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Abstract

Purpose — This paper aims to present a new method, named as augmented polynomial dimensional
decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design optimization
(RBDO) subject to mixed design variables comprising both distributional and structural design variables.

Design/methodology/approach — The method involves a new augmented PDD of a high-dimensional
stochastic response for statistical moments and reliability analyses; an integration of the augmented PDD,
score functions, and finite-difference approximation for calculating the sensitivities of the first two moments
and the failure probability with respect to distributional and structural design variables; and standard
gradient-based optimization algorithms.

Findings — New closed-form formulae are presented for the design sensitivities of moments that are
simultaneously determined along with the moments. A finite-difference approximation integrated with the
embedded Monte Carlo simulation of the augmented PDD is put forward for design sensitivities of the failure
probability.

Originality/value — In conjunction with the multi-point, single-step design process, the new method
provides an efficient means to solve a general stochastic design problem entailing mixed design variables
with a large design space. Numerical results, including a three-hole bracket design, indicate that the proposed
methods provide accurate and computationally efficient sensitivity estimates and optimal solutions for RDO
and RBDO problems.

Keywords Augmented polynomial dimensional decomposition, Distributional design variables,
Stochastic design optimization, Structural design variables
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1. Introduction

Robust design optimization (RDO) (Taguchi, 1993; Chen et al, 1996; Du and Chen, 2000;
Mourelatos and Liang, 2006; Zaman et al., 2011; Park et al, 2006) and reliability-based
design optimization (RBDO) (Enevoldsen and Serensen, 1994; Kuschel and Rackwitz, 1997,
Tu et al.,, 1999; Chiralaksanakul and Mahadevan, 2005; Agarwal and Renaud, 2006; Liang
et al., 2007; Du and Chen, 2004; Rahman and Wei, 2008) are two important prototypes for
solving engineering design problems in the presence of uncertainty, as manifested by
probabilistic descriptions of the objective and constraint functions. Intended for reducing
the variability of the system performance, RDO minimizes the propagation of input
uncertainty to output responses of interest, leading to an insensitive design. In contrast,
RBDO aims to find an optimal design with low probabilities of failure corresponding to


http://dx.doi.org/10.1108/EC-10-2017-0409

some critical failure mechanisms. With new formulations and methods appearing almost
every year, RDO and RBDO, in conjunction with finite-element analysis (FEA), are
becoming increasingly relevant and perhaps necessary for design of aerospace, civil,
microelectronics and automotive structures and systems (Gu et al., 2013; Sun et al., 2018; Sun
etal, 2017, Sun et al., 2017; Zhang et al., 2018).

In engineering design, the design variables can be grouped into two principal classes:

(1) distributional design variables; and
(2) structural design variables.

A distributional design variable can be any distribution parameter or a statistic — for
instance, the mean and standard deviation — of one or more random variables describing the
performance function of a complex system. In contrast, a structural design variable can be
any deterministic parameter of the performance function. For solving a general RDO/RBDO
problem, not only the distributional design variables but also the structural design variables
should be considered. A design problem simultaneously accounting for both classes of
design variables is referred to as the mixed design variable problem in this paper. However,
much of the existing research, whether in conjunction with RDO or RBDO, focuses strictly
on one of the two classes of design variables. For example, the existing design optimization
methods, such as the Taylor series or perturbation expansions (Huang and Du, 2007), the
point estimate method (Huang and Du, 2007), polynomial chaos expansion (Wang and Kim,
2006), the tensor-product quadrature rule (Lee et al, 2009), meta-model and kriging (Sun
et al., 2018; Zhao et al., 2011; Sun et al., 2011) and dimension-reduction methods (Lee et al.,
2009; Lee et al., 2008) for RDO, and the first-order reliability method (FORM) or FORM-based
methods (Enevoldsen and Serensen, 1994; Kuschel and Rackwitz, 1997; Tu et al, 1999;
Chiralaksanakul and Mahadevan, 2005; Agarwal and Renaud, 2006; Liang et al, 2007; Du
and Chen, 2004; Rahman and Wei, 2008) and decomposition-based methods (Rahman and
Wei, 2008; Lee et al, 2008; Lee et al, 2012) for RBDO, are all concentrated on solely
distributional design variables. More recently, the polynomial dimensional decomposition
(PDD) (Rahman, 2008; Rahman, 2009), derived from the ANOVA dimensional
decomposition (Efron and Stein, 1981), was developed to furnish accurate RDO/RBDO
solutions to high-dimensional problems. The associated RDO/RBDO algorithms (Ren and
Rahman, 2013; Ren et al., 2016) are based on PDD-based stochastic analysis (Rahman, 2009,
Rahman and Ren, 2014), which integrates PDD and score function to determine stochastic
design sensitivities concurrently from a single stochastic simulation or analysis. The
algorithms also facilitate a multi-point, single-step design process, affording the ability to
solve industrial-scale design problems. However, these relatively newer methods are also
limited to solving RDO/RBDO problems involving distributional design variables only.
Indeed, there is a lack of unified frameworks for tackling stochastic design optimization
problems in the presence of both distributional and structural design variables. Therefore,
the work described in this paper delves into a general stochastic design optimization
involving mixed design variables.

This paper presents a new method for RDO and RBDO involving both distributional and
structural design variables. The method comprises:

¢ a new augmented PDD of a high-dimensional stochastic response for statistical
moment and reliability analyses;
* new formulations for design sensitivity analysis of the first two moments, which

integrate not only the score functions but also the derivatives of orthonormal basis
functions for the sensitivity with respect to structural design variables;

Design
variables

2655




EC
35,8

2656

« finite-difference approximations integrating the augmented PDD for calculating the
sensitivities of the failure probability with respect to both distributional and
structural design variables; and

e standard gradient-based optimization algorithms, encompassing a multi-point,
single-step design process.

Section 2 formally defines general RDO and RBDO problems involving mixed design
variables, including their concomitant mathematical statements. Section 3 introduces the
augmented PDD and its truncation in terms of both input random variables and new
random variables affiliated with the distributional and structural design variables. The
section also explains how the truncated augmented PDD leads to stochastic analysis
consisting of analytical formulae for evaluating the first two moments and the embedded
Monte Carlo simulation (MCS) for reliability analysis. Section 4 demonstrates that the effort
required to calculate statistical moments or failure probability also delivers their design
sensitivities. Section 5 introduces a multi-point, single-step iterative scheme for RDO and
RBDO and elucidates how the stochastic analysis and design sensitivities are integrated
with a gradient-based optimization algorithm. Section 6 presents four numerical examples
involving mathematical functions or solid-mechanics problems and contrasts the accuracy
and computational efforts of the proposed methods for sensitivity analysis of moments and
reliability as well as solutions of two RDO/RBDO problems, all entailing mixed design
variables. Finally, the conclusions are drawn in Section 7.

2. Design under uncertainty
Let N, Ny, R and R] represent the sets of positive integer (natural), non-negative integer,
real and non-negative real numbers, respectively. For & € N, denote by R” the k-dimensional
Euclidean space and by N’é the k-dimensional multi-index space. These standard notations
will be used throughout the forthcoming sections.

Consider a measurable space (Qq, Fq), where Q4 is a sample space and Fq is a o-field

on Q4. For M e Nand N € N, let d7 = (d, s) = (dl,...,de,sh...,sMg)T € D be an
RM -valued design vector with non-empty closed set D C RM, where My, M, € N and M =
M, + M, and let X := (Xl,...,XN)T : (Qq, Fa) — (RY,B") be an RM-valued input
random vector with B" representing the Borel o-field on RY, describing the statistical

uncertainties in loads, material properties and geometry of a complex mechanical system.
The design variables are grouped into two major classes:

(1) distributional design vector d with dimensionality M and
(2) structural design vector s with dimensionality M.

A distributional design variable dy, k = 1, ..., M can be any distribution parameter or a
statistic — for instance, the mean and standard deviation — of one or more random variables.
A structural design variable s,, p = 1, ..., M,, can be any deterministic parameter of a

performance function. Defined over (Qq,Fq), let {Pq:F — [0,1]} be a family of
probability measures. The probability law of X is completely defined by a family of the joint
probability density functions (PDF) {fx(x;d), x € RV, d € D} that are associated with
corresponding probability measures de, de [RMd}, so that the probability triple
(Qq, Fa, Pq) of X depends on d.

Let y(X;d, s), /= 0,12, ..., K, be a collection of K + 1 real-valued, square-integrable,
measurable transformations on (Qq, Fq), describing relevant geometry (e.g., length, area,
volume, mass) and performance functions of a complex system. The function



o (IRN BY ) — (R, B) in general is not only an explicit function of distributional and
structural design variables d and s but also implicitly depends on distributional design
variables d via the probability law of X. There exist two prominent variants of design
optimization under uncertainty, described as follows.

2.1 Robust design optimization

The mathematical formulation of a general RDO problem involving an objective function
¢o : RM — R and constraint functions ¢; : RY — R, where /=1, ..., Kand 1 = K < oo,
requires one to:

) Edb)o(x; d,s)] - Vvarg[y(X;d,s)]
N

* )

0 99

subjectto ¢(d,s) := a;\/varg[y;(X;d, s)] — Eq[y(X;d,s)] =0,
I=1,... K,

A=y =dpy, k=1,..., My,

SpL=S=Su,p=1,...,M;,

ming g cpepy C0(d,s) = w

where Eq[y(X;d,s)] ::/ y(x;d,s)fx(x;d)dx is the mean of y(X;d, s) with Eq
RY

denoting the expectation operator with respect to the probability measure fi(x;d)dx of X;
varg[y;(X;d,s)] := Eq [{y,(X; d,s) — Eq[n(X;d, s)]}z} is the variance of y(X;d, s);
wi € Ry and wy € Ry are two non-negative, real-valued weights, satisfying w; + w, = 1;
uo € R\{0} and o€ R{\{0} are two nonzero, real-valued scaling factors;
o €RJ,1=0,1,...,K, are non-negative, real-valued constants associated with the
probabilities of constraint satisfaction; dj,; and dj,; are the lower and upper bounds,
respectively, of dj; and s, ; and s, ;7 are the lower and upper bounds, respectively, of s,.

In equation (1), co(d, s) describes the objective robustness, and ¢(d, s), [ =1, ..., K,
describe the feasibility robustness of a given design. Evaluations of both objective
robustness and feasibility robustness, involving the first two moments of various responses,

are required for solving RDO problems, consequently demanding statistical moment
analysis.

2.2 Reliability-based design optimization
The mathematical formulation of a general RBDO problem involving an objective function
¢o : RM — R and constraint functions ¢; : RY — R, where /=1, ...,Kand 1 = K < oo,
requires one to:
min(ds)eDgRM co(d, s)
subjectto ¢(d,s) := Pq[X € Qp(d,s)] —p;=0,1=1,... K,
dr=dr=dyy, k=1,...,My,
SL=S=Spu, p=1,..., M,

where Qr; (d, s) = Q is the /th failure set that, in general, may depend on d and s, and
0=p;=1,/=1,... K, are target failure probabilities.
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In equation (2), the objective function ¢ (d, s) is commonly prescribed as a deterministic
function of d and s, describing relevant system geometry, such as area, volume and mass. In
contrast, the constraint functions ¢/ (d, s),/=1,2, . . ., K, are generally more complicated than
the objective function. Depending on the failure domain Q;, (d, s), a component or a system
reliability analysis can be envisioned. For component reliability analysis, the failure domain
is often adequately described by a single performance function y; (X;d, s), for instance, Q;
(d, s):= {x:y(x;d, s) < 0}, whereas multiple, interdependent performance functions y;; (x;d,
s), i = 12, ..., are required for system reliability analysis, leading, for example, to Qg
(d, s):= {x: U, y: (xd, 8) < 0} and Qp, (d, s):= {x: N;y;; (x;d, s) < 0} for series and parallel
systems, respectively.

The RDO and RBDO problems described by equations (1) or (2) entail mixed design
variables, and, therefore, they constitute more general stochastic design problems than those
studied in the past (Taguchi, 1993; Rahman and Wei, 2008; Huang and Du, 2007; Lee et al.,
2009; Lee et al., 2008; Lee et al., 2012; Ren and Rahman, 2013; Ren et al., 2016). Solving such
an RDO or RBDO problem using gradient-based optimization algorithms mandates not only
statistical moment and reliability analyses but also the gradients of moments and failure
probability with respect to both distributional and structural design variables. The focus of
this work is to solve a general high-dimensional RDO or RBDO problem described by
equations (1) or (2) for arbitrary square-integrable functions y; (X;d, s),/=0,1,2, ..., K, and
arbitrary probability distributions of X, provided that a few regularity conditions are met.

3. Stochastic analysis
3.1 Augmented polynomial dimensional decomposition
Consider two additional measurable spaces (Q;, 1) and (Qq, F2), where Q; and Q, are
two sample spaces and F; and F, are two o-fields on Q; and Qg, respectively. Let
D= (lz;l Da,)" : (Qu, Fr) — ERMd BY) and S:= (S o Su,)" 1 (Qa, Fa) —
(RM ) be two afﬁhated random vectors with BY and B": representlng the Borel
o-fields on RM and RY: | respectively. The fictitious probability laws of D and S are
completely deﬁned by selectlng two families of the joint PDFs {fp(d; pp), d € R} and
{fs(sins), s € RM E with probability measures P; and P», and corresponding mean vectors
} = np and E,[S] = pg, respectively.

Introduce an augmented measurable space (Q4, F 1), where Q: = Qq x O X Q, is the

augmented sample space and F4 = Fq x F1 x Fo is the corresponding o-field on Q4. Let

y(X;d, s): = y(X7, ..., Xi; d, s) represent any one of the random functions y, [ =0,1, .. ., K,

introduced in Section 2. Then y(X;D, S): = y(Xj, . . ., Xj; D, S), obtained by simply replacing
deterministic vectors d and s with random vectors D and S in ¥(X;d, s), has the same
functional form of y(X;d, s). Let L£2(Qq, Fa4,P4) represent a Hilbert space of square-
integrable functions ¥(X;d, s) with respect to the probability measure P4 = Pq x P; X Py
supported on RY* . Assuming independent coordinates, the joint PDFs of X, D, and S are
expressed by the products:

fa(x,d,s) = fx(x;d)/p(d; pp)fs(S; Bs)

N M, M ®3)
= Hf)g(xi; d)Hth (d; HD)Hfsp (Spi Ms);
i=1 k=1 =1

of margmal PDFs fx : R — R} of Xj, fp, : R — Ry of D, and fs, : R — Ry of S,
= SN R=1,..., M, andp 1, ..., M. Then, for three given subsets # = {1,..., NV},
v s {1 L Mg, andw ={1,...,My}:



|1 Jo] ||

Suow (X dy, 8y) = HfXLq x@,v Hfl),, dk 7ILD HfS(“ Sqii Ms) @)
r=1
defines the marginal den51ty function of the subvector

(Xl»l, . >XzWDk1, .. Dk‘ 1 Spys ey, ) , where | - | denotes cardinality.
Let {v,;, (Xi:d):jy = 0.1,...}, {dby, (Do smp); =0,1,...} and {@p, (Spins);
n=0,1,.. } be three sets of univariate orthonormal polynomial basis functions in the
Hilbert spaces Ls(Q;, a,Fi a,Pia), L2(Q1s Fro1, 1) and  Lo(Q, 2, Fp, 2, P, 2),
respectively, which are consistent with the probability measures P; g, P, 1 and Py »,
respectively, where i, = 1, .., N,k =1, .., Mg, and ¢, = 1, ..., M. For given
FAu={n,....0r €{L,....N},  dF#v="_{k,....ky} C{l,..., My}  and
Q #w={p1,... .} S {1,.... M}, define X three  associated multi-indic‘els
v w
J\u\ = (]17 ..7]‘14‘) S N ‘ 1\v| = (ll,... 71\”\) S NO and ny, = (nl, e ,nw) S NO .
Denote the product polynomlals by:

1 u=¢,
)l
Vi, X = Ty (Xid) @ #u= ity ig} € {1, N}, ©)
q=1
1 V=,
|v|
d,; = 6
Py (o) =3 Ty, (dimp) @ #0= (.} C {1 My}, ©
r=1
and
1 w=J,
Pun,, (Sw§ HS) = A . _ @)
] Hg"mnt(sprvus) @#w—{pl,,pw}g{l,,Ms},
t=1
which form three orthonormal basis functions in £2( ful 219 a4, X ‘ 1 1 Fids X l,l P; d),

£2( 11, % x” |1_7:k 1, % Pk,.,1) and ﬁ2(><‘;ﬂl§2ph2, thlfphz, xtzlet‘g),respectlvely.

As the PDF of the subvector (Xiyy - X}M,Dk],...,Dk‘r‘,Spl,...,SI;M)T is separable
(independent), the product polynomial:

lpuij‘u‘lh,‘n‘w‘ (Xuv DU7 Sw) = lpuj‘u‘ (XM’ d) (bvl‘l,‘ (dﬂ; uD) qunw (Sw; uS) (8)

is consistent with the PDF fm,w (xu, d,, s,,) and constitutes an orthonormal basis
in [:2( H Qth719k1X 1y, 2, X Hlf:lqurl]'—klx 1 F 2, X HPd><l,v‘l
Pk 1 X PP/ )

The augmented PDD of a square-integrable function y represents a hierarchical
expansion:
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in terms of a set of random multivariate orthonormal polynomials of input variables with
increasing dimensions, where:

o) = [ yixid )i (x.d. )dxddds (10
and
CMUWi\u Lpmyy (d, pp, lls);Z/RMMy(X; d,s) (pujw (x,;d) ¢le (dy; np)
X @un,,, (Sws g )fa(x,d,s)dxddds, 11)

wCA{L,...,NhoC{l,.... My}, w C{1,..., M}, |u| + |v| + |w| > 1,

Jeel

j‘u‘ S Ngt‘,lw S Ng”‘,n‘w‘ S NO ,j],...,].‘u‘,ll,...,Z‘U‘,Vl],...ﬂ’l‘w‘ 7&0

are various expansion coefficients. The inner sum of equation (9) precludes
Jseeosdu 70, b, 0y #0, and ny,...,my, # 0, that is, the individual degree of
involved variables cannot be zero as Vi, (Xy;d), ¢, Dvipp) and @, (Swips) are
zero-mean strictly |u|-variate, |v|-variate and |w|-variate functions, respectively. Derived
from the ANOVA dimensional decomposition (Efron and Stein, 1981), equation (9) provides an
exact representation because it includes all main and interactive effects of input and affiliated
variables. For instance, |#| + [v] + |w| = 0 corresponds to the constant component function y,,
representing the mean effect of y; || + |v| + |w| = 1 leads to the univariate component
functions, describing the main effects of input and affiliated variables; and
lu| + o] +|w| =S,1 < S=N+M, results in the Swvariate component functions,
facilitating the interaction among at most S input and affiliated variables. The augmented PDD
expansion in equation (9) can be used to reproduce the function y(X;d, s) by simply replacing
the random vectors D and S in equation (9) with deterministic vectors d and s, that is:

¥(X;d,s) = yz(d, np, ng) +

Cuij\u Ly (d7 D, lls) lpujw (Xm d) (ZSUIM (dv; uD) @wn‘w‘ (Sw; pS)' (12)

3.2 Truncated augmented polynomial dimensional decomposition approximation

The augmented PDD in equations (9) is grounded on a fundamental conjecture
known to be true in many real-world applications: given a high-dimensional function y,
its (Ju| + |v] + |w])-variate component functions decay rapidly with respect to |u| + |v] + |w| =0,
leading to accurate lower-variate approximations of y. Furthermore, the largest order of



polynomials in each variable can be restricted to a finite integer. Indeed, given the integers
0=S<Nand 1 =m < oo for all 1 = |u| + |v| + |w| = S and the co-norms
1=/[jyll := max (15 sdig) =m, 1=yl = max(h,...,l,)<m  and
1=||n|, := max (M, .., my|) =m, the truncated augmented PDD:

j}S,m(X§ D, S) :yQ(da Hp, HS)+

>

wC{l,... .N}vC{l,... M} i € N1y € Ny, e N
wC A1, M} 1= ul + M + [w]=S ' H]\u\Hx—,v”l\b\H gyl =m
J1y- - 7]\u|7lla . l\v\ Ny Ny 3‘& 0
Cuij‘u‘l‘y‘n‘w‘ (d7 Ip; uS) l//ujw (XM7 d) d)vl‘,“ (Dﬂ; “D) gown‘w‘ (SW7 HS)7 (13)

leads to the S-variate, mth-order augmented PDD approximation, which for S > 0 includes
interactive effects of at most S input and affiliated variables, on y. It is elementary to show
that when S — N + M and/or m — oo, yg,, converges to y in the mean-square sense,
generating a hierarchical and convergent sequence of approximations of y. The truncation
parameters S and 7 depend on the dimensional structure and nonlinearity of a stochastic
response. The higher the values of S and s, the higher the accuracy, and also the
computational cost that is endowed with an Sth-order polynomial computational complexity.
Simply replacing the random vectors D and S in equation (13) with deterministic vectors d
and s renders an S-variate, zth-order augmented PDD approximation:

yS,m(X; da S) = y@(d7 Hp, "S)+

a= {1 ----- NEvC{L, .. My} i € N1, € Ny, € N
wC AL MY 1=l + o] + w] =S _ M3 locs el Hmage o = 2
Jiy- - 7]\u|7117' <. 741‘\7”17 (RN :nlw\ # 0
Cuij‘u‘l‘v‘n‘w‘ (d7 tp, lls) ll’uj‘u‘ (Xu7 d) qbvlw (dv; uD) gown‘w‘ (Sw§ lls) (14)

of the original function ¥(X;d, s). The S-variate, mth-order augmented PDD approximation will
be referred to as truncated augmented PDD approximation in this paper. It is worth to note that
the truncation parameters S and  depend on the dimensional structure and nonlinearity of a
stochastic response. In the case that the dimensional hierarchy or nonlinearity is not known a
priori, an adaptive-sparse approach (Ren et al, 2016; Yadav and Rahman, 2014) is suggested to
determine the truncation parameters adaptively and automatically.

3.3 Statistz'cal moment analysis
Let m?”)(d, s) := Eq[y"(X;d,s)], if it exists, define the raw moment of y of order 7, where
7 € N. Given an S-variate, mth-order PDD approximation yg,,(X;d,s) of yX;d, s), let

ﬁ/t(sr;n(d, s) := Eq [ygﬁm(x; d, s)} define the raw moment of g, of order 7. The following

paragraphs describe the explicit formulae or analytical expressions for calculating the first
two moments by the PDD approximation.

Applying the expectation operator Eq on yg,(X;d,s) and j%‘m (X;d,s), and
recognizing the zero-mean and orthonormal properties of orthonormal basis, the first and
second moments of the S-variate, mth-order augmented PDD approximation are:
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EC 7/%\(9171)7, (d7 S) = Eq D)S,m (X7 d7 S)} =V (da Hp, "S)+

35,8
wC{l,....N},vC{l,...,Ms},wC{1,..., M} ju € Nt‘f“]\v\ c Ng",nw c Nl)zc\ 15
[t = 0,1=[uef + |v] + [w] =S i lloo s 1ol 100l = 122 (15
2662 jl,...,]’w,h,...,lm,?’ll,...,nw‘#0
Cuij\u\l\v\n\w\ (d7 Ip, lls) d)vlw (dv§ “D) Puny, (Sw; HS)
and
- (2) o [ - (1) g
mS,m(d7 S) = Ed [yS,m(X; da S)} = {msm(da S)} +
4 sa(ds), (16)
wS AL NY Gy e NG il <m
I=lul=S T, S #0
respectively, where the second moment involves new expansion coefficients:
Eyy,sm(d;s) = Z Z
vl Mabow S {1 MY 1, e NI g e NPT L 0 S
1=l +Jo] + | =S B Lot g 0 (17)
Cuijw‘lh“n‘w‘ (d,pp. 1s) ¢vlw (dy; pp) ®un,, (Sw Bs);
via restructuring:
~ ~ (1
Fsm(Xid,s) =), (d,s)+
EujM.S,m (da S) lvl/ujw (XZH d) (18)
u AL N e Nyl =m
=ul=S oo 0

in terms of lﬂ“iw (X,;d). Clearly, the approximate moments in equations (15) and (16)
approach the exact moments:

mY(d,s) = Fq [y(X)] =Yz(d, up, Bg) +

19)
Cuvui P THE T (d,pp. ps) (l’vlw (dy;mp) Punyy (Sw3Ms)
Ju € N‘O”‘J‘l,\ € Ng‘v“\w\ € N‘ow‘
I VERRN [V PRy I PR Ny # 0



2
m?(d,s) == Eq[*(X;d,s)] = [m(l)(d, s)} + Z Z Eﬁlu (d,s)
wcC{l,..., N} i € NM

[u] > 1 Jlyees Jjul #0
(20)
of ywhen S — N + M and m — oo, where:
EujM (d7 S) = Z Z Cuij u‘lwnw (d, Up, “S)
pC L Mbw S {1 MY 1 e N n € N
[ee] + [o] + fow] > 1 Oy oy, mpy #0
X1, (do; D) @um,,, (Swi Bs) 1)

is again derived from restructuring equation (9) in terms of lﬁuiw (X,;d), that is:

y(X;d,s) =mV(d,s) + Z Z By, (d,8)¢5, (Xu; ). )
wC{l....N} e Ny
el =1 50y #0

The mean-square convergence of yg , is guaranteed as y, and its component functions are all
members of the associated Hilbert spaces. In other words, the mean and variance of y g, are
also convergent.

3.4 Reliability analysis
A fundamental problem in reliability analysis entails calculation of the failure probability:

PF(d, S) = Pd[X S QF(d, S)} :/RN]QF(X; d, S) X(X; d)dX =: Ed [IQF(X; d7 S)}7
23

where Q (d, s) is the failure set and Iz (x;d, s) is the associated indicator function, which is
equal to one when x €Qr (d, s) and zero otherwise. In this subsection, the augmented PDD
method for reliability analysis, which exploits the augmented PDD approximation for MCS,
is elucidated. B

Depending on component or system reliability analysis, let Qpg,, == {X:¥s,,
(de)<0} or Qg = {x: Uzysz(de <0} or QFSm:* {x: mzysz
(x;d,s) < 0} be an approximate failure set as a result of S-variate, mth-order PDD
approximations s, (X;d,s) of yX;d, s) or y;5,,(X;d,s) of y(X;d, s). Then the
augmented PDD estimate of the failure probability P«(d, s) is:

~ o1
Prsn(ds) = Ea[ly, , (Xsd.s)] = lim ZZI% (x;d,s), (24)
=1

where L is the sample size, x” is the %th realization of X, and /5 _ (x;d,s) is another
indicator function, which is equal to onze when x € Q F.5.m and zero 0tf1erw1se

Note that the simulation of the augmented PDD approximation in equation (24) should
not be confused with the crude MCS commonly used for producing benchmark results. The
crude MCS, which requires numerical calculations of y(x®;d, s) or y(x®;d, s) for input
samples x /=1, ..., L, can be expensive or even prohibitive, particularly when the sample
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size L needs to be very large for estimating small failure probabilities. In contrast, the
MCS embedded in PDD requires evaluations of simple analytical functions that stem
from an S-variate, mth-order approximation yg,, (x(l); d, s) or Yism (X(D; d, s).
Therefore, an arbitrarily large sample size can be accommodated in the augmented PDD
method.

3.5 Expansion coefficients

The determination of augmented PDD expansion coefficients v, (d) and Ci’wwj\u\l\l’\ n, (d, pp, ng)
is vitally important for moment and reliability analysis, including their design sensitivities. As
defined in Equations (10) and (11), the coefficients involve various N + M-dimensional integrals
over RN*M_ For large N + M, a multivariate numerical integration employing an N + M
-dimensional tensor product of a univariate quadrature formula is computationally prohibitive
and is, therefore, ruled out. An attractive alternative approach entails dimension-reduction
integration, which was originally developed by Xu and Rahman (Xu and Rahman, 2004) for high-
dimensional numerical integration. For calculating y, and Cmule‘l 0 this is accomplished by
replacing the NV + M -variate function y in equations (10) and (11) with an R-variate truncation of
the referential dimensional decomposition (RDD) at a chosen reference point, where R = N + M.
The result is a reduced integration scheme, requiring evaluations of at most R-dimensional
integrals, described as follows.

T N 12 ! ! 7‘ M i " "
Let c=(c,....,en)" €RY, "= (cp,...¢y,) €R™ and " =(¢,....¢
T € R which are commonly adopted as the means of X, D and S, respectively, be the

reference points. Let y (xul sy, Siy s €y ch , ciwl) represent an (juq| + |v1] + |wa))-
variate RDD component function of y(x,d, s), where u; = {1, ..., N},v; < {1, ..., M}, and
wy < {1,..., M} .Given a positive integer S = R = N + M, when y(x,d, s) in equations (10)
and(11) is replaced with its R-variate RDD approximation, the coefficients y ¢ (d, up, ps) and
Cm,wj‘u‘l‘v‘nm (d, pp, pg) are estimated from (Xu and Rahman, 2004):

Yz (d, pp, ng) =

1

£ (_1)i(N+M—R+i—1
i
=0

> wi C{1,...,N}, 01 C{1,..., My}
wi AL M} | A+ for| + ey | = R 0

’

"
/R‘”1‘+\vl‘+‘lol‘y (Xul s dvla Swy s €1y, €y s €y )fulvlwl (Xul 5 dvl s Sw, )dxulddvl dswl (25)

and
& i
Cuij‘u‘l‘r‘n‘w‘ (d, Up, HS) = Z(*l) (
=0

/ "
y(xul bl dvl I’ SW1 bl C*ul 9 C*”l I C,wl)
R\ul\ﬂvl\—\wl

N+M—R+i—1>
i

w C{1,...,N},o0 C{1,.... My}, w1 C{1,..., M}
[eer| + [o1] + Jon| = R —t,u Cun,o C o, Caon

X ll/zwwj‘u‘lmn‘u.‘ (Xu, dy, S) iy (Xuy > Aoy 5 Sy ) A%y, ddy, dsyy, (26)



respectively, requiring evaluation of at most R-dimensional integrals. The reduced
integration facilitates calculation of the coefficients approaching their exact values as R —
N + M and is significantly more efficient than performing one (N + M)-dimensional
integration, particularly when R < N + M. Hence, the computational effort is significantly
lowered using the dimension-reduction integration. For instance, when R = 1 or 2,
equations (25) and (26) involve one-, or at most, two-dimensional integrations, respectively.
For a general function y, numerical integrations are required for performing various low-
dimensional integrations in equations (25) and (26). Refer Xu and Rahman (2004) for further
details.

3.6 Computational expense
The S-variate, mth-order augmented PDD approximation requires evaluations of

SKN+M
Z ( A )mk expansion coefficients, including y¢ (d, up, us). If these coefficients are
k=0

estimated by dimension-reduction integration with R = S < N + M and, therefore, involve at
most an S-dimensional tensor product of an z-point univariate quadrature rule depending on
m, then the total cost for the S-variate, mth-order approximation entails a maximum of

S (N+M
Z ( A ) n* (m) function evaluations. If the integration points include a common point
k=0

in each coordinate — a special case of symmetric input PDFs and odd values of #— the

k=S
number of function evaluations reduces to Z (N _Z M
=0

computational complexity of the S-variate augmented PDD approximation is an Sth-order
polynomial with respect to the number of random variables or integration points. Therefore,
augmented PDD with dimension-reduction integration of the expansion coefficients
alleviates the curse of dimensionality to an extent determined by S.

)(n(m) — l)k. Nonetheless, the

4. Design sensitivity analysis

When solving RDO and RBDO problems using gradient-based optimization algorithms, at
least the first-order sensitivities of the first two moments of y(X;d, s) and the failure
probability with respect to each distributional and structural design variable are required. In
this section, a new method involving the augmented PDD, score functions and finite-
difference approximation is presented. For such sensitivity analysis, the following
regularity conditions are assumed:

(1) The design variablesd, € D, C R, k=1,...,Myands, € S, CR,p=1,..., M,
where Dy, and S, are open intervals of R.

(2) The PDF Fy(x;d) of X is continuous. In addition, the partial derivative of, (x;d)/
8dy, k= 1,..., M, exists and is finite for all x € R and d;, € D;. Furthermore,
the statistical moments of y and failure probability are differentiable functions
ofd € RM:,

(3) The performance function y(x;d, s) is continuous. In addition, the partial derivative
Ay(x;d, 8)/dsy, p =1, ..., M, exists and is finite for all x € R, d € R, and
sp € Sp. Furthermore, the statistical moments of y and failure probability are
differentiable functions of s € RY:.

(4) There exists a Lebesgue integrable dominating function z(x) such that:
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) DY <o),

r=1,2 k=1,...,M,.

ofx(x;d) | _

Io,(x;d,s) od; =z(x), 0

4.1 Sensitivity of moments

Suppose that the first-order derivative of a moment 7%(d, s), where » = 1, 2, of a generic
stochastic response y(X;d, s) with respect to a distributional design variable dk, 1=k=M,
or with respect to a structural design variable s,, 1 = p = M is sought. Taking a partial
derivative of the moment with respect to d;, and then applying the Lebesgue dominated
convergence theorem [39], which permits the differential and integral operators to be
interchanged, yields the sensitivity:

om" (d OEqly (X;d,
maék,S)_ dﬁva(dk s)] ad/ (x; d, 8)fx (x; d)dx
:/RNy(x; d,s) %;:d)fx(x; d)dx +/RN %C}j’s)fx(x; d)dx 9)

B[ ds)s (X oy (X:d,s)
Ealy (X s (] + 1| 20

with respect to the distributional design variables, provided that f,(x;d) > 0. In the last line
of equation (28), s; >(X d) := 9Infx(X;d)/dd} is known as the first-order score function
for the design variable dy, (Rahman, 2009; Rubinstein and Shapiro, 1993). Compared with the
existing sensitivity analysis (Rahman, 2009; Rahman and Ren, 2014), the second term,
Eq [8y (X;d,s) /Gd;z} appears due to the permissible explicit dependence of y on the
dlstrlbutlonal design variables.

The evaluation of score functions, ' o (X d), k=1, ..., M, requires differentiating only
the PDF of X. Therefore, the resultmg score funct1ons can be determined easily and, in
many cases, analytically — for instance, when X follows classical probability distributions
(Rahman, 2009). If the density function of X is arbitrarily prescribed, the score functions can
be calculated numerically, yet inexpensively, as no evaluation of the performance function is
involved. When X comprises independent variables, as assumed here, Infx(X;d)=

Z;jlv Infx,(x;;d) is a sum of N univariate log-density (marginal) functions of random
variables. Hence, in general, the score function for the kth design variable, expressed by:

N
alnfy (X;: d)
s (X;d) = Zl f)édk lekl X;:d), (29)

is also a sum of univariate functions s;;(X;; d) := d1n fx,(X;;d)/ddy, i = 1, ..., N, which are
the derivatives of log-density (marginal) functions. If dj, is a distribution parameter of a
smgle random  variable X;, then the score function reduces to
sd/ (X d) =0 fx, (X )/8dk =: i, (Xj,; d), the derivative of the log-density (marginal)
function of X;,, which remains a univariate function. Nonetheless, combining equations (28)
and (29), the sensitivity is obtained as:



om\"(d,s)

oy (X;d, S)]
od, '

N
= ; Ealy" (X;d, s)sy(X;;d)] + Ed[ od; (30)

Similarly, taking a partial derivative of the moment with respect to s,, yields the sensitivity:
om"(d, s) _ OBl (Xsd,s)]

8d / (x;d, s)fx(x;d)dx

aSp 8Sp
[ O(x;d,s) ‘ o | (Xd,s)
_ /RN T e d)dx = Ey [asﬁ 31)

with respect to the structural design variables, involving only one term because the PDF
f«(x;d) does not depend on s. In general, these sensitivities are not available analytically, as
the moments are not either. Nonetheless, the moments and their sensitivities, whether in
conjunction with the distributional or structural design variables, have both been formulated
as expectations of stochastic quantities with respect to the same probability measure,
facilitating their concurrent evaluations in a single stochastic simulation or analysis.

Given an S-variate, mth-order augmented PDD approximation y , (X; d, s) of ¥(X;d, s),
let 8154(57211 (d,s)/0d), and 8m(5) (d,s)/0s, define the concomitant approximations of
moment sensitivities. The following subsections describe the explicit formulae or analytical
expressions for calculating the moments by augmented PDD approximations for » =1, 2.

4.1.1 Sensitivity of the first moment. Setting » = 1 in equations (30) and (31), the
sensitivities of the first moment are:

om\W(d,s) u (X:d,s)
P = DK i)+ g 2 @
and
om(d X:-d
m( ,s>:Ed[ay( : ,s>}7 -
851, aSp

wherek=1,..,Myandp=1,... M,
For 1ndependent coordlnates of X, consider the Fourier-polynomial expansion of the kth
log-density derivative function:

50X d) = s (d +Z% )X d), (34)

Consisting of its own expansion coefficients:
Spi,gs(d) = / sei(%i; d)fx, (a3 d)d; (35)

R

and

Dyji(d) == / Rski(xi; d) o (x;; d)fx, (x5 d)d;. (36)
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The expansion is valid if s;; is square integrable with respect to the probability measure of
X;. When blended with the PDD approximation, the score function leads to analytical or
closed-form expressions of the exact or approximate sensitivities as follows.

4.1.1.1 Exact sensitivities. Restructuring equation (12) as:

yX;d,s) =mV(ds)+ > > Gild,s)yr(X;;d)
u={i}c{1,..N} j € Ny

+ E g Cuij LMy (d, pp; ng)
wC{l,...,N}hoC{l,...,M} jM c N‘Ou"]\l’\ c N(‘;",nw c N\Ow\
wCAL Mol > 1 g G i Ry 7O

X l/’ujM (Xifh d) QSUIM (dU; "D) Qownw (Sw§ u5)7 (37)

where

Gj(d,s) = > > Cuvwj 1ym (A, Bp, Bs)
w={i}, v C{1,..., My} B =i € Nply € Ng’ Ny € Ngﬂ\
wC{l,... M} Jolse Doy gy £ 0

X ¢, (doi Bp) @un, (Swi Bs), (38)

and using equations (34) and (37), the product appearing on the right side of equation (32)
expands to:

yXid,s)sy(Xad) = (mV(ds)+ D > Gi(ds)y(X;d)
u={i}c{1,..N} j € N

J#0
+ Z Z Cuij\u\l\v\n\w\ (dv Hp, lls)%jw (Xu; d)
WL NEOC (L Mab e N1, € N my € NI
w AL M il > 1 G h gy g £ 0
X1, (dv; i) @um,, (Sws Hs)) <S}a',@ (d) + ZDk,ij(d) (X d)) ; (39)
=1

encountering the same orthonormal polynomial bases that are consistent with the
probability measure f,(x;d)dx. Taking the expectation of equations (39), aided by the zero-
mean and orthonormal properties of orthonormal basis, leads to:

Ealy(X;d, s)s4(Xi;d)] = mV(d, 8)siis + > D (d)Ci(d, 9). (40)

J=1

In equation (12), the PDD coefficients y,(d, pp, us) and Cuij‘u‘]v‘n‘u“ (d, pp, pg) and the
polynomial basis l,lfujw (X,; d) are written as functions involving d; however, they should be
treated as constants when seeking the derivatives of y(X;d, s) with respect to d. Therefore,
the term 0y (X;d, s)/0dy, can be written as:



Cuij‘,,‘l‘v‘n‘w‘ (d, D, HS)

wC{l,.. NLEevC{l,... .My} Jw € N1 € N ryy € NI
wC{l.... M}, Jul + ol +w] =1 5, Tyl Doy Ny # 0
0, (dy; pp)
$ g, (X d) L) ), )

ody,

Applying the expectation operator g on dy(X;d, s)/0dy and recognizing again the zero-
mean and orthonormal properties of orthonormal basis, leads to:

E, {ay(x; ds)| _
od, N
k u=g kevC{l,..., My} ju € N(\i«\ 1y € N\i/\ My € N\w\
wC L M fu ol 0l =1 Gy B g £0 42

0¢ 4y, (du;pp)
Cuij‘u‘l‘l,‘n‘w‘ (d, Up, uS) U‘aidk Puny, (SM "S)'

Similarly, applying the expectation operator [£4 on 9y(X;d, s)/0s, and recognizing the zero-
mean and orthonormal properties of orthonormal basis, leads to:

W(X;d,s)
Ed |: 831; :|

u=FvC{l,... .M} g € N1, € NPy € NP
pewC (Lo M Jul 4ol + el =1 G b g £0 43)

IPun,, (Sui Bs)
Cm/wj‘u Lymy, (d7 Up, l‘-s) d)le (dl/; "D) ‘a‘# .

Thus, the sensitivities of the first moment are:

m( N
8d Z mP(d ssk,ngZD;”] Gi(d,s)| +
k =1 =1 w=@ kevC{l,...., My}

¢ ol (dy; mp)
C“W’j\u\l\v\“\w\ (d7 Up, HS) T QDwnM (Sw§ uS)
€ No' Loy € NGy € NG '
T eeosdlup b ey Doy N 7# 0

(44)
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0sp w=@0C {1, M} g € N Ly € N € NI
pewC {L Ml + ol + ol 21577 G b gy 0 (45)
O Pun,, (SwiBs)
2670 Cuj1ymiy (4 M, 1) B, (o ip) — 2

s J) '

representing closed-form expressions of the sensitivities in terms of the augmented PDD or
Fourier-polynomial expansion coefficients of the response or log-density derivative
functions.

4.1.1.2 Approximate sensitivities. When y(X;d, s) and s,(X;; d) are replaced with their
S-variate, mth-order augmented PDD and 2’ th-order Fourier-polynomial approximations,
respectively, the resultant sensitivity equations, expressed by:

ams (d, s) 8Ed Fsm(Xid,s)] & My
i = msm (d S Sklg + ZD}”] X Cljsm(d7 S)
+ > >
u=F kevC{l,....My} B € N1, € N my € N
wC{l,..., M}, 1<|u|+|y‘+|%‘<s [l ll oo HMH gl =m

Ty B Doy # 0O

O, (dvinp)
Cuij‘u‘l‘l,‘n‘,t.‘ (d, pp, 1s) # Pun,, (Sws Bs) (46)

and

om),(d.s)  OEq[is,(X:d,s)]
sy sy B 2 y
pewc{l,.. M}l<|u|+|v\+|w\<$
8¢’wn‘w‘ (Sw; "S)

Z CMUW]",,‘I‘L“H‘W‘ (d7 "’D7 l‘lS) ¢Z}1M (dU7 I’I'D) as )
g € N By € N iy € N !
) [ e . T
Tuseosdiuy By sy # 0
47)
where 7,,,: = min(m, m), and
Cism(d,s) = > >
u= { b C{L,... My} i =7 € No, Ly € N§ nyy € NI
wC {1, MY |ul + o] + || =S . HJHH Wl [ = 2 (48)
{1 o} lul + ol + o] 7, h, ZM My e s Mg #0

Cm}wj‘u‘l‘v‘nw (d7 D, HS) qbz)lM ( 03 uD) Qown‘w‘ (SMM ”S)



become approximate, relying on the truncation parameters S, m and ' in general. It is
elementary to show that the approximate sensitivities of the first moment, at appropriate
limits, converge to the exact sensitivities when S — N + M, m — oo, and m" — oo.

4.1.2 Sensitivity of the second moment. Setting » = 2 in equations (30) and (31), the
sensitivities of the second moment are;

om?(d,s) y(X;d,s)
8—dk ZEd (X;d,s)s(X;;d)] +2Eq {y(X, d,s) Tdk:| 49)
and
(2)
omAdys) [M ds) Ld)} 50
6517 S[)

wherek=1,.. ,Myandp=1,... M,

4.1.2.1 Exact sensitivities. Using equations (34) and (37), the first term, [Fq [yZ(X; d,s)
sz (Xi; d)], on the right hand side of equation (49), aided by the zero-mean and orthonormal
properties of orthonormal basis, can be expressed by:

Ed [y2 (Xa da S)Skl'(‘le'; d)] = m(2) (da S)Ski,@ + 27% Z Cz] d S Dkl] + Tkia
j=1

(1)

where

Jj| € N al Ay € NG il My, € N““ J\u\ c N 2| l‘L | € N“’“ ‘u | € Nl)”z‘

Tt g sl gy #0 Freeees ]M 4, lw.nl ..... nw #0

Zcuwlwljm‘l‘vl‘n‘wl‘ (d> D, uS)C”ZUZWZJWI\LZ\“WZ‘ (d7 Bp; HS)Dk,iq(d)
q=

Eq [lp“li\ul (Xu3d) d)Ull\pl\ (D, mp) Puormy, (Sw1 ; llS) l’l/uzi;l,,)‘ (Xy,:d) d)”?l\’vz\
X (sz; “D) QDwZn"w?‘ (Swz; l‘«s) lvbiq (le, d)]a (52)

requiring expectations of various products of three random orthonormal polynomials as
discussed in previous works (Ren and Rahman, 2013; Rahman and Ren, 2014).

The evaluation of the second term, Eq[y(X;d,s)0y(X;d,s)/dd], on the right hand
side of equation (49) requires restructuring equations (41) as:

I(X;d,s)
T SR IC O R D Fi, (d8) iy, (X d), (53)
WS LMY, e
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35’8 Ya,. o (d, S) = Z Z Cuij‘u‘lv‘n‘w‘ (dv Hp; "S)

u=g,kevC{l,... .My} 1, € N‘ | My € N\u\
wC AL M} fu + ol + ] =1 gy lw,nl 44444 nw;éo

ad’vl‘v‘ (d717 H‘D)

2672 X 8dk @wn‘w‘ (Sw§ uS)v (54)
and
de,uj | (d7 S) = Z Z Cuij‘u‘ll.‘n‘w‘ (d, Up, HS)
kevC{l . ,MbwC {1, M} 1, &N n, N
[oe] + o] + o] = 1 Do Do,y #0

a(ﬁvl‘ ol (dfh uD)

8dk gown‘w‘ (SMH HS) (55)

Hence, from equations (22) and (53) and using the orthonormal properties of zpujM (X5 d),

y(X;d,s
Fapxd o) 2L 0@ s o
k
+ 3 S By, (d,8)F, (ds). (56)
wC{l...N} j, enp
[u] > 1 Tlyevns Ju) # 0

Similarly, the term Eq[y(X;d,s)dy(X;d,s)/ds] on the right hand side of equation (50)
can be analytically derived as:

v(X;d,s
Eq {y(x; d.s) %} =m(d,s)yy,z(ds)
Sp
57
+ Y Y B @9)G,.,,ds), 0
uC{l,...,N} ]HEN(‘)‘
[u] =1 Tlyevns Jul #0
where
Yy, (d,s) = Z Z Cuij‘u‘l\p\nm (d,pp, ns)
wu=gvC{l,...,M} 1€ le‘,n‘w‘ c N(\)W\
pewC{l . M ful ol +wl =1 g gy #0
8§D ny, S 7“5)
X by, (doi pp) uma Cuibs) (58)

Js, b
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G, iy (d,s) = Z Z Cuij‘u‘l‘ﬂn‘w‘ (d,pp, ns)
vCA{l,...,Ms},pewC{1,..., M} 1\1\ c N\V\ My € N\w\
jul + ol + o] > 1 B Byt 70
Jde ny, (Sw§ "S)
X b, (duipp) ——5 = (59) 2673

Thus, the sensitivities of the second moment are:

om?(d,s) e
T =" [m?(d. s)siig + 2m™" (d,8)> " Ci(d, 8)Dy(d) + Ty
=1 J=1
1) (60)
(d,s)ygz(ds)+ > > E4,(d,8)Fy 4, (d,s)
wC{l N} e Ny
e =1 G g #£0
and
()
ML) @ s p@s s Y Y Egds)
D uCA{l,...,N} e N (61)

X Gsp,uj‘u‘ (d, S)v

representing closed-form expressions of the sensitivities in terms of the augmented PDD or
Fourier-polynomial expansion coefficients of the response or log-density derivative functions.

4.1.2.2 Approximate sensitivities. When y(X;d, s) and s;(X;; d) are replaced by their S-
variate, mth-order augmented PDD and s’ th-order Fourier-polynomial approximations,
respectively, the resultant sensitivity equations, expressed by:

o, (d,s) OFali5,(Xid.s)
ody, ady,

N Minin B
Z |:m5m(d S Skl@ + 2mSm d S) x Z Cz]Sm d S)Dli(d) + Tki,m,m'
=1 j=1

+m (d $)Va, z.5m(d, )

+ Z EujM,S,m (d7 S)Fdh.uj‘u‘,s,m(da S)

(62)
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y 8771592,),1 (d’ S) (9Ed {yém (X, d7 S)} (1) -

: — =mg,,(d,s)ys, g.5.m(d;S)

(931, T 88‘1,
(63)
Euj‘l,‘,S,m (d, S)Gsp,uj‘u‘,&m (d7 5)7
2674 wC AL N e N [yl =m
1=lu=S Tty dju # 0
where 7, = min(m, m'):
ydk,Q,SJn(dv S) = Z Z CMUWJ'MI\U\H\W\ (d7 Hp, "S)
u=gkevC{l,..., Mg} L € N oy € NI
wE AL M} et I | =2
1S|M| + ‘Ul + ‘wlss l],...,l‘y‘,nl,..‘,n‘w‘ % 0
ad’vl‘t (dvqu) . 64
T ®un,, (Swi Bs); (64)
Ys,.5.8m (d;s) = Z Z Cuij‘u‘l‘v‘n‘w‘ (d, pp, 1g)
w=@wC{l,..., My} T € N g € NI
pewc L., M} 8l s 0 =2
T=lul+ Pl + Wl =S 5 hy .. n #0
0@ un (Sws Ms)
. o] ' BS
X ¢vlw (df/’ uD) ) (65)

s b

de,uj‘u“,SA,m(d> S) = Z Z Cuijw Ly, (d, Up, uS)
kevC{l,.... My}, wC{1,.... M} 1y € N, ny € N

1=u| + o] + || =S ol 1l =2
11,---4,1\14,"1-,-44Jﬂw\?éo

o il (dy; pp)
>< L —

8dk gown‘w‘ (Sw; uS) ) (66)

Tki,m,m’ Zzzzzczm d S lJz d S)Dk 3 (d) 67)

l1 119 1]1 1]9 1]3

XEd[wlm( i1 )(plz]z( i) )lpljs( i;d)]’

GsmujM,S.m(da S) = Z Z Cuij‘u‘l‘u‘n‘w‘ (d, Ip, “S)

vCA{l,...,.My},pewC{1,.... M} 1 € N, ny, € N
L=l o]+ ol = 5 Ml Il =

el + ol =+ e by oy, gy # 0

8€Dwn\w\ (SwiMs)

e 69)

X ¢ ol (dl/; llD)



become approximate, relying on the truncation parameters S, 7, and »’ in general. It is
elementary to show that the approximate sensitivities of the second moment also converge,
to the exact sensitivities when S — N + M, m — oo, and m’ — oo.

4.2 Sensitivity of failure probability
Taking a partial derivative of the augmented PDD estimate of the failure probability in
equation (24) with respecttodi, k=1, ..., Mgorsy, p =1, ..., M, produces:

BPF‘SM (d, S) — aEd [QF.S,m (X’ d’ S) (69)
ody, ’ ody,
or
OPrsn(ds) _ IFd o, (Xido8)] ’ 70)
(931, ) (931,

where [Qp . (x;d, s) is the augmented PDD-generated indicator function, which is equal to
one whenx € Qp g, and zero otherwise. As [Qp . (x;d, s) depends on the design vectors d
and s and their corresponding derivatives are inﬁnite, the Lebesgue dominated convergence
theorem is not applicable. Hence, the PDD-MCS method developed in previous works (Ren et
al., 2016; Rahman, 2009; Rahman and Ren, 2014) for the reliability sensitivity of performance
functions involving solely distributional design variables cannot be applied. The following
finite-difference formulae, utilizing the augmented PDD expansion of the response function y
(X:d, s), are proposed to evaluate the sensitivity of reliability.

Assume that the design sensitivities at the design point (d, s) are sought. Let the small
perturbations of the finite-difference approximation be Adj, and As,, for the kth component of
d and the pth component of s, respectively, where k=1, ..., Myand p =1, ..., M. For the
forward finite-difference approximation, the corresponding perturbed design vectors
are d + Adye, and s + As,ep, respectively, where e, is the M,-dimensional basis
vector, in which the kth component is one and other components are zeros; similarly, e,
is the M,-dimensional basis vector, in which the pth component is one and other
components are zeros. Then, equation (14) induces two additional approximate
response functions:

Ysm(Xsd + Ady, - €;,8) = yz(d, pp, pg) +

Cuijwl‘v‘nw (d, Up, uS) wuj‘u‘ (Xm d) (71)

3 € MLy € N € N
ol Mo o =2

Tl esdiuy hs S, g # 0
X ¢vlw ((d+Adk~ek)v; "D) Pun, (Sm HS)

and
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EC Fsm(Xsd, s+ Asy - €)) = yig(d, pp, ps) +

35,8 wC{l,... Ny oC{l,.... My}
wC{1,.... M}, 1=u| + |v| + |w| =S
Cuijm‘lv‘nw (d, Ip, "S) ‘l’ujw (Xuv d) (72)

i € N§1 1y € NG ng € N
(7] [ T 23

2676 o st D 0
X Q’)UIM (dv; “D) Puny, ((S+A3p-e,,)w§ HS)a

owing to two finite-difference perturbations. The sensitivity of the probability of failure with
respect to dj, by the forward finite-difference approximation is:

OPpsm(d,s) o1
e 8 i 2| [ oy (i Ady - es)

X fx(x;d + Ady, - e)dx — / Iy, (Xs5d,s)fx(x;d)dx

F.Sm

1
A A T [Z[Q 1d+ Ady - e,5)

L
_ZIQF,SM (X(IZ); d’ S):| ’ k = 1’ e 7Md7 (73)

=1

where QF Smad and QF s are failure domains determined by ¥, (X;d + Ady, - e, s)
and yg,, (X:d,s), respectively; L is the sample size; x0) is the /;th realization of X with
respect to PDF fx:d + Adyey); and x®2) is the Lth realization of X with respect to PDF

Jx(x;d).
Similarly, the sensitivity of the probability of failure with respect to s, by finite-difference
approximation is:
OPpsn,(d,s) . 1 . .
8317 N A£1130A_% /RNIQF.S,m,As (X7 d’ s+ ASﬁ ’ ep) X(X’ d)dx

[ oy (X s (x5 )
RV T

= .
As/,—>0A$17 [}LHJQLZ |: Qp sumas (X ’d’ S+ ASP : ep)

I, ., (x(”; d, s)} . p=1,.... M, (74)

where Qp Sam.As and Qp s, are failure domains determmed by YSm (X d,s+As,- ej,) and
Ysm(Xsd,s), respectlvely, L is the sample size; and x?) is the /th reahzat1on of X with
respect to PDF fi(x;d).



It is essential to note that two additional approximate response functions in
equations (71) and (72) are derived from the existing augmented PDD approximation
used in equation (24) for reliability analysis, requiring no additional original function
evaluations. Therefore, the reliability and its sensitivities have both been formulated as
embedded MCS based on the same PDD expansion, facilitating their concurrent
evaluations in a single stochastic simulation or analysis. In addition, it is important to
note that fictitious distributions assigned to structural and distributional design
variables are only for the purpose of incorporating those variables into PDD
expansions and are involved in uncertainty quantification of response functions and
associated sensitivity analysis.

5. Proposed optimization method

The augmented PDD approximations described in the preceding sections provide a
means to evaluate the objective and constraint functions, including their design
sensitivities, from a single stochastic analysis. An integration of reliability analysis,
design sensitivity analysis, and a suitable optimization algorithm should render a
convergent solution of the RDO and RBDO problems in equations (1) and (2). However,
new stochastic and design sensitivity analyses, entailing re-calculations of the
augmented PDD expansion coefficients, are needed at every design iteration. Therefore, a
straightforward integration is expensive, depending on the cost of evaluating the
objective and constraint functions and the requisite number of design iterations. In this
section, a multi-point design process (Ren and Rahman, 2013; Ren et al., 2016; Toropov
et al., 1993), where a series of single-step, augmented PDD approximations are built on a
local subregion of the design space, is presented for solving the RDO and RBDO
problems.

5.1 Multipoint approximation
Let

D= ijlwd drr, drv] ijlws [Sp.LsSpu] R (75)

be a rectangular domain, representing the design space of the RDO and RBDO E)roblems
defined by equation (1) or equat1on (2). For scalar variables 0 < ,ij »=10< B, @ <1 and

an initial design vector d0 = (dfg,..wdl(é)ho,sigw. sM 0) the subset:

DY) = ij/[d {d;(qu By @ oy —drr)/2, d ot fJ’ (de *dkL)/Z]

—M,
X {Sﬁ — B (5p0 = $51)/2:5,0 + BG (Spv —SﬁL)/Z}

CDCRM (76)

defines the qth subregion for ¢ = 1,2, .. .. Using the multipoint approximation (Ren and
Rahman, 2013; Ren et al., 2016; Toropov et al., 1993), the original RDO and RBDO
problems in equations (1) and (2) are exchanged with a succession of simpler
subproblems, as follows.
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5.1.1 RDO.
Ed |:5}(()llg (){7 d, S)i| \/V&l’d |: (X d S):|
. ,,(q) d . NN/
ming gcpacp Co5,,(d,8) = w1 = +ws - ,
MO 0-0
subjecttoEl(gm(d, S) := al\/vard [ylsm(X d s)} [ylsm(X d S)J 0,
I=1,... K,
d}(f()) - B(q) (doy —dpp)/2=dp = d,ﬁqg + 3;‘2 (de — dii) /2,
k = 17 7Md7
sy = B (sp0 = $50)/2= 55 =5y + B (850 = 50)/2
p=1,..., M.
(77
5.1.2 RBDO.
min g g)epcp C Efém (d,s),
subjecttoz(®,(d,s) := Pa|X € Qff)5,,(ds)| —p=0
I=1,... K,
78
d}iqg - Bg}z(dk-U —dpp)/2=dy d;(eqo + B (de drr) /2, 78)
E=1,..., My,
550 — Bl (o0 = 5p1) /2= 5y =5, + B (5p0 = 5p1)/2
p=1,...,M;

In equations (77) and (78), COSm’y(()q; m El(s)m, y[Sm and Q”Sm, 1=1,2,...,K,arelocal S-

variate, mth-order augmented PDD approximations of co, ¥, ¢; ¥; and QE , respectively, at
iteration ¢, where Q}fﬁ . 18 defined using local augmented PDD approximations of ;Dl(qs) n Of

yi and dy — ,8 Ndpo — drer) /2, dgy + B (dry — dri) /2, syg — BYY (Sp — Sp) /2
and SpO + ,8 op (sl7 U—SpL) /2, also known as the move limits, are the lower and upper

bounds, respectively, of the associated coordinate of subregion D@. Hence, the original
objective and constraint functions are replaced with those derived locally from respective
augmented PDD approximations. As the augmented PDD approximations are mean-square
convergent (Rahman, 2008; Rahman, 2009), they also converge in probability and in
distribution. Therefore, given a subregion D@, the solution of the associated RDO and
RBDO subproblems also converges when S — N + M, m — oo, and m’ — oc.

5.2 Single-step procedure

The single-step procedure is motivated on solving each RDO or RBDO subproblem in
Equations (77) or (78) from a single stochastic analysis by sidestepping the need to
recalculate the PDD expansion coefficients at every design iteration. It subsumes two



important assumptions: an S-variate, suth-order augmented PDD approximation yg,, of y at
the initial design is acceptable for all possible designs in the subregion; and the expansion
coefficients for one design, derived from those generated for another design, are accurate.
Consider a change of the probability measure of (X, D, S) from f5 (x; d)/p (d; up) /s (S; us)
dxddds to fx (x; d)h (d; ui) s €s; u’sjdxddds, where (d, s) and (d’s?) are two arbitrary
design vectors corresponding to old and new designs, respectively, and u;) and l‘ls are new
mean vectors for corresponding affiliated random vector, respectively. Let {¢;;

(%) =011, i (Duimp)i =013 and {g, (Syims); me =0,
1,...} be three sets of new orthonormal polynomial basis functions consistent with the
marginal probability measures leq (xz;,; d’) dx;, of X fp, (dkr; u/D) ddy, of D, and
fsm (spl; u’s) dsy, of Sp,, respectively, producing new product polynomials:
Jue|
b, (X,;d) b, (dv; I1D> Pun,, (Sm lls> = H ij, (Xz'q; d )
qg=1
o N ,
X H D, (dk,,; HD)H Py (Spt; lls)a
r=1 =1
(79)

where @ # u ={1,.. ,N},0 #v < {1,..., My} and @ # w < {1,..., M}. Assume that
the expansion coefficients, v (d, up, ps) and Cuj‘u‘ (d, pp, pg), for the old design have been
calculated already. Then, the expansion coefficients for the new design are determined from:

soldros) <[ |

wCA{l,....N},vC{1,..., M.} G N‘ou‘yl\zr\ c N‘op‘,n\w\ c Nou'\
w C AL MY ful ol ol = 1 0 G h gy g # 0

CWWJ'WIMUM (d, pp, ng) l/’ujw (x4;d) ¢ylM (dy; pp) Puny, (Sw; M) + g (d, pp, ps)
x fx (x:d ) fp (d; p’D) s (s; p’s) dxddds
80)

and

!/ ’ !
Cuij‘u‘l‘,,‘n‘w‘ (d y Bps HS) - / N+M |: Z Z
R wC{L. NLo Sl M} e M1, € Ny e NI
w C AL MR ful ol ol = 1y h gy g # O

Cuij‘u‘l‘,,.‘n\w (d, up; ns) 'w[/uj " (x,;d) ‘lsvlw (dv; p) Pun, (SwsMs) +¥z (d, up, HS):|

i, (%) o, (dv§ u})) Pun,, (Sw; u’s)fx (x:d)fo (d; u}))fs (S; us) dxddds
(81)
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by recycling the old expansion coefficients and using orthonormal polynomials associated
with both designs. The relationship between the old and new coefficients, described by
equations (80) and (81), is exact and is obtained by replacing y in equations (10) and (11) with
the right side of equation (9). However, in practice, when the S-variate, m-th order
augmented PDD approximation [equation (13)] is used to replace y in equations (10) and (11),
then the new expansion coefficients:

Iz (d,,ll/nv",s> :/RN‘M Z Z

uC{l,....,N}, v C{1,...,My} i € N§L 1y € NG ng € NG
[l e ot o Nl = m

wC{l,..., M} 1= u| + |v| + |w| =S
Tseeosdup ey by 1y ey My # 0

X Cuij‘”‘l‘l,‘n‘w (d7 Up, "S) (/,”j\u\ (Xm d) d’vlw (dv; uD) gown‘w‘ (Sw; lls) +y®(d7 tp, HS)

o ) (i ) s (5: s ) dcddds )
and
CuijMl‘v‘nw‘ (d,7 ll;y ",S) = / Nt Z Z
R wC{l,....,NhvC{l,..., My} € NI 1, € NPy € NI

13l o I8l N1 o = m

wC{l,..., M}, 1=ul +|v| + |w| =S
Ty T s e fops 11y - oy # 0

X Cuij\u\l\v\n\w\ (d» S) ‘pujw (Xu; d) d’vlm (dv; uD) §Dwn‘w‘ (Sw; "S) T (da Hp; "S) ‘pujw (XM; d,)
% ban, (i) @um, (Ss s ) (x: ) (i ) s (35 s ) s, )

which are applicable for v = {1, ... , N}, v < {1, ..., Mz, w = {1, ..., M} and
1=<|u| + |v| + |w| = S, become approximate, although convergent. Simply replacing pp,
and u’s with d’ and s’, respectively, in equations (82) and (83) leads to the PDD
coefficients for the new design. Furthermore, the integrals in equations (82) and (83)
consist of finite-order polynomial functions of at most S variables and can be evaluated
inexpensively without having to compute the original function vy for the new design.
Therefore, new stochastic analyses, all using S-variate, mth-order augmented PDD
approximation of y, are conducted with little additional cost during all design
iterations, drastically curbing the computational effort of solving an RDO/RBDO
subproblem.

5.3 Proposed multipoint single-step design process

When the multipoint approximation is combined with the single-step procedure, the result is
an accurate and efficient design process to solve the RDO and RBDO problems defined by
equations (1) and (2). Using the single-step procedure, the design solution of an individual



RDO/RBDO subproblem becomes the initial design for the next RDO/RBDO subproblem.
Then, the move limits are updated, and the optimization is repeated iteratively until an
optimal solution is attained. The method is schematically depicted in Figure 1. Given an
initial design (do, so) a sequence of design solutions, obtained successively for each
subregion D) and using the S-variate, mth order augmented PDD approximation, leads to
an approximate optimal solution (d ,s ) of the RDO/RBDO problem. In contrast, an
augmented PDD approximation constructed for the entire design space D, if it commits
large approximation errors, may possibly lead to a premature or an erroneous design
solution. The multipoint approximation in the proposed methods overcomes this quandary
by adopting smaller subregions and local augmented PDD approximations, whereas the
single-step procedure diminishes the computational requirement as much as possible by
recycling the PDD expansion coefficients.

When S — N + M, m — oo, m’ — oo, and ¢ — oo, the moments, reliability, and their
design sensitivities by the augmented PDD approximations converge to their exactness,
yielding coincident solutions of the original RDO/RBDO problems [equations (1) and (2)] and
RDO/RBDO subproblems [equations (77) and (78)]. However, if the subregions are
sufficiently small, then for finite and possibly low values of S and 2, equations (77) or (78) is
expected to generate an accurate solution of equations (1) or (2), the principal motivation for
developing the augmented PDD methods.

The augmented PDD methods in conjunction with the combined multi-point, single-step
design process are outlined by the following steps. The flow chart of this method is shown in
Figure 2.

Step 1. Select an initial design vector (dy, Sg). Define tolerances €5> 0, €2 >0,and e3 > 0.
Set the iteration ¢ = 1, (d, s), 7 (do, s0). Define the subregion size parameters 0 < Bé )
=1, k=1,...,Mzand0 < ,8 sp =1 b= 1,..., M, describing the gth subregion deﬁned
in equation (76) Denote the subregion’s 1ncreasmg history by a set H? and set it to empty.
Set two designs (d, s)y = (dy, sg) and (do, S0y ms # (do, So) such that
I1(do, s0); — (do,S0)s sustll2 > €1. Set (d, s)( )~ (do,s0), G5 1ast = 1 and g7 = 1. Usually, a
feasible de&gn should be selected to be the initial design (do, s¢). However, when an
infeasible initial design is chosen, a new feasible design can be obtained during the iteration
if the initial subregion size parameters are large enough.

Step 2. Select (q = 1) or use (q > 1) the PDD truncation parameters S and m. At
(d,s) = (d, s)(()q), generate the augmented PDD expansion coefficients, yg(d, pp, ps)
and Cuywj‘u‘l‘v‘n‘w‘ (d,pp,png), where @ # u = {1, ... , N}, @ # v < {1, ..., M},

Contours of ¢, Contours of Augmented PDD Multipoint step

approximation of ¢y at initial o )
design (d,,s,) Optimization without
(d,$):" multipoint step
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description of the
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Figure 2.
A flow chart of the

proposed multi-point,

single-step design
process

Step 1: Initialize; set (d,s)}” = (d,,s,)- ‘

Step 2: At (d,s)ﬁ,’” , generate augmented | _
PDD approximations of responses.

Step 5: Interpolate to
obtain a new feasible
design; reduce

subregion size.

Step 3: Is new
design feasible?

Step 6: Are conditions
for enlarging subregion size
satisfied?

Step 7: Is current design in Yes

the increasing histories?

Step 8: Increase
subregion and
modify increasing

history

|| Step 9: Solve the RDO/RBDO subproblem by
single-step procedure.

@ #wC L MY, 1=l + o+ 0] =S, g lloos Ve llocs Imillc =, using

dimension-reduction integration With R=Sn=m+1, leading to S-variate, mth-order

augmented PDD approximations y; Sm(X d,s) of y(X; d, s) and ¢ Cz n(d;s)of ¢Ad, s), 1=

0,1, ..., K, in Equations. (77) or (78). For RDO, calculate the expansion coefficients of score

functions, sro(d)and D, ;(d), wherek=1,...,Mandj=1,...,m’, analytically, if possible,

or numerically, resulting in ' th-order Fourier-polynomial approximations of
Se(Xisd), k=1,..., M.

Step 3. 1f q = 1 and clSm((d s)(q)) <0forl=1,..., K, then go to Step 4. If q > 1and
qus " ((d s)<q) <0forl=1,..., K, then set (d, S)fklst (d, s); (d,s), = (d, s)0 s Aflast =
4y, qr= qand go to Step 4. Otherw1$e, go to Step 5.

Step 4. 1f H(d7 S)f - (d’ S)fJasz‘HZ <€ or ’ [COSm((d S)f) - COqglafz ((d7 S)f.,ldst):|

[Cosm () ((d, s)f)‘ < €3, then stop and denote the final optimal solution as

(&* 5*) (d, s);. Otherwise, go to Step 6.
Step 5. Compare the infeasible design (d,s), @) with the feasible design (d,s)f and
interpolate between (d,s), 7 and (ds)f to obtam a new feasible design and set it as

(d, s)(()‘”l). For dimensions with large differences between (d, s)(()q> and (d,9)f, interpolate
aggressively. Reduce the size of the subregion D@ to obtain new subregion D7V, For
dimensions with large differences between (d, s)(()q) and (d,s)f, reduce aggressively. Also, for



dimensions with large differences between the sensitivities of Cz S ((d s) ) and

~l(qu1 ((d s) ),reduce aggressively. Update = q 4+ 1 and go to Step 2.
Step 6. If the subregion size is small, that is, B dk(de drr) < €3, or

,822 (Sp.u —Sp.L) < €2,and (d, s)fk is located on the boundary of the subregion, then go
to Step 7. Otherwise, go to Step 9.
Step 7. If the subregion centered at (d, s)é’” has been enlarged before, that is,

(d, s) Je H@V then set H? = HY Y and go to Step 9. Otherwise, set

H@ = He-Du{(d,s)! }andgotoSte 8.

Step 8. For coordinates of (d s) located on the boundary of the subregion and
B dk(de dpr) < €3, oOr B 5 (Spu —Spr) < €2, increase the sizes of corresponding
co(mfl())nents of D@: for other coordinates, keep them as they are. Set the new subregion as
DY,

Step 9. Solve the design problem in equations (77) or (78) using the single-step PDD
procedure. In so doing, recycle the PDD expansion coefficients obtained from Step 2 in
equations (82) and (83), producing approximations of the objective and constraint functions
that stem from single calculation of these coefficients. To evaluate the gradients, recalculate
the Fourier expansion coefﬁc1ents of score functions as needed. Denote the optimal solution
by (d, s)fk ) and set (d,s), (a-+1) = (d, s) . Update g = q + 1 and go to Step 2.

6. Numerical examples

Four examples are presented to illustrate the proposed methods developed in
estimating design sensitivities and solving various RDO/RBDO problems involving
mixed design variables. The objective and constraint functions are either elementary
mathematical functions or relate to engineering problems, ranging from simple
structures to complex FEA-aided mechanical designs. Both size and shape design
problems are included. The PDD expansion coefficients were estimated by dimension-
reduction integration with the mean input as the reference point, R = S, and the number
of integration points # = m + 1, where S and m vary depending on the problem. More
specifically, the truncation parameters S and m depend on the dimensional structure
and nonlinearity of a stochastic response. The higher the values of S and s, the higher
the accuracy, and also the computational cost that is endowed with an Sth order
polynomial computational complexity. In the case that the dimensional hierarchy or
nonlinearity is not known a priori, an adaptive sparse PDD method is recommended,
which performs global sensitivity analysis (Ren et al., 2016; Rahman, 2011; Song et al.,
2016) based on the Sobol indices and determine these truncation parameters
automatically by progressively drawing in higher-variate or higher-order contributions
as appropriate. Interested readers are referred to authors’ previous work (Ren et al.,
2016; Rahman, 2011).

As the distributional design variables describe both means and standard
deviations of Gaussian random variables, the order m’ used for Fourier expansion
coefficients of score functions in Example 1 is two. However, in Example 4, where the
distributional design variables are the means of truncated Gaussian random
variables, m’ is one. In Examples 1 through 4, orthonormal polynomials, consistent
with the probability distributions of input random variables, were used as bases. For
the Gaussian distribution, the Hermite polynomials were used. For random variables
following non-Gaussian probability distributions, such as the Lognormal distribution
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in Example 3 and truncated Gaussian distribution in Example 4, the orthonormal
polynomials were obtained either analytically when possible or numerically,
exploiting the Stieltjes procedure DOT (2011). The sample size for the embedded MCS
is 10° in all examples. The multi-point, single-step design procedure was used in
Examples 3 and 4 for solving RDO and RBDO problems. The tolerances, initial
subregion size and threshold parameters for the multi-point, single-step procedure are
as follows: (1) €; = 0.01, €5 = 2, €3 = 0.005 (Example 3); €; = 0.01, €5 = 2, €5 = 0.05
(Example 4); (2) ,8;1; =...= :3511.1)1@ = ,8§11> =...= BS[)V[ =0.5. The optimization
algorithm selected is sequential quadratic programming (DOT, 2001) in Examples 3
and 4.

6.1 Example 1: sensitivities of moments
The first example involves calculating sensitivities of the first two moments of a polynomial
function:

y(X; d, S) = 132(X1 +Xo+p+ o+ +82) + 018(X1 +X2)3 + 031X12X231
+0.25X551 1 + 0.11X1520 + 0.45350
(84)

where X; and X, are two independent and identically distributed Gaussian random
variables, each with the same mean u and standard deviation o. The distributional and
structural design vectors are d = (u, 0)” and s = (s1,50)7, respectively. The affiliated
random vector D = (D;,D,)7 is selected to be Gaussian, where the components Dy, D, are
independent with the same standard deviation of 1 but different mean values
Eq[Dy] =dy = p and Eq[Ds] = ds = o. The affiliated fictitious random vector S =
(S1,S5)7 is also normally distributed with the independent components Sy, S, which have
the same fictitious standard deviation of 1 but different mean values Es[S;] = s; and
Es[So] = s2.

Table I presents the approximate sensitivities of the first two moments
Eqly(X;d,S)] and Eq[y*(X;d,S)] at d = dy = (0.4,1)" and s = s, = (0.55, 0.48)7
obtained by the proposed augmented PDD methods (Equations. (46),(47),(62), and (63)).
Three sets of estimates stemming from univariate (S = 1), bivariate (S = 2) and
trivariate (S = 3) third-order PDD approximations of y are included. The exact
solution, which exists for this problem, is also included in Table II. The univariate
PDD, listed in the second column, provides satisfactory estimates for all sensitivities,
requiring only 26 function evaluations. Although the bivariate approximation is more
expensive than the univariate approximation, the former generates highly accurate
solutions, as expected. The function y, being both trivariate and a cubic polynomial, is
exactly reproduced by the trivariate (S = 3), third-order (mz = 3) augmented PDD
approximation when orthonormal polynomials consistent with Gaussian probability
measures are used. Therefore, the trivariate, third-order augmented PDD
approximation, along with the proposed sensitivity analysis method, reproduces the
exact solution. Although the third-order, bivariate augmented PDD approximation is
unable to reproduce the original function exactly, it provides highly accurate
sensitivity results for almost all cases, which are the same as the exact or trivariate
results up to at least six significant digits. The only exception is for the sensitivity of
the second moment with respect to s;, which has about one percent error. Comparing



the computational efforts, 1,546 function evaluations were required by trivariate PDD Design
to produce the exact results, whereas 26 and 266 function evaluations were incurred by variables
the univariate and bivariate approximations, respectively. Therefore, the univariate
augmented PDD method furnishes very accurate and highly efficient estimates of the
first two moment sensitivities.
6.2 Example 2: sensitivities of failure probability 2685
For the second example, consider two performance functions:
X2X?
LQ) — 142
n(Xys)=—-s+1+ 552 (85)
and
5st
X;8)=—-14——— 86
yZ( 3 ) X12 + 8 X2 +5 ) ( )
where the random vector X comprises two independent Gaussian random variables,
X; and X,, with the same standard deviation of 0.3 but different mean values
Augmented PDD Exact
Univariate (m = 3) Bivariate (m = 3) Trivariate (m = 3)
amD (dy, So) /O 416183 43.0063 43.0063 43,0063
om\ (do, S0)/00 15.1955 15.1955 15.1955 15.1955
omY (do, S0)/0s1 13.2696 13.4936 13.4936 13.4936
amD (do, So) /s> 13.2634 13.2634 13.2634 13.2634 Table ]
om(dy, 8y) /0 3700.9977 3895.1957 3895.1957 31T a feh‘
am (dy, Sy) /00 2201.2607 2365.6375 2365.6375 2365.6375 ensitivities of the
om' (dy, )/ s, 1161.5037 1188.3302 11989252 11989252  first two moments at
om'?(dy, Sy)/ sz 1160.9547 1164.1960 1164.1960 1164.1960 do=(04,1)T and
No. of Func. Eval. 26 266 1546 - S0 =1(0.55,048)T
OPr1(s0)  OPr2(s0)
Methods m S Ppa(so)  Pra(so) s ds No. of Func. Eval. of y; and v,
Augmented PDD 1 1 0.1122  0.0300 0.4180 —1.7590 14
2 0.1130  0.0306 0.4290 —1.8100 38
3 0.1117  0.0264 0.2320 —1.4630 54
2 1 0.0921  0.0243 0.6155 —1.6224 20
2 0.0932  0.0249 0.6570 —1.6830 74
3 0.0908  0.0203 0.3268 —1.4601 128
3 1 0.0921  0.0244 0.5998 —1.6942 26
2 0.0932  0.0250 0.6496 —-1.7117 122 Table II
300908 00204 03167 14677 250 Jable 1L
FORM NA NA 00549 00192 03700  —1.2600 106 Sensitivities of
SORM NA N/A 00552 00230 03800  —14700 134 probability of failure
Crude-MCS N/A N/A 0.0905 0.0204 0.3228 —1.4139 4% 108 atsp=2
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Eq[X1] =75 and [Egq[Xs] =1. The sole structural design variable is s. The
corresponding affiliated fictitious random variable S is selected to be Gaussian with
fictitious mean E,[S] =s and fictitious standard deviation o,. The objective of
this example is to evaluate the accuracy of the proposed augmented PDD
methods [equation (74)] in calculating sensitivities of the failure probabilities Pr;(s): =
Py:1(X;5)<0] and Pra(s): = Plya(X;s) < 0]. The perturbation size for finite-difference
approximation is taken as As = 0.001.

Table II exhibits the sensitivities of the failure probabilities Pr(s) and Ppa(s) with
respect to the structural design variable s calculated at s = sy = 2. It contains the estimates of
the sensitivities by the univariate (S = 1), bivariate (S = 2) and trivariate (S = 3) third-order
augmented PDD approximations of y; and ys, with o= 0.0005. Combined with the different
values of m, which are m = 1, m = 2 and m = 3, a total of nine cases were examined to study
the convergence with respect to 7 and the truncation S. The results by crude MCS, is also
listed in the last row to verify the approximate solutions. Reasonably accurate results are
obtained by the third-order, bivariate and trivariate augmented PDD approximations,
incurring 128 and 250 function evaluations, respectively. In addition, the first-order,
trivariate augmented PDD provides less accurate, but still effective estimates of sensitivities
with only 26 function evaluations. It is important to note that the orders of oy and As have to
be similar to achieve satisfactory estimates of sensitivities, as found, at least, in this
particular example.

FORM and the second-order reliability method (SORM) have been used extensively by
engineers for nearly two decades due to accuracy and efficiency. Therefore, the results by
FORM and SORM are also listed in Table II for a comparison. The estimations by both
FORM and SORM for the failure probabilities Pp;(s) exhibit significant errors of around
40 per cent, requiring 108 and 134 function evaluations, respectively. All nine cases of
augmented PDD approximation provide much more accurate estimates of Pp1(s) than
FORM and SORM. It is worth to note that our first-order, univariate augmented PDD
requires only 14 function evaluations to provide a better estimation on Pr;(s). When m
and S increase, the table shows that the accuracy of the augmented PDD are
simultaneously improved for most of cases. Specially, when m = 2 and S = 2, the
proposed method provides much more accurate evaluations for all two failure
probabilities and their sensitivities than ones by FORM and SORM, and with less
function evaluation than SORM.

6.3 Example 3: size and configuration design of a six-Bay, twenty-one-bar truss

The third example demonstrates how RBDO problems with constraints limiting the system
reliability can be efficiently solved by the proposed method. A linear-elastic, six-bay,
twenty-one-bar truss structure, with geometric properties shown in Figure 3 is simply
supported at nodes 1 and 12 and is subjected to a concentrated load of 56,000 1b (249,100 N)
at node 7. The truss material is made of an aluminum alloy with the Young’s modulus £ =
107 psi (68.94 GPa). Considering the symmetry of the structure, the random input is selected
as X = (X1,...,Xn)" € R, where X;i = 1, ...,11, is the cross-sectional area of the ith
truss member. The random variables are independent and lognormally distributed with
means u; in® and standard deviations o; =01 in?i=1,..,11 As depicted in Figure 3, the
structural design vector s = (1, s)” describes the node locations, where s; represents the
horizontal location of nodes 2, 3, 10 and 11, and s, represents the horizontal location of nodes
4,5,8 and 9. Let v,,,(X;8) and o,,,(X;s) denote the maximum vertical displacement of all
nodes and maximum axial stress in all truss members, respectively, determined from linear-
elastic FEA. The permissible displacement and stress are limited to djow = 0.266 in (6.76



mm) and o 0w = 37,680 psi (259.8 MPa), respectively. The system-level failure set is defined
as Qp = {x: {y1(x;8) < 0} U {y2(x; s) <0} }, where the performance functions:
-~ ‘O'max(X§ S)‘

n(xie) =1 - LomXiS] )y [ X59)] &7
allow T allow

Due to the symmetry of the structure and loads, the distributional design vector is
d=(uy,---, ,un)T € D C R The objective is to minimize the volume of the truss
structure subject to a system reliability constraint, limiting the maximum vertical
displacement and the maximum axial stress. Therefore, the RBDO problem is formulated
to:

min(d.s)ED C()(d, S) = V(d7 S)a

subjectto ¢1(d,s) = Pa[{»1(X;s) < 0} U {12(X;s) < 0}] — d(-3) =0,
1=d, =30, k=1,... .11,

8=s51=12, 18=s5,=22,

88)

where V(d, s) is the total volume of the truss. The initial value of the distributional design
vector is dy = (15,15,15,15,15,15,15,15,15,15,15)7 in? (x 2.54? cm?), and the initial value of the
structural design vector is sy = (10,10)7 in (x2.54 cm). The approximate optimal solution is
* 3k ~ % . T

denoted by (d ; 5*) = (d 1y, .o dy; §>1$, §;) . The affiliated fictitious random vectors D
and S are selected to be Gaussian, and their components are independent with the same
fictitious standard deviation of 0.0005 but different mean vectors [£;[D] = d and [£5[S] = s.
The perturbation sizes of dj, and s, for finite-difference approximation of sensitivities of
failure probabilities are taken as Adj, = 0.001 and As,, = 0.001, respectively, for k=1, ..., 11
andp=1,2.

The proposed multi-point, single-step design procedure was applied to solve this
problem, using bivariate, second-order augmented PDD approximations for the underlying
stochastic and design sensitivity analysis. The second column of Table III summarizes the
values of design variables, objective function and constraint function for the optimal design,
all generated by the augmented PDD method. The objective function ¢ is reduced from
3044.47 in® at initial design to 1049.02 in® at optimal design — an almost 66 per cent change.
At optimum, the constraint function ¢; is —0.21 x 102 and is, therefore, close to being active.
Most of the design variables have undergone moderate to significant changes from their

g O i l -
k 56,000 b S\\\\ \\\

60 in
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Figure 3.

A six-bay, twenty-
one-bar truss
structure (Example 3)
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Table III.
Optimization results
for the six-Bay,
twenty-one-bar truss
problem

initial values, prompting substantial modifications of sizes and configurations of the truss
structures. For further scrutinizing the optimum, the results by the crude MCS method,
adopting the optimum solution by the proposed augmented PDD method as the initial
design, are listed in the last column of Table III. The negligible difference between the
results of the proposed PDD method and the results of the corresponding crude MCS method
demonstrates the accuracy of the proposed method. Comparing the computational efforts,
only 7420 FEA were required to produce the results of the proposed method in Table III,
whereas 846 million FEA (samples) were incurred by crude MCS. Therefore, the proposed
augmented PDD methods provide not only highly accurate but also vastly efficient,
solutions of this mixed RBDO problem.

6.4 Example 4: shape design of a three-hole bracket

The final example involves shape design optimization of a two-dimensional, three-hole
bracket, where five random shape parameters, X;,7 =1, .. .,5, describe its inner and outer
boundaries, while maintaining symmetry about the central vertical axis. The
distributional design variables, d, = Fq[X;], i = 1, ...,5 are the means of these five
independent random variables, with Figure 4(a) depicting the initial design of the bracket
geometry at the mean values of the shape parameters. The structural design variables, s,,
p =1, ...4are four deterministic shape parameters shown in Figure 4(a), along with the
random shape parameters defining the geometry of the three-hole bracket. The bottom two
holes are fixed, and a deterministic horizontal force F' = 15, 000 N is applied at the center of the
top hole. The bracket material has a deterministic mass density p = 7810kg/m> deterministic

Augmented PDD S =2, m = 2 Crude MCS @
21’[, i 7.6858 7.6665
3; i 7.7138 7.7005
Ez; in? 43102 43101
i in? 47163 47162
Zz;, 2 4.9026 4.9025
;1; in? 4.2936 4.2935
21:, i 6.0545 6.0544
Zz;, 2 5.0385 5.0384
;l; in? 6.2239 6.2239
21;), i 45967 45967
. in 3.3725 3.3723
5}, in 12.0000 12.0000
5. in 19.1703 19.1702
¢o, in° 1049.02 1048.35
@ -0.2100 x 107 —0.5300 x 107
No. of FEA 7420 846,000,000

Sources: (a) The constraint values are calculated by MCS with 10° sample size; (b) Crude MCS: initial
design is set to the optimal solution of augmented PDD, i.e., the optimal solution in the second column




Notes: (a) Design parametrization; (b) von Mises stress at initial design

150 mm

S, Mises
(Avg:
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Figure 4.
A three-hole bracket

elastic modulus £ = 207.4 GPa, deterministic Poisson’s ratio v = 0.3, and deterministic
uniaxial yield strength S, = 800 MPa. The objective is to minimize the second-moment
properties of the mass of the bracket by changing the shape of the geometry such that
the maximum von Mises stress o, max(X;s) does not exceed the yield strength S, of the
material with 99.875 per cent probability if y; is Gaussian. Mathematically, the RDO for
this problem is defined to:

where

Ea[yo(X;8)] 05 varg[yo(X;s)]

min(dﬁs)ED Co(d, S) =05

10mm =d; =30mm, 12mm = d» =30 mm,
12mm=d; =30mm, — 15mm=d; =10mm,
—8mm =ds; =15mm, Omm < s; = 14 mm,
17mm = s = 35 mm, 30 mm = 53 =40 mm,

50 mm = s4 = 140 mm,

0(X;s) = / i
D(X:s)

Eq,boX;8)] 7\ /varg, (X s)]’
subjectto ¢1(d, s) = 3y/varg[y1(X;s)] — Eqy1(X;8)] =0,

(89)

(90)
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and
N (X, S) = Sy - O'e,max(X; S) 1)

are two random response functions, and Eq, [vo(X; s)] and varg, [vo(X; s)] are the mean and
variance, respectively, of y, at the initial design (do, so) = (0,30,10,40,20,20,75,0,0)7 mm of the
design vector (d,s) = (d,...,ds,s1,...,54) €D C R°. The corresponding mean and
standard deviation of y, of the original design, calculated by the bivariate, first-order
augmented PDD method, are 0.3415 and 0.00136 kg, respectively. Figure 4(b) portrays the
contours of the von Mises stress calculated by FEA of the initial bracket design, which
comprises 11,908 nodes and 3914 eight-noded quadrilateral elements. A plane stress
condition was assumed. The approximate optimal solution is denoted by

* % % T
(& , §> = (dl, . ds, 51 ... ,§Z> . The corresponding affiliated fictitious random
vectors D and S are selected to be Gaussian, and their components are independent with the
same fictitious standard deviation of 0.2 but different mean vectors I£;[D] =d and
Eg [S} = S.

Due to their finite bounds, the random variables X;, 7 = 1, .. .,5, were assumed to follow
truncated Gaussian distributions with densities:

©2)

when a; = x; = b; and zero otherwise, where ®() and ¢ () are the cumulative distribution
and PDFs, respectively, of a standard Gaussian variable, and o; = 0.2; and a; = d; — D; and
b; = d; + D; are the lower and upper bounds, respectively, of X;. To avoid unrealistic designs,
the bounds were chosen with D; = 2, which is consistent with the bound constraints of
design variables stated in equation (89).

The proposed multi-point, single-step PDD design procedure was applied to solve this
problem, employing three univariate and one bivariate augmented PDD approximations for
the underlying stochastic analysis: (1) S=1,m=1;2) S=1,m=2;(3) S=1,m = 3; and (4)
S =2, m = 1. Table IV summarizes the optimization results by all four choices of the
truncation parameters. The optimal design solutions rapidly converge as S or 7 increases.
The univariate, first-order (S = 1, m = 1) PDD method, which is the most economical
method, produces an optimal solution reasonably close to those obtained from higher-order
univariate or bivariate PDD methods. For instance, the largest deviation from the average
values of the objective function at four optimum points is only 3.8 per cent. It is important to
note that the coupling between the single-step procedure and multi-point approximation is
essential to find optimal solutions of this practical problem using low-variate, low-order
augmented PDD approximations.

Figure 5(a) through 5(d) illustrates the contour plots of the von Mises stress for the
four optimal designs at the mean values of random shape parameters. Regardless of S or
m, the overall area of an optimal design has been substantially reduced, mainly due to
significant alteration of the inner boundary and moderate alteration of the outer
boundary of the bracket. All nine design variables have undergone moderate to
significant changes from their initial values. The optimal masses of the bracket vary as
0.1204, 0.1184, 0.1178 and 0.1278 kg — about a 63 per cent reduction from the initial mass



Results Augmented PDD method
Univariaten =1  Univariatesm =2  Univariatem =3  Bivariatem =1
% 27.7537 28.0521 285815 26.8853
d;,mm
~k 12.0030 12.0000 12.0000 12.0000
dy, mm
o 12.0003 12.0000 12.0000 12.0000
dy, mm
s —13.7431 —13.9282 —13.9025 —14.3121
d,, mm
~k 14.7886 14.9982 15.0000 15.0000
d5, mm
31«’ nm 13.6741 13.9833 14.0000 13.6256
5; nm 17.0081 17.0096 17.0000 17.0000
§; mm 30.0606 30.0002 30.0000 30.0000
51 nm 118.1092 117.6801 117.5495 124.1864
@ 0.6668 0.6638 0.6628 0.6895
Co <d )
@ —1.8819 —14.1435 —18.3799 —10.1967
a(a)
0.1204 0.1184 0.1178 0.1278
[z [ro(X;8)]
“ kg
0.00138 0.00138 0.00138 0.00135
var.«[yo(X; )]
“ kg
No. of iterations 35 21 37 19
No. of FEA 665 588 1.369 3.078

Source: (a) The objective and constraint functions, Elf [vo(X;s)] and

optima, were evaluated by respective approximations

var- [vo(X;s)] at respective
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TableIV.
Optimization results
for the three-hole
bracket

of 0.3415 kg. The second-moment statistics at optimal designs are averages of all PDD
solutions described earlier. The largest reduction of the mean is 62.57 per cent, whereas
the slight average drop, 0.99 per cent, in the standard deviations, is attributed to the
objective function that combines both the mean and standard deviation of y,. Compared
with the conservative design in Figure 4(b), larger stresses — for example, 800 MPa — are
safely tolerated by the final designs in Figure 5(a) through 5(d).
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@)

Figure 5.

von Mises stress
contours at mean
values of optimal © (d)
bracket designs by
the multi-point,
single-step PDD
method

Notes: (a) Univariate approximation (S = 1, m = 1); (b) univariate approximation
(S =1, m=2); (c) univariate approximation (S = 1, m = 3); (d) bivariate
approximation (S=2, m=1)




7. Conclusion

A novel computational method, referred to as the augmented PDD method, is proposed for
RDO and RBDO of complex engineering systems subject to mixed design variables
comprising both distributional and structural design variables. The method involves a new
augmented PDD of a high-dimensional stochastic response for statistical moment and
reliability analyses; an integration of the augmented PDD, score functions and finite-
difference approximation for calculating the sensitivities of the first two moments and the
failure probability with respect to distributional and structural design variables; and
standard gradient-based optimization algorithms, encompassing a multi-point, single-step
design process. For RDO sensitivity analysis, the method capitalizes on a novel integration
of the augmented PDD and score functions, providing analytical expressions of mean-
square convergent approximations of the design sensitivities of the first two moments. For
RBDO sensitivity analysis, the method uses the embedded MCS of the augmented PDD
approximation and a finite-difference approximation to estimate the design sensitivities of
the failure probability. In each variant of design optimization, both the stochastic responses,
whether the first two moments or the failure probability, and their design sensitivities are
determined concurrently from a single stochastic analysis or simulation. Moreover, the
multi-point, single-step design process embedded in the proposed method facilitates a
solution of an RDO/RBDO problem entailing mixed design variables with a large design
space. Numerical results, including a shape design optimization of a three-hole bracket,
indicate that the proposed methods provide accurate and computationally efficient
sensitivity estimates and optimal solutions for general RDO and RBDO problems.
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