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ABSTRACT

The dynamic response of a nonlinear resonator in the presence of resonant mode coupling is studied experimentally and theoretically. For
the case of a clamped-clamped beam resonator in the presence of a 1:3 internal resonance, we show that at the onset of internal resonance,
steady state oscillations cannot be sustained. At higher drive levels, stable oscillations can be maintained but the resonator amplitude
undergoes amplitude modulated responses. We use these dynamic responses to build a bifurcation diagram that can be described remarkably
well with a simple model consisting of a Duffing resonator coupled to a linear one.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099459

Micro- (MEMS) and nanoelectromechanical (NEMS) resonators
have found applications in a large variety of fields including force1–6

and mass sensing,7–11 timing and frequency control,12,13 and quantum
information science.14–16 The majority of these applications rely
strongly on operating the resonator in the linear regime for managing
their dynamic range, eliminating mixing and modulations, and con-
trolling noise. However, in recent years, there has been considerable
interest in effectively capitalizing on the dynamic response of nonlin-
ear resonators to enhance the performance of oscillators. Nonlinear
resonators enable mode coupling among vibrational modes, which has
been used to greatly improve phase and frequency stability of oscilla-
tors,17,18 to enhance sensitivity of resonant mass detectors,19 to control
the rate of energy dissipated toward the environment,20,21 and to
induce parametric amplification in inertial measuring devices.22 In
order to allow further optimization and engineering of nonlinear
micro- and nanoscale mechanical resonators, a detailed understanding
of their dynamic response in the presence of coupled vibrational
modes is critically needed.

In this paper, we study the response of a harmonically driven
nonlinear MEMS resonator in the presence of resonant mode cou-
pling. The dynamic behavior of a resonator exhibiting a 1:3 internal
resonance is used to experimentally build a bifurcation diagram that
shows the system dynamics under different operating conditions. We

show that at the onset of internal resonance, steady state oscillations
cannot be sustained and the amplitude decays below the noise floor.
At higher drive levels, stable oscillations can be maintained but the
resonator undergoes modulations in amplitude on slow and fast time
scales from modal interactions. Using only device parameters with a
single modal coupling coefficient, we present a theoretical analysis of
the system that describes the observed dynamic behavior and the
bifurcation diagram.

The MEMS resonator used for this research is fabricated from sin-
gle crystal silicon and is composed of 3 beams, 500lm long, 3lmwide,
and 10lm tall, connected at their centers to each other and to a pair of
comb drives.18 The substrate below the device is removed from the
backside to prevent levitation of the device during operation. A 6V DC
bias is applied to the resonator. A lock-in amplifier (Zurich Instruments
UHFLI) applies a driving voltage to one of the comb drives with an
amplitude of Vo and a driving frequency of fD. The motion of the reso-
nator creates a motional current in the opposite comb drive that is used
to sense its displacement. This current is converted into a voltage
through a transimpedance amplifier and then measured using the
lock-in amplifier. The linear response of the resonator is character-
ized by an in-plane flexural motion with fflex¼ 62 973Hz and linear
decay rate of Cflex¼ 1.9Hz and a higher order, out-of-plane torsional
mode with ftor¼ 192 960Hz and Ctor¼ 4.7Hz.
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For applied drive Vo > 300 lV, the flexural mode of the resona-
tor shows nonlinear hardening “Duffing” behavior [Fig. 1(a)]. For a
given Vo, as the frequency is swept up, the resonator amplitude
increases until a critical frequency is reached (at the saddle node, or
SN, bifurcation frequency) where the amplitude abruptly decreases, as
seen by the vertical lines in Figs. 1(a) and 1(b). As expected from
Duffing behavior,23 the amplitude and frequency of the SN point
increase with increasing drive voltage. From these data, the Duffing
coefficient is determined to be 2:47" 1014 V#2 s#2. For driving
voltages greater than 17mV, the SN bifurcation frequencies start to
occur at the same drive frequency of fIR ¼ 64 330 Hz, indicating the
onset of a 1:3 internal resonance [Fig. 1(b)]. At this frequency, the fun-
damental flexural mode couples to a high-frequency torsional mode,
which occurs at a frequency three times larger than the torsional mode
frequency. A detailed description of the phenomena can be found in
Refs. 18, 20, and 24.

In order to better visualize the behavior of the resonator as a
function of drive voltage, Vo, and driving frequency, fD, it is helpful
to construct a bifurcation diagram with the locus of points where
small changes in the system parameters lead to qualitatively differ-
ent dynamical outcomes [Fig. 1(e)]. The black and blue circles are
the frequencies at which the resonator behavior changes, or bifur-
cates, as the parameters are varied. The dotted color lines in Fig.
1(e) indicate the drive voltage amplitudes corresponding to the fre-
quency responses shown in Figs. 1(a)–1(c), measured by applying
a specific Vo and increasing fD. For example, the response of the
resonator with a drive voltage of 10mV (red line) is seen in Fig.
1(a). The response of the resonator changes at a frequency fSN due
to a SN bifurcation, which is plotted as a black circle in Fig. 1(e) on
the red dotted line. Similarly, when the resonator is driven at
20mV (green line), the amplitude increases with increasing fre-
quency until it reaches a frequency fIR [Fig. 1(b)] where the
response changes due to the appearance of an internal resonance.
This bifurcation frequency is plotted as a black circle in Fig. 1(e) on
the green dotted line. At these driving voltages, steady state oscilla-
tions cannot be sustained beyond these frequencies. However, for
sufficiently large drives, e.g., 400mV, stable oscillations can be
maintained. The response of the resonator can be seen in Fig. 1(c)
and shows two different regions at which the behavior deviates
from the expected Duffing behavior. The same data are plotted over
a smaller frequency window in Fig. 1(d) with the non-Duffing
response indicated as gray areas showing where stable oscillations
exist as the resonator amplitude undergoes modulations from the
modal interactions on a slow time scale (left gray region) and a fast
time scale (right gray region). The frequencies limiting these two
regions are plotted as black and blue circles in Fig. 1(e).

An interesting feature of these results is that the two regions
with nonDuffing dynamics can be observed only after applying a
drive voltage beyond a threshold value (260mV in our case). For
drive voltages less than 260mV, the resonator amplitude drops to
the nonresonant linear response (below the noise floor) at the first
SN bifurcation and steady state oscillations are not possible beyond
this frequency. This limits the ability to characterize the resonator
response to frequencies larger than fIR. In order to measure the res-
onator behavior beyond internal resonance, we follow the response
of the system along a dynamic path like the one shown by the black
path in Fig. 1(e). A large drive voltage is first applied (500mV),
then the drive frequency is increased well beyond the internal reso-
nance regions, a reduction of the drive voltage to values below
260mV follows, and subsequently the drive frequency is reduced.
As the frequency is reduced, the resonator dynamics follows the
expected Duffing behavior before abruptly dropping to the linear
response (essentially zero amplitude) at a frequency above fIR. The
set of frequencies obtained reducing the frequency are plotted as
light blue circles in Fig. 1(e).

The dynamic response of the system can be described by a
Hamiltonian with two vibration modes characterized by coordinates
qk and momenta pk (k¼ 1, 2). The primary mode (k¼ 1) is a flexural
mode and is subjected to harmonic drive and shows a quartic Duffing
nonlinearity.24,25 The secondary mode (k¼ 2) is a torsional mode,
which is modeled by a linear harmonic oscillator. The modes are
coupled via a nonlinear resonant term that describes the energy
exchange between the modes

FIG. 1. Dynamic response and bifurcation diagram of a MEMS resonator with 1:3
internal resonance. (a) Voltage response of the resonator for a drive voltage of
10 mV showing a saddle node (SN) bifurcation at fSN. (b) Voltage response of the
resonator for a drive voltage of 20 mV showing the onset of internal resonance at
fIR. (c) Voltage response of the resonator for a drive voltage of 400 mV. The dotted
rectangle indicates the frequency range of interest which is shown in an expanded
scale in (d). The shaded regions in (d) indicate the regions where the resonator
dynamics deviate from the expected Duffing behavior. (e) Bifurcation diagram of the
nonlinear resonator in the presence of resonant mode coupling. The dashed lines
correspond to the voltage response data shown in (a)–(c). The light blue data corre-
spond to bifurcation points measured by exciting the resonator through a dynamic
path like the one shown by the black arrow.
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Dissipative forces are added to each mode, and the complex
amplitudes A1;2 are used to describe the amplitudes and phases of the
modes. The rotating wave approximation is employed to average out
fast oscillations, resulting in a pair of equations in (A1, A2) that
describe their time evolution on a slow scale related to the relaxation
time of the modes.18 These equations are given by

_A1 ¼ # 1þ iðDx1 # jA1j2Þ
! "

A1 þ ijA2"A
2
1 # iF; (2)

_A2 ¼ #ðC21 þ iDx2ÞA2 þ
ij
9
A3
1; (3)

where Dx1 ¼ 2pðfD # fflexÞ=Cflex; Dx2 ¼ 2pð3fD # ftorÞ=Cflex; C21

¼ Ctor=Cflex, j is the normalized coupling parameter, and F is the nor-
malized driving amplitude, which is proportional to the drive voltage
Vo via a calibration factor (for details, see Ref. 24). This model provides
a means of predicting the system response as drive parameters (Vo

and fD) are varied for a given set of device parameters. The steady state
response ðA1s;A2sÞ of the coupled system can be found by solving
_A1;2 ¼ 0 which, due to the linearity of the second mode, can be solved
for A2s, [A2s ¼ ijA3

1s=9ðC21 þ iDx2Þ], which then yields a single
implicit expression for A1s in terms of the system and drive
parameters

F ¼ i 1þ iðDx1 # jA1sj2Þ þ
j2jA1sj4

9ðC21 þ iDx2Þ

" #

A1s: (4)

This equation can be used to obtain multivalued frequency response
curves for different drive levels.

To assess the stability of the steady state responses and analyze
the corresponding bifurcations at the stability thresholds, we employ
standard linear stability analysis, by considering the behavior of a
small perturbation to the steady state response ðA1s þ dA1;
A2s þ dA2Þ. These are substituted into Eqs. (2) and (3) and expanded
in terms of the perturbation terms to obtain a linearized system, from
which one can determine the eigenvalues that dictate local stability
and bifurcations. The attendant characteristic polynomial of the steady
response is quartic, of the form k4 þ c1k

3 þ c2k
2 þ c3kþ c4 ¼ 0,

where k are the system eigenvalues and ci are coefficients that depend
on the trace and determinant of the full system Jacobian, J, which
depends, in turn, on the device and drive parameters when evaluated
at steady state. In this framework, there are only two generic types of
instabilities and attendant bifurcations.26 A SN bifurcation occurs
when a real eigenvalue passes through zero, which occurs when
c4 ¼ 0. SN bifurcations correspond to the situation in which two
response branches merge and annihilate one another as system param-
eters, in this case Vo or fD, are varied. The second type is a Hopf bifur-
cation in which a complex conjugate pair of eigenvalues passes across
the imaginary axis as parameters are varied, which occurs when
c3ðc2c1 # c3Þ # c4c21 ¼ 0. At this bifurcation point, there exists a pair
of purely imaginary eigenvalues, k1;2 ¼ 6ixH , where xH ¼

ffiffiffiffiffiffiffiffiffiffi
c3=c1

p

is the frequency of the amplitude modulations near the Hopf

threshold. Hopf bifurcations result in responses that experience peri-
odic modulation of the resonator vibrational amplitude,27 and these
can be stable or unstable, depending on parameter conditions. In fact,
both types occur in the system model. Several of these bifurcations
occur near the internal resonance. A convenient way to display these
conditions is by curves in the drive parameter plane (Vo, fD) that corre-
spond to the SN and Hopf bifurcation conditions.

Figure 2 shows the theoretical values of both SN (red) and Hopf
(green) bifurcations, obtained using fitted parameters for the individ-
ual modes and a single modal coupling coefficient (~j ¼ 2:964 "1012

V#2 s#2), overlaid with the experimental data. A plot over a smaller
frequency range [Fig. 2(b)] shows the structure near the IR more
clearly and shows remarkable agreement with the experimental data.
Additionally, the model predicts bifurcations that are not experimen-
tally accessible (red values occurring slightly higher in frequency than
the IR). The IR causes a saturation of the SN bifurcations at a fre-
quency nearly one third of the torsional mode. The bifurcation condi-
tions provide an excellent estimation of the regions of parameter space
where the Duffing response is observed. One interesting result of this
internal resonance is the creation of a gap in the system parameters
where stable oscillations cannot be sustained. For driving frequencies
between the SN bifurcations on the left (black circles) and the Hopf

FIG. 2. Comparison of experimental and theoretical bifurcation diagrams. (a)
Extended diagram showing the good agreement between model and experiment.
The red line is the predicted location of the saddle node bifurcation using system
parameters as a fitting variable. The area in the vicinity of the internal resonance is
shown in detail in (b). (b) The solid lines indicate the system bifurcations as
described by Eq. (1): SN bifurcation (red line) and Hopf bifurcation (green line). The
solid circles indicate the experimental data from Fig. 1(e).
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bifurcations on the right (light blue circles) and below a threshold driv-
ing voltage of 260mV, the resonator’s amplitude will decay to zero.
This gap in the operating parameter space is created by the presence of
a mode coupling in the resonator: the higher frequency mode drains
mechanical energy from the first mode reducing its amplitude to the
point where oscillations at that frequency are unstable, thus causing
the amplitude to drop to the lower branch of the resonant curve. Our
results indicate that mode coupling is most easily achieved when the
dissipation in the resonator is small or, conversely, when the quality
factor, Q, of the resonator is high. Therefore, applications using highQ
resonators need to be aware of coupling with higher order modes to
avoid accidentally creating such voids in the operating regime.

In summary, we have studied the dynamic response of a MEMS
resonator with Duffing nonlinear behavior that has a 1:3 internal reso-
nance. The dynamic responses at internal resonance consist of a region
of operating parameters where the resonator does not have stable
vibrations and regions where it experiences amplitude modulated
oscillations. The experimental observations are used to create a bifur-
cation diagram that can be precisely described with a standard 1:3
internal resonance model incorporating measured modal parameters
and a fitted coupling strength. In a future study, we plan to investigate
noise-induced phenomena, such as stochastic switching and stochastic
resonance in the vicinity of the 1:3 internal resonance conditions.
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