LayerCode: Optical Barcodes for 3D Printed Shapes

HENRIQUE TELES MAIA, Columbia University
DINGZEYU LI, Adobe Research

YUAN YANG, Columbia University

CHANGXI ZHENG, Columbia University

’
I

|

L

|

—

'H

I

—
—
E—
—
| —

Ji

I

0]

o — ol ¢

Fig. 1. LayerCode tags are deployed in 3D printed objects through two-color printing (a), variable layer heights (d), and near-infrared steganography (g). In
the first case (a), the LayerCode tag is visible; in the second (d), the tag is less visible; and in the third (g) it is completely invisible, but still machine-readable.
Just like reading a barcode, we capture an image of each object, and our decoding algorithm processes the image to create a decoding graph (b, e, h), from
which a linear barcode is recovered (c, f, i). In this case, the corresponding LayerCode bit string reveals a 24-bit code repeated 3 times in (a), a 24-bit code

repeated once in (d), and a 12-bit code repeated once in (g).

With the advance of personal and customized fabrication techniques, the ca-
pability to embed information in physical objects becomes evermore crucial.
We present LayerCode, a tagging scheme that embeds a carefully designed
barcode pattern in 3D printed objects as a deliberate byproduct of the 3D
printing process. The LayerCode concept is inspired by the structural resem-
blance between the parallel black and white bars of the standard barcode
and the universal layer-by-layer approach of 3D printing. We introduce an
encoding algorithm that enables the 3D printing layers to carry information
without altering the object geometry. We also introduce a decoding algo-
rithm that reads the LayerCode tag of a physical object by just taking a photo.
The physical deployment of LayerCode tags is realized on various types of
3D printers, including Fused Deposition Modeling printers as well as Stere-
olithography based printers. Each offers its own advantages and tradeoffs.
We show that LayerCode tags can work on complex, nontrivial shapes, on
which all previous tagging mechanisms may fail. To evaluate LayerCode
thoroughly, we further stress test it with a large dataset of complex shapes
using virtual rendering. Among 4,835 tested shapes, we successfully encode
and decode on more than 99% of the shapes.

Authors’ addresses: Henrique Teles Maia, Columbia University, henrique@cs.columbia.
edu; Dingzeyu Li, Adobe Research, dinli@adobe.com; Yuan Yang, Columbia University,
yy2664@columbia.edu; Changxi Zheng, Columbia University, cxz@cs.columbia.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/7-ART1 $15.00

https://doi.org/10.1145/3306346.3322960

CCS Concepts: « Hardware — Emerging interfaces; - Mathematics of
computing — Graph algorithms;

Additional Key Words and Phrases: 3D printing, information embedding,
fabrication, physical hyperlinks

ACM Reference Format:

Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng. 2019.
LayerCode: Optical Barcodes for 3D Printed Shapes. ACM Trans. Graph. 38,
4, Article 1 (July 2019), 17 pages. https://doi.org/10.1145/3306346.3322960

1 INTRODUCTION

Invented 45 years ago, the optical barcode has become an indispens-
able minutiae in today’s digital era. The design is simple, e.g. black
and white bars printed on a flat surface, but its use is ubiquitous.
From package delivery and airplane boarding to inventory manage-
ment and patient identification, the barcode serves as a link that
bridges physical artifacts to modern digital systems.

In this work, we rethink barcodes in the context of additive man-
ufacturing, popularly known as 3D printing. 3D printing offers a
quick way of making customized, complex shaped objects. Unlike a
mass-produced product which by design has a reserved flat surface
region to host barcodes, 3D printed shapes are often complex and
curved: thin features, slender threads, and holes are not uncommon.
As a result, traditional barcodes cannot be placed on such objects.

Recent years have seen a few approaches proposed toward em-
bedding optical tags in 3D printed objects, on the surface [Kikuchi
et al. 2018], beneath the surface [Li et al. 2017] and inside the ob-
jects [Willis and Wilson 2013]. However, these approaches either
require specialized (and expensive) hardware to read the tags or

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322960
https://doi.org/10.1145/3306346.3322960

1:2 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

only work on a limited set of simple shapes (i.e., those with a flat or
smooth surface). This limitation, in stark contrast to the complexity
of shapes that current 3D printers commonly produce, remains a
significant open problem.

We introduce LayerCode, to bring the concept of optical barcodes
into 3D printed objects, especially those with curved shapes and fine
structures. Our key idea is inspired by the structural resemblance
between optical barcodes and 3D printed objects: essential in a
barcode are its black and white bars arranged in parallel; universal
in all 3D printed objects are printing layers introduced in a parallel
fashion. In fact, virtually all additive manufacturing uses a layer-
by-layer printing process [Livesu et al. 2017; Redwood et al. 2017].
Thus, if we could interleave two “types” of layers in a 3D printing
process, we would be able to embed a barcode everywhere along a
3D printed object.

Materializing this idea faces two challenges. The first is algorith-
mic. Due to an object’s complex shape, its layering structure may
appear curved, disconnected, or shadowed when captured by a cam-
era. We therefore seek a robust encoding and decoding algorithm
that embeds information in printing layers and later retrieves this
information from the images of a conventional camera. The second
challenge rests in practical realization. In various types of 3D print-
ers, including those that support only a single material, we need to
introduce two distinguishable layer types.

We address the first challenge by introducing a new coding al-
gorithm. Unlike the standard barcode that maps every bit to a bar
thickness, we encode individual bits based on the local change of
layer thickness, which, as we will show, is invariant under different
surface orientations and curvatures. At decoding time, we exploit
a key observation that each layer spans the entire cross-section of
the object. This suggests that there exist many image-plane paths
along which we can decode. The rich set of decoding paths is advan-
tageous, enabling us to sidestep shadows, highlights, and uncertain
image regions to decode robustly.

We address the second challenge by developing software and
hardware updates for printers. For printers that support two mate-
rials (such as the Makerbot Replicator 2 and PolyJet), distinct layer
types are naturally introduced by assigning different materials. For
fused deposition modeling (FDM) printers with only a single mate-
rial (such as the Ultimaker 2), we propose to change the filament
deposition height during printing to indicate different layer types.
Last but not least, for stereolithography printers (such as an Au-
todesk Ember), we propose to mix near infrared (NIR) dye in the
printing resin to create the second type of layers. This unobtrusive
and machine-readable tagging is similar in spirit to [Li et al. 2017]
and finds many applications.

Our proposed LayerCode approach features a number of attributes
desired for tagging 3D printed objects:

Robustness on complex shapes. LayerCode tags can be applied to
objects with complex shapes (e.g., see Figure 3), and are significantly
more versatile than existing approaches. Besides demonstrating our
algorithm with real-world examples, we also test it exhaustively
using rendered images on Thingil0k [Zhou and Jacobson 2016], a
dataset with 4,835 printable meshes across a wide range of shapes.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

-
‘ ey Vi
take a photo decoding (§4) =

Fig. 2. Use scenario. A LayerCode-tagged object is captured by a conven-
tional camera. Our graph-based algorithm then decodes the embedded
information from the image.

Ease with a conventional camera. LayerCode tags can be read by
a conventional camera, without resorting to expensive hardware
(Figure 2). Even for the NIR tags, the only additional hardware
needed for decoding is a NIR filter and a NIR light source (e.g., TV
remote); both are low-cost and easily accessible.

Compatibility with 3D printers. LayerCode tags can be used in
various types of 3D printers, whether they are single material or
multi-material FDM or stereolithography printers. Additionally, we
show how even a single-material stereolithography printer like the
Autodesk Ember can support the requisite two types of layers.

Structural preservation. Since LayerCode tags are built upon the
layer-by-layer 3D printing process without modifying the original
shapes; they have a minimal, if not negligible, impact on the print’s
mechanical properties. This feature contrasts starkly to previous
approaches, as they all alter the shapes to a certain extent.

Appearance preservation. LayerCode tags, when fabricated using
two materials of different colors, change the appearance of the
object. However the object appearance is preserved in the other two
3D printing approaches, namely by changing the FDM deposition
thickness and using resins mixed with NIR dyes (Figure 14 and 16).

Ubiquitous tagging of an object. Embedded in 3D printed layers,
LayerCode tags span over the entire object body, both inside and on
the surface. Such ubiquity of a tag is beneficial: tags can be decoded
along many surface paths, which makes the decoding process robust.
This redundancy also renders the tag readable from multiple camera
view angles or within a broken or damaged object (Figure 17).

Depth information for free. The interleaving parallel layers of a
LayerCode tag can be reinterpreted as an ideal parallel light pattern
projected on the object. Thus, using the structured light technique
of computer vision, even from a single image of the tagged object,
we are able to estimate the depth of the object from the camera
(Figure 10). In other words, every LayerCode tag automatically
conveys shape information of its carrier object for free.

In summary, we highlight the following contributions:

e A new feature-rich tagging mechanism that exploits the layer-
ing structures employed in additive manufacturing processes.

e A decoding algorithm that is robust against high curvatures,
rough surfaces, thin features, occlusions, and other factors
that limit the use of previous approaches.

e We propose three distinct methods that achieve LayerCode
tags in various types of 3D printing processes.

o A comprehensive evaluation of 4,835 rendered images as well
as over 20 physical objects across three 3D printers.

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:3
Table 1. A comparison of challenging design considerations and features across several tagging techniques.
barcode | Printed InfraStructs Acoustic | Acoustic | Lamello RFID BlowHole | AirCode | LayerCode
Optics Barcodes Voxels based

[Willis et | [Willis and [Harrison [Liet [Savage et | [Iyeretal. | [Tejada et [Liet

al. 2012] | Wilson 2013] | etal. 2012] | al. 2016] | al. 2015] | 2018,2017] | al2018] | al. 2017]
unsmooth rough surfaces X v v X v X 4 4 X v
thin shell or rod X X X v X v X X X v
accessible hardware decoding v X X v v 4 4 v v v
tested on multiple 3D printers | N/A X 4 v X X X X X v
structural preservation v X X X X X X X v v
appearance preservation X v v X X X v X v v
ubiquitous tagging X v v X X X v X X v
depth estimation for free X X X X X X X X X v/

2 RELATED WORK

The rich features of LayerCode set it apart from existing tagging
mechanisms. We now elaborate its differences from existing ap-
proaches, and a summary is shown in Table 1.

Although traditional barcodes are robust, they are privy to certain
assumptions. Convention dictates that in order for a barcode to work,
it must be laid on a flat surface, surrounded by two quiet zones of
empty space, and consist of evenly-spaced encoded digits composed
of fixed length modules [Woodland and Bernard 1952]. The code
requires preservation of the ratios of these modules even when
scanned at an off-axis angle, which in turn demands a flat surface
for tags in order to read correctly. The strict requirement on flatness
significantly limits the adoption of barcodes to arbitrary geometries.

In one of the early efforts to tag mass-produced printed ob-
jects, [Weigelt et al. 2010] extensively developed and discussed
printing electronics in the object’s interior. Since then, much of the
research along this direction has focused on embedding specialized
hardware inside the 3D printed objects. For example, magnets, Radio-
Frequency IDentification (RFID) chips, optical elements, circuits,
and extra support materials have since been utilized for tagging
purposes [Iyer et al. 2018; Kao et al. 2016; Willis et al. 2012; Willis
and Wilson 2013; Yoon et al. 2016]. However, these hardware com-
ponents not only lead to additional costs, but also require highly
specialized and usually expensive equipment for accessing the em-
bedded information. In comparison, LayerCode is a natural and
cost-free byproduct of the printing process that only needs a camera
for decoding.

ﬁ !‘ L] l’v,!
== | 4kl
4

Fig. 3. Challenging shapes. LayerCode tags can be embedded and de-
coded successfully in challenging shapes such as those with holes, thin
features, curved surfaces, and branching threads. To our knowledge, no
previous optical tagging mechanism can handle these challenging shapes.

In computer graphics and HCI, advances in fast and accurate
sound simulation enable acoustic sensing and tagging. Early pio-
neering work includes the appearance-altering Acoustic Barcodes
and Lamello [Harrison et al. 2012; Savage et al. 2015]. To better
maintain the exterior appearance, various methods were proposed
to optimize internal resonant chambers to achieve robust tagging
performance, including BlowHole [Tejada et al. 2018], Acoustic Vox-
els [Li et al. 2016], and SqueezaPulse [He et al. 2017]. Although
acoustic tagging approaches have shown promise, they share an
inherent limitation: they cannot handle arbitrary shapes, like thin
rod structures and thin shell objects, because of physical size con-
straints from the resonant chamber. LayerCode, on the other hand,
is capable of working on a wide range complex shapes, as shown in
Figures 3, 11, and 23.

Most related to our proposed method are AirCode and Optimal
Discrete Slicing. AirCode uses unnoticeable subsurface scattering to
embed a QR code-like pattern to preserve superficial appearances [Li
et al. 2017]. One key limitation is that the control of subsurface scat-
tering requires high-precision resin-based printers, which precludes
an application to consumer-level filament-based printers. This is be-
cause the layered nature of the printing process was not accounted
for when designing the subsurface tags. Alexa et al. [2017] proposed
variable layer deposition thickness (i.e. layer height) slicing to opti-
mize printing time. Instead of optimizing time, we leverage variable
layer slicing to encode information, making LayerCode available
to a wide range of 3D printers (see §5). Another advantage from
considering the printing process is the lack of compromise in cost
or fabrication/cleaning time, which introduce significant tradeoffs
in hardware or acoustic-based methods.

We are not the first to utilize controllable layer heights in 3D
printing. Pioneer work from two decades ago focused on slicing
speed while producing coherent slices friendly to printers [Mc-
Mains and Séquin 1999]. More recently, the focus has shifted to
more high-level design-related goals. Wang et al. [2015] optimized
layer heights to preserve salient regions on printed meshes. Starly
et al. [2005] designed a novel slicing algorithm for CAD NURBS
models to overcome the accuracy issue in precision manufacturing.
Similar to [Alexa et al. 2017], VarSlice [Crayons 2016] and oth-
ers [Zucheul et al. 2016] manipulate layers based on curvature to
speed up printing where possible. A comprehensive review can be
found in [Nadiyapara and Pande 2017]. Inspired by the long line of
work on layer slicing, we explore the layering nature to develop a
robust tagging scheme.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:4 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

black layer

~9— ‘(— white layer

Fig. 4. Distorted thickness. A sphere is coded with black and white layers
of equal thickness. On the captured image, curvature and perspective cause
layers to appear spatially varying in size.

The layer information we embed not only encapsulates the tag,
but also conveys depth information. To estimate depth from the
images, there is abundant literature on leveraging structured light
for 3D reconstruction [Taubin et al. 2014]. Most previous methods
use active and controlled light sources with multiple images to help
decode the depth [Hall-Holt and Rusinkiewicz 2001; Zhang et al.
2002]. For depth estimation from a single image, due to its ill-posed
nature, most prior work has resorted to data-driven methods [Chen
et al. 2016; Saxena et al. 2006]. Relying on structured layers, we
demonstrate it is possible to estimate depth from a single image and
this can be complementary to existing data-driven approaches.

3 ENCODING

Conceptually, the encoding process decomposes a 3D printed shape
into two sets of interleaving layers, which we refer as the black and
white layers, respectively (Figure 4), to echo the black and white
bars in standard barcodes. We also refer the black and white layers
generally as the coding layers to distinguish from the 3D printing
layers made in the 3D printing process. Each black or white coding
layer consists of multiple consecutive 3D printing layers, and thus
has a variable thickness.

In practice, we need to assign each 3D printing layer different
properties (such as colors) so that at decoding time, the black and
white layers can be recognized from a camera image. These practical
details are deferred until §5. In this section, our goal is to assign
each coding layer a thickness to encode a piece of information.

The input to our encoding algorithm is a 3D shape, the tag in-
formation represented as a bit string, as well as the 3D printing
direction with respect to the printed object (i.e., the direction along
which 3D printing layers will be grown). Unlike other tagging meth-
ods, there is no restriction on the 3D printed shape. We leave the
flexibility of choosing a printing direction to the user, because the
printing direction may depend on the specific shape, printing soft-
ware, support materials, and perhaps subjective preferences. The
output of the encoding algorithm is a series of slices along the
printing direction to specify the thickness of each coding layer.

Challenges and insights. In a standard optical barcode, the black
and white colors are used to label individual bars, and a bit (0/1)
is encoded in the thickness of each bar. Unfortunately, it would
be problematic to simply transfer this design to curved surfaces.
As shown in Figure 4, a layer’s thickness on a curved surface will
appear spatially variant after being projected on an image. Thus, a
new coding scheme is needed.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

loga, —loga,+1 =log2 = bit 1
log ay+1 —logania =0 = hit0

Fig. 5. Encoding scheme. Each pair of layers encodes a single bit. A bit-
wise 0 or 1 can be determined by computing the ratio of adjacent layer
thicknesses.

A key insight comes from noticing the fact that if the coding
layers are thin (relative to the inverse of the surface curvature along
the printing direction), the thickness ratio of two consecutive layers
measured in a local region of the image plane is invariant. This
is because in a small local region, two nearby coding layers share
approximately the same surface tangent plane, and the projection
from the tangent plane to the image plane follows an affine trans-
formation which preserves the layer thickness ratio.

Using local thickness ratios also favors the decoding step. As will
be discussed in §4, it allows us to sample the thickness ratio of two
layers at many local regions on the image, and collectively estimate
a thickness ratio that is robust against imaging noise and artifacts.

Coding scheme. We propose the following scheme to encode every
bit in a bitstring. A bit “1” is encoded if the thickness ratio of two
consecutive layers is either 1/M or M, where M is a constant larger
than 1 that we will discuss shortly, and a bit “0” is represented by a
unitary thickness ratio (i.e., the same thickness). The representation
of a bit string always starts from a layer with a baseline thickness
h. The next layer thickness ap+1 is either A or Mh according to the
current bit b,41 and the previous layer thickness a,, namely,

an ifbyt1 =0,
any1 = {Mh ifby,iq1 =1anda, = h, (1)
h if by+1 = 1 and a,, = Mh.

At decoding time, we recover the bit string sequentially, using the
inverse map

@

1 if logan —logap+1 = xlogM,
bpy1 = .
0 if loga, —logans1 =0.

In practice, the value of log a, — log ap+1 will never be precisely
+log M or 0 due to the image estimation errors. But a nice property
of this coding scheme is that the estimated values of log a,, —log an+1,
when viewed as a random variable, will form three distribution
modes symmetrically centered at +log M and 0. In §4.1, we will
return to this property for robust decoding. Figure 5 illustrates this
scheme for M = 2.

In theory, M can be any value larger than 1. It offers the user
the flexibility of trading off the total number of bits of a shape for
the robustness of decoding. A larger M sets +log M further away
from 0, so at decoding time the estimated log a, — log ap+1 is more
distinctive; but the layers are thicker, and thus the shape can store
less information. If M becomes too large, a coding layer may occupy
a large surface area, where the surface curvature starts to vary
considerably. Then, the local layer thickness ratio also becomes
spatially varying. In all our examples, we used M = 2.

=me
I 4 K

multi-line average non-linear scan

1
linear scan graph-based search

Fig. 6. Barcode challenges. Simple input shapes (Left) are followed by
more challenging geometry (Right). Linear scan works with simple flat
surfaces, but cannot generalize to flat pieces with holes. These might be
decoded by projecting all pixels to one dimension; however, globally pro-
jecting fails to handle curved objects. Instead, locally tracing across layers
is effective, until subsequent layers are too far to trace (e.g., see Figure 7-
left). Lastly, our graph-based method can be used to handle highly complex
shapes, and is backwards compatible with all previous challenging shapes.

Among the coding layers, we also need to label where a bit string
starts and ends. And we use the following simple rules. We start a
bit string from a layer with a thickness Nh, where N is considerably
larger than M (in practice, N = 4), followed by two layers (one
black and one white) with a thickness h each. This appends a bit
“0” to the beginning of the message. Then, after encoding the full
bit string, a single layer is added to encode a bit “1” followed by
another layer of thickness Nh. This additional structure isolates a
tag and disambiguates the bit string direction on the image plane.

Lastly, we reach a lemma about the total thickness of a bit string.

LEMMA 1. Provided a bit string of length T (T bits), the 3D printing
thickness H needed to host this bit string is bounded by

2N+2+T+Mh<H<@2N+3+T-M)h.

Proor. In addition to the beginning 3 layers of a total thickness
(N +2)h and the ending layer of thickness Nh, there are T + 1 layers
in-between corresponding to the T bits followed by the ending
bit “1”. Recall that whenever a bit “1” appears, the layer thickness
changes across two layers. Therefore, among the T + 1 layers, there
is at least one layer whose thickness is different from others. If that
layer is a thick layer (of thickness Mh), we obtain the lower bound.
If that layer is thin (of thickness h), we reach the upper bound. O

Conversely, this lemma shows that if a 3D shape has a size D along
the printing direction and D > h, then its information capacity (i.e.,
total bits) is at least {ﬁ - 2%3]

Repetition. The user needs to choose the layer’s baseline thick-
ness h at encoding time, although as presented in §4, our decoding
algorithm is agnostic to h. From Lemma 1, we know that if a 3D
printed object has a size D along the printing direction, and if we
need to store T bits, h should be at most D/(2N+2+T+M). Oftentimes,
h is much smaller than this bound. Then, we repeat the same bit
string (and thus the layer thickness pattern) multiple times, occu-
pying the entire printing distance. Effectively, we embed multiple
copies of the bit string in the entire object (Figure 6 & Figure 23).

This repetition introduces no additional printing cost, and is
beneficial in practice. It allows the barcode to be read from a wider
range of camera angles, and thereby eases camera alignment at
decoding time. Additionally, the redundant bit strings allow for a
robust voting scheme at decoding time (see §4.2).

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:5

Bit capacity. LayerCode design supports a flexible length integer
base-2 bit-length encoding, which may be adapted to design and
application constraints. In order to encapsulate the unique object
IDs of our database, all of our virtual evaluations (§6.1) use a 24 bit-
length base-2 encoding, leading to an entropy over 16 million. For
reference, a traditional UPC-E barcode uses base-10 encodings and
supports an entropy of 2 million. Similarly, our real world two-color
and layer-height examples (see §5.1 and §5.2 respectively) also use
24 bit-length encodings. The near-infrared prints discussed in §5.3
employ 12 bit binary encodings due to the printer’s smaller build
volume and subsequently smaller prints.

Error correction coding. Our coding scheme is about encoding
a bit string in a physical representation (e.g. layer thickness) and
decoding from a tangible form (e.g. 3D printed objects). Thus, it
is able to carry any error-correction code. In our experiments, we
choose not to add any error-correction redundancy to study the
pure performance of our method. Our coding scheme can support
various error-correction coding schemes such as the Reed-Solomon
codes [Reed and Solomon 1960]. These coding schemes add redun-
dant bits to a bit string for correcting errors at decoding time.

4 DECODING

We now describe our core algorithm of decoding LayerCode tags
from a camera image. To start decoding, we expect the black and
white layers of the object to appear distinctively on the image. This
is guaranteed through our fabrication methods specific to different
types of printers. Focusing on the core decoding algorithm here, we
defer those fabrication details in §5.

To motivate the overarching idea of our algorithm, we start by
considering a few increasingly challenging situations (see Figure 6).
First, on a curved surface, the thickness of a coding layer varies
spatially on the image (Fig 4), making the decoding (e.g., using (2))
easily fallible. If the surface curvature is relatively small, previously
existing rectifications include decoding along multiple projection
lines of pixels [England 1996] and along curved paths [Liu et al.
1998]. Nevertheless, the concept of an image-space decoding path
is flawed once a more complex shape is considered. As illustrated
in Figure 7, if a shape zigzags or branches, it is almost impossible
to find a path along which the entire encoded bit string is covered.
This might suggest that a more reasonable approach is to instead
segment individual coding layers and somehow measure the layer
thickness. Yet, such a layer-centric approach is also vulnerable as
highlights, shadows, and image noise may “shatter” a layer into
disjoint regions (Figure 6-right).

We propose a graph-based algorithm. We treat each coding layer
region, which may not include an entire layer, as a graph node.
Two nodes are connected if they are from different but neighboring
layers. As we will show, a robust decoding algorithm can be realized
by strategically traversing this graph.

Image Preprocessing. Before delving into the decoding details,
we preprocess the camera image to separate the object from its
background and remove highlights and shadows, which are regions
where pixel intensities are too high or too low. The preprocess-
ing step depends on specific types of 3D printed objects—whether

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:6 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

inaccurate thickness

can't find n_eighgor
Fig. 7. Layer thickness estimation. (Left) Looking at local pixel regions
is not sufficient to guarantee that neighboring layers can be found. (Right)
Computing the shortest path between neighbors as a vector or traced
path will often not measure an accurate layer thickness. Distances must be
projected along the printing direction (or boundary normal direction).

they are bi-material objects, objects with variable layer deposition
heights, or objects containing NIR resin; they exhibit different image
features. We defer this fabrication-specific preprocessing step in
§5. Afterward, we binarize the remaining pixels, labeling them as
in either black layers or white layers (see Appendix A for details).
Later in Figure 14-e and -h, we show an example of images before
and after this preprocessing step. Images resultant from this step are
ready for decoding (see Algorithm 1 for an outline of major steps).

4.1 Graph Construction

First, we construct a graph to represent the layer structure. Through
a flood-fill process, we identify individual pixel regions where all
the pixels are labeled black or white at the end of the preprocessing
step. Each region is represented as a graph node, and two nodes are
connected if their regions are adjacent to each other (Figure 8-a,b).

Next, we associate every edge e with two quantities, a 2D vector v
in image space and a binary label r. Consider an edge e that connects
nodes A and B. Its vector © represents the general direction along
which we can move from the image region A to the region B. As will
become clear shortly (§4.2), this direction will guide us in traversing
the graph without getting trapped in a loop. To compute v, we
first identify boundary pixels in each region. These are the pixels
within § pixels away from another region (§ = 3 in practice). At
each boundary pixel, we estimate a boundary normal direction
as the direction along which we can enter into a different region
by moving the shortest distance. v is then defined as the average
normal direction over all boundary pixels between region A and
region B. When computing the average, we use the normal direction
n, for pixel p in region A, and the opposite normal direction —n,,
for p in B. Thus, the average direction v is in fact associated to the
directed edge from A to B, and for clarity we denote it as v4—, 5. The
direction for the opposite edge is just vp_, 4 = —UB_ 4.

The binary label r is associated to the undirected edge, and is
denoted as rg,p for clarity. We compute ra,p as follows. First,
from each boundary pixel p between A and B, we estimate the layer
thickness h4(p) of the region A by first finding the shortest image-
plane vector dp, between p and another region that is not A or B but
connected to A. h4(p) is then set to be the length of dy, projected
on the normal direction n, (see Figure 7). Symmetrically, from p,
we also estimate the layer thickness hp(p) of B using a similar step.
Then, pixel p contributes a vote for r4.,g. It votes for label “0" if

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

Algorithm 1 Decoding Steps

procedure DECODE
Process the image and segment the image pixels.

1:
2

3 Build Connectivity Graph >§4.1
4 while Traverse every path on the graph do >§4.2
5 if Decodes on paths seen are in agreement then

6 Terminate Traversal Early >§4.3
7: Vote on path candidates >§ 4.2

m o O W >

1 dgra) directed graph)
without direction constraints with direction constraints

e T undirected graph
layering direction

Fig. 8. Graph construction and traversal. (left) We identify individual
pixel regions (A-E) through flood filling. (middle) We create a graph, where
each node represents a pixel region, and two nodes are connected if their
regions are adjacent to each other. Since the layers are added along the
printing direction, it makes no sense to traverse back and forth along the
printing direction for decoding—for example, A—=B—C does not produce a
valid bit string, while A>B—D is reasonable (right).

|log ha(p) — log hp(p)| < % log M (i.e., closer to 0), indicating the
second case in (2) and suggesting a bit “0" encoded between A and B.
On the other hand, if | log ha(p) — log hg(p)| > 1 log M, it votes for
label “1”, suggesting the first case in (2) and hence a bit “1”. The final
label r g, g is taken as the majority vote over all boundary pixels.

At first glance, assigning the label 4, g requires a prior knowl-
edge of M, which is not known from the image. Fortunately, our
coding scheme presented in §3 enables an easy and robust way of
estimating log M. In the above process, we collect all | log h4(p) —
log hp(p)| values for all boundary pixels on the image. From (2), we
know that these values are expected to be either log M or 0, although
we do not know what M is. If we think of each | log h 4 (p)—log hg(p)|
value as a random variable, these random variables must be gener-
ated through a mixture of two Gaussians (in 1D): one is centered at
0, and another center (i.e., log M) is unknown but can be estimated
using maximum likelihood estimation [Nasrabadi 2007].

This Gaussian mixture estimation also enables us to identify the
starting nodes, which correspond to the starting layers (of thickness
Nh) described in §3. If node A corresponds to a starting layer, then
the estimated | log h4(p)—log hp(p)| values from its boundary pixels
will appear as outliers of the Gaussian mixture model, as they are
considerably larger than log M. If this case is encountered, we label
A as a potential starting node and include it in a set S.

4.2 Decoding through Graph Traversal

We now decode the bit string by traversing the graph. Our traversal
repeatedly starts from each node in the set S, and moves to the
next node through a depth-first search (DFS). Because the object
is always 3D printed in a layer-by-layer fashion, we must avoid
looping back to earlier layers during the traversal. To this end, the
direction vector associated to each edge is helpful. As illustrated

>

|

paths early termination: 64 paths

holes cause branching

Fig. 9. Early termination. (left) Holes and fine features leads to a large
decoding graph with many branches. (middle) As a result, a naive graph
traversal unnecessarily explores too many decoding paths. (right) Early
termination allows us to declare a tag with confidence after processing just
a small fraction of the available paths.

in Figure 8-c, consider a traversal that reaches a node B from a node
A. In the DFS, we visit the next node D, only when the moving
direction from A to B is approximately consistent with the moving
direction from B to D. In other words, we require v4_,g-vg—p > A
(A = 0.35 in all our examples).

The traversal stops when anode in § is reached or when DFS runs
out of unvisited nodes. In the latter case, the current traversal path
is simply discarded, as we expect a valid bit string to always end
with a thick ending layer (recall §3), which must have been included
in S. In the former case, we decode a bit string by concatenating
the binary labels of all edges on the path. It is worth noting that
this path might traverse a bit string backwards. If that happens,
we would decode a bit string starting with “1” and ending with “0”.
From our coding scheme in §3, it is easy to see that we can just
reverse the bit string to obtain the original one.

This graph traversal process generates many paths and thus many
bit strings. Some of them might be erroneous due to image noise.
But collectively, they are robust. Therefore, we finalize the bit string
by taking a bit-wise majority vote over all decoded bit strings.

Remark. The majority voting, albeit simple, is a fundamental
philosophy behind many modern error-resilient systems, from peer-
to-peer networks, to Byzantine fault tolerance, to the current emer-
gence of blockchain technology (e.g., see [Lamport et al. 1982;
Nakamoto 2008]). Here, we exploit the voting scheme in both as-
signing the edge labels and decoding the traversal paths. From this
very perspective, the aforementioned condition v4—,p - vpp > A
should be seen as a way of culling votes that are likely rejected. It
is meant to accelerate the graph traversal but it is not necessary to
ensure correctness. Thus, the choice of A is not sensitive.

4.3 Early Termination

We terminate the graph traversal if we have surveyed a sufficient
number of paths, and most of them are already in agreement. As
shown in Figure 9, this is particularly useful when dealing with
objects where the number of paths grows exponentially due to holes
and other fine features.

We begin by imposing a lower bound on how many decoding
paths to consider before checking for early termination. Once at least
K unique paths have successfully been decoded, we begin to tally the
agreement across votes for each individual bit (K = 64 in practice).
If all bits individually concur by 80% or more, the graph traversal
terminates and outputs the agreed upon decoding. Otherwise, it
continues. It is important not to vote on entire bit strings, but rather

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:7

recovered layer heights images synthesed from novel viewpoints

Fig. 10. 2.5D image re-synthesis. An object carrying a LayerCode tag also
carries depth information for free. From a single image, we can estimate
the object’s 3D coordinates with respect to the camera (middle), which in
turn allows us to re-synthesize images from other viewpoints (right).

individual bits, as this way best allows early termination when there
are only a few bits in disaccord.

4.4 Extension: Depth Recovery

The black and white layers not only encode a bit string but impose a
geometric structure that brings additional advantages. The appear-
ance of these layers can be reinterpreted as a parallel light pattern
projected on the object, and this interpretation has an interesting
connection to the depth recovery using structured light techniques
from computer vision [Taubin et al. 2014].

On the object surface, the boundary curves between any two
consecutive layers by construction must be on a series of parallel
planes. The distances between these planes depend on individual
layer thicknesses. If we know the orientation of those planes with
respect to the camera, we can recover the depth of every point on
layer boundaries by intersecting a camera ray with the plane where
the point resides. In this way, from a single image, we can recover
the object’s depth. Unlike traditional structured light approaches,
we require no active projector emitting light patterns. A graphic
depiction of this idea is provided later in Figure ?? of Appendix B.

In practice, when we place an object and photograph it, the coding
layers are all parallel to the table surface (because of the way the
layers are 3D printed). Thus, the layer plane’s orientation aligns
with the table’s surface orientation, which can be inferred using
a standard camera calibration process (e.g., with a checkerboard
placed on the table). By decoding the bit string, we obtain every
layer thickness, being it h, Mh, or Nh (recall §3), and in turn the
distances between the layer planes. The baseline thickness h can be
either set a priori or retrieved from the object that encodes the h
value. More details of this extension are provided in Appendix B.

The estimated depth is useful in many ways, such as direct 2.5D
image manipulation and image re-synthesis from novel viewpoints,
as shown in Figure 10. In §5.4, we also demonstrate the use of depth
information for virtual recovery of damaged objects.

5 FABRICATION

Since its inception, LayerCode has been designed to work with
a wide variety of layered manufacturing methods. This section
describes three different embodiments of LayerCode adapted to
various types of 3D printers: Stratasys PolyJet, Ultimaker 2, and
Autodesk Ember. Fabricating LayerCode objects on these 3D print-
ers carries advantages and tradeoffs for each: varying from ease of
implementation to visual concealment of the barcodes. Recognizing
that some of the following approaches require augmentation of 3D

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:8 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

. Y \\\ .= & Two-Color Printing

T
5 —
o=

L
’°—> Variable Layer Heights

Invisible NIR Dye

Fig. 11. Fabricated pieces carry LayerCode tags made by two-color print-
ing, variable layer heights, and near-infrared resins. LayerCode tags are
successfully tested on bumpy, shell, curvy, and otherwise complex geometry.

printer firmware and/or hardware, we open source all our firmware
codes and hardware modifications.

We use a Canon DSLR camera with 5184 X 3456px to take photos.
To read NIR LayerCode tags, we used a Grasshopper3 camera from
Point Grey with a resolution 2048 X 1536px for its easy adoption
of the NIR filter. We also tried an iPhone camera with a resolution
4032 X 3024px and found the results similar.

5.1 Two-Color Fabrication

The most direct way of making a LayerCode object is by using a
multi-material 3D printer. Many 3D printers (e.g. MakerBot, Mak-
erGear, and PolyJet) now support multi-material fabrication with de-
creasing costs. By mapping the black and white layers of a LayerCode
tag to two colors of materials, these printers can produce LayerCode
objects without any modifications to software or hardware.

As a demonstration, we use Stratasys PolyJet to fabricate two-
color LayerCode objects (see Figure 12). Decoding these types of
LayerCode objects is straightforward, as their surface textures are
already in two colors. Simple thresholding in image space suffices
to binarize the input camera image and prepare for decoding (as
described in §4). While simple for fabrication, this type of LayerCode
tags would change the object appearance. In certain applications
(e.g., see [Li et al. 2017]), appearance preservation is desired, so
unobtrusive or completely invisible barcodes are preferable.

The next two fabrication approaches aim to offer this feature.

5.2 Fabrication with Variable Layer Heights

Although not all 3D printers support multi-material fabrication,
virtually all printers are able to print at a range of resolutions. Here
the resolution indicates the height of a single layer deposited during
the 3D printing process. We refer to it as the layer height (to avoid
confusion with the aforementioned coding layer thickness).
Noticing printers’ ubiquitous ability of layer height control, we
propose to use distinct 3D printing layer heights for each type
of coding layers. When fabricating black layers, we use a small
layer height hg (i.e., a high printing resolution); we switch to a
larger layer height h; for making white layers (see Figure 14). This
approach requires only a single material, and introduces little change
to the surface geometry. Under environment lighting, the resulting
LayerCode tags are barely noticeable to our eyes (Figure 14-e).
Interestingly, the small and large layer heights cause the two
types of coding layers to have distinctive distributions of specular
highlights. This can be understood by the illustration in Figure 13.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

Sample Query Information:
#Vertices : 2450

Euler : 2
Genus g il
Closed : True
Solid False

Edge manifold : True
Duplicated faces False

I

Fig. 12. The 24 bit LayerCode tag embedded in this Zebra-shaped object is
repeated twice and reveals shape and related mesh information.

Exploiting this difference, the decoding algorithm is able to segment
black coding layers from white coding layers from a camera image.
The image processing steps (for producing the input of §4) are
outlined in Figure 14 and detailed in Appendix A.

In practice, although the layer height is adjustable, almost all
existing 3D printing software use a single layer height for printing
an object. We overcome this limitation by carefully constructing
a G-code program that runs on the 3D printer and instructs when
to switch the layer height. Figure 14 depicts this implementation.
We use the first-party slicer to generate a G-code program that
prints the object with the small layer height h¢ (Figure 14-b), and
another G-code program that prints at the larger layer height h;
(Figure 14-b). We then interweave these two at specific locations to
construct alternating printing heights (Figure 14-b). In our approach,
we always set h; as an integer multiple of hg to ensure seamless
switches across layer heights.

Since these simple G-code manipulations require no hardware
changes, we envision that this type of LayerCode tags can be readily
incorporated into existing 3D printers with an over-the-air software
update. On the other hand, while its impact on object appearance
is minimal, this impact is not completely invisible. If stringent ap-
pearance preservation is a priority, we recommend the next ap-
proach, one that embraces near infrared (NIR) optical properties for
LayerCode embodiment.

5.3 Fabrication with Invisible Near-Infrared Dye

Inspired by ColorMod [Punpongsanon et al. 2018] which uses pho-
tochromic inks to recolor objects after their printing, we propose to
control the NIR optical properties of Stereolithography Apparatus

®)

//I\\

specular reflections

Fig. 13. Distinctive highlight distributions. The black layers (orange
color) are made of 3D printing layers each with a small height, while the
white layers (green color) have a much larger 3D printing layer height. As
a result, the specular highlights in black layers appear sparser and more
granular, while the highlights in white layers are denser and more uniform.
The difference of highlight distributions allows the decoding algorithm to
discern the two types of coding layers when processing a camera image.

(b) © ()

_______ L e - — — =4 L

leicmg with different layer heights hg and hy our g-code mixing

send to printer

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:9
(©) (®)

contrast boosting bilateral filtering graph construction

Fig. 14. Variable layer heights. A twisted vase is encoded with a variable height LayerCode (a-d), printed (e), and then decoded (f-h). At the decoding time,
a camera image (e) is converted into grayscale, followed by contrast boosting (f), bilateral filtering (g), and a Gaussian-mixture-based clustering to binarize the
image (h), which is in turn supplied to the decoding algorithm for graph construction and decoding along paths (red curve on (h)).

firmware

update

single resin tray (@) d double resin tray

original hardware our custom designed
single plate update CNC-millled metal
e y double plate
N
(©

(b)
Fig. 15. Hardware augmentation of Autodesk Ember. (a) The Autodesk
Ember has only one resin tray, and thus cannot support two types of cod-
ing layers. We replace the build plate (b) on its rotational platform with
a new CNC-milled plate (c) that supports two trays (d). This hardware
augmentation together with a firmware modification allows us to deploy
NIR LayerCode tags in 3D printed objects.

(SLA) resins—the materials commonly used in Stereolithography
printers—using NIR dyes.

NIR dyes are granular substances based on small organic molecules,
commonly used in chemical biology and industrial applications [Es-
cobedo et al. 2010; Falkenstern et al. 2018]. They have strong optical
absorption in the NIR range (i.e., 700 ~ 1100 nanometers in wave-
length), but weak absorption in the visible light range. In other
words, they appear nearly transparent in the visible light range but
dark in the NIR range. Thanks to this property, we can darken the
NIR “color” of a 3D printing material while leaving its visible ap-
pearance unchanged by mixing a certain amount of NIR dye in the
3D printing resin. In practice, we mix 35mg of 828nm dye into every
100ml of PR-57 CMYK+W resin. Mechanical stirrers are employed
for a day to ensure an even mixture of the dye in the resin.

This procedure creates the resin for one type of our coding layers,
and for the other type, we use the original, untouched resin. The
challenge is how to use both resins for a single print and switch one
resin tray to another for every coding layer. For high-end, expensive
3D printers, it is possible to use both resins simultaneously. Here,
we provide a low-cost solution by augmenting an Autodesk Ember.

Autodesk Ember is a stereolithography printer. As shown in Fig-
ure 15, it comes with one 180° tray (in orange) with a transparent
bottom window and can hold only one type of resin. Like most stere-
olithography printers, when printing an object, Ember lowers its
build platform (which faces downward) to almost touch the bottom

Fig. 16. NIR LayerCode tags in sunlight. The NIR LayerCode tags remain
invisible in sunlight (left), but become visible when imaged with a NIR filter
in front of the camera (right). No additional light source is needed.

of the resin-filled tray. To grow a printing layer, a UV laser shines
through the transparent tray bottom, and solidifies the part of resin
between the build platform and tray bottom. We found that in this
process the tray is fixed on a build plate which is the limiting factor
if we wanted to add another 180° tray. Noticing this limitation, we
custom designed a new build plate (Figure 15-d) which fits in the
printer and supports two resin trays; each will be used to hold a
different resin. To make use of both trays, we modified Ember’s
firmware such that whenever a different coding layer is started, the
printer 1) lifts its build platform, 2) switches the tray by rotating
the build plate, 3) lowers down its build platform again, and 4) re-
sumes the printing. More details of this augmentation are provided
in Appendix D, and we will open source the computer-aided design
(CAD) models of the build plate, the firmware update code, and all
instructions for amending the printer.

Figure 1-g shows a LayerCode object printed by our double-
material Ember. To our eyes, the LayerCode tag is completely invis-
ible, so the object’s appearance is fully preserved. To decode a tag,
we image its carrier object in the NIR range by mounting a longpass
filter with a cut-on wavelength at 850nm! in front of the camera.
No special camera is needed, as the conventional image sensor is
capable of capturing NIR light.

When imaging the object indoors, we need to illuminate the
object with a NIR light source (such as the 850nm and 950nm LEDs
commonly used on TV remote controls). However, since sunlight
has NIR wavelengths?, it can be exploited to expose LayerCode
tags without resorting to additional lighting. Figure 16 shows a pair
of images taken under uncontrolled natural daylight on a partly

1We use the filter from Thorlabs Inc. under this link.
°In fact, nearly all the infrared radiation in sunlight is near infrared.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=918

1:10 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

code still
visible on —>;

interior \%

e 3D _ &
reconstruction|

Fig. 17. LayerCode tag and augmented reality. (Left) A fallen angel
damages its wing. However, the LayerCode tag can still be read from the
interior of the object. Decoding the damaged piece reveals the embedded
tag, from which we know 1) the original 3D model, and 2) its 3D depth
and position with respect to the camera. (Right) This information enables a
virtual repair of the angel displayed in an augmented reality fashion.

sunny day. The embedded LayerCode tag is discernible and can be
successfully decoded.

We see LayerCode tags with great potential not just as a tag, but as
a means of intellectual property (IP) protection and anti-counterfeit
detection while preserving aesthetics.

5.4 Discussion on Implementation and Application

Across the three approaches described, as we make the LayerCode
tags to better preserve object appearance, increasingly more soft-
ware and hardware modifications are needed—there is no free lunch.

All three approaches have a minimal impact on the object’s me-
chanical strength, since they fully preserve the object’s volumetric
shape (up to the printing resolution). In contrast, previous tagging
approaches (such as [Kikuchi et al. 2018; Li et al. 2017; Willis and
Wilson 2013]) all alter the object shape inside or near the surface.

In terms of printing time, all print jobs took from 40 minutes to
several hours, depending on the model complexity. When printing
with two colors and with variable layer heights, the time costs are
comparable to printing without LayerCode tags. For Ember printing
with NIR resin, we observed a minor overhead (about 15% to 20%
slow-down) because of the extra tray swaps.

A remarkable strength of LayerCode tags is the ability to de-
code even when the object is damaged, thanks to the layer-by-layer
printing process that spreads the tag over the entire body of the ob-
ject. For example, Figure 17-b shows an angel model with a broken
wing. Nevertheless, we can still traverse the remaining part of the
LayerCode graph and successfully decode the tag.

Since LayerCode tags are present inside prints, scuffing and mod-
erate fractures do not inhibit use. However, similar to barcodes, one
cannot recover from missing entire layers at any point along the
code. This limitation is partially addressed by repetition of the codes.
Resilient to physical changes, the LayerCode may still be recovered
as long as one copy of the code remains present, even if damaged.

The ability to read tags from damaged objects opens the door to
many applications. For example, through an embedded LayerCode
tag, one can recover the original model to patch a broken piece [Teib-
rich et al. 2015]. Another scenario can apply to augmented reality.
From a single image of the object (damaged or not), we can extract

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

Mercator projection of viewing angle success
on our virtual database

(3)

Fig. 18. The decoding success rate across the entire database of each of
the 30 viewing directions is color-mapped on a sphere, whose equator is
aligned to the plane perpendicular to the printing direction. This mapping
is unrolled in the Mercator projection, with representative views of a tagged
bust shown (on top) for the red selected points of interest.

the tag and estimate its 3D position with respect to the camera
(through depth recovery in §4.4), and display an augmented object
(e.g., the original model of a currently damaged one) or animate
the static object in 3D (e.g., similar to previous efforts on animating
books [Billinghurst et al. 2001; Cimen et al. 2018]).

Moreover, we envision LayerCode tags being used for 3D printer
steganography, similar in spirit to Machine Identification Codes?
(also known as the Yellow dots), a watermark that many paper print-
ers and copiers leave on every single printed page for device iden-
tification. Our LayerCode tags (especially the unobtrusive ones)
allow 3D printers to introduce similar watermarks for the same
purposes (e.g., counterfeit detection) as those that have motivated
paper printers.

6 EVALUATION ON VIRTUAL DATASET

To understand the performance of our decoding algorithm more
thoroughly, we also test our algorithm on a large dataset of shapes
using synthetic images generated by a photorealistic renderer. A
glimpse of the tested shapes is shown in Figure 23. This evaluation
over such a virtual dataset is justified by several considerations:

i. Cost and time. In regards to both cost and time, it is unaffordable
to 3D print all the shapes in the dataset. 3D printing of a single
object is usually an hour-long process, barring failures. Virtual
rendering of 3D printed objects, on the other hand, can be fin-
ished in a short time, and the resulting images are photorealistic.

ii. Feasibility. For many complex shapes that we use in this evalua-
tion, it is hard, if not impossible, to fabricate them via current
commodity 3D printers. But 3D printing technology is constantly
and rapidly improving. Therefore, it is desirable to test our algo-
rithm on those complex shapes to prepare for the future.

Shttps://en.wikipedia.org/wiki/Machine_Identification_Code

https://en.wikipedia.org/wiki/Machine_Identification_Code

database covered with at least n views 9
100 Swpuns
(5] []
> []
S 80k 78.0%g ™
—
8 "
o 60 =
i 495%™
2 u
_c% 40 = []
e}
8
o 20
© .
number of views

30 25 20 15 10 5 0
Fig. 19. We plot the distribution of all 4,835 tested shapes with respect to the
number of view angles from which they can be decoded successfully. 99.6%
of the shapes can be decoded from at least three sampled view directions.

iii. Thoroughness. In a virtual environment, we can test our algo-
rithm using a large number of objects viewed from many camera
angles. Thoroughly testing over all these variances provides us
statistical insights which in turn guide our use of LayerCode tags
in practice. This thoroughness is made possible only through
virtual experiments.

6.1 Database Construction

We tested our algorithm over a set of shape meshes from the Thingi10k
dataset [Zhou and Jacobson 2016]. The testing shapes are selected
through the following “printability” criteria: 1) They must be wa-
tertight 2-manifolds (i.e., no self-intersections), and 2) have only a
single connected component. 3) They should also have consistent
surface normals without degenerate faces. Following these criteria,
we obtain 4,835 meshes.

Each of these meshes is processed to embed a LayerCode tag
indicating the mesh’s database ID. When we encode the tag (using
the procedure in §3), the printing direction is chosen to be the
longest dimension of an axis-aligned bounding-box containing the
mesh, and the baseline layer thickness A is set to repeat the tag three
times. The output of the encoding step is a shape with two sets of
coding layers ready for rendering. Each type of layer is assigned a
different material color (i.e., red and blue). We then use the physics-
based renderer Mitsuba [Jakob 2010] to generate a photorealistic
image from a chosen camera angle.

To understand how the view angles affect the decoding, we uni-
formly sample 30 viewing directions on a sphere co-centered with
the object. Sampled views near the poles aligned with the printing
direction are discarded, since looking along the printing direction is
unlikely to reveal the entire tag. Figure 23 shows 18 representative
shapes and the rendered images from multiple view angles. The
decoding algorithm takes as input only a single image, and so each
given view is decoded independently.

6.2 Results Statistics

Camera angle dependency. Only one photo from a single view is
needed for decoding. However, due to surface curvature and local
occlusions, the coding layers are better captured from certain an-
gles. A natural question is what camera angles are more suitable
for decoding the tag. Figure 18 reports our experiment results, sug-
gesting that view directions just north or south of the equator is
statistically the most promising for decoding tags. This is somewhat

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:11

“ong Q By 2 Wl
R 3]

0.679 mm 0.180 mm 0.623 mm 0.940 mm 0.922 mm

Fig. 20. Lower bound of h. The decoding becomes challenging if the cod-
ing layers are made too thin. Here we show the smallest baseline layer
thickness h still readable under different views for shapes normalized to
10cm in length along the printing direction.

counter-intuitive, as one might expect the directions at equator to
be the most promising.

Our hypothesis is that these slightly titled view angles allow the
coding layers to be viewed by avoiding occlusions introduced by
bulges at one end or the center of the shape. For example, the bust
in Figure 18-top has its head and shoulders protrude from its center
axis, making decoding hard from above but much easier from below.

Figure 19 shows that some shapes can accommodate a wider range
of view angles than others for successful decoding. For example, one
shape is readable from all 30 views, whereas 44 other shapes are not
decodable at all (which account for only 0.9% of the shapes in the
dataset). On average, for any given shape, its tag is readable from
51% of the viewing directions we sampled. Overall, 78.0% of the
shapes can be decoded in 10 view directions, 49.5% can be decoded
in 15 directions, and 21.7% can succeed in 20 directions.

Timings. Decoding time varies from seconds and up to 5 min-
utes, depending on specific shapes and view angles. Much of the
time complexity is derived from our graph based approach, which
consists of image and graph processing steps that are slower than
simpler approaches, but allow LayerCode to handle a significantly
broader diversity of shapes with one consistent algorithm. Notably,
profiling reveals the majority of capture time is spent on pixel-wise
graph building operations including morphological image process-
ing, computing neighboring region distances, and masking. Each
graph node may be treated in parallel for time-critical applications.

Image resolution also impacts decoding time, since resolution
will vary the size of the many image processing operations. Our
experiments use a fixed resolution 2048 x 2048px in all rendered
images, on par with modern smartphone cameras. Similarly the
complexity of the extracted graph will also factor into decoding
time. Simpler shapes, curvy or flat, lead to smaller number of graph
nodes, and thus are faster to decode. On the other hand, holes
or occlusions tend to split coding layers on the image plane into
separate graph nodes and result in a larger graph. Thus, shapes with
many holes and fine structures take longer to decode.

Lower bound of h. In §3, we derive the upper bound of h from
Lemma 1. A smaller h allows the object to host more copies of
the tag. But if h is too small, the coding layers will become hardly
discernible on the image. In an experiment, we progressively reduce
h and encode only a single copy of an ID in the object. In this process,
we keep the camera angle and image resolution unchanged, and
check at what h value the decoding would fail. Not surprisingly, the

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:12 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

P P DS SR -, S
% O g Cop oy
/»\ N S““ s !‘ N g 43}‘“(

y_teg P R &

holes | >

Fig. 21. Stress test. From left to right, we keep adding holes to the wedge
and check if the resulting shape can hold a readable LayerCode tag. 324 holes
of random radii are added before decoding is no longer possible. Decoding
is possible even when the final wedge is 10.81% of its original volume and
has many fine features.

lower bound of h depends on the object shape. Figure 20 reports the
results.

Shape complexity. Figure 23 lists some of the nontrivial shapes
from our dataset, all of which can be successfully decoded. These
shapes all possess a mix of the following challenging features: bumpy
surface, thin shell, thin rods, sharp corners, highly occluded surfaces,
holes, and so forth. A complete set of shapes including 4,791 suc-
cessful shapes and 44 failure cases, is provided in the supplementary
file. Here we highlight and discuss three of the shapes.

WATERSPLASH is highly irregular. LayerCode tag manages to sur-
vive the fine and thin features by leveraging the solid external base
and internal regions. BUNNYSTRIPE is a typical thin shell model with
stripe-like surface patches. Despite of the holes and discontinuity
showing on the images, our graph-based decoding algorithm is able
to find valid paths leading to correct decoding. STRATUMVASE is yet
another extremely challenging shape with more than 180,000 faces.
The shape is similar to SPIRAL (Figure 22-a) on which our algorithm
fails. But a key difference is that the thin slices here do not oc-
clude or shadow the neighboring regions because of the orientation
alignment with the printing direction.

Stress test. To further gain some insights on to what extent the
shape may have fine features while remaining decodable, we de-
signed a stress test, inspired by the shape of Swiss cheese. Starting
with an wedge shape, we iteratively add holes with a random radii
at random locations (see Figure 21). As more holes are hollowed,
parts of the shape become thinner and more fine features emerge.
At each iteration, we encode an ID in the current shape and check
if it can be decoded. Eventually, decoding algorithm fails when the
shape is hollowed out until only 10% of its original volume is left.

A

Fig. 22. Failure cases. Among the 4,835 shapes, 44 shapes cannot be de-
coded. Here are three challenging failed shapes.

=
ot </
! -

o

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

Failure cases. Out of the 4,835 tested shapes, 44 cannot be decoded
at all. We discuss three of them shown in Figure 22. The Escher-like
staircase exhibits highly complex topology at most camera angles,
which makes it hard to find a complete path on the decoding graph.
The spiral appears simple at first glance, but each spiral always
occludes some coding layers, and so the entire tag is hardly seen
from any given angle. Similarly, the bumpy blob occludes itself
all over, and the heavy shadows spread over the surface, causing
ambiguities and making the image processing prone to errors.

7 LIMITATIONS & CONCLUDING REMARKS

We have presented LayerCode, a tagging scheme that embeds care-
fully designed optical barcodes as a deliberate byproduct of the
existing layer-by-layer 3D printing process. At its core, a LayerCode
tag is an optical barcode readable by a conventional camera. For this
reason, it also retains a few limitations of standard optical barcodes.

Foremost, LayerCode tags are agnostic to choices regarding view-
ing angles, printing orientations, and application semantics, yet
requires a direct line of sight for decoding. If an object is completely
occluded or poorly illuminated, decoding will fail. The ability to
decode also depends on the camera view angle. While as shown
in our experiments, LayerCode tags can be correctly read from a
wide range of camera angles, there are other view angles (such as
those nearly aligned with the printing direction) from which the
decoding is prone to failure. Therefore, optimizing for how a shape
might be held, seen standing, or made less visible would certainly
improve robustness. Similarly, since not all angles are equally easy
to decode, processing multiple views in parallel to achieve more
robust decoding also serves as an exciting avenue for future work.

Our decoding algorithm runs for up to tens of seconds, slower
than decoding a regular barcode. This is partly because our current
implementation uses Matlab, and partly because we wish to explore
a sufficient number of decoding paths for the sake of robustness.
Then, an interesting future direction is how to speed up the decoding
algorithm. If we can significantly shorten the decoding time, it would
be possible to decode from a multi-frame capture or a short video
clip, and further improve the robustness.

In our NIR Ember printing process, a small detail might cause
a practical concern. Every time the printer starts a new coding
layer, the build platform switches from the tray holding one resin to
another tray filled with the second type of resin. As a result, every
such switch brings a small amount of resin in one tray to another.
In our experiments, though this cross mixing of resins causes no
negative effects on the tag’s readability. But if we were to print for
an extended period, resin contamination would be accumulated, and
might become a practical issue to consider.

Despite LayerCode’s potential for IP protection and counterfeit
detection, it is not a physically one-way tag (meaning one that is
"easy to compute, but hard to invert" [Rompel 1990]). With a high-
resolution camera for measuring coding layer thicknesses and a
spectrometer analysis of NIR resin formula, it is possible to reverse
engineer and counterfeit a LayerCode tag on another 3D printer. To
achieve truly unclonable tags, we might have to consider a fusion
of optical codes, RFIDs, and other new modalities. This remains as
an interesting future direction.

Fig. 23. Successfully decoded shapes. A peek into the diversity of tested shapes within our database. Each view presented is correctly decoded by our
graph-based algorithm. Shapes with bumpy, shell, thin, curvy, and other challenging properties showcased here are still subject to encoding and decoding by

our LayerCode approach. Three shapes indicated by the stars are discussed in the main text.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:14 .« Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

Last but not least, LayerCode tags use
only two types of coding layers to en-
code a bit string, corresponding to the
black and white colors in standard bar-
codes. In theory, there is no limitation s Eﬁﬂ
on how many coding “colors” can be
used. As 3D printers become more precise and robust, it is possible
to extend LayerCode to use ternary or quaternary coding layers
for higher information capacity. One can also explore a general-
ized version where a pairwise ratio may go beyond 1 and M to
M? or even M3 to support thicker layers near challenging regions
(see inset). For all that, LayerCode is the first step toward robustly
tagging complex, 3D printed shapes, and it is our hope that our
open-sourced code, hardware, and benchmark database can help the
research community develop more robust and ubiquitous physical
tagging mechanisms.

s

{(4
L

§
{

v
(

ACKNOWLEDGMENTS

We would like to thank Qingnan Zhou for sharing code to generate
the database mosaic, as well as Joni Mici, Bill Miller, and Mohamed
Haroun for their assistance with printing. We thank Eitan Grin-
spun and Oded Stein for their helpful discussions, along with Anne
Fleming for proofreading. The authors would also like to thank
the anonymous referees for their valuable comments and helpful
suggestions. The work is supported in part by the National Science
Foundation under Grant No. 1816041 and 1644869.

REFERENCES

Marc Alexa, Kristian Hildebrand, and Sylvain Lefebvre. 2017. Optimal Discrete Slicing.
ACM Trans. Graph. 36, 1 (2017), 12:1-12:16.

Mark Billinghurst, Hirokazu Kato, and Ivan Poupyrev. 2001. The Magicbook - moving
seamlessly between reality and virtuality. IEEE Computer Graphics and applications
21, 3 (2001), 6-8.

Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. 2016. Single-image depth perception
in the wild. In Proc. NIPS. 730-738.

Gokcen Cimen, Ye Yuan, Robert W Sumner, Stelian Coros, and Martin Guay. 2018.
Interacting with Intelligent Characters in AR. International SERIES on Information
Systems and Management in Creative eMedia (CreMedia) 2017/2 (2018), 24-29.

Steve Crayons. 2016. Variable Slicing for 3D Printing on Autodesk Ember.
https://www.instructables.com/id/Variable-Slicing-for-3D-Printing-on-Autodesk-
Ember/. [Online; accessed 30-December-2018].

Gary A England. 1996. Method of reading a barcode representing encoded data and
disposed on an article and an apparatus therefor. US Patent 5,510,604.

Jorge O Escobedo, Oleksandr Rusin, Soojin Lim, and Robert M Strongin. 2010. NIR dyes
for bioimaging applications. Current opinion in chemical biology 14, 1 (2010), 64-70.

Kristyn R Falkenstern, Alastair M Reed, Vojtech Holub, and Tony F Rodriguez. 2018.
Digital watermarking and data hiding with narrow-band absorption materials. US
Patent App. 15/669,103.

Olaf Hall-Holt and Szymon Rusinkiewicz. 2001. Stripe boundary codes for real-time
structured-light range scanning of moving objects. In Proc. ICCV, Vol. 2. IEEE, 359~
366.

Chris Harrison, Robert Xiao, and Scott E. Hudson. 2012. Acoustic barcodes: passive,
durable and inexpensive notched identification tags. In UIST 2012.

Liang He, Gierad Laput, Eric Brockmeyer, and Jon E Froehlich. 2017. SqueezaPulse:
Adding Interactive Input to Fabricated Objects Using Corrugated Tubes and Air
Pulses. In Proc. TEL. ACM, 341-350.

Vikram Iyer, Justin Chan, Ian Culhane, Jennifer Mankoff, and Shyamnath Gollakota.
2018. Wireless Analytics for 3D Printed Objects. In Proc. UIST 2018. 141-152.

Wenzel Jakob. 2010. Mitsuba renderer. http://mitsuba-renderer.org.

Hsin-Liu Cindy Kao, Paul Johns, Asta Roseway, and Mary Czerwinski. 2016. Tattio:
Fabrication of Aesthetic and Functional Temporary Tattoos. In Proc. CHI 3699-3702.

Ryosuke Kikuchi, Sora Yoshikawa, Pradeep Kumar Jayaraman, Jianmin Zheng, and
Takashi Maekawa. 2018. Embedding QR codes onto B-spline surfaces for 3D printing.
Computer-Aided Design 102 (2018), 215-223.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS) 4, 3

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

(1982), 382-401.

Dingzeyu Li, David IW. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic
Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph.
35, 4 (2016).

Dingzeyu Li, Avinash S. Nair, Shree K. Nayar, and Changxi Zheng. 2017. AirCode:
Unobtrusive Physical Tags for Digital Fabrication. In Proc. UIST.

Lingnan Liu, Mark Y Shimizu, and Lisa M Vartanian. 1998. Method and apparatus for
reading machine-readable symbols having surface or optical distortions. US Patent
5,854,478.

Marco Livesu, Stefano Ellero, Jonas Martinez, Sylvain Lefebvre, and Marco Attene. 2017.
From 3D models to 3D prints: an overview of the processing pipeline. Comput.
Graph. Forum 36, 2 (2017), 537-564.

Sara McMains and Carlo H. Séquin. 1999. A coherent sweep plane slicer for layered
manufacturing. In Fifth ACM Symposium on Solid Modeling and Applications, Ann
Arbor, Michigan, USA, June 9-11, 1999. 285-295.

Hitesh Hirjibhai Nadiyapara and Sarang Pande. 2017. A review of variable slicing in
fused deposition modeling. Journal of The Institution of Engineers (India): Series C
98, 3 (2017), 387-393.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

Nasser M Nasrabadi. 2007. Pattern recognition and machine learning. Journal of
electronic imaging 16, 4 (2007), 049901.

Sylvain Paris, Pierre Kornprobst, Jack Tumblin, Frédo Durand, et al. 2009. Bilateral
filtering: Theory and applications. Foundations and Trends® in Computer Graphics
and Vision 4, 1 (2009), 1-73.

Parinya Punpongsanon, Xin Wen, David S. Kim, and Stefanie Mueller. 2018. ColorMod:
Recoloring 3D Printed Objects using Photochromic Inks. In Proc. CHI 2018.

Ben Redwood, Filemon Schffer, and Brian Garret. 2017. The 3D Printing Handbook:
Technologies, design and applications. (2017).

Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics 8, 2 (1960), 300-304.
John Rompel. 1990. One-way functions are necessary and sufficient for secure signatures.

In Proc. ACM Symposium on Theory of Computing. ACM, 387-394.

Valkyrie Savage, Andrew Head, Bjorn Hartmann, Dan B. Goldman, Gautham J. Mysore,
and Wilmot Li. 2015. Lamello: Passive Acoustic Sensing for Tangible Input Compo-
nents. In CHI 2015.

Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. 2006. Learning depth from single
monocular images. In Advances in neural information processing systems. 1161-1168.

Binil Starly, Alan Lau, Wei Sun, Wing Lau, and Tom Bradbury. 2005. Direct slicing of
STEP based NURBS models for layered manufacturing. Computer-Aided Design 37,
4(2005), 387-397.

Gabriel Taubin, Daniel Moreno, and Douglas Lanman. 2014. 3d scanning for personal
3d printing: build your own desktop 3d scanner. In ACM SIGGRAPH 2014 Studio.
ACM, 27.

Alexander Teibrich, Stefanie Mueller, Frangois Guimbretiére, Robert Kovacs, Stefan
Neubert, and Patrick Baudisch. 2015. Patching physical objects. In Proc. UIST 2015.
ACM, 83-91.

Carlos Tejada, Osamu Fujimoto, Zhiyuan Li, and Daniel Ashbrook. 2018. Blowhole:
Blowing-Activated Tags for Interactive 3D-Printed Models. In Proc. Graphics Interface
2018. 131 - 137.

Weiming Wang, Haiyuan Chao, Jing Tong, Zhouwang Yang, Xin Tong, Hang Li, Xiuping
Liu, and Ligang Liu. 2015. Saliency-Preserving Slicing Optimization for Effective
3D Printing. Comput. Graph. Forum 34, 6 (2015), 148-160.

Karin Weigelt, Mike Hambsch, Gabor Karacs, Tino Zillger, and Arved C. Hiibler. 2010.
Labeling the World: Tagging Mass Products with Printing Processes. IEEE Pervasive
Computing 9, 2 (2010), 59-63.

Karl D. D. Willis, Eric Brockmeyer, Scott E. Hudson, and Ivan Poupyrev. 2012. Printed
optics: 3D printing of embedded optical elements for interactive devices. In Proc.
UIST 2012.

Karl D. D. Willis and Andrew D. Wilson. 2013. InfraStructs: fabricating information
inside physical objects for imaging in the terahertz region. ACM Trans. Graph.
(2013).

Norman] Woodland and Silver Bernard. 1952. Classifying apparatus and method. US
Patent 2,612,994.

Sang Ho Yoon, Yunbo Zhang, Ke Huo, and Karthik Ramani. 2016. TRing: Instant
and Customizable Interactions with Objects Using an Embedded Magnet and a
Finger-Worn Device. In Proc. UIST 16.

Li Zhang, Brian Curless, and Steven M Seitz. 2002. Rapid shape acquisition using color
structured light and multi-pass dynamic programming. In Proc. 3D Data Processing
Visualization and Transmission. IEEE, 24-36.

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Lee Zucheul, Daehwan Kim, and Yeong-il Seo. 2016. Variable slicing for 3d modeling.
US Patent App. 14/964,916.

LayerCode: Optical Barcodes for 3D Printed Shapes
Henrique Teles Maia, Columbia University

Dingzeyu Li, Adobe Research

Yuan Yang and Changxi Zheng, Columbia University

N o N N. -
- Ay
Qe R YTy

Fig. 24. A visualization of tagged meshes tested in our database.

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:15

A IMAGE PREPROCESSING FOR DECODING

At decoding time, we image a LayerCode carrier object using a
conventional camera. The image is preprocessed (as outlined in §4)
before feeding into the decoding algorithm. Here, we describe the
image preprocessing details.

For an object made by a two-color printer, we use intensity thresh-
olding to clean highlights and shadows. The remaining pixels are
those on the black and white coding layers, and clearly visible from
the camera. To label what type of coding layers each pixel is in, we
perform a two-way clustering through a Gaussian mixture model
in a sliding window; each window produces the label of its central
pixel. We found that a better labeling quality can be achieved by
repeating this clustering step three times, each with different sliding
window sizes (50 X 50px,100 X 100px, and 200 X 200px), followed by
a pixel-wise majority vote of the labels. It is also helpful to convert
images to the LAB/HSV color space to focus solely on the color
channels of AB when clustering, removing some of the uncertainty
added by lighting.

Labeling images of objects with varying layer heights but a uni-
form color (Figure 14-e) requires an altogether different approach.
Once the background is removed, the image is effectively grayscale,
since the object is 3D printed with a single-color material. In this
case, a series of morphological operations are applied on the image,
including bottom and top hat filtering, in order to first increase the
contrast of the image. Once contrast is improved, we use a bilateral
filter [Paris et al. 2009] to blur the black and white layer regions with-
out blurring their boundaries. We rescale, threshold, and clean the
image, labeling of regions ready for decoding. Figure 14 illustrates
these steps.

Lastly, labeling images of objects with NIR materials is to a large
extent similar to processing bi-colored object images. NIR images
come in grayscale, and our first step is to increase its contrast,
followed by removal of highlights and shadows. Afterward, we
classify the remaining pixels into two types corresponding to the
black and white coding layers, and this step is similar to bi-colored
object images.

B DETAILS ON DEPTH RECOVERY

Each selected image pixel from layer boundaries forms a ray u =
[Xc, Yc, 1]T in the camera reference frame. The origin of the camera
reference frame is the focal point of the camera, and each pixel in
the camera can be represented by the ray denoted above. Assuming
this coordinate system, we next calibrate and solve for the 3x3
intrinsic matrix K of the camera. With this in hand, we can invert
camera specific parameters (including focal length, pixel size, lens
characteristics) to determine where pixels project in space.

Next we must take into account the extrinsic parameters that
relate the camera to the world coordinate frame. By looking at a
marker in the scene with known properties, such as a checkerboard,
we can extract the rotation R and translation t between the world
coordinate frame and the camera coordinate frame.

Thus, if the camera lives at

qw = —RtT (3)

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

1:16 « Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng

in the world reference frame, we can then similarly write the camera
ray incident on our pixel as:

vy = RK lu, (4)

This leaves us only to solve for where along this ray A, from the
camera and through the pixel, does an intersection occur with a
given plane height in the scene. We can estimate each plane height
by inverting our LayerCode decoding to approximate lengths. Con-
cretely, if the world coordinate frame and our printing layers align
in direction, these planes can be described by the normal vector

n=(0,0,1) (5)
and the point in space
pw = (0,0, height) , (6)

which, when combined with the ray emanating from the camera
position q.y, is known:

A= nT(pw — qw))
nTo,,

and thus we solve for the world coordinate of the pixel at:

Pp = qw + Avy,. ®)

In any case, the position of the camera needs to be known in space,
relative to the world coordinates (or table). A marker is needed in
order to compute this extrinsic camera calibration, although not
needed for reconstructing the points otherwise. If the camera’s
position relative to the table is known through a calibration, or
computed and fixed for the images used, then the marker is not
necessary for recovering the LayerCode shape.

C VARIABLE LAYER HEIGHT PRINTING

Although some 3D printing platforms support the use of varying
layer heights, it is often limited in capacity if available to the user.
However, across all 3D printer models, instructions are conveyed
from staging software to printer hardware through print files com-
posed of G-code commands. In practice, we achieve alternating
layer heights by directly manipulating the underlying G-code.

For a given print, the G-code files are similar in structure regard-
less of layer height settings, and so files directing fine and coarse
versions of a print may be spliced together to achieve a print which
alternates for each coding layer. Depending on the printer specifica-
tions, other settings might be adjusted accordingly: when working
with Fused Deposit Modeling (FDM) printers, it may also be neces-
sary to adjust the nozzle temperature when switching layer heights
in order to ensure a successful print.

For FDM printers, G-code instructs the path of the nozzle head
throughout printing, specifying different paths and height adjust-
ments for every slice per the layer-height specific settings. This
makes it possible to interweave G-code files at the termination of
each layer, when the printer nozzle lifts to the next layer. Splicing
together the two G-code files at this intermission will cause them
to continue each other’s print, allowing for seamless alternating
print properties, so long as the files are combined at the appropriate
layers heights. Due to their thickness differences, each G-code file
will require a different number of layers to achieve a certain print
height, and thus ensuring these heights match is crucial for print

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

continuity. In practice, this is guaranteed by choosing the thick layer
height as an integer multiple of the thin layer height.

This ensures the printer deposits at the appropriate height from
the nozzle onto the piece. If care is not taken to align layer-heights
directly, or too much space is given when layers get deposited,
then visible gaps and artifacts at the swaps partitions may appear.
Alternatively, if not enough space is given, the head will sink into
printed material, which can roughen the look of the printed material
and encourages jamming of the print head.

D INVISIBLE NEAR-INFRARED PRINTING

D.1 Dye Mixing

Exact measurements between NIR-dye and resin depend on the mix-
ing properties and spectrographic fingerprint of the NIR-dye. In our
case, we found 25-50 milligrams of dye dissolved and mixed evenly
(after stirred for one day using a magnetic stirrer) per 100ml of
PR-57 CMYK+W resin, and this formula generates a strong enough
disparity in the printed coding layers. In experimenting with differ-
ent levels of NIR signatures, we explored the use of three types of
dyes that peak their absorption coefficients at 828nm, 912nm, and
1031nm, respectively. Although NIR-dyes peak in the Near-Infrared
electromagnetic range, they may still express some weak signal in
the visible light range, and thus discolor the resin they mix with.
Therefore, once the dye is mixed with the resin, achieving an invisi-
ble LayerCode requires only the color of the resin without dye to
match that of the NIR-dye resin mixture.

D.2 Firmware & Hardware Modifications

In order to automate the printing and swapping process, a multi-
material resin based printer is required. This presents a significant
(and often prohibitive) financial and technical barrier to experimen-
tation and exploration. Here, we show how to upgrade a low-cost
and simple-to-use SLA printer to exhibit multi-resin functional-
ity. Primarily, this involves replacing the rotating tray platform of
the Autodesk Ember printer, along with updating its firmware to
integrate novel swap commands, as shown in 15.

Careful disassembly of the printer allows the removal of the
existing tray platform. A substitute extended platform should then
be milled from aluminum, or other similarly heavy composite, so
as to avoid altering the load on the motors. Notably, replacement
platforms that were printed in ABS plastic were found to deflect
under the weight of the resin trays, leading to numerous difficulties
and failed prints. If the two resin tray windows, which are supported
by the resin tray platform, are not level with one another, then
between tray swaps the print bed may differ in height, and miss
layers which attempt to print. This is similar to misaligned G-code
heights in variable-layer-height printing, but far more difficult to
recover, since in this case gravity fights against the print progression.

Finally, a firmware update is needed to introduce a swap com-
mand, which lifts the build platform to a safe height prior to rotating
to another tray. This command concludes the swap by lowering
down the build platform to its previous height on the complemen-
tary resin tray, where the print may continue to progress as if no
swap had occurred. Once printer modifications are completed, two
resin trays may be retrofit within the printer chamber on the new

rotation plate, each accessible via swap commands enabled in the
updated firmware. Then, during the printing, one may trigger a
desired swap at the desired slices via a secure shell connection or
by depositing a formatted CSV file along with the model images for
printing.

Please refer to our video for a quick demonstration of this hard-
ware modification process. Given the precision required to modify
the Autodesk Ember for multi-resin use, we plan to release all the
CAD models, designs, instructions, and code involved in amending
the printer.

D.3 Observing NIR LayerCode Tags

Once printed, the final piece appears smooth and uniformly colored
to the naked eye in visible light. Since most light bulbs are tuned to
illuminate the visible light range, turning lights on or off has little
effect on the visibility of NIR LayerCode. However, this does not
guarantee the NIR layering will become apparent when captured
through a NIR filter, since there must be some appropriate NIR light
illumination to introduce the contrast. In order to best expose the
LayerCode while indoors, the use of LED NIR lights is recommended
to illuminate the scene and printed object. For optimal conditions,
choose LEDs that are similar in wavelength to the peak of the NIR.
850nm LED for 828nm Dye, 950nm LED for 912nm Dye, etc. Under
a NIR camera, the layers printed with NIR-Dye will appear darker,
since they are designed to absorb NIR radiation at given frequencies.
In outdoors, natural sunlight can produce enough NIR excitation to
reveal the LayerCode pattern, without resort to NIR lights.

LayerCode: Optical Barcodes for 3D Printed Shapes « 1:17

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Encoding
	4 Decoding
	4.1 Graph Construction
	4.2 Decoding through Graph Traversal
	4.3 Early Termination
	4.4 Extension: Depth Recovery

	5 Fabrication
	5.1 Two-Color Fabrication
	5.2 Fabrication with Variable Layer Heights
	5.3 Fabrication with Invisible Near-Infrared Dye
	5.4 Discussion on Implementation and Application

	6 Evaluation on Virtual Dataset
	6.1 Database Construction
	6.2 Results Statistics

	7 Limitations & Concluding Remarks
	Acknowledgments
	References
	A Image Preprocessing for Decoding
	B Details on Depth Recovery
	C Variable Layer Height Printing
	D Invisible Near-Infrared Printing
	D.1 Dye Mixing
	D.2 Firmware & Hardware Modifications
	D.3 Observing NIR LayerCode Tags

