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Abstract

This paper addresses the mode collapse for generative adversarial networks (GANs).
We view modes as a geometric structure of data distribution in a metric space.
Under this geometric lens, we embed subsamples of the dataset from an arbitrary
metric space into the `2 space, while preserving their pairwise distance distribution.
Not only does this metric embedding determine the dimensionality of the latent
space automatically, it also enables us to construct a mixture of Gaussians to draw
latent space random vectors. We use the Gaussian mixture model in tandem with a
simple augmentation of the objective function to train GANs. Every major step of
our method is supported by theoretical analysis, and our experiments on real and
synthetic data confirm that the generator is able to produce samples spreading over
most of the modes while avoiding unwanted samples, outperforming several recent
GAN variants on a number of metrics and offering new features.

1 Introduction

In unsupervised learning, Generative Adversarial Networks (GANs) [1] is by far one of the most
widely used methods for training deep generative models. However, difficulties of optimizing GANs
have also been well observed [2, 3, 4, 5, 6, 7, 8]. One of the most prominent issues is mode collapse,
a phenomenon in which a GAN, after learning from a data distribution of multiple modes, generates
samples landed only in a subset of the modes. In other words, the generated samples lack the diversity
as shown in the real dataset, yielding a much lower entropy distribution.

We approach this challenge by questioning two fundamental properties of GANs. i) We question
the commonly used multivariate Gaussian that generates random vectors for the generator network.
We show that in the presence of separated modes, drawing random vectors from a single Gaussian
may lead to arbitrarily large gradients of the generator, and a better choice is by using a mixture of
Gaussians. ii) We consider the geometric interpretation of modes, and argue that the modes of a
data distribution should be viewed under a specific distance metric of data items – different metrics
may lead to different distributions of modes, and a proper metric can result in interpretable modes.
From this vantage point, we address the problem of mode collapse in a general metric space. To
our knowledge, despite the recent attempts of addressing mode collapse [3, 9, 10, 6, 11, 12], both
properties remain unexamined.

Technical contributions. We introduce BourGAN, an enhancement of GANs to avoid mode col-
lapse in any metric space. In stark contrast to all existing mode collapse solutions, BourGAN draws
random vectors from a Gaussian mixture in a low-dimensional latent space. The Gaussian mixture is
constructed to mirror the mode structure of the provided dataset under a given distance metric. We
derive the construction algorithm from metric embedding theory, namely the Bourgain Theorem [13].
Not only is using metric embeddings theoretically sound (as we will show), it also brings significant
advantages in practice. Metric embeddings enable us to retain the mode structure in the `2 latent space
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Figure 1: Multi-mode challenge. We train a generator G that maps a latent-space distribution Z to
the data distribution X with two modes. (a) Suppose Z is a Gaussian, and G can fit both modes. If
we draw two i.i.d. samples z1, z2 from Z , then with at least a constant probability, G(z1) is close to
the center x1 of the first mode, and G(z2) is close to another center x2. By the Mean Value Theorem,
there exists a z between z1 and z2 that has the absolute gradient value, |G0(z)| = |x2�x1

z2�z1
|, which can

be arbitrarily large, as |x2 � x1| can be arbitrarily far. (b) Since G is Lipschitz continuous, using it to
map a Gaussian distribution to both modes unavoidably results in unwanted samples between the
modes (highlighted by the red dots). (c) Both challenges are resolved if we can construct a mixture
of Gaussian in latent space that captures the same modal structure as in the data distribution.

despite the metric used to measure modes in the dataset. In turn, the Gaussian mixture sampling in the
latent space eases the optimization of GANs, and unlike existing GANs that assume a user-specified
dimensionality of the latent space, our method automatically decides the dimensionality of the latent
space from the provided dataset.

To exploit the constructed Gaussian mixture for addressing mode collapse, we propose a simple
extension to the GAN objective that encourages the pairwise `2 distance of latent-space random
vectors to match the distance of the generated data samples in the metric space. That is, the
geometric structure of the Gaussian mixture is respected in the generated samples. Through a series
of (nontrivial) theoretical analyses, we show that if BourGAN is fully optimized, the logarithmic
pairwise distance distribution of its generated samples closely match the logarithmic pairwise distance
distribution of the real data items. In practice, this implies that mode collapse is averted.

We demonstrate the efficacy of our method on both synthetic and real datasets. We show that our
method outperforms several recent GAN variants in terms of generated data diversity. In particular,
our method is robust to handle data distributions with multiple separated modes – challenging
situations where all existing GANs that we have experimented with produce unwanted samples (ones
that are not in any modes), whereas our method is able to generate samples spreading over all modes
while avoiding unwanted samples.

2 Related Work

GANs and variants. The main goal of generative models in unsupervised learning is to produce
samples that follow an unknown distribution X , by learning from a set of unlabelled data items
{xi}ni=1 drawn from X . In recent years, Generative Adversarial Networks (GANs) [1] have attracted
tremendous attention for training generative models. A GAN uses a neural network, called generator
G, to map a low-dimensional latent-space vector z 2 Rd, drawn from a standard distribution Z (e.g.,
a Gaussian or uniform distribution), to generate data items in a space of interest such as natural images
and text. The generator G is trained in tandem with another neural network, called the discriminator
D, by solving a minmax optimization with the following objective.

Lgan(G,D) = Ex⇠X [logD(x)] + Ez⇠Z [log(1�D(G(z)))] . (1)
This objective is minimized over G and maximized over D. Initially, GANs are demonstrated to
generate locally appreciable but globally incoherent images. Since then, they have been actively
improving. For example, DCGAN [8] proposes a class of empirically designed network architectures
that improve the naturalness of generated images. By extending the objective (1), InfoGAN [14] is
able to learn interpretable representations in latent space, Conditional GAN [15] can produce more
realistic results by using additional supervised label. Several later variants have applied GANs to
a wide array of tasks [16, 17] such as image-style transfer [18, 19], super-resolution [20], image
manipulation [21], video synthesis [22], and 3D-shape synthesis [23], to name a few.

Addressing difficulties. Despite tremendous success, GANs are generally hard to train. Prior
research has aimed to improve the stability of training GANs, mostly by altering its objective
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function [24, 4, 25, 26, 27, 28]. In a different vein, Salimans et al. [3] proposed a feature-matching
technique to stabilize the training process, and another line of work [5, 6, 29] uses an additional
network that maps generated samples back to latent vectors to provide feedback to the generator.

A notable problem of GANs is mode collapse, which is the focus of this work. For instance, when
trained on ten hand-written digits (using MNIST dataset) [30], each digit represents a mode of data
distribution, but the generator often fails to produce a full set of the digits [25]. Several approaches
have been proposed to mitigate mode collapse, by modifying either the objective function [4, 12]
or the network architectures [9, 5, 11, 10, 31]. While these methods are evaluated empirically,
theoretical understanding of why and to what extent these methods work is often lacking. More
recently, PacGAN [11] introduces a mathematical definition of mode collapse, which they used to
formally analyze their GAN variant. Very few previous works consider the construction of latent
space: VAE-GAN [29] constructs the latent space using variational autoencoder, and GLO [32] tries
to optimize both the generator network and latent-space representation using data samples. Yet, all
these methods still draw the latent random vectors from a multivariate Gaussian.

Differences from prior methods. Our approach differs from prior methods in several important
technical aspects. Instead of using a standard Gaussian to sample latent space, we propose to use
a Gaussian mixture model constructed using metric embeddings (e.g., see [33, 34, 35] for metric
embeddings in both theoretical and machine learning fronts). Unlike all previous methods that require
the latent-space dimensionality to be specified a priori, our algorithm automatically determines
its dimensionality from the real dataset. Moreover, our method is able to incorporate any distance
metric, allowing the flexibility of using proper metrics for learning interpretable modes. In addition
to empirical validation, the steps of our method are grounded by theoretical analysis.

3 Bourgain Generative Networks

We now introduce the algorithmic details of BourGAN, starting by describing the rationale behind the
proposed method. The theoretical understanding of our method will be presented in the next section.

Rationale and overview. We view modes in a dataset as a geometric structure embodied under a
specific distance metric. For example, in the widely tested MNIST dataset, only two modes emerge
under the pixel-wise `2 distance (Figure 2-left): images for the digit “1” are clustered in one mode,
while all other digits are landed in another mode. In contrast, under the classifier distance metric
(defined in Appendix F.3), it appears that there exist 10 modes each corresponding to a different digit.
Consequently, the modes are interpretable (Figure 2-right). In this work, we aim to incorporate any
distance metric when addressing mode collapse, leaving the flexibility of choosing a specific metric
to the user.

When there are multiple separated modes in a data distribution, mapping a Gaussian random variable
in latent space to the data distribution is fundamentally ill-posed. For example, as illustrated in
Figure 1-a and 1-b, this mapping imposes arbitrarily large gradients (at some latent space locations)
in the generator network, and large gradients render the generator unstable to train, as pointed out
by [37].

A natural choice is to use a mixture of Gaussians. As long as the Gaussian mixture is able to mirror
the mode structure of the given dataset, the problem of mapping it to the data distribution becomes
well-posed (Figure 1-c). To this end, our main idea is to use metric embeddings, one that map data
items under any metric to a low-dimensional `2 space with bounded pairwise distance distortion
(Section 3.3). After the embedding, we construct a Gaussian mixture in the `2 space, regardless of
the distance metric for the data items. In this process, the dimensionality of the latent space is also
automatically decided.

Our embedding algorithm, building upon the Bourgain Theorem, requires us to compute the pairwise
distances of data items, resulting in an O(n2) complexity, where n is the number of data items. When
n is large, we first uniformly subsamplem data items from the dataset to reduce the computational
cost of our metric embedding algorithm (Section 3.2). The subsampling step is theoretically sound:
we prove that when m is sufficiently large yet still much smaller than n, the geometric structure (i.e.,
the pairwise distance distribution) of data items is preserved in the subsamples.
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Figure 2: (Top) Pairwise distance distribution on MNIST dataset under different distance metrics.
Left: `2 distance, Middle: Earth Mover’s distance (EMD) with a quadratic ground metric, Right:
classifier distance (defined in Appendix F.3). Under `2 and EMD distances, few separated modes
emerges, and the pairwise distance distributions resemble a Gaussian. Under the classifier distance,
the pairwise distance distribution becomes bimodal, indicating that there are separated modes.
(Bottom) t-SNE visualization [36] of data items after embedded from their metric space to `2 space.
Color indicates labels of MNIST images (“1”-“9”). When `2 distance (left) is used, only two modes
are identified: digit “1” and all others, but classifier distance (right) can group data items into 10
individual modes.

Lastly, when training a BourGAN, we encourage the geometric structure embodied in the latent-space
Gaussian mixture to be preserved by the generator network. Thereby, the mode structure of the
dataset is learned by the generator. This is realized by augmenting GAN’s objective to foster the
preservation of the pairwise distance distribution in the training process (Section 3.4).

3.1 Metrics of Distance and Distributions

Before delving into our method, we introduce a few theoretical tools to concretize the geometric
structure in a data distribution, paving the way toward understanding our algorithmic details and
subsequent theoretical analysis. In the rest of this paper, we borrow a few notational conventions
from theoretical computer science: we use [n] to denote the set {1, 2, · · · , n}, R�0 to denote the set
of all non-negative real numbers, and log(·) to denote log2(·) for short.

Metric space. Ametric space is described by a pair (M, d), whereM is a set and d : M⇥M ! R�0

is a distance function such that 8x, y, z 2 M, we have i) d(x, y) = 0 , x = y, ii) d(x, y) = d(y, x),
and iii) d(x, z)  d(x, y) + d(y, z). IfM is a finite set, then we call (M, d) a finite metric space.

Wasserstein-1 distance. Wasserstein-1 distance, also known as the Earth-Mover distance, is one
of the distance measures to quantify the similarity of two distributions, defined as W (Pa,Pb) =
inf�2⇧(Pa,Pb) E(x,y)⇠� (|x� y|) , where Pa and Pb are two distributions on real numbers, and
⇧(Pa,Pb) is the set of all joint distributions �(x, y) on two real numbers whose marginal distributions
are Pa and Pb, respectively. Wasserstein-1 distance has been used to augment GAN’s objective and
improve training stability [4]. We will use it to understand the theoretical guarantees of our method.

Logarithmic pairwise distance distribution (LPDD). We propose to use the pairwise distance
distribution of data items to reflect the mode structure in a dataset (Figure 2-top). Since the pairwise
distance is measured under a specific metric, its distribution also depends on the metric choice.
Indeed, it has been used in [9] to quantify how well Unrolled GAN addresses mode collapse.

Concretely, given a metric space (M, d), let X be a distribution over M, and (�,⇤) be two real
values satisfying 0 < 2�  ⇤. Consider two samples x, y independently drawn from X , and let ⌘
be the logarithmic distance between x and y (i.e., ⌘ = log(d(x, y))). We call the distribution of ⌘
conditioned on d(x, y) 2 [�,⇤] the (�,⇤)�logarithmic pairwise distance distribution (LPDD) of the
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distribution X . Throughout our theoretical analysis, LPDD of the distributions generated at various
steps of our method will be measured in Wasserstein-1 distance.

Remark. We choose to use logarithmic distance in order to reasonably compare two pairwise distance
distributions. The rationale is illustrated in Figure 6 in the appendix. Using logarithmic distance is
also beneficial for training our GANs, which will become clear in Section 3.4. The (�,⇤) values in the
above definition are just for the sake of theoretical rigor, irrelevant from our practical implementation.
They are meant to avoid the theoretical situation where two samples are identical and then taking the
logarithm becomes no sense. In this section, the reader can skip these values and refer back when
reading our theoretical analysis (in Section 4 and the supplementary material).

3.2 Preprocessing: Subsample of Data Items

We now describe how to train BourGAN step by step. Provided with a multiset of data items
X = {xi}ni=1 drawn independently from an unknown distribution X , we first subsample m (m < n)
data items uniformly at random from X . This subsampling step is essential, especially when n is
large, for reducing the computational cost of metric embeddings as well as the number of dimensions
of the latent space (both described in Section 3.3). From now on, we use Y to denote the multiset of
data items subsampled from X (i.e., Y ✓ X and |Y | = m). Elements in Y will be embedded in `2

space in the next step.

The subsampling strategy, while simple, is theoretically sound. Let P be the (�,⇤)-LPDD of the data
distribution X , and P 0 be the LPDD of the uniform distribution on Y . We will show in Section 4 that
their Wasserstein-1 distance W (P,P 0) is tightly bounded if m is sufficiently large but much smaller
than n. In other words, the mode structure of the real data can be captured by considering only the
subsamples in Y . In practice,m is chosen automatically by a simple algorithm, which we describe in
Appendix F.1. In all our examples, we find m = 4096 sufficient.

3.3 Construction of Gaussian Mixture in Latent Space

Next, we construct a Gaussian mixture model for generating random vectors in latent space. First, we
embed data items from Y to an `2 space, one that the latent random vectors reside in. We want the
latent vector dimensionality to be small, while ensuring that the mode structure be well reflected in the
latent space. This requires the embedding to introduce minimal distortion on the pairwise distances of
data items. For this purpose, we propose an algorithm that leverages Bourgain’s embedding theorem.

Metric embeddings. Bourgain [13] introduced a method that can embeds any finite metric space
into a small `2 space with minimal distortion. The theorem is stated as follows:
Theorem 1 (Bourgain’s theorem). Consider a finite metric space (Y, d) withm = |Y |. There exists a
mapping g : Y ! Rk

for some k = O(log2 m) such that 8y, y0 2 Y, d(y, y0)  kg(y)� g(y0)k2 
↵ · d(y, y0), where ↵ is a constant satisfying ↵  O(logm).

The mapping g is constructed using a randomized algorithm also given by Bourgain [13]. Directly
applying Bourgain’s theorem results in a latent space of O(log2 m) dimensions. We can further
reduce the number of dimensions down to O(logm) through the following corollary.
Corollary 2 (Improved Bourgain embedding). Consider a finite metric space (Y, d) with m = |Y |.
There exist a mapping f : Y ! Rk

for some k = O(logm) such that 8y, y0 2 Y, d(y, y0) 
kf(y)� f(y0)k2  ↵ · d(y, y0), where ↵ is a constant satisfying ↵  O(logm).

Proved in Appendix B, this corollary is obtained by combining Theorem 1 with the Johnson-
Lindenstrauss (JL) lemma [38]. The mapping f is computed through a combination of the algorithms
for Bourgain’s theorem and the JL lemma. This algorithm of computing f is detailed in Appendix A.
Remark. Instead of using Bourgain embedding, one can find a mapping f : Y ! Rk with bounded
distortion, namely, 8y, y0 2 Y, d(y, y0)  kf(y)� f(y0)k2  ↵ · d(y, y0), by solving a semidefinite
programming problem (e.g., see [39, 33]). This approach can find an embedding with the least distor-
tion ↵. However, solving semidefinite programming problem is much more costly than computing
Bourgain embeddings. Even if the optimal distortion factor ↵ is found, it can still be as large as
O(logm) in the worst case [40]. Indeed, Bourgain embedding is optimal in the worst case.

Using the mapping f , we embed data items from Y (denoted as {yi}mi=1) into the `2 space of k dimen-
sions (k = O(logm)). Let F be the multiset of the resulting vectors in Rk (i.e., F = {f(yi)}mi=1).
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As we will formally state in Section 4, the Wasserstein-1 distance between the (�,⇤)�LPDD of the
real data distribution X and the LPDD of the uniform distribution on F is tightly bounded. Simply
speaking, the mode structure in the real data is well captured by F in `2 space.

Latent-space Gaussian mixture. Now, we construct a distribution using F to draw random vectors
in latent space. A simple choice is the uniform distribution over F , but such a distribution is not
continuous over the latent space. Instead, we construct a mixture of Gaussians, each of which is
centered at a vector f(yi) in F . In particular, we generate a latent vector z 2 Rk in two steps: We first
sample a vector µ 2 F uniformly at random, and then draw a vector z from the Gaussian distribution
N (µ,�2), where � is a smoothing parameter that controls the smoothness of the distribution of the
latent space. In practice, we choose � empirically (� = 0.1 for all our examples). We discuss our
choice of � in Appendix F.1.

Remark. By this definition, the Gaussian mixture consists of m Gaussians (recall F = {f(yi)}mi=1).
But this does not mean that we constructm “modes” in the latent space. If two Gaussians are close
to each other in the latent space, they should be viewed as if they are from the same mode. It is
the overall distribution of them Gaussians that reflects the distribution of modes. In this sense, the
number of modes in the latent space is implicitly defined, and the m Gaussians are meant to enable
us to sample the modes in the latent space.

3.4 Training

The Gaussian mixture distribution Z in the latent space guarantees that the LPDD of Z is close
to (�,⇤)�LPDD of the target distribution X (shown in Section 4). To exploit this property for
avoiding mode collapse, we encourage the generator network to match the pairwise distances of
generated samples with the pairwise `2 distances of latent vectors in Z . This is realized by a simple
augmentation of the GAN’s objective function, namely,

L(G,D) = Lgan + �Ldist, (2)

where Ldist(G) = Ezi,zj⇠Z

h
(log(d(G(zi), G(zj)))� log(kzi � zjk2))2

i
, (3)

Lgan is the objective of the standard GAN in Eq. (1), and � is a parameter to balance the two terms.
In Ldist, zi and zj are two i.i.d. samples from Z conditioned on zi 6= zj . Here the advantages of
using logarithmic distances are threefold: i) When there exists “outlier” modes that are far away
from others, logarithmic distance prevents those modes from being overweighted in the objective.
ii) Logarithm turns a uniform scale of the distance metric into a constant addend that has no effect
to the optimization. This is desired as the structure of modes is invariant under a uniform scale of
distance metric. iii) Logarithmic distances ease our theoretical analysis, which, as we will formalize
in Section 4, states that when Eq. (3) is optimized, the distribution of generated samples will closely
resemble the real distribution X . That is, mode collapse will be avoided.

In practice, when experimenting with real datasets, we find that a simple pre-training step using the
correspondence between {yi}mi=1 and {f(yi)}mi=1 helps to improve the training stability. Although
not a focus of this paper, this step is described in Appendix C.

4 Theoretical Analysis

This section offers an theoretical analysis of our method presented in Section 3. We will state the main
theorems here while referring to the supplementary material for their rigorous proofs. Throughout,
we assume a property of the data distribution X : if two samples, a and b, are drawn independently
from X , then with a high probability (> 1/2) they are distinct (i.e., Pra,b⇠X (a 6= b) � 1/2).

Range of pairwise distances. We first formalize our definition of (�,⇤)�LPDD in Section 3.1.
Recall that the multiset X = {xi}ni=1 is our input dataset regarded as i.i.d. samples from X . We
would like to find a range [�,⇤] such that the pairwise distances of samples from X is in this range
with a high probability (see Example-7 and -8 in Appendix D). Then, when considering the LPDD of
X , we account only for the pairwise distances in the range [�,⇤] so that the logarithmic pairwise
distance is well defined. The values � and ⇤ are chosen by the following theorem, which we prove in
Appendix G.2.
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Theorem 3. Let � = mini2[n�1]:xi 6=xi+1
d(xi, xi+1) and ⇤ = maxi2[n�1] d(xi, xi+1). 8�, � 2

(0, 1), if n � C/(��) for some sufficiently large constant C > 0, then with probability at least 1� �,

Pra,b⇠X (d(a, b) 2 [�,⇤] | �,⇤) � Pra,b⇠X (a 6= b)� �.

Simply speaking, this theorem states that if we choose � and ⇤ as described above, then we have
Pra,b⇠X (d(a, b) 2 [�,⇤] | a 6= b) � 1�O(1/n), meaning that if n is large, the pairwise distance of
any two i.i.d. samples from X is almost certainly in the range [�,⇤]. Therefore, (�,⇤)�LPDD is
a reasonable measure of the pairwise distance distribution of X . In this paper, we always use P to
denote the (�,⇤)�LPDD of the real data distribution X .

Number of subsamples. With the choices of � and ⇤, we have the following theorem to guarantee
the soundness of our subsampling step described in Section 3.2.
Theorem 4. Let Y = {yi}mi=1 be a multiset of m = logO(1)(⇤/�) · log(1/�) i.i.d. samples drawn
from X , and let P 0

be the LPDD of the uniform distribution on Y . For any � 2 (0, 1), with probability
at least 1� �, we haveW (P,P 0)  O(1).

Proved in Appendix G.3, this theorem states that we only need m (on the order of logO(1)(⇤/�))
subsamples to form a multiset Y that well captures the mode structure in the real data.

2 4 6
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0
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Log Pairwise
Distance8

Figure 3: LPDD of uniform distri-
bution F (orange) and of samples
from Gaussian mixture (blue).

Discrete latent space. Next, we lay a theoretical foundation
for our metric embedding step described in Section 3.3. Recall
that F is the multiset of vectors resulted from embedding data
items from Y to the `2 space (i.e., F = {f(yi)}mi=1). As proved
in Appendix G.4, we have:
Theorem 5. Let F be the uniform distribution on the multiset

F . Then with probability at least 0.99, we have W (P, P̂) 
O(log log log(⇤/�)), where P̂ is the LPDD of F .

Here the triple-log function (log log log(⇤/�)) indicates that
the Wasserstein distance bound can be very tight. Although
this theorem states about the uniform distribution on F , not precisely the Gaussian mixture we
constructed, it is about the case when � of the Gaussian mixture approaches zero. We also empirically
verified the consistency of LPDD from Gaussian mixture samples (Figure 3).

GAN objective. Next, we theoretically justify the objective function (i.e., Eq. (3) in Section 3.4).
Let X̃ be the distribution of generated samples G(z) for z ⇠ Z and P̃ be the (�,⇤)�LPDD of X̃ .
Goodfellow et al. [1] showed that the global optimum of the GAN objective (1) is reached if and only
if X̃ = X . Then, when this optimum is achieved, we must also have W (P, P̃) = 0 and W (P̃, P̂) 
O(log log log(⇤/�)). The latter is because W (P, P̂)  O(log log log(⇤/�)) from Theorem 5.

As a result, the GAN’s minmax problem (1) is equivalent to the constrained minmax problem,
minG maxD Lgan(G,D), subject to W (P̃, P̂)  �, where � is on the order of O(log log log(⇤/�)).
Apparently, this constraint renders the minmax problem harder. We therefore consider the minmax
problem, minG maxD Lgan(G,D), subjected to slightly strengthened constraints,

8z1 6= z2 2 supp(Z), d(G(z1), G(z2)) 2 [�,⇤], and (4)

[log(d(G(z1), G(z2)))� log kz1 � z2k2]2  �
2
. (5)

As proved in Appendix E, if the above constraints are satisfied, thenW (P̃, P̂)  � is automatically
satisfied. In our training process, we assume that the constraint (4) is automatically satisfied, supported
by Theorem 3. Lastly, instead of using Eq. (5) as a hard constraint, we treat it as a soft constraint
showing up in the objective function (3). From this perspective, the second term in our proposed
objective (2) can be interpreted as a Lagrange multiplier of the constraint.

LPDD of the generated samples. Now, if the generator network is trained to satisfy the con-
straint (5), we have W (P̃, P̂)  O(log log log(⇤/�)). Note that this satisfaction does not imply that
the global optimum of the GAN in Eq. (1) has to be reached – such a global optimum is hard to
achieve in practice. Finally, using the triangle inequality of the Wasserstein-1 distance and Theorem 5,
we reach the conclusion that

W (P̃,P)  W (P̃, P̂) +W (P, P̂)  O(log log log(⇤/�)). (6)
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Figure 4: Synthetic data tests. In all three tests, our method clearly captures all the modes presented
in the targets, while producing no unwanted samples located between the regions of modes.

This means that the LPDD of generated samples closely resembles that of the data distribution. To
put the bound in a concrete context, in Example 9 of Appendix D, we analyze a toy case in a thought
experiment to show, if the mode collapse occurs (even partially), how large W (P̃,P) would be in
comparison to our theoretical bound here.

5 Experiments

This section presents the empirical evaluations of our method. There has not been a consensus on how
to evaluate GANs in the machine learning community [41, 42], and quantitative measure of mode
collapse is also not straightforward. We therefore evaluate our method using both synthetic and real
datasets, most of which have been used by recent GAN variants. We refer the reader to Appendix F
for detailed experiment setups and complete results, while highlighting our main findings here.

Overview. We start with an overview of our experiments. i) On synthetic datasets, we quantitatively
compare our method with four types of GANs, including the original GAN [1] and more recent
VEEGAN [10], Unrolled GANs [9], and PacGAN [11], following the evaluation metrics used by
those methods (Appendix F.2). ii) We also examine in each mode how well the distribution of
generated samples matches the data distribution (Appendix F.2) – a new test not presented previously.
iii) We compare the training convergence rate of our method with existing GANs (Appendix F.2),
examining to what extent the Gaussian mixture sampling is beneficial. iv) We challenge our method
with the difficult stacked MNIST dataset (Appendix F.3), testing how many modes it can cover. v)
Most notably, we examine if there are “false positive” samples generated by our method and others
(Figure 4). Those are unwanted samples not located in any modes. In all these comparisons, we find
that BourGAN clearly produces higher-quality samples. In addition, we show that vi) our method
is able to incorporate different distance metrics, ones that lead to different mode interpretations
(Appendix F.3); and vii) our pre-training step (described in Appendix C) further accelerates the
training convergence in real datasets (Appendix F.2). Lastly, viii) we present some qualitative results
(Appendix F.4).

2D Ring 2D Grid 2D Circle
#modes
(max 8) W1

low
quality

#modes
(max 25) W1

low
quality

center
captured W1

low
quality

GAN 1.0 38.60 0.06% 17.7 1.617 17.70% No 32.59 0.14%
Unrolled 7.6 4.678 12.03% 14.9 2.231 95.11% No 0.360 0.50%
VEEGAN 8.0 4.904 13.23% 24.4 0.836 22.84% Yes 0.466 10.72%
PacGAN 7.8 1.412 1.79% 24.3 0.898 20.54% Yes 0.263 1.38%
BourGAN 8.0 0.687 0.12% 25.0 0.248 4.09% Yes 0.081 0.35%

Table 1: Statistics of Experiments on Synthetic Datasets
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Figure 5: Qualitative results on CelebA dataset using DCGAN (Left) and BourGAN (Right) under
`2 metric. It appears that DCGAN generates some samples that are visually more implausible (e.g.,
red boxes) in comparison to BourGAN. Results are fairly sampled at random, not cherry-picked.

Quantitative evaluation. We compare BourGAN with other methods on three synthetic datasets:
eight 2D Gaussian distributions arranged in a ring (2D Ring), twenty-five 2D Gaussian distributions
arranged in a grid (2D Grid), and a circle surrounding a Gaussian placed in the center (2D Circle). The
first two were used in previous methods [9, 10, 11], and the last is proposed by us. The quantitative
performance of these methods are summarized in Table 1, where the column “# of modes” indicates
the average number of modes captured by these methods, and “low quality” indicates number of
samples that are more than 3⇥ standard deviations away from the mode centers. Both metrics are
used in previous methods [10, 11]. For the 2D circle case, we also check if the central mode is
captured by the methods. Notice that all these metrics measure how many modes are captured, but
not how well the data distribution is captured. To understand this, we also compute the Wasserstein-1
distances between the distribution of generated samples and the data distribution (reported in Table 1).
It is evident that our method performs the best on all these metrics (see Appendix F.2 for more
details).

Avoiding unwanted samples. A notable advantage offered by our method is the ability to avoid
unwanted samples, ones that are located between the modes. We find that all the four existing GANs
suffer from this problem (see Figure 4), because they use Gaussian to draw latent vectors (recall
Figure 1). In contrast, our method generates no unwanted samples in all three test cases. We refer
the reader to Appendix F.3 for a detailed discussion of this feature and several other quantitative
comparisons.

Qualitative results. We further test our algorithm on real image datasets. Figure 5 illustrates
a qualitative comparison between DCGAN and our method, both using the same generator and
discriminator architectures and default hyperparameters. Appendix F.4 includes more experiments
and details.

6 Conclusion

This paper introduces BourGAN, a new GAN variant aiming to address mode collapse in generator
networks. In contrast to previous approaches, we draw latent space vectors using a Gaussian mixture,
which is constructed through metric embeddings. Supported by theoretical analysis and experiments,
our method enables a well-posed mapping between latent space and multi-modal data distributions.
In future, our embedding and Gaussian mixture sampling can also be readily combined with other
GAN variants and even other generative models to leverage their advantages.
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