy as well as total linear and angular momentum.

Through this procedure, a new point in the phase space called a shooting point is
generated. Then, from the shooting point, a trial MD trajectory is propagated in both
forward and backward directions in time. The new trial trajectory is accepted with a
certain probability, only if it connects the initial and final states of the process, otherwise
it is rejected. Once a new trajectory is generated, it becomes the old one and the same

procedure is repeated. A set of properly weighted reactive trajectories form the TPE.
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For a comprehensive statistical description of the TPE, we refer readers to the following

article [34].

2.1.4. Identification of Transition States

The transition state of a process between the reactant state A and the product state B
is identified from the TPE using the committor probability (pp) calculation [35]. For a
given configuration z, pp(x) is the fraction of trajectories initiated from x with random
momenta reaching the state B. For transition state configurations, pg(z) is 1/2 because
trajectories initiated from those points have equal probability to reach state A or state B.
In TPS, configurations are extracted from the TPE and then a few hundreds of trajectories
are generated from each of those configurations. Those configurations that show an equal
probability to reach state A or B are identified as transition states.

A slightly different interpretation says that transition states are points in configuration
space with the highest probability that trajectories passing through them are reactive
[36,37]. The probability of a point (z) being on a transition path can be estimated through

a Bayesian expression:

p(z[TP)p(TP)
Deq(7) .

p(TPlz) = 1)

where, the conditional probability, p(x|TP), to find a point x on a given transition
path can be calculated from the TPE, p.,(z) is the equilibrium distribution of z, and
the normalizing factor p(TP) is the fraction of time spent in transition paths. Therefore,
p(TP|z) quantifies the “differences between the transition state average [p(z|TP)] and

the stable average [pe,(x)]” [34,36].



148

149

150

151

152

153

154

155

156

157

159

160

161

162

163

164

165

2.1.5. Calculation of Reaction Rates

As trajectories generated using TPS are truly dynamical, harvested without any bias,
one can calculate the rate constant (k4_,p) from the TPE. The k4,5 can be related to

a time correlation function, C'(t) [38].

Ct) = ~ ka_pt (2)

where x; = (q;, p¢) is the state of the system at time ¢, and hs/hp are the characteristic
functions of states A/B, where hy or hg would be 1 if the system is in state A or B,
otherwise 0. For deterministic dynamics, the correlation function C(t) is the probability of
finding the system in state B at time ¢, provided that the system was in state A at ¢t = 0.
As the transition between states A and B is rare, the characteristic time of molecular
motion (7,,,) is much less than the typical reaction time (7,,,). Therefore, there exists a
time region where C(t) increases linearly; hence C(t) ~ k4, pt. The slope of this region
gives the rate constant (k4_,p) of the transition.

Transition interface sampling (TIS), a variant of TPS, is a more efficient way to
obtain rates, especially when more than two stable or metastable states are involved in
the transition [39,40]. For a given transition between states A and B, TIS divides the
intermediate space into many interfaces using an order parameter A and calculates the
effective positive fluxes through the interfaces. The rate constant is then estimated using

the following equation:

n—1
(p 1
as = T TT PO PO ) 3)
A 54
The factor, @2’:1), calculates the positive fluxes leaving the state A and reaching the first
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interface A;. P(\;|)\;) is the conditional probability of a trajectory reaching the interface
Ai, given that it comes from the state A and have crossed the interface A;. One advantage
of TIS over TPS is that it allows path lengths to vary, thus becoming computationally less
expensive and more applicable to diffusive dynamics. Unlike TPS, TIS ignores multiple
recrossings at the transition state surface and concentrates only on the positive fluxes

through the dividing interfaces for the rate calculation.

2.2. Applications

Since its development, TPS has been used to study a wide range of rare event problems.
To highlight a few: ion pair dissociation [35], chemical dynamics of the protonated water
[41], peptide isomerization [42], protein folding [43,44], DNA binding [45], catalysis [46—
48], and conformational fluctuations of residues [49,50]. In the following discussion, we
provide a brief description of biological applications of the TPS method in isomerization,

folding, and catalysis, that share issues common to many (bio)physical problems.

(i) Isomerization: Alanine dipeptide has been used as a minimal model system to
study conformational changes in biomolecules [51]. The conformational space of the
dipeptide is often probed using the backbone dihedral angles (¢ and 1)) that describe
different states: Cr, (in vacuum, ¢ ~ —86° and ¢ ~ 68°; and in solution, ¢ ~ —80°
and ¢ ~ 160°), Cy, (in vacuum, ¢ =~ 50° and ¢ ~ —50°), and ag (in solution,
¢ ~ —80° and ¢ ~ —30°). The transition between C7., and C,, isomers of alanine
dipeptide in vacuum and between C7., and ap isomers in water has been studied
using TPS [42].

In this study, all stable basins corresponding to configurations, Cr.,, Cy, and
ag were distinguished by ¢ and ¢ angles of the dipeptide. For instance, in vacuum

the Cre, state was identified by —150° < ¢ < —30° and 0° < ¥ < 180°, and Cy,
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(i)

state was identified by 30° < ¢ < 130° and —180° < ¢ < 0°. The initial trajectory
was obtained by generating trajectories at high temperature from a configuration
near the saddle point in forward and backward directions of time. Starting from
the initial reactive trajectory, a collection of 1000 transition paths in vacuum
and 256 transition paths in water were generated using the shooting and shifting
algorithms [6]. Analyzing committor probability for configurations obtained from
the transition state ensemble, it was shown that in both vacuum and water, only
¢ and 1 angles are insufficient to describe the progress of the transition, thereby
revealing that another key variable, a torsional angle #, should be incorporated to
predict the correct dynamical pathway in vacuum. In solution, the solvent degrees
of freedom should also be considered to understand the mechanism of transition.

The rate constant k., a, Was found to be 10 ns~ L.

Folding: The folding pathways of a S-hairpin of the GB1 protein were investigated
in explicit solvent using all-atom MD simulations and TPS [43]. This S-hairpin
exhibits two metastable states ‘F” and ‘H’ along with the completely folded (N) and
unfolded states (U). These states were distinguished by several order parameters:
number of native hydrogen bonds (Nj), number of native contacts (Ny.), radius
of gyration (R,), number of broken native backbone hydrogen bonds (N,;), the
sum of the O-H distances of the backbone hydrogen bonds (Rog), the minimum
distance (d,i,) between residues F52 and Y45 or W43, and the number of water
molecules between these residues. These order parameters were first examined in a
high temperature unfolding simulation to understand their contribution to different
conformational states. More detailed definitions of all (meta)stable states (N, F, H

and U) are provided in Ref. [43].
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Figure 1. High-resolution crystal struture of HCA II (PDB: 2CBA [52], center) with (a) molecular model of the rate-
determining proton transfer between the zinc-bound water and His-64 side chain mediated by hydrogen-bonded network
of water molecules at the active site; (b) selected active site residues and key distances monitored in TPS. Adapted with
permission from ref. [48]. Copyright 2018 American Chemical Society.

(iii)

At 400K, an initial 2-ns long MD trajectory connecting states N and U and
passing through metastable states F and H was generated. As TPS has been designed
to study transitions between two states, the TPE for transitions between N and F,
F and H, and H and U states were created separately. In the N to F transition, R,
slightly decreased and most of the hydrogen bonds remained intact. Two specific
hydrogen bonds were observed to break simultaneously at state F, leading to state
H. In the H to U transition, R, increased and the distance between hydrophobic
residues also increased, thereby creating space for water molecules.

The rate constant for the rate determining step, the F to H transition, was
calculated using TIS. As F is a metastable state and can reach the N state within
a few ns, the rate constant for N to H transition was calculated. The Ropy distance
was used as an order parameter to make interfaces between states N and H and
a few hundreds of paths were generated for each interface. The rate constant for
unfolding at 300 K was found to be 0.20 pus™!, which was in good agreement with

the experimental result (0.17 us™!).

Catalysis: A key system for applications in catalysis has been human carbonic an-

hydrase IT (HCA II), a zinc-containing metalloenzyme, that catalyzes the reversible

10
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hydration of carbon dioxide to bicarbonate. In the catalytic process, major steps in-
clude conduction of a proton from the zinc-bound water to a histidine residue (H64)
and conformational changes in H64 in its protonated and unprotonated forms [53—
57]. Specifically, H64 is known to exist in two (inward/outward) rotameric confor-
mations, where the H64 side-chain faces toward or away from the active site. The
important steps underlying the catalytic mechanism in HCA II have been exten-
sively studied using a judicious combination of classical MD, the QM /MM approach,
and TPS [48-50,58].

The first TPS study focused on the fluctuations of the unprotonated H64 [49],
where two rotameric states of this residue were differentiated by a sidechain dihedral
angle (x1). Starting from the initial reactive trajectory, created using the adaptive
biasing force method [59], an ensemble of 150 transition paths was generated. A
detailed inspection of the TPE revealed that the rotation of the H64 sidechain
involves a narrow channel lined by W5 and N62 residues.

A subsequent TPS study [50], aimed to determine the reaction coordinate of
the conformational transition in H64, used newer protocols including the aimless
shooting version of TPS and the likelihood maximization technique (see Section 2.3).
In this work, the initial trajectory was obtained from a 15-ns long conventional MD
simulation. A total of 32 CVs (Fig. 1) comprising sidechain and backbone dihedral
angles of seven active-site residues, three distance parameters, and the number of
water molecules at the active site, were used. The reaction coordinate was found to
be a linear combination of four CVs.

A more recent TPS study [48] on the fluctuations of protonated and unproto-
nated H64 used principle component analysis to reduce the dimensionality of the

CV-set for free energy calculations along the optimum reaction coordinate and es-
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timation of rates. The rotation of the protonated H64 was found to be 10 times
faster than that in the unprotonated state, largely due to electrostatic repulsion of
the protonated H64 resulting from the catalytic zinc-ion.

Using a combination of the QM /MM approach and TPS, this work also examined
the rate determining step of proton transfer from the zinc-bound water to the Ng;
atom of H64. The stable states in this case were defined by an order parameter
called the mean path (MP) [48]. The initial trajectory was generated using steered
QM/MM MD simulations [60] and a total of 615 transition paths were generated
using the aimless shooting version of TPS. The initial set of 33 CVs were used to
optimize the reaction coordinate which was described by three principal modes. The
rate constant for the proton transfer step was found to be 1 x 10° s71, in reasonable
agreement with the earlier experimental result [61].

The coupling of protein motions with the chemical events in catalysis have
also been examined using QM/MM and TPS for purine nucleoside phosphory-
lase (PNP) [62]. This enzyme catalyzes the reversible phosphorolysis of 6-oxypurine
deoxy-nucleoside to produce a purine base and the deoxy-ribose 1-phosphate [63,64].
This study probed the role of heavy isotopes in altering the transition state forma-
tion and the role of mutations in altering dynamics during catalysis [62]. Specifically,
it was found that the mutations in two neighboring residues (E258D and L261A)
removed the steric-hindrance to H257, thereby making it more prone to change con-
formation. The dynamics of the transition state formation were found to be restored
in the mutated PNP. Other applications of TPS for studying catalytic processes in-

clude studies on DNA polymerase [ [65] and lactate dehydrogenase [46].
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2.3. Reaction Coordinate and CV Determination

While the knowledge of reaction coordinates or CVs is not a requirement for applying
the TPS method, it is feasible to develop approaches for determining these highly useful
theoretical constructs; we refer readers to Ref. [19] for understanding subtle differences
between order parameters, CVs, and the reaction coordinate. Briefly, transition path
theory (TPT) [5] addresses these notions in full generality by defining the committor
function that serves as an ideal reaction coordinate, i.e., it defines the probability that
a trajectory initiated at a configuration z will first reach the product state B before
reaching the reactant state A. The isosurfaces of the committor functions are known
as isocommittor surfaces, where the isosurface with the committor value of 1/2 defines
the surface with an equal probability of first reaching A or B. The committor function
satisfies a backward Kolmogorov equation with boundary values between 0 and 1 to define
reactant and product basins, respectively. While it is not possible to obtain committor
by solving the backward Kolmogorov equation for high-dimensional complex molecular
systems, several low-dimensional models of the committor can be constructed [19].

Based on the TPS method, a quantitative approach was developed by Peters et al.
[66,67] to generate the reaction coordinate for a transition process, which differs from the
original TPS approach in that, instead of perturbing momenta, they are freshly sampled
from a Boltzmann distribution. This version of the TPS method is called aimless shooting.
By design, aimless shooting creates most of the shooting points near the barrier region
and helps in generating highly decorrelated trajectories.

To determine the reaction coordinate, the likelihood of a linear combination of a large
number of CVs, computed at shooting points, are tested using the likelihood maximization
method and finally the best combination is achieved by the Bayesian information crite-

ria. To further improve the efficiency of the likelihood maximization method in obtaining
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accurate transmission coefficient, inertial likelihood maximization (iLmax) method was
developed [68,69]. iLmax utilizes the velocity information along with configurational co-
ordinates to identify the optimum reaction coordinate. Recently, a two step screening
method has been proposed to reduce the number of candidate CVs and thus making the
task of likelihood maximization easier [48]. In this method, population distributions of
CVs at the end points of shooting trajectories are calculated. Those CVs which show
distributions at two different regions for two end points A and B are only selected for
likelihood maximization. Both aimless shooting and the likelihood maximization methods

have been used in several applications [50,58,70-73].

2.8.1. Relevance of Reactive Island Theory to Transition Path Sampling

A unique new perspective on the TPS method connects it to classical phase-space
based reactive island (RI) theory in which reactive islands are manifolds emanating from
a transition state and thereby mediate reaction pathways [74,75]. As a model system of
reasonable complexity [75], the paradigmatic Miiller-Brown Hamiltonian [76] was used
to probe the nature of reactive trajectories via committor analysis and understanding
its sensitivity to reactive islands. A new coordinate system based on normal modes at
saddle points was adopted to unambiguously demarcate reactant and product states.
It was argued that the RI hierarchy is intimately related to rare reactive trajectories
because trajectories crossing the transition zone from the reactant to product states must
sequentially pass through higher order to lower order RlIs. Importantly, it was shown that
committor functions are linked to the number and relative disposition of RlIs relative to the
shooting configurations. Although it is not feasible to visualize Rls in high-dimensional
phase spaces of complex molecular systems, Lagrangian descriptors [77] (which are a

measure of the arc length of the trajectory over the specified time-interval [75]) were found
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to efficiently detect RI hierarchy. As a result, such descriptors are excellent candidates
for designing new variants of TPS and could be used as CVs in the CV-based enhanced

sampling methods described in the following sections.

3. CV-based Enhanced Sampling Methods

3.1. Overview

Free energy calculations are often carried out as a function of relevant coordinates. Given
that the coordinates accurately quantifying dynamical evolution of the process (from the
reactant to product states) are not known a priori in most cases, it is common practice to
resolve the free energy (F') along a set of postulated collective coordinates, often termed
as CVs [78], that are functions of the atomic Cartesian coordinates, i.e., s(ry,ra, -+ ,ry),
where r; = (x;,y;, z;). Therefore, it is essential to sample all conformations accessible to
the system for a given s to accurately compute F(s), which is related to P(s) [79], the
probability distribution of s as: F(s) = —3~" In P(s), where 8 = (kgT) " with kg and T
being the Boltzmann constant and temperature, respectively.

Given that the potential energy is a function of the full 3/N-dimensional configuration
space, U(R), the configurations are visited with a probability, P(R)  exp(—SU(R)).
This means that the probability of visiting configurations higher in potential energy is
significantly lower, and as a result, finite-length conventional MD trajectories remain non-
ergodic in most cases. This problem can be alleviated by adding a bias potential (V®(R))
that flattens large barriers separating metastable configurations, thereby making the bi-
ased probability distribution, P(R) o< exp(—B[U(R) 4+ VP(R)]); the biased distribution
is related to the unbiased one as: P(R) = P(R)exp[3V"(R)]. Since obtaining V"(R)
that flattens the potential energy landscape is highly challenging even for a moderate
size system, one can incorporate the bias only along selected CVs and compute F(s) via
P(s) = P(s) exp[8V"(s)].
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3.1.1. Algorithms

The earlier technique of umbrella sampling [10] and the modern method of metadynam-
ics [14] are methods of this flavor, where V"(s) has a harmonic potential form in the
former but in latter it is constructed as a sum of Gaussian functions centered along the
trajectory of s. Other ways of obtaining V"(s) is in a variational manner, as in the vari-
ational enhanced sampling method [80], where it is constructed via a linear expansion
using basis functions. Importantly, metadynamics is not only applicable for resolving free
energy as a function of CVs but also for computing reaction rates [81-83].

Another way of enhancing sampling in MD is to utilize an extended Lagrangian ap-
proach in which CVs are coupled to a set of auxiliary /fictitious variables that dynamically
evolve at a temperature higher than that of the physical system. Adiabatic separation
between the physical and fictitious variables is achieved by increasing the mass of the ficti-
tious variables and by introducing a higher fictitious friction coefficient as a thermostat pa-
rameter. This approach forms the basis for the TAMD method [17], which is closely related
to the adiabatic/driven-adiabatic free energy dynamics (d-AFED) method [15,16,84]. A
number of studies have employed the TAMD/d-AFED method to investigate several bio-
physical problems [85-96], and the method has been further improved by combining it

with biased-sampling [97].

3.1.2. Practical Aspects

Some practical issues in applications of these CV-based methods need to be considered.
For example, umbrella sampling is often used for a single CV, and rarely a full sampling of
two-dimensional free energy landscapes is achieved [98], primarily because the efficiency
of the method dramatically decreases with increasing dimensionality of the CV-set. In

contrast, metadynamics is quite successful in sampling free energy landscapes in 2 or 3
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CVs, but further increasing the dimensionality of CVs makes it challenging to obtain
good sampling at a reasonable computational cost. Moreover, the self-guiding nature of
the method pushes the system toward the direction of zero mean force, which may lead
to sampling of uninteresting configurational states [99]. Therefore, a controlled sampling
along a CV is difficult to achieve in metadynamics, as is also the case in the TAMD/d-
AFED method. However, the TAMD/d-AFED method has the advantage that it can
sample relatively high-dimensional free energy landscapes in an efficient manner [31]. For
example, up to 700 CVs were simultaneously sampled using this method [100], thereby
demonstrating the efficiency of this approach in exploring a high-dimensional CV space.
This is primarily due to the fact that TAMD has been designed only for enhanced sam-
pling of the underlying landscape without the need to reconstruct it. In the following, we
discuss recent advances in these methods for computing free energies as a function of a

high-dimensional CV-set.

3.2. Exploring High Dimensional Free Energy Landscapes

Although only few CVs may be sufficient to describe pertinent states (reactant, product,
and transition) for a given process, hidden orthogonal coordinates may become crucial
to efficiently sample conformational space for achieving convergence in free energy cal-
culations [31]. In the following, we discuss techniques that aim to accomplish efficient
conformational sampling in a high-dimensional CV-space. Specifically, we highlight bias-
exchange and parallel-bias metadynamics, two variants of the metadynamics method, and

a relatively recent method termed TASS.
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3.2.1. Bias-Exchange and Parallel-Bias Metadynamics Methods

Bias-exchange metadynamics is a multiple-replica approach to sample a large number of
CVs, where each replica is assigned to sample a low-dimensional CV-subset of the full CV-
space using its own metadynamics bias potential [101]. Unlike replica-exchange MD [102],
all replicas in bias-exchange metadynamics are maintained at the same temperature and
exchanges between a pair of replicas follow a Metropolis-Hastings scheme although the
exchange rates as well as convergence of the free energy can be enhanced via infinite-
swapping or the Suwa-Todo algorithms [103]. We refer readers to Refs. [31,104] for addi-
tional methodological details. However, one drawback of this method is the requirement
of exchanges between replicas, as this diminishes its performance. Some limitations of
bias-exchange metadynamics are addressed in another variant of metadynamics, namely
the parallel-bias metadynamics method [105]. Unlike bias-exchange metadynamics, this
is a one replica method in which CVs are biased with one or two-dimensional biases. The
heights of the Gaussian functions added along different CVs are scaled by a conditional
factor in a manner that the bias potentials are balanced as they are built dynamically.
A modification to this method has been recently proposed to increase its efficiency for

sampling in higher dimensions [106].

3.2.2. Applications of Bias-Fxchange and Parallel-Bias Metadynamics

Several applications of bias-exchange and parallel-bias metadynamics methods have been
discussed in detail in Ref. [31] and therefore we only briefly highlight them here. The
bias-exchange metadynamics method has been applied in studies of a number of bio-
physical problems including protein folding [107-115], ligand binding [116,117,117-123],
conformational sampling [124-142], and similar studies in nucleic acid systems [143-146].

Similarly, the parallel-bias metadynamics method has been applied for studying protein
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conformational sampling and ligand binding [105,147-149] as well as for studying complex

chemical reaction pathways [150].

3.2.8. Temperature Accelerated Sliced Sampling (TASS)

A new approach, termed TASS [151], combines the advantages of umbrella sampling,
metadynamics, and the TAMD /d-AFED method. In this method, the TAMD/d-AFED
Lagrangian is modified by adding umbrella sampling and metadynamics biases on dif-
ferent CVs. Similar to the TAMD/d-AFED method, all CVs in a TASS simulation are
coupled to fictitious variables dynamically evolving at a temperature higher than of the
physical system.

The advantage of this method over conventional umbrella sampling, metadynamics,
and the TAMD/d-AFED method is that a controlled exploration of a high-dimensional
CV-space is possible. Particularly, free energy landscapes that are inherently flat and
broad can be sampled efficiently with TASS [99]. Importantly, a high-dimensional free-
energy surface can be reconstructed by judiciously combining the weighted-histogram
analysis method [11] and the Tiwary-Parrinello reweighting scheme [25] with the
TAMD/d-AFED free energy estimator [79,152]. Therefore, TASS affords sampling of a
large number of transverse coordinates and also allows usage of distinct orthogonal co-
ordinates for different umbrella windows. It is also noted that the TASS method differs
from the biased version of TAMD/d-AFED (UFED) [97], where all the CVs are biased
with a high-dimensional biasing potential similar to metadynamics [31]. Owing to a con-
trolled sampling as well as rapid convergence in free energies achievable by TASS, it is
a potentially useful alternative to solely applying umbrella sampling, metadynamics, or
TAMD/d-AFED for studying chemical reactions. In the following section, we highlight

applications of the TASS method to biophysical systems.
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Figure 2. Free energy surface of alanine tripeptide (in vacuum) computed using the TASS method where ¢1, ¢2, ¥1
and 1 were chosen as the CVs. (a) Structure of alanine tripeptide with the definition of the CVs; (b) Convergence of
free energy barriers for P — Q, Q - P, R — Q, and Q — R are shown in B, e, ¢ and A, respectively; (c¢) Projection
of F(¢p1,¢1,d2,1%2) on the (P1,¢p2) space is shown; (d) F(¢1,¢2) from parallel tempering simulation is shown for the
reference. Contour lines are drawn for every 1 kcal mol~!; and (e) Free energies of all the minima with respect to the
free energy of Q from TASS and replica exchange simulations, and their differences are plotted. Reprinted from Awasthi
S, Nair NN. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling. J. Chem. Phys.
2017;146:094108, with the permission of AIP Publishing.
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3.2.4. Applications of TASS

(i)

(i)

Peptide conformational sampling: While alanine dipeptide has been widely
studied as a model biophysical system [51], alanine tripeptide (Figure 2a) has been
studied to a limited extent. Therefore, the TASS method was applied to alanine
tripeptide for resolving the free energy as a function of four Ramachandran tor-
sional angles as CVs (1, ¢1, ¢o,19) (Figure 2a) [151]. The four fictitious/auxiliary
variables corresponding to four torsional angles were kept at 900 K, while the phys-
ical system was maintained at 300 K. Here, ¢; was biased using umbrella sampling
(30 umbrella windows along ¢, spanning —7 to +7) and ¢, was biased using meta-
dynamics. The reconstructed free energy surface F/(¢1, 11, ¢2,12) was then projected
on the ¢1-¢y sub-space for analyzing the convergence in free energies (Figure 2b,c).
A reasonable convergence was achieved using an 8 ns long simulation per umbrella
window. Importantly, even the regions with higher free energy values (¢; € [1.5,3.1])
were efficiently sampled in TASS by virtue of the umbrella bias along ¢;. In fact,
ps-scale parallel tempering simulations could not sample these regions of the free en-
ergy surface (Figure 2d). The free energy differences between various minima agreed
very well with the results from the parallel tempering (Figure 2e) simulations, which
in turn ascertained the accuracy of the method.

Chemical reactions in enzymes: The TASS method has been combined with the
density functional theory (DFT) based QM/MM MD methods to study chemical
reactions in enzymatic systems [153]. At the DFT level, QM /MM based MD simu-
lations are computationally intensive. As a result, enhanced sampling methods are
desired to obtain quick convergence in free energies (typically within 10-20 ps). For
the case of bond-formation reactions or the A+B type chemical reactions, a large

number of conformational states can be representative of the reactant basin [99].
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(iii)

Therefore, an umbrella sampling bias along the bond-formation coordinate is pre-
ferred to efficiently sample the relevant conformational states in the reactant basin.
However, in complex chemical reactions, several orthogonal coordinates also need
to be sampled to get a converged free energy along the bond-formation CV. Thus,
the TASS method is ideally suited for modeling such reactions [31].

In Ref. [153], the deacylation reaction of a covalent bond between the ring-
opened aztreonam drug and a class C S-lactamase enzyme was modeled. Four CVs
were chosen to study this reaction, among which the distance between the deacy-
lating water oxygen and the carbonyl C of the substrate was biased using umbrella
sampling to drive the reaction in a controlled manner. Here, the umbrella bias is
computationally efficient as it avoids the sampling of those conformations in which
water is far from the reaction site. In addition, metadynamics was used to bias the
sampling of the proton transfer from the attacking water to the phenolic oxygen
of Tyr150, while the relative orientations of Tyrl150 and the two adjacent lysine
residues (Lys67 and Lys315) were sampled only by TAMD /d-AFED. A satisfactory
convergence in free energy was obtained within 8 ps of simulation per umbrella
window and the computed barrier was in good agreement with the free energies
computed from the experimental kinetic data. In addition, several other QM/MM
based TASS simulations were reported by choosing up to 8 CVs [153].

Product Release in Enzymes: [t was experimentally observed [154] that one of
the active site Mg?* ions is getting discharged with the pyrophosphate after the
nucleotidyl transfer reaction in a sugar nucleotidyltransferases (GlmU). To validate
this observation, Vithani et al. [154] first performed conventional umbrella sampling
simulations by using as a CV the distance between the centre-of-mass of the releasing

pyrphosphate and the active site (Figure 3a,b). Similar to experiments, the release
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Figure 3. (a) Active site structure of pyrophosphate release in GImU is whown in the intermediate state (S2). Interactions
of pyrophosphate (red colored dotted line) and Mg2B+ (blue colored dotted line) are depicted. Pyrophosphate is shown in
stick representation, while Mg2BJr is shown as a green colored sphere. Thr18, Argl9, Lys26, UD1 and water molecules (W1,
W2 and W3) are shown in ball-stick representation. Color code: gray (carbon), red (oxygen), blue (nitrogen), green (Mg%"’)
and white (hydrogen). T1 and T2 loop regions are shown by blue and red colored ribbons, respectively. (b) The distance
CV (d[PA-POPcom]) used for US is shown. Here POPcon is the centre of mass of the P atoms and the bridging O
atom in the pyrophosphate residue. (c) Free energy along d[PA-POPcowm]| from US and TASS simulations are compared.
(d) Free energy surface resolved along d[PA-POPcoMm] and Xg‘rglg (defining rotation around C,—Cs bond of Argl9 side
chain), as computed from the TASS simulation. The minimum energy taken identified from TASS is shown in yellow dotted
lines while that explored in US is shown in green dotted lines. Reprinted from Structure, 26/3, Vithani et al., Mechanism
of Mg?*t-accompanied product release in sugar nucleotidyltransferases, 459-466, Copyright (2018), with permission from

Elsevier [154].
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of the Mg?* ion with the pyrophosphate was also observed in these simulations, but
the free-energy barrier was computed to be 18 kcal/mol. Such a high energy barrier
is unusual for the product release step in enzymatic reactions. Therefore, it is likely
an artefact of the umbrella sampling simulations resulting from a poor sampling of
other relevant orthogonal coordinates.

To test this hypothesis, TASS simulations were performed by using 10 CVs,
which included the torsional angles of an Arg residue along the pathway of the
ligand dissociation (Figure 3a). TASS sampled several pathways for the product
release, including the one observed in umbrella sampling simulations. Importantly,
the lowest energy pathway found by TASS was 2 kcal/mol lower in free energy than
the pathway in umbrella sampling simulations (Figure 3c,d). This difference was
mainly attributed to a poor sampling of Argl9 conformational states in umbrella
sampling simulations. TASS simulations also reaffirmed the view that the product
release is a relatively slow process and the origin of this delayed release was ascribed
to interactions with the Arg residue located at the exit along the product release

pathway [154].

The TASS method has also been extended for studying chemical reactions in zeo-
lites using the QM /MM approach [155]. While TASS has not been yet applied to study
many other biophysical problems (e.g. ligand binding and protein folding), the method
is potentially applicable and provides opportunities in future to study a broader class of

biophysical problems.

4. Conclusions

In this review, we have highlighted methodological details and biological applications of

phase space and CV-based methods for studying thermodynamics and kinetics of rare
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biochemical and biophysical events. Specifically, we have discussed key ingredients and
applications of the TPS method, a phase space technique for discovering reactive trajec-
tories and computing reaction kinetics. Further highlighted are links of the committor
functions to reactive island theory and the emerging concept of Lagrangian descriptors as
a model for detecting island hierarchy. We then describe bias-exchange metadynamics and
parallel-bias metadynamics as two CV-based methods utilizing a replica approach. We
end the review by discussing details of a hybrid technique termed TASS, which combines
the advantages of multiple and distinct CV-based methods including umbrella sampling,

metadynamics, and the TAMD/d-AFED method.
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