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Abstract
We address the problem of scheduling multi-task
jobs with redundancy in a Master-Worker cluster,
using a combination of Reinforcement Learning
(RL) and mathematical modeling. We firstly use
RL techniques to learn from realistic experience
that right amount of redundancy shall be added
into small enough jobs, and only when cluster op-
erates under low enough load. Building on these
principles, we derive a simple scheduling policy
and present an approximate analysis of its per-
formance. Specifically, we derive expressions to
decide when and which jobs should be scheduled
with how much redundancy. We show that policy
that we derive in this way performs as good as the
more complex policies that are devised by RL.

1. Introduction
Large scale compute systems experience random perfor-
mance degradation, which lead to significant variability in
task execution times (1; 2; 3; 4; 5; 6; 7). Redundancy has
long been used in production systems to attain predictable
performance in the presence of runtime variability (8; 2).
The idea is to speculatively launch multiple copies for the
same task and wait only for the fastest one to complete,
hence avoid having to wait for the slow running tasks, or
famously stragglers. Task replication has been shown to be
effective for straggler mitigation in both practice (5; 9; 1; 10)
and theory (11). Erasure coding implements a more gen-
eral form of redundancy and has been shown to mitigate
stragglers by incurring smaller redundant load on the system
(12; 13; 14; 15). Coding techniques have been applied for
straggler mitigation in common distributed linear computa-
tion (16; 17; 18) or iterative optimization algorithms (19?
; 20; 21; 22; 23; 24) that empower large scale ML.

Despite the plethora of papers devising new redundancy
techniques, no clear guidelines could yet be found on how
to schedule compute jobs with redundancy. Redundant
tasks might exert additional load on the system, hence the
guidance for introducing them is usually conservative, e.g.,
replicas are launched only for “short” tasks (1), or only for
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Figure 1: System model for scheduling with redundancy. A job
of two tasks (solid) gets scheduled with a redundant task (dashed)
such that any two of the three tasks is sufficient for its completion.

tasks that seem to straggle (3), or issued only to idle servers
(25). However, even then important questions have yet to
be addressed. Jobs arriving to a system consist of different
number of tasks, request varying resource capacity and have
random service times. How should we quantify the demand
of a job? Which jobs are short enough to be scheduled with
redundancy, and with how much redundancy? Excessive
redundancy may aggravate the job slowdowns, or even drive
system to instability. At what level of offered load does
redundancy start to hurt performance?

2. System Model
System architecture and job arrivals: We consider a
Master-Worker compute cluster as implemented in Hadoop
Yarn (26), Mesos (27) or Kubernetes (28) (see Fig. 1). The
cluster consists of a single scheduler (master) managing
N nodes (workers), each with capacity C. Compute jobs
arrive as a Poisson process of rate λ, and each job consists
of a random number (k) of tasks. Real compute jobs are
collection of one or more usually identical tasks (29), so we
assume tasks within the same job request equal (r) amount
of capacity and have the same size (b), i.e., minimum ser-
vice time. We assume k, r and b are independently sampled
from random variables K, R and B for each arriving job.

Number of tasks K and task sizes B in real compute jobs
exhibit heavy tail (30; 29). B is observed to be commonly
distributed as Pareto in practice, hence we model B ∼
Pareto with a minimum value bmin and tail index β. We
model K ∼ Zipf with an exponent of 1 and a maximum
value of kmax. With our policy search using Deep-RL, we
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found that distribution of R is not a significant factor in
finding a good scheduling policy, hence we set R = 1 to
keep the discussion simpler throughout, although the study
presented here easily extends to the case with random R.

Runtime variability: We model the runtime variability
with a random variable S that is identically and indepen-
dently distributed (i.i.d.) across different nodes and tasks.
Once a task of size b starts execution, it samples a strag-
gling factor s from S and takes s × b of time to complete.
This model is adopted in (25) and shown to support the
experimental evidence. To capture the significant variability
that is observed in practice, we model S as a Pareto with
minimum value 1 and tail index α.

Scheduling: Number of tasks and their requested capacity
are known for each arriving job (as in Kubernetes, Yarn,
Mesos), and task sizes are also assumed to be known here.
Jobs wait in a first-in first-out queue and the job at the head
of the queue gets dispatched as soon as enough resources
become available in the cluster to fit all its tasks (both initial
and redundant). We here focus on scheduling MDS coded
redundancy. Scheduler decides how many redundant tasks
to add into each job. When a job of k tasks is scheduled
with n− k MDS parity tasks, the job completes as soon as
the fastest k of its tasks finish service, then the remaining
n− k tasks are immediately removed from service.

System configuration: We built a cluster simulator using
SimPy (31) to implement our system model. Results pre-
sented in this paper are computed by setting the system
parameters N = 20, C = 10, kmax = 10, bmin = 10,
β = 1.5, α = 3, and varying arrival rate λ to change the
offered load on the cluster. Reported simulation results are
computed by sampling from 30 different runs, each executed
until the first 100,000 arriving jobs finish execution.

3. Learning how to schedule with redundancy
RL formulation: In the problem of scheduling, learning
environment is the compute cluster and learning agent is the
scheduler. Scheduler interacts with the cluster by adding
redundancy to arriving jobs, with the aim of minimizing job
slowdowns. Slowdown experienced by a job is the total time
it spends in the system divided by its minimum service time.

We use Deep Q-learning since it is known to be data-efficient
on Markovian environments such as our system. While
scheduling a job, scheduler observes the load at every cluster
node, and the number of tasks k, resource request r and task
size b for the job. Scheduler decides (acts) on the number
of redundant tasks to add into each job, and collects the
negative of the slowdown experienced by the jobs as the
reward for each scheduling decision.

What does Deep-RL learn? We evaluate our implementa-
tion of Deep-RL by running it with our cluster simulator
under varying offered load ρ on the cluster. We found that

learning a scheduling policy by only observing the job de-
mand k × r × b performs as good as the policy learned
by observing k, r and b individually. We observed that
Deep-RL devises a natural strategy; it learns to introduce
gracefully less redundancy for larger values of job demand
or ρ. Load on the cluster nodes assigned for the job’s tasks
did not turn out to influence the scheduling decision much.

4. Scheduling small jobs with redundancy
Building on the policy learned by Deep-RL, we propose
Redundant-small policy that expands a job of k tasks into
⌈rk⌉ tasks with redundancy only if the job’s demand is ≤ d.

Latency and Cost: We refer to the execution time of an
arbitrary job as Latency, and the total resource-usage time it
consumes throughout its execution as Cost. When scheduled
with no redundancy, a job of k tasks each with a service
time of b completes once its slowest task finishes, hence
its Latency ∼ b × Sk:k

1 and its Cost ∼ k × b × S. When
scheduled together with n−k redundant tasks, job will finish
as soon as any k of its n tasks finish, hence its Latency ∼
b × Sn:k and its Cost ∼ b ×

(∑k−1
i=1 Sn:i + (n− k)Sn:k

)
(14). A job will be scheduled with redundancy only if its
demand D = kB ≤ d. By the law of total expectation,

E[X] = E[X | D ≤ d] Pr{D ≤ d}
+ E[X | D > d] (1− Pr{D ≤ d}) .

(1)

where X is the placeholder for Latency or Cost, and

Pr{D ≤ d} = Pr{kB ≤ d} = Ek [Pr{B ≤ d/k}] ,
E[Latency | D > d] = Ek [E[Sk:k] E[B | B > d/k]] ,

E[Latency | D ≤ d] = Ek [E[Sn:k] E[B | B ≤ d/k]] ,

E[Cost | D > d] = E[S] Ek [k E[B | B > d/k]] ,

E[Cost | D ≤ d] = Ek [E[Cn,k] E[B | B ≤ d/k]] .

where n = ⌈kr⌉, Ek denotes expectation with respect to
random variable k, and Cn,k =

∑k
i=1 Sn:i + (n− k)Sn:k.

Using the results given in (14), we find

E[Sn:k] =
Γ(n+ 1)

Γ(n− k + 1)

Γ(n− k + 1− 1/α)

Γ(n+ 1− 1/α)
,

E[Cn,k] =
n

α− 1
(α− (1− k/n) E[Sn:k]) ,

where the Gamma function Γ(a) =
∫∞
0

ua−1e−udu. Aver-
age load on the cluster is given by

ρ =
λ

NC
E[Cost]. (2)

M/G/c approximation: Multi-server queueing systems
can be analytically analyzed if each job takes up a fixed
space in the system, e.g., as in M/G/c queue. This is not the
case in our system, but our idea is to make an approximation
as follows. Suppose that each job is given a share of σ

1Xn:i is ith smallest of n i.i.d. samples of random variable X .
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Figure 2: Average response time of Redundant-small with job expansion rate r = 2 under different values of offered load ρ0. M/G/c
refers to the values estimated by the approximation given in Claim 1, and asymptotic refers to the same approximation at large scale limit.

capacity per unit time. Given that and the fact that total
capacity available in the system is NC, it becomes natural
to treat the system as an M/G/c queue with NC/σ servers.
On average, an arbitrary job consumes E[Cost]/E[Latency]
capacity per unit time. This is an unbiased estimator of σ
and we use it to approximate σ. Then the number of servers
c is approximated as NC E[Latency]/E[Cost], which can
be non-integer but we circumvent this by formulating the
expressions to make them work with non-integer c. The
most well known approximation on the average response
time in M/G/c queue is given by adjusting the average
waiting time in M/M/c queue as

E[TM/G/c] ≈ E[X] +
C2 + 1

2
E[WM/M/c], (3)

where X is the job service time in M/G/c queue and C is
the coefficient of variation of X (32). We know

E[WM/M/c] = Pr{Queueing} ρ

λ(1− ρ)
,

where ρ = λE[X]/c denotes the average load on a server.
Pr{Queueing} denotes the probability that an arriving job
waits in the queue before starting service and is given by

Pr{Queueing} =

(
1 + (1− ρ)

c!

(cρ)c

c−1∑
i=0

(cρ)i

i!

)−1

,

The exponential sum here can be written in terms of the
incomplete Gamma function Γ(a, x) =

∫∞
x

ua−1e−udu, so

Pr{Queueing} =

(
1 + (1− ρ)

c ecρ

(cρ)c
Γ(c, cρ)

)−1

. (4)

The form given above now is defined for non-integer c. At
large scale limit, i.e., keeping ρ fixed while taking cρ → ∞,

lim
cρ→∞

Γ(c, cρ) = (cρ)c−1e−cρ.

Substituting this into (4),

lim
cρ→∞

Pr{Queueing} = (1 + (1− ρ)/ρ)
−1

= ρ. (5)

Note that approximate expression in (3) requires the
coefficient of variation C for the service time distri-
bution. C is given for the approximate system as√

E[Latency2]/E[Latency]2 − 1, where the second mo-

ment of Latency can be derived exactly the same way as we
derived its first moment in (1).

Claim 1. Average response time E[T ] in the Master-Worker
system described in Sec. 2 is approximated as

E[T ] ≈ E[Latency]

+
E[Latency2]
2E[Latency]2

Pr{Queueing} ρ

λ(1− ρ)
,

(6)

where E[Latency] is given by (1) (and so is E[Latency2]
similarly), ρ is given by (2), and Pr{Queueing} is given by
(4) and by (5) at large scale limit.

Fig. 2 shows that average system response time estimated
by our approximation follows the simulated values fairly
closely. When the offered load ρ0 (when no job is scheduled
with redundancy) on the cluster is low (ρ0 ≤ 0.5), schedul-
ing even very large jobs with redundancy (i.e., d → ∞)
increases system performance. When ρ0 is high, redun-
dancy improves performance until d reaches a threshold,
beyond which increasing d hurts performance (ρ0 = 0.6),
or even drive the system to instability (ρ0 ≥ 0.7).

Figure 3: Redundant-RL vs. Redundant-small with r = 2 and
d optimized using the approximation given in Claim 1.

Most importantly, our approximation allows accurately es-
timating the optimal d∗ (shown with red-cross in Fig. 2).
Fig. 3 shows that Redundant-small with approximately
computed d∗ performs as good as the more complex poli-
cies learned by Deep-RL. When offered load ρ0 is low, d∗

is set to a large value, while as ρ0 gets higher, d∗ is reduced
gradually, mimicking the behavior learned by Deep-RL.
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