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A thermodynamic understanding of Seebeck coefficient was demonstrated in terms of electrochemical potential.
It divided the contributions to the Seebeck coefficient into two contributions: the effect of thermal electronic ex-
citations due to Fermi distribution and the effect of charge carrier gradient due to thermal expansion. The proce-
dure is illustrated within the rigid band approximation in terms of the electronic density-of-states and the
quasiharmonic approximation in terms of the phonon density-of-states. Numerical results were given using
the n-type high temperature thermoelectricmaterial La3-xTe4 at x=0, 0.25, and 0.33 as the prototype at a variety
of carrier concentrations.
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Thermoelectric materials [1–3] can be used to generate electricity,
measure temperature or change the temperature of objects due to the
reversible (see the review by Wood [4]) Seebeck effect, Peltier effect,
or Thomson effect, each of which deals with the direct conversion of
temperature differences at dissimilar metal junctions to electric voltage
and vice versa [5–8]. A modern thermoelectric device is composed of p-
type and n-type semi-conductors, which are coupled to the heat source
through a hot shoe and the heat sink through the cold shoe. While the
theory of the thermoelectric effect appears to be well established and
widely applied in literature, the microscopic theory of thermoelectrics
and the parameter-free calculation of thermoelectric properties remain
challenging. This is particularly true for the calculation of the Seebeck
coefficient. The Seebeck coefficient is also known as thermopower, ther-
moelectric power, or thermoelectric sensitivity and is defined as Sq =
Δϕ/ΔT. It corresponds to the magnitude of an induced thermoelectric
voltage, Δϕ, in response to a temperature difference, ΔT, across two
points with different temperature within a material. Earlier theoretical
descriptions of the Seebeck coefficient in terms of the differential elec-
trical conductivity were given by Cutler and Mott [9], which were the
foundation of later works [10–16] in terms of the transmission function
[17–19] from the thermoelectric transport theory [20–22]. Recent stud-
ies [23–26] have noticed the possible relation between the Seebeck co-
efficient and system's chemical potential or the electrochemical
su.edu (X. Chong).
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potential. Since the chemical potential and electrochemical potential
are thermodynamic quantities, it makes it possible to calculate the
Seebeck coefficient without using the concepts of relaxation time or
mechanisms of electron and phonon scattering.

Let us start from the fundamental relation between the electrical cur-
rent density J and the total potential (or total chemical potential), μ, seen
by a charge carrier. Physically,μ can be split into the internal chemical po-
tential and the external chemical potential [27]. The external potential is
the sum of the electric potential (voltage), gravitational potential (due
to height, neglected in the present work), etc. The internal chemical po-
tential includes everything else besides the external potentials, such as
density, temperature, and enthalpy. According to classical mechanics,
the net force felt by the charge carrier should equal to the negative gradi-
ent of the potential, i.e. −∇μ . This force can be rewritten as an effective
electric field,−∇μ=q, where q represents the charge carried by the charge
carrier. Hence, the electrical current can be written as:

J ¼ −
1
q
σ ∙∇μ ð1Þ

where σ is a tensor representing the electrical conductivity.
In generic terms, we can point out thatμ in Eq. (1) is exactly the elec-

trochemical potential [28], per the definition that electrochemical po-
tential is the mechanical work done in bringing 1 mol of charge
carriers from a standard state to the considered system, according to
International Union of Pure and Applied Chemistry [28]. For example,
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in the case of electrons as the charge carriers the electrochemical poten-
tial is the total potential, including both the internal chemical potential
and the electric potential, and it is by definition constant across a device
in equilibrium. Whereas, the chemical potential of electrons is equal to
the electrochemical potential minus the local electric potential energy
per electron. As a result,μ is the partial molar Gibbs energy of the charge
carriers and can be expressed as

μ ¼ μ þ qϕ0 ð2Þ

where μ represents the internal chemical potential of the considered
charge carrier under zero external electric field and ϕ′ represents local
electrical potential due to an external field.

In the case of a thermoelectric device, since there are no anymoving
parts, except the moving charge carriers, the change in μ due to a tem-
perature difference must be the only reason behind the thermoelectric
electromotive force. Therefore, one ought to separate μ into the combi-
nations of temperature (T) dependent part, ζ= μ− εF(V) (following the
notation given by Sommerfeld [29]) which equals to zero at T= 0, and
the volume (V) dependent only part, εF(V) which is the Fermi energy
(i.e., the value of μ at 0 K) at the same volume. Accordingly, we can re-
write Eq. (2) as

μ ¼ ζþ qϕ ð3Þ

where ϕ= ϕ′+ εF/q implying the 0 K contribution has been merged
with ϕ'. Inspired by the concept of absolute thermal electric force
defined by Ziman [30], correspondingly, we may call ϕ as the
absolute voltage.

In the meantime, for formulating thermoelectric effects, J is usually
expressed as.

J ¼ −
1
q
σ ∙ −∇φþ Sq ∙ ∇T
� � ð4Þ

where ∇φ represents the local electric field purely due to the electric/
electrostatic potential φ and Sq is Seebeck coefficient.

We can point out thatφ in Eq. (4) and ϕ in Eq. (3) are the same quan-
tity since they are due to the presence of an external field. Consequently,
combining Eq. (3) with Eq. (1) and comparing with Eq. (4), returns:

Sq ¼ −
1
q
∇ζ
∇T

: ð5Þ

In general, Sq defined from Eq. (5) is a tensor.
Next,we treat the dependence of ζ on the gradients of both electrical

charge carrier density (n) and temperature by writing

∇ζ ¼ ∂ζ
∂n

� �
T
∇nþ ∂ζ

∂T

� �
V
∇T: ð6Þ

We note that the electric field inside a conductor is zero by Gauss's
law [31]. This is true under the open circuit condition under which the
Seebeck coefficient ismeasured [32,33]. i.e., there is no net charge inside
a conductor and this is true in the case of uniform electric field. There-
fore, the change in n is solely due to the change in volume through

n ¼ N
V

ð7Þ

where N is the number of electrons in the considered system, knowing
the fact that the charges of the electrons are always balanced by the nu-
clear charges under the conditions of zero net charge. Inserting Eq. (7)
into Eq. (6) returns:

∇ζ ¼ ∂ζ
∂V

� �
T
∇V þ ∂ζ

∂T

� �
V
∇T: ð8Þ
As a result, when the electrons are explicitly treated as the charge
carriers (q = −e where e is the elementary charge), combining Eqs.
(5) and (8) gives:

Se ¼ 1
e

∂ζ
∂V

� �
T

∇V
∇T

þ ∂ζ
∂T

� �
V

" #
: ð9Þ

Finally, in the case of an isotropic system
∇V
∇T

can be replaced by the

volume thermal expansion at constant pressure (P). Hence Eq. (9) be-
comes:

Se ¼ 1
e

∂ζ
∂V

� �
T

∂V
∂T

� �
P
þ ∂ζ

∂T

� �
V

� �
ð10Þ

From Eq. (10), it can be seen that the constant pressure Seebeck co-

efficient contains two terms: The first term

 
∂ζ
∂V

!
T

;

 
∂V
∂T

!
P

!
is due to

the thermal expansion, whereas the second term

  
∂ζ
∂T

!
V

!
accounts

for the constant volume contribution. Once the electronic density
of states (e-DOS) has been calculated from first-principles [34–36],
the calculation of ζ is straightforward. The calculation can be performed
based onMermin's finite temperature density functional theory [37,38]
and it has been demonstrated in previous work [26]. Considering the
fact that the electrons are explicitly treated in the current implementa-
tion [39,40] of first-principles calculations, i.e. q = − e, ζ in Eq. (3)
should obey the Fermi-Dirac distribution

f ¼ 1

exp
ε−ζ
kBT

� �
þ 1

ð11Þ

where the Fermi energy has been taken as the reference for the banden-
ergy ε. In such a way, ζ is determined by the conservation equation

Z
n ε;Vð Þfdε ¼ N ð12Þ

where n(ε,V) is the electronic density of states (e-DOS), N is the total
number of electrons in the system.

The demonstration of the theory is given below using the n-type
thermoelectric material La3-xT4, whose thermodynamic properties
have been calculated in our recent publication [41] using the
quasiharmonic phonon approach [42,43]. In particular, we have utilized
the calculated e-DOS and thermal expansion using the Perdew-Burke-
Ernzerhof revised for solids (PBEsol) [44] exchange-correlational func-
tional, obtained from the projector-augmented wave (PAW) method
[39,40] as implemented in the Vienna ab initio simulation package
(VASP, version 5.3). Spin-orbit interactions are not considered.

The temperature dependence of ζ is solely dictated by the behav-
ior of the e-DOS by the present formalism, and so is the Seebeck co-
efficient. The faster the change of the e-DOS in the vicinity of the
Fermi energy with respect to the band energy, the faster of the
change of ζ with respect to temperature, and the larger the Seebeck
coefficient. This is in agreement with [45], but not limited to, the con-
cept of convergence band [2,46]. Numerically, the rapid increase of
the e-DOS with increasing band energy is the reason ζ decreases
with increasing temperature, resulting in a negative Seebeck coeffi-
cient for La3-xTe4.

Typically for a n-type semiconductor, the chemical potential of elec-
trons at 0 K (Fermi energy) is located slightly above the bottom of the
conduction band, as shown in Fig. 1 (in the case of La3Te4 and
La2.75Te4). For an insulator, the Fermi energy is located at the top of



Fig. 1.Calculated electronic density-of-states for La3Te4, La2.75Te4, and La2.67Te4. The vertical dot-dashed lineswith label “EF” indicate the Fermi energies (εF as defined by the explanation of
Eq. (3)) without doping. The arrows label the possible types of doping for the three referenced compositions.

89Y. Wang et al. / Scripta Materialia 169 (2019) 87–91
the valence band, as shown in Fig. 1 for La2.67Te4. The criteria for a good
n-type semiconductor can be described as follows:

i) at 0 K, relatively low values of e-DOS at the Fermi energy which in
turn is located at slightly above the bottom of the conduction band,
as shown in the plot of the e-DOS for La2.75Te4 in Fig. 1; and

ii) the e-DOS increases rapidly with the increasing values for the
electron band energy.
Fig. 2.CalculatedSeebeck coefficients for La3-xTe4 basedon the electronic density-of-states of La3Te4.
1.3 × 1020, and 1.2 × 1020 e/cm3 correspond to the reduced Hall carrier concentrations of 0.91, 0.87
Consequently, the Seebeck coefficient can be calculated directly
with one-dimensional numerical integration. Since the e-DOS is a
basic output of most modern first-principles codes, the present
formulation makes it a lot easier to search for superior thermoelec-
tric materials by means of high-throughput first-principles calcula-
tions [35,36].

Next, we will discuss in detail the first-principles calculations of the
temperature dependence of the Seebeck coefficients for Lanthanum
The carrier concentrationsof 4.0×1021, 3.8×1021, 2.9×1021, 2.0×1021, 1.6×1021, 4.4×1020,
, 0.65, 0.45, 0.36, 0.10, 0.029, and 0.027, respectively, from the experiments by May et al. [47].



Fig. 3. Calculated Seebeck coefficients for La3-xTe4 based on the electronic density-of-states of La2.75Te4. The carrier concentration of 4.0 × 1021, 3.8 × 1021, 2.9 × 1021, 2.0 × 1021, 1.6 × 1021,
4.4 × 1020, 1.3 × 1020, and 1.2 × 1020 e/cm3 correspond to the reducedHall carrier concentrations of 0.91, 0.87, 0.65, 0.45, 0.36, 0.10, 0.029, and 0.027, respectively, from the experiments by
May et al. [47].
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telluride (La3-xTe4) in order to demonstrate the proposed formalism.
La3-xTe4 is used for thermoelectric power generation under the high
temperature environment. A thermoelectric material is often character-
ized by the carrier concentration, i.e., the number of electrons in the
Fig. 4. Calculated Seebeck coefficients for La3-xTe4 based on the electronic density-of-states of La
4.4 × 1020, 1.3 × 1020, and 1.2 × 1020 e/cm3 correspond to the reducedHall carrier concentration
May et al. [47].
conduction band (or the number of holes in the valence band) which
are mostly implemented by doping the perfect crystal. In principle, a
precise first-principles calculation should be performed using the
doped structure. However, doing so is often very time consuming. An
2.67Te4. The carrier concentration of 4.0 × 1021, 3.8 × 1021, 2.9 × 1021, 2.0 × 1021, 1.6 × 1021,
s of 0.91, 0.87, 0.65, 0.45, 0.36, 0.10, 0.029, and 0.027, respectively, from the experiments by
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alternative solution is to adopt the rigid band approximation [22]. In this
approximation, the electronic band structure is first calculated for a ref-
erence crystal structure. The electronic band structure is subsequently
assumed to remain unchanged, but the Fermi energy is adjusted to fit
the desired carrier concentrations. In order to study the effects of differ-
ent reference crystal structures on the calculated Seebeck coefficients,
we have considered the following three cases: La3Te4, La2.75Te4, and
La2.67Te4.

From the viewpoint of chemical valence, the cation La has a
valence +2, and anion Te has a valence of−3. It can therefore be an-
ticipated that a vacancy at the La site can transform thematerial from
a metal at x = 0 to an insulator at x = 1/3, knowing the fact that
La3Te4 has one electron located at the conduction band, and
La2.67Te4 has no electron located at the conduction band. We con-
sider a variety of carrier concentrations of 4.0 × 1021, 3.8 × 1021,
2.9 × 1021, 2.0 × 1021, 1.6 × 1021, 4.4 × 1020, 1.3 × 1020, and 1.2
× 1020 e/cm3. These carrier concentrations correspond to the re-
duced Hall carrier concentrations of ηH = 0.91, 0.87, 0.65, 0.45,
0.36, 0.10, 0.029, and 0.027, respectively, given in the measurements
made byMay et al. [47]. Effectively, La3Te4 corresponds to ηH=1 and
La2.67Te4 corresponds to ηH = 0.

Based on the calculated e-DOS as shown in Fig. 1, thedifferent carrier
concentrations can be implemented by removing electrons from or
adding electrons into the reference structures, i.e., changing the value
of N in the right hand side of Eq. (12). The particular procedure corre-
sponds to removing electrons from La3Te4, adding electrons to
La2.67Te4, adding electrons to La2.75Te4 for high carrier concentrations
(ηH = 0.91, 0.87, 0.65, 0.45, and 0.36), and removing electrons from
La2.75Te4 for low carrier concentrations ηH = 0.10, 0.029, and 0.027.
Consequently, the change in carrier concentration will result in new
Fermi energy (εF) as defined in Eq. (3). The Seebeck coefficients are sub-
sequently calculated using Eq. (10), depending on the referenced struc-
ture (La3Te4, La2.75Te4, and La2.67Te4).

The three sets of Seebeck coefficients calculated based on three ref-
erenced crystal structures of La3Te4, La2.75Te4, and La2.67Te4, are com-
pared with the experimental data for La3-xTe4 by May et al. [47]
superimposed in Figs. 2, 3, and 4, respectively. Good agreementwith ex-
periment using La3Te4 as the referenced structure for high carrier con-
centration (knowing La3Te4 is almost a good conductor as seen from
Fig. 1). Good agreement with experiment using La2.67Te4 as the refer-
enced structure for low carrier concentration (knowing La2.67Te4 is in-
sulator as seen from Fig. 1). The modest deviations between the
calculations and experiments for lower carrier concentrations at ηH =
0.10, 0.029, and 0.027 can be in part attributed to the experimental dif-
ficulties, due to reasons such as sample inhomogeneity and oxidation
[47]. This is particularly true as it is seen that the calculated difference
at ηH = 0.029 and 0.027 is one magnitude smaller than the measured
one by May et al. The difference between the Seebeck coefficients at
ηH = 0.029 and 0.027 should not have been as large as that reported
from the overall good agreements between the calculations and exper-
iments in the whole carrier concentration range between 0.91 and
0.027. As discussed by May et al., when approaching to the insulating
limit of the stoichiometric La2.67Te4, the uncertainty associated with
electrical resistivity and Seebeck coefficient is considerably large. It
was seen that the measured Hall carrier concentrations showed ~10%
uncertainties against the nominal vacancy concentration (i.e. the value
of x in La3-xTe4) and the Hall carrier concentrations were slightly
underestimated for larger x (i.e. small ηH).
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