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ABSTRACT9

In this work, we review molecular simulation methods for stud-10

ies of rare events. Specifically highlighted are recent advances11

and biological applications of methods that utilize unbiased12

sampling in full phase space to discover reactive trajectories13

and their ensembles as well as methods that utilize biased sam-14

pling along collective variables to efficiently sample free energy15

landscapes. Among phase space methods, we discuss transi-16

tion path sampling and its variants and highlight emerging17

themes in analyses of reactive trajectories via transition path18

theory, reactive islands, and Lagrangian descriptors. Among19

collective variable methods, we discuss techniques that allow20

efficient sampling in a high-dimensional CV space, either via21

replica-based approaches or by invoking an independent sam-22

pling protocol for each CV. Specifically, we highlight two vari-23

ants of the metadynamics method, bias-exchange and parallel-24

bias metadynamics, and a hybrid method termed temperature-25

accelerated sliced sampling, that have been designed to over-26

come limitations of related approaches.27
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1. Introduction31

Conformational dynamics and chemical reactions in complex molecular systems are often32

studied via molecular simulation methods with an aim to fully characterize thermody-33

namics and kinetics of underlying physicochemical processes. A key goal in these investi-34

gations is to resolve details of rarely occurring transitions between two metastable states35

of a system. Although the transition event itself is relatively rapid, it is rarely observed36

due to the existence of high free energy barriers that limit system fluctuations at equi-37

librium to long-lived metastable states. However, the observation and characterization of38

transition events reveal the relevant degrees of freedom driving processes and as a result39

provide mechanistic insights to enhance or diminish their rates of occurrence.40

Specifically, major questions in atomic-scale simulation studies of rare events are cen-41

tered around identification of key theoretical constructs (order parameters, collective42

variables, and reaction coordinates) to monitor the progress of the transition process,43

computation of free energy profiles along the postulated coordinates, and an estimation44

of rates. Transition state theory, which defines the transition state as a saddle point on45

the potential energy surface, was an early theoretical tool to study rare events [1–4]. How-46

ever, it remains limited in studies of macromolecular systems [5], often due to the lack47

of knowledge of complex potential energy surfaces and/or their surface features, thereby48

making it difficult to unambiguously identify a single transition state or a unique tran-49

sition state region; especially challenging is to identify the dividing hyperplane with the50

maximum transmission coefficient.51

The viewpoint that one can study the ensemble of transition paths instead of focusing52

on the transition states is at the core of the transition path sampling (TPS) method that53

employs a Monte Carlo (MC) sampling strategy to construct the transition path ensemble54

(TPE) [6–8]. Importantly, TPS utilizes sampling in full phase space (configurational co-55
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ordinates and momenta) to harvest reactive trajectories and does not necessitate a priori56

knowledge of the reaction coordinate; generally it suffices to unambiguously demarcate57

the initial (reactant) and final (product) states.58

In contrast, a suite of techniques that rely extensively on the definition of a reaction59

coordinate or a collective variable (CV) are rooted in the molecular mechanics based60

approach of molecular dynamics (MD) simulation [9]. Primarily due to challenges in61

directly observing rare events using conventional MD simulations, these approaches aim62

to enhance the sampling in configuration space via biased potentials or coupling to a high-63

temperature bath. Among many other methods in this class are umbrella sampling [10–64

13], metadynamics [14], driven-adiabatic free energy dynamics (d-AFED) [15,16], and65

temperature-accelerated molecular dynamics (TAMD) [17].66

Given that several excellent reviews on theory and applications of these simulation67

methods already exist [5,7,18–33], we mainly focus in this short review on methodological68

advances that are recent and whose applications are just emerging or have not been high-69

lighted in other reviews. Specifically in the context of applications to biological systems,70

we discuss the TPS method, two-variants of the metadynamics method (bias-exchange71

and parallel-bias), and a hybrid technique termed temperature-accelerated sliced sam-72

pling (TASS).73

2. Transition Path Sampling74

2.1. Overview75

TPS is an algorithm to generate reactive trajectories connecting an initial (reactant)76

state and a final (product) state, which are generally considered separated by a high free-77

energy barrier [6,7,34] and between which no other long-lived metastable state exists. The78

method uses recursive MC sampling in trajectory space to create a new trajectory from79
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an old one, and the repeated sampling in this way generates an ensemble of transition80

paths in more probable regions. The transition path ensemble thus constructed is a set of81

fully dynamical trajectories and therefore facilitates computation of rare-event kinetics.82

In the following, we briefly describe key ingredients of a TPS simulation.83

2.1.1. Definition of Stable States84

Although the TPS method does not require any prior knowledge of a reaction coordinate85

or a set of CVs, it does require precise definitions of reactant and product states. To define86

these states, one should identify one or more low-dimensional order parameters along87

which stable basins can be clearly distinguished. In principle, the regions defining stable88

basins should be large enough to accommodate equilibrium fluctuations of the system and89

should not overlap to prevent sampling of non-reactive trajectories. Therefore, defining90

stable states is often a non-trivial task and it may require a substantial amount of trial91

to determine the degree to which a given criterion can be relaxed.92

While there is no general rule to identify order parameters or CVs to distinguish be-93

tween the reactant and product states, as it often depends on the specific process/problem94

under investigation, earlier studies on similar transition processes can provide useful in-95

puts [33]. For example, in studies of chemical reactions, distances between the atoms96

involved in the bond formation/breaking are usually used as order parameters to identify97

the reactant and product states. In protein folding studies, number of native contacts,98

radius of gyration, number of backbone hydrogen bonds, and solvent accessible surface99

area are some common order parameters used to detect stable states. If unfolding of a100

protein is studied, then the distances between the hydrophobic residues or the number101

of water molecules within a cut-off distance of the hydrophobic residues can be consid-102

ered to identify reactant and product states. For studying conformational fluctuations or103
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isomerization in a specific residue, torsional angles can be used to distinguish between104

reactant, product, and intermediate states.105

2.1.2. Initial Reactive Trajectory106

A key requirement in TPS is the need for an initial reactive trajectory connecting stable107

basins that will serve as a seed trajectory to generate subsequent transition paths. The108

initial transition path may be obtained by running a long conventional MD simulation,109

but often it turns out to be unsuccessful as the processes to be observed are statistically110

rare. There is no general recipe for obtaining an initial reactive trajectory, but biased111

or high-temperature MD simulations are often used to obtain the initial transition path.112

The trajectories generated in this way need not represent the TPE, because successive113

sampling during TPS moves these trajectories toward regions of high probability.114

2.1.3. Transition Path Ensemble115

Starting from an initial reactive trajectory, the TPS algorithm generates an ensemble of116

unbiased trajectories, connecting the predefined initial and final states, using a random117

walk MC procedure in trajectory space. First, a time-slice on the initial reactive trajectory118

is randomly selected and momenta of all atoms at this time-slice are slightly perturbed,119

keeping the positions of all atoms fixed. This step is followed by the conservation of total120

energy as well as total linear and angular momentum.121

Through this procedure, a new point in the phase space called a shooting point is122

generated. Then, from the shooting point, a trial MD trajectory is propagated in both123

forward and backward directions in time. The new trial trajectory is accepted with a124

certain probability, only if it connects the initial and final states of the process, otherwise125

it is rejected. Once a new trajectory is generated, it becomes the old one and the same126

procedure is repeated. A set of properly weighted reactive trajectories form the TPE.127
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For a comprehensive statistical description of the TPE, we refer readers to the following128

article [34].129

2.1.4. Identification of Transition States130

The transition state of a process between the reactant state A and the product state B131

is identified from the TPE using the committor probability (pB) calculation [35]. For a132

given configuration x, pB(x) is the fraction of trajectories initiated from x with random133

momenta reaching the state B. For transition state configurations, pB(x) is 1/2 because134

trajectories initiated from those points have equal probability to reach state A or state B.135

In TPS, configurations are extracted from the TPE and then a few hundreds of trajectories136

are generated from each of those configurations. Those configurations that show an equal137

probability to reach state A or B are identified as transition states.138

A slightly different interpretation says that transition states are points in configuration139

space with the highest probability that trajectories passing through them are reactive140

[36,37]. The probability of a point (x) being on a transition path can be estimated through141

a Bayesian expression:142

p(TP|x) =
p(x|TP)p(TP)

peq(x)
. (1)

where, the conditional probability, p(x|TP), to find a point x on a given transition143

path can be calculated from the TPE, peq(x) is the equilibrium distribution of x, and144

the normalizing factor p(TP) is the fraction of time spent in transition paths. Therefore,145

p(TP|x) quantifies the “differences between the transition state average [p(x|TP)] and146

the stable average [peq(x)]” [34,36].147
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2.1.5. Calculation of Reaction Rates148

As trajectories generated using TPS are truly dynamical, harvested without any bias,149

one can calculate the rate constant (kA→B) from the TPE. The kA→B can be related to150

a time correlation function, C(t) [38].151

C(t) =
〈hA(x0)hB(xt)〉

〈hA〉
≈ kA→Bt (2)

where xt = (qt, pt) is the state of the system at time t, and hA/hB are the characteristic152

functions of states A/B, where hA or hB would be 1 if the system is in state A or B,153

otherwise 0. For deterministic dynamics, the correlation function C(t) is the probability of154

finding the system in state B at time t, provided that the system was in state A at t = 0.155

As the transition between states A and B is rare, the characteristic time of molecular156

motion (τmol) is much less than the typical reaction time (τrxn). Therefore, there exists a157

time region where C(t) increases linearly; hence C(t) ≈ kA→Bt. The slope of this region158

gives the rate constant (kA→B) of the transition.159

Transition interface sampling (TIS), a variant of TPS, is a more efficient way to160

obtain rates, especially when more than two stable or metastable states are involved in161

the transition [39,40]. For a given transition between states A and B, TIS divides the162

intermediate space into many interfaces using an order parameter λ and calculates the163

effective positive fluxes through the interfaces. The rate constant is then estimated using164

the following equation:165

kA→B =
〈ΦA,λ1〉
hA

n−1∏
i=1

P (λi+1|λi)P (λB|λn). (3)

The factor,
〈ΦA,λ1 〉
hA

, calculates the positive fluxes leaving the state A and reaching the first166
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interface λ1. P (λi|λj) is the conditional probability of a trajectory reaching the interface167

λi, given that it comes from the state A and have crossed the interface λj. One advantage168

of TIS over TPS is that it allows path lengths to vary, thus becoming computationally less169

expensive and more applicable to diffusive dynamics. Unlike TPS, TIS ignores multiple170

recrossings at the transition state surface and concentrates only on the positive fluxes171

through the dividing interfaces for the rate calculation.172

2.2. Applications173

Since its development, TPS has been used to study a wide range of rare event problems.174

To highlight a few: ion pair dissociation [35], chemical dynamics of the protonated water175

[41], peptide isomerization [42], protein folding [43,44], DNA binding [45], catalysis [46–176

48], and conformational fluctuations of residues [49,50]. In the following discussion, we177

provide a brief description of biological applications of the TPS method in isomerization,178

folding, and catalysis, that share issues common to many (bio)physical problems.179

(i) Isomerization: Alanine dipeptide has been used as a minimal model system to180

study conformational changes in biomolecules [51]. The conformational space of the181

dipeptide is often probed using the backbone dihedral angles (φ and ψ) that describe182

different states: C7eq (in vacuum, φ ≈ −86◦ and ψ ≈ 68◦; and in solution, φ ≈ −80◦183

and ψ ≈ 160◦), Cax (in vacuum, φ ≈ 50◦ and ψ ≈ −50◦), and αR (in solution,184

φ ≈ −80◦ and ψ ≈ −30◦). The transition between C7eq and Cax isomers of alanine185

dipeptide in vacuum and between C7eq and αR isomers in water has been studied186

using TPS [42].187

In this study, all stable basins corresponding to configurations, C7eq, Cax and188

αR were distinguished by φ and ψ angles of the dipeptide. For instance, in vacuum189

the C7eq state was identified by −150◦ < φ < −30◦ and 0◦ < ψ < 180◦, and Cax190
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state was identified by 30◦ < φ < 130◦ and −180◦ < ψ < 0◦. The initial trajectory191

was obtained by generating trajectories at high temperature from a configuration192

near the saddle point in forward and backward directions of time. Starting from193

the initial reactive trajectory, a collection of 1000 transition paths in vacuum194

and 256 transition paths in water were generated using the shooting and shifting195

algorithms [6]. Analyzing committor probability for configurations obtained from196

the transition state ensemble, it was shown that in both vacuum and water, only197

φ and ψ angles are insufficient to describe the progress of the transition, thereby198

revealing that another key variable, a torsional angle θ, should be incorporated to199

predict the correct dynamical pathway in vacuum. In solution, the solvent degrees200

of freedom should also be considered to understand the mechanism of transition.201

The rate constant kC7eq→αR was found to be 10 ns−1.202

203

(ii) Folding: The folding pathways of a β-hairpin of the GB1 protein were investigated204

in explicit solvent using all-atom MD simulations and TPS [43]. This β-hairpin205

exhibits two metastable states ‘F’ and ‘H’ along with the completely folded (N) and206

unfolded states (U). These states were distinguished by several order parameters:207

number of native hydrogen bonds (Nhb), number of native contacts (Nnc), radius208

of gyration (Rg), number of broken native backbone hydrogen bonds (Nnb), the209

sum of the O-H distances of the backbone hydrogen bonds (ROH), the minimum210

distance (dmin) between residues F52 and Y45 or W43, and the number of water211

molecules between these residues. These order parameters were first examined in a212

high temperature unfolding simulation to understand their contribution to different213

conformational states. More detailed definitions of all (meta)stable states (N, F, H214

and U) are provided in Ref. [43].215
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Figure 1. High-resolution crystal struture of HCA II (PDB: 2CBA [52], center) with (a) molecular model of the rate-

determining proton transfer between the zinc-bound water and His-64 side chain mediated by hydrogen-bonded network
of water molecules at the active site; (b) selected active site residues and key distances monitored in TPS. Adapted with

permission from ref. [48]. Copyright 2018 American Chemical Society.

At 400K, an initial 2-ns long MD trajectory connecting states N and U and216

passing through metastable states F and H was generated. As TPS has been designed217

to study transitions between two states, the TPE for transitions between N and F,218

F and H, and H and U states were created separately. In the N to F transition, Rg219

slightly decreased and most of the hydrogen bonds remained intact. Two specific220

hydrogen bonds were observed to break simultaneously at state F, leading to state221

H. In the H to U transition, Rg increased and the distance between hydrophobic222

residues also increased, thereby creating space for water molecules.223

The rate constant for the rate determining step, the F to H transition, was224

calculated using TIS. As F is a metastable state and can reach the N state within225

a few ns, the rate constant for N to H transition was calculated. The ROH distance226

was used as an order parameter to make interfaces between states N and H and227

a few hundreds of paths were generated for each interface. The rate constant for228

unfolding at 300 K was found to be 0.20 µs−1, which was in good agreement with229

the experimental result (0.17 µs−1).230

231

(iii) Catalysis: A key system for applications in catalysis has been human carbonic an-232

hydrase II (HCA II), a zinc-containing metalloenzyme, that catalyzes the reversible233

10



hydration of carbon dioxide to bicarbonate. In the catalytic process, major steps in-234

clude conduction of a proton from the zinc-bound water to a histidine residue (H64)235

and conformational changes in H64 in its protonated and unprotonated forms [53–236

57]. Specifically, H64 is known to exist in two (inward/outward) rotameric confor-237

mations, where the H64 side-chain faces toward or away from the active site. The238

important steps underlying the catalytic mechanism in HCA II have been exten-239

sively studied using a judicious combination of classical MD, the QM/MM approach,240

and TPS [48–50,58].241

The first TPS study focused on the fluctuations of the unprotonated H64 [49],242

where two rotameric states of this residue were differentiated by a sidechain dihedral243

angle (χ1). Starting from the initial reactive trajectory, created using the adaptive244

biasing force method [59], an ensemble of 150 transition paths was generated. A245

detailed inspection of the TPE revealed that the rotation of the H64 sidechain246

involves a narrow channel lined by W5 and N62 residues.247

A subsequent TPS study [50], aimed to determine the reaction coordinate of248

the conformational transition in H64, used newer protocols including the aimless249

shooting version of TPS and the likelihood maximization technique (see Section 2.3).250

In this work, the initial trajectory was obtained from a 15-ns long conventional MD251

simulation. A total of 32 CVs (Fig. 1) comprising sidechain and backbone dihedral252

angles of seven active-site residues, three distance parameters, and the number of253

water molecules at the active site, were used. The reaction coordinate was found to254

be a linear combination of four CVs.255

A more recent TPS study [48] on the fluctuations of protonated and unproto-256

nated H64 used principle component analysis to reduce the dimensionality of the257

CV-set for free energy calculations along the optimum reaction coordinate and es-258
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timation of rates. The rotation of the protonated H64 was found to be 10 times259

faster than that in the unprotonated state, largely due to electrostatic repulsion of260

the protonated H64 resulting from the catalytic zinc-ion.261

Using a combination of the QM/MM approach and TPS, this work also examined262

the rate determining step of proton transfer from the zinc-bound water to the Nδ1263

atom of H64. The stable states in this case were defined by an order parameter264

called the mean path (MP) [48]. The initial trajectory was generated using steered265

QM/MM MD simulations [60] and a total of 615 transition paths were generated266

using the aimless shooting version of TPS. The initial set of 33 CVs were used to267

optimize the reaction coordinate which was described by three principal modes. The268

rate constant for the proton transfer step was found to be 1× 106 s−1, in reasonable269

agreement with the earlier experimental result [61].270

The coupling of protein motions with the chemical events in catalysis have271

also been examined using QM/MM and TPS for purine nucleoside phosphory-272

lase (PNP) [62]. This enzyme catalyzes the reversible phosphorolysis of 6-oxypurine273

deoxy-nucleoside to produce a purine base and the deoxy-ribose 1-phosphate [63,64].274

This study probed the role of heavy isotopes in altering the transition state forma-275

tion and the role of mutations in altering dynamics during catalysis [62]. Specifically,276

it was found that the mutations in two neighboring residues (E258D and L261A)277

removed the steric-hindrance to H257, thereby making it more prone to change con-278

formation. The dynamics of the transition state formation were found to be restored279

in the mutated PNP. Other applications of TPS for studying catalytic processes in-280

clude studies on DNA polymerase β [65] and lactate dehydrogenase [46].281
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2.3. Reaction Coordinate and CV Determination282

While the knowledge of reaction coordinates or CVs is not a requirement for applying283

the TPS method, it is feasible to develop approaches for determining these highly useful284

theoretical constructs; we refer readers to Ref. [19] for understanding subtle differences285

between order parameters, CVs, and the reaction coordinate. Briefly, transition path286

theory (TPT) [5] addresses these notions in full generality by defining the committor287

function that serves as an ideal reaction coordinate, i.e., it defines the probability that288

a trajectory initiated at a configuration x will first reach the product state B before289

reaching the reactant state A. The isosurfaces of the committor functions are known290

as isocommittor surfaces, where the isosurface with the committor value of 1/2 defines291

the surface with an equal probability of first reaching A or B. The committor function292

satisfies a backward Kolmogorov equation with boundary values between 0 and 1 to define293

reactant and product basins, respectively. While it is not possible to obtain committor294

by solving the backward Kolmogorov equation for high-dimensional complex molecular295

systems, several low-dimensional models of the committor can be constructed [19].296

Based on the TPS method, a quantitative approach was developed by Peters et al.297

[66,67] to generate the reaction coordinate for a transition process, which differs from the298

original TPS approach in that, instead of perturbing momenta, they are freshly sampled299

from a Boltzmann distribution. This version of the TPS method is called aimless shooting.300

By design, aimless shooting creates most of the shooting points near the barrier region301

and helps in generating highly decorrelated trajectories.302

To determine the reaction coordinate, the likelihood of a linear combination of a large303

number of CVs, computed at shooting points, are tested using the likelihood maximization304

method and finally the best combination is achieved by the Bayesian information crite-305

ria. To further improve the efficiency of the likelihood maximization method in obtaining306
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accurate transmission coefficient, inertial likelihood maximization (iLmax) method was307

developed [68,69]. iLmax utilizes the velocity information along with configurational co-308

ordinates to identify the optimum reaction coordinate. Recently, a two step screening309

method has been proposed to reduce the number of candidate CVs and thus making the310

task of likelihood maximization easier [48]. In this method, population distributions of311

CVs at the end points of shooting trajectories are calculated. Those CVs which show312

distributions at two different regions for two end points A and B are only selected for313

likelihood maximization. Both aimless shooting and the likelihood maximization methods314

have been used in several applications [50,58,70–73].315

2.3.1. Relevance of Reactive Island Theory to Transition Path Sampling316

A unique new perspective on the TPS method connects it to classical phase-space317

based reactive island (RI) theory in which reactive islands are manifolds emanating from318

a transition state and thereby mediate reaction pathways [74,75]. As a model system of319

reasonable complexity [75], the paradigmatic Müller-Brown Hamiltonian [76] was used320

to probe the nature of reactive trajectories via committor analysis and understanding321

its sensitivity to reactive islands. A new coordinate system based on normal modes at322

saddle points was adopted to unambiguously demarcate reactant and product states.323

It was argued that the RI hierarchy is intimately related to rare reactive trajectories324

because trajectories crossing the transition zone from the reactant to product states must325

sequentially pass through higher order to lower order RIs. Importantly, it was shown that326

committor functions are linked to the number and relative disposition of RIs relative to the327

shooting configurations. Although it is not feasible to visualize RIs in high-dimensional328

phase spaces of complex molecular systems, Lagrangian descriptors [77] (which are a329

measure of the arc length of the trajectory over the specified time-interval [75]) were found330
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to efficiently detect RI hierarchy. As a result, such descriptors are excellent candidates331

for designing new variants of TPS and could be used as CVs in the CV-based enhanced332

sampling methods described in the following sections.333

3. CV-based Enhanced Sampling Methods334

3.1. Overview335

Free energy calculations are often carried out as a function of relevant coordinates. Given336

that the coordinates accurately quantifying dynamical evolution of the process (from the337

reactant to product states) are not known a priori in most cases, it is common practice to338

resolve the free energy (F ) along a set of postulated collective coordinates, often termed339

as CVs [78], that are functions of the atomic Cartesian coordinates, i.e., s(r1, r2, · · · , rN),340

where ri = (xi, yi, zi). Therefore, it is essential to sample all conformations accessible to341

the system for a given s to accurately compute F (s), which is related to P (s) [79], the342

probability distribution of s as: F (s) = −β−1 lnP (s), where β = (kBT )−1 with kB and T343

being the Boltzmann constant and temperature, respectively.344

Given that the potential energy is a function of the full 3N -dimensional configuration345

space, U(R), the configurations are visited with a probability, P (R) ∝ exp(−βU(R)).346

This means that the probability of visiting configurations higher in potential energy is347

significantly lower, and as a result, finite-length conventional MD trajectories remain non-348

ergodic in most cases. This problem can be alleviated by adding a bias potential (V b(R))349

that flattens large barriers separating metastable configurations, thereby making the bi-350

ased probability distribution, P̃ (R) ∝ exp(−β[U(R) + V b(R)]); the biased distribution351

is related to the unbiased one as: P (R) = P̃ (R) exp[βV b(R)]. Since obtaining V b(R)352

that flattens the potential energy landscape is highly challenging even for a moderate353

size system, one can incorporate the bias only along selected CVs and compute F (s) via354

P (s) = P̃ (s) exp[βV b(s)].355
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3.1.1. Algorithms356

The earlier technique of umbrella sampling [10] and the modern method of metadynam-357

ics [14] are methods of this flavor, where V b(s) has a harmonic potential form in the358

former but in latter it is constructed as a sum of Gaussian functions centered along the359

trajectory of s. Other ways of obtaining V b(s) is in a variational manner, as in the vari-360

ational enhanced sampling method [80], where it is constructed via a linear expansion361

using basis functions. Importantly, metadynamics is not only applicable for resolving free362

energy as a function of CVs but also for computing reaction rates [81–83].363

Another way of enhancing sampling in MD is to utilize an extended Lagrangian ap-364

proach in which CVs are coupled to a set of auxiliary/fictitious variables that dynamically365

evolve at a temperature higher than that of the physical system. Adiabatic separation366

between the physical and fictitious variables is achieved by increasing the mass of the ficti-367

tious variables and by introducing a higher fictitious friction coefficient as a thermostat pa-368

rameter. This approach forms the basis for the TAMD method [17], which is closely related369

to the adiabatic/driven-adiabatic free energy dynamics (d-AFED) method [15,16,84]. A370

number of studies have employed the TAMD/d-AFED method to investigate several bio-371

physical problems [85–96], and the method has been further improved by combining it372

with biased-sampling [97].373

3.1.2. Practical Aspects374

Some practical issues in applications of these CV-based methods need to be considered.375

For example, umbrella sampling is often used for a single CV, and rarely a full sampling of376

two-dimensional free energy landscapes is achieved [98], primarily because the efficiency377

of the method dramatically decreases with increasing dimensionality of the CV-set. In378

contrast, metadynamics is quite successful in sampling free energy landscapes in 2 or 3379

16



CVs, but further increasing the dimensionality of CVs makes it challenging to obtain380

good sampling at a reasonable computational cost. Moreover, the self-guiding nature of381

the method pushes the system toward the direction of zero mean force, which may lead382

to sampling of uninteresting configurational states [99]. Therefore, a controlled sampling383

along a CV is difficult to achieve in metadynamics, as is also the case in the TAMD/d-384

AFED method. However, the TAMD/d-AFED method has the advantage that it can385

sample relatively high-dimensional free energy landscapes in an efficient manner [31]. For386

example, up to 700 CVs were simultaneously sampled using this method [100], thereby387

demonstrating the efficiency of this approach in exploring a high-dimensional CV space.388

This is primarily due to the fact that TAMD has been designed only for enhanced sam-389

pling of the underlying landscape without the need to reconstruct it. In the following, we390

discuss recent advances in these methods for computing free energies as a function of a391

high-dimensional CV-set.392

3.2. Exploring High Dimensional Free Energy Landscapes393

Although only few CVs may be sufficient to describe pertinent states (reactant, product,394

and transition) for a given process, hidden orthogonal coordinates may become crucial395

to efficiently sample conformational space for achieving convergence in free energy cal-396

culations [31]. In the following, we discuss techniques that aim to accomplish efficient397

conformational sampling in a high-dimensional CV-space. Specifically, we highlight bias-398

exchange and parallel-bias metadynamics, two variants of the metadynamics method, and399

a relatively recent method termed TASS.400
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3.2.1. Bias-Exchange and Parallel-Bias Metadynamics Methods401

Bias-exchange metadynamics is a multiple-replica approach to sample a large number of402

CVs, where each replica is assigned to sample a low-dimensional CV-subset of the full CV-403

space using its own metadynamics bias potential [101]. Unlike replica-exchange MD [102],404

all replicas in bias-exchange metadynamics are maintained at the same temperature and405

exchanges between a pair of replicas follow a Metropolis-Hastings scheme although the406

exchange rates as well as convergence of the free energy can be enhanced via infinite-407

swapping or the Suwa-Todo algorithms [103]. We refer readers to Refs. [31,104] for addi-408

tional methodological details. However, one drawback of this method is the requirement409

of exchanges between replicas, as this diminishes its performance. Some limitations of410

bias-exchange metadynamics are addressed in another variant of metadynamics, namely411

the parallel-bias metadynamics method [105]. Unlike bias-exchange metadynamics, this412

is a one replica method in which CVs are biased with one or two-dimensional biases. The413

heights of the Gaussian functions added along different CVs are scaled by a conditional414

factor in a manner that the bias potentials are balanced as they are built dynamically.415

A modification to this method has been recently proposed to increase its efficiency for416

sampling in higher dimensions [106].417

3.2.2. Applications of Bias-Exchange and Parallel-Bias Metadynamics418

Several applications of bias-exchange and parallel-bias metadynamics methods have been419

discussed in detail in Ref. [31] and therefore we only briefly highlight them here. The420

bias-exchange metadynamics method has been applied in studies of a number of bio-421

physical problems including protein folding [107–115], ligand binding [116,117,117–123],422

conformational sampling [124–142], and similar studies in nucleic acid systems [143–146].423

Similarly, the parallel-bias metadynamics method has been applied for studying protein424
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conformational sampling and ligand binding [105,147–149] as well as for studying complex425

chemical reaction pathways [150].426

3.2.3. Temperature Accelerated Sliced Sampling (TASS)427

A new approach, termed TASS [151], combines the advantages of umbrella sampling,428

metadynamics, and the TAMD/d-AFED method. In this method, the TAMD/d-AFED429

Lagrangian is modified by adding umbrella sampling and metadynamics biases on dif-430

ferent CVs. Similar to the TAMD/d-AFED method, all CVs in a TASS simulation are431

coupled to fictitious variables dynamically evolving at a temperature higher than of the432

physical system.433

The advantage of this method over conventional umbrella sampling, metadynamics,434

and the TAMD/d-AFED method is that a controlled exploration of a high-dimensional435

CV-space is possible. Particularly, free energy landscapes that are inherently flat and436

broad can be sampled efficiently with TASS [99]. Importantly, a high-dimensional free-437

energy surface can be reconstructed by judiciously combining the weighted-histogram438

analysis method [11] and the Tiwary-Parrinello reweighting scheme [25] with the439

TAMD/d-AFED free energy estimator [79,152]. Therefore, TASS affords sampling of a440

large number of transverse coordinates and also allows usage of distinct orthogonal co-441

ordinates for different umbrella windows. It is also noted that the TASS method differs442

from the biased version of TAMD/d-AFED (UFED) [97], where all the CVs are biased443

with a high-dimensional biasing potential similar to metadynamics [31]. Owing to a con-444

trolled sampling as well as rapid convergence in free energies achievable by TASS, it is445

a potentially useful alternative to solely applying umbrella sampling, metadynamics, or446

TAMD/d-AFED for studying chemical reactions. In the following section, we highlight447

applications of the TASS method to biophysical systems.448
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Figure 2. Free energy surface of alanine tripeptide (in vacuum) computed using the TASS method where φ1, φ2, ψ1

and ψ2 were chosen as the CVs. (a) Structure of alanine tripeptide with the definition of the CVs; (b) Convergence of

free energy barriers for P → Q, Q → P, R → Q, and Q → R are shown in �, •, � and N, respectively; (c) Projection
of F (φ1, ψ1, φ2, ψ2) on the (φ1, φ2) space is shown; (d) F (φ1, φ2) from parallel tempering simulation is shown for the
reference. Contour lines are drawn for every 1 kcal mol−1; and (e) Free energies of all the minima with respect to the

free energy of Q from TASS and replica exchange simulations, and their differences are plotted. Reprinted from Awasthi
S, Nair NN. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling. J. Chem. Phys.

2017;146:094108, with the permission of AIP Publishing.

20



3.2.4. Applications of TASS449

(i) Peptide conformational sampling: While alanine dipeptide has been widely450

studied as a model biophysical system [51], alanine tripeptide (Figure 2a) has been451

studied to a limited extent. Therefore, the TASS method was applied to alanine452

tripeptide for resolving the free energy as a function of four Ramachandran tor-453

sional angles as CVs (φ1, ψ1, φ2, ψ2) (Figure 2a) [151]. The four fictitious/auxiliary454

variables corresponding to four torsional angles were kept at 900 K, while the phys-455

ical system was maintained at 300 K. Here, φ1 was biased using umbrella sampling456

(30 umbrella windows along φ1 spanning −π to +π) and φ2 was biased using meta-457

dynamics. The reconstructed free energy surface F (φ1, ψ1, φ2, ψ2) was then projected458

on the φ1-φ2 sub-space for analyzing the convergence in free energies (Figure 2b,c).459

A reasonable convergence was achieved using an 8 ns long simulation per umbrella460

window. Importantly, even the regions with higher free energy values (φ1 ∈ [1.5, 3.1])461

were efficiently sampled in TASS by virtue of the umbrella bias along φ1. In fact,462

µs-scale parallel tempering simulations could not sample these regions of the free en-463

ergy surface (Figure 2d). The free energy differences between various minima agreed464

very well with the results from the parallel tempering (Figure 2e) simulations, which465

in turn ascertained the accuracy of the method.466

(ii) Chemical reactions in enzymes: The TASS method has been combined with the467

density functional theory (DFT) based QM/MM MD methods to study chemical468

reactions in enzymatic systems [153]. At the DFT level, QM/MM based MD simu-469

lations are computationally intensive. As a result, enhanced sampling methods are470

desired to obtain quick convergence in free energies (typically within 10-20 ps). For471

the case of bond-formation reactions or the A+B type chemical reactions, a large472

number of conformational states can be representative of the reactant basin [99].473
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Therefore, an umbrella sampling bias along the bond-formation coordinate is pre-474

ferred to efficiently sample the relevant conformational states in the reactant basin.475

However, in complex chemical reactions, several orthogonal coordinates also need476

to be sampled to get a converged free energy along the bond-formation CV. Thus,477

the TASS method is ideally suited for modeling such reactions [31].478

In Ref. [153], the deacylation reaction of a covalent bond between the ring-479

opened aztreonam drug and a class C β-lactamase enzyme was modeled. Four CVs480

were chosen to study this reaction, among which the distance between the deacy-481

lating water oxygen and the carbonyl C of the substrate was biased using umbrella482

sampling to drive the reaction in a controlled manner. Here, the umbrella bias is483

computationally efficient as it avoids the sampling of those conformations in which484

water is far from the reaction site. In addition, metadynamics was used to bias the485

sampling of the proton transfer from the attacking water to the phenolic oxygen486

of Tyr150, while the relative orientations of Tyr150 and the two adjacent lysine487

residues (Lys67 and Lys315) were sampled only by TAMD/d-AFED. A satisfactory488

convergence in free energy was obtained within 8 ps of simulation per umbrella489

window and the computed barrier was in good agreement with the free energies490

computed from the experimental kinetic data. In addition, several other QM/MM491

based TASS simulations were reported by choosing up to 8 CVs [153].492

(iii) Product Release in Enzymes: It was experimentally observed [154] that one of493

the active site Mg2+ ions is getting discharged with the pyrophosphate after the494

nucleotidyl transfer reaction in a sugar nucleotidyltransferases (GlmU). To validate495

this observation, Vithani et al. [154] first performed conventional umbrella sampling496

simulations by using as a CV the distance between the centre-of-mass of the releasing497

pyrphosphate and the active site (Figure 3a,b). Similar to experiments, the release498

22



US

TASS

(a) (b)

(c) (d)

Figure 3. (a) Active site structure of pyrophosphate release in GlmU is whown in the intermediate state (S2). Interactions

of pyrophosphate (red colored dotted line) and Mg2+
B (blue colored dotted line) are depicted. Pyrophosphate is shown in

stick representation, while Mg2+B is shown as a green colored sphere. Thr18, Arg19, Lys26, UD1 and water molecules (W1,

W2 and W3) are shown in ball-stick representation. Color code: gray (carbon), red (oxygen), blue (nitrogen), green (Mg2+
B )

and white (hydrogen). T1 and T2 loop regions are shown by blue and red colored ribbons, respectively. (b) The distance

CV (d[PA-POPCOM]) used for US is shown. Here POPCOM is the centre of mass of the P atoms and the bridging O

atom in the pyrophosphate residue. (c) Free energy along d[PA-POPCOM] from US and TASS simulations are compared.

(d) Free energy surface resolved along d[PA-POPCOM] and χArg19
2 (defining rotation around Cγ–Cδ bond of Arg19 side

chain), as computed from the TASS simulation. The minimum energy taken identified from TASS is shown in yellow dotted

lines while that explored in US is shown in green dotted lines. Reprinted from Structure, 26/3, Vithani et al., Mechanism
of Mg2+-accompanied product release in sugar nucleotidyltransferases, 459-466, Copyright (2018), with permission from
Elsevier [154].
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of the Mg2+ ion with the pyrophosphate was also observed in these simulations, but499

the free-energy barrier was computed to be 18 kcal/mol. Such a high energy barrier500

is unusual for the product release step in enzymatic reactions. Therefore, it is likely501

an artefact of the umbrella sampling simulations resulting from a poor sampling of502

other relevant orthogonal coordinates.503

To test this hypothesis, TASS simulations were performed by using 10 CVs,504

which included the torsional angles of an Arg residue along the pathway of the505

ligand dissociation (Figure 3a). TASS sampled several pathways for the product506

release, including the one observed in umbrella sampling simulations. Importantly,507

the lowest energy pathway found by TASS was 2 kcal/mol lower in free energy than508

the pathway in umbrella sampling simulations (Figure 3c,d). This difference was509

mainly attributed to a poor sampling of Arg19 conformational states in umbrella510

sampling simulations. TASS simulations also reaffirmed the view that the product511

release is a relatively slow process and the origin of this delayed release was ascribed512

to interactions with the Arg residue located at the exit along the product release513

pathway [154].514

The TASS method has also been extended for studying chemical reactions in zeo-515

lites using the QM/MM approach [155]. While TASS has not been yet applied to study516

many other biophysical problems (e.g. ligand binding and protein folding), the method517

is potentially applicable and provides opportunities in future to study a broader class of518

biophysical problems.519

4. Conclusions520

In this review, we have highlighted methodological details and biological applications of521

phase space and CV-based methods for studying thermodynamics and kinetics of rare522
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biochemical and biophysical events. Specifically, we have discussed key ingredients and523

applications of the TPS method, a phase space technique for discovering reactive trajec-524

tories and computing reaction kinetics. Further highlighted are links of the committor525

functions to reactive island theory and the emerging concept of Lagrangian descriptors as526

a model for detecting island hierarchy. We then describe bias-exchange metadynamics and527

parallel-bias metadynamics as two CV-based methods utilizing a replica approach. We528

end the review by discussing details of a hybrid technique termed TASS, which combines529

the advantages of multiple and distinct CV-based methods including umbrella sampling,530

metadynamics, and the TAMD/d-AFED method.531
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