

Axel Schumacher · Thomas Vietor
Sierk Fiebig · Kai-Uwe Bletzinger
Kurt Maute *Editors*

Advances in Structural and Multidisciplinary Optimization

Proceedings of the 12th World Congress
of Structural and Multidisciplinary
Optimization (WCSM012)

Advances in Structural and Multidisciplinary Optimization

Axel Schumacher · Thomas Vietor
Sierk Fiebig · Kai-Uwe Bletzinger
Kurt Maute
Editors

Advances in Structural and Multidisciplinary Optimization

Proceedings of the 12th World Congress
of Structural and Multidisciplinary
Optimization (WCSMO12)

Springer

Editors

Axel Schumacher

Chair for Optimization of Mechanical
Structures, Faculty for Mechanical
Engineering and Safety Engineering
University of Wuppertal
Wuppertal
Germany

Thomas Vietor

Institute for Construction Engineering
Technische Universität Braunschweig
Braunschweig
Germany

Sierk Fiebig

Braunschweig
Germany

Kai-Uwe Bletzinger

Chair of Structural Analysis
Technische University of Munich
Munich
Germany

Kurt Maute

Engineering Center, ECAE 197
University of Colorado Boulder
Boulder, CO
USA

ISBN 978-3-319-67987-7

ISBN 978-3-319-67988-4 (eBook)

<https://doi.org/10.1007/978-3-319-67988-4>

Library of Congress Control Number: 2017955782

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The present proceeding is a collection of contributions from the Twelfth World Congress of Structural and Multidisciplinary Optimization (WCSMO12) held at the Technische Universität Braunschweig in Germany from June 5 to 9, 2017.

The WCSMO12 was organized by the International Society for Structural and Multidisciplinary Optimization (ISSMO) founded in October 1991 and has held the WCSMO biennially since 1995. One of the goals of ISSMO is to bring together researchers and practitioners in the field of structural and multidisciplinary optimization (SMO), by means of international meetings with high scientific standard. The ISSMO aims at stimulating and promoting research in all aspects of optimal design of structures as well as multidisciplinary design optimization, where the involved disciplines deal with the analysis of solids, fluids, or other field problems.

The organizing staff of the WCSMO12 was composed of members of the Technische Universität Braunschweig, the University of Wuppertal, the Volkswagen AG, the Technical University of Munich, and the University of Colorado Boulder.

We would like to express our gratitude to all the contributing authors who helped to create this comprehensive proceeding. Also, we thank the members of the International Papers Committee of the WCSMO12: Byeng Dong Youn from the Seoul National University in Korea, Qing Li from the University of Sydney in Australia, Ramana Grandhi from the Wright State University in Ohio, Zhan Kang from the Dalian University of Technology in China, and Niels Pedersen from the Technical University of Denmark.

This proceeding provides a detailed overview of the current research activities of methods for structural and multidisciplinary optimization. The content is subdivided into several parts. In part I to VI, we collect all contributions concerning general approaches and strategies for optimization processes, like robust design or surrogate models. Parts VII to VIII deal with optimization algorithms. In parts IX to XV, there are contributions dealing with structural optimization methods like shape

and topology optimization. Parts XVI to XXII contain contributions dealing with different physical models, like crash simulation, acoustic simulation, or the consideration of manufacturing aspects. Industrial applications are collected in parts XXIII to XXVII.

November 2017

Axel Schumacher

Thomas Vietor

Sierk Fiebig

Kai-Uwe Bletzinger

Kurt Maute

Contents

Part I: General Approaches and Strategies: Multi-Disciplinary Optimization

Multidisciplinary System Optimisation on the Design of Cost Effective Space Launch Vehicle	3
Cédric Dupont, Andrea Tromba, and Sophie Missonnier	
Multidisciplinary Design Optimization of Body Exterior Structures	17
Michel H.J.W. Paas and Hessel C. van Dijk	
An Augmented Sequential Optimization and Reliability Assessment for Reliability-Based Design Optimization	31
Jafar Roshanian, Ali A. Bataleblu, Benyamin Ebrahimi, and Ali A. Amini	
Metamodel-Based Multidisciplinary Design Optimization of a General Aviation Aircraft	47
Jafar Roshanian, Ali A. Bataleblu, Mohammad H. Farghadani, and Benyamin Ebrahimi	
How to Deal with Mixed-Variable Optimization Problems: An Overview of Algorithms and Formulations	64
Julien Pelamatti, Loïc Brevault, Mathieu Balesdent, El-Ghazali Talbi, and Yannick Guerin	
Comprehensive PHEV Powertrain Co-design Performance Studies Using MDSDO	83
Saeed Azad, Mohammad Behtash, Arian Houshmand, and Michael Alexander-Ramos	
Benchmarking Approaches for the Multidisciplinary Analysis of Complex Systems Using a Taylor Series-Based Scalable Problem	98
Shamsheer S. Chauhan, John T. Hwang, and Joaquim R.R.A. Martins	

Convergence Strategy for Parallel Solving of Analytical Target Cascading with Augmented Lagrangian Coordination	117
Yongsu Jung, Namwoo Kang, and Ikjin Lee	
Efficient Global Optimization Strategy Considering Expensive Constraints	133
Bin Yuan, Li Liu, Teng Long, and Renhe Shi	

Part II: General Approaches and Strategies: Multi-Objective Optimization

Producing Smart Pareto Sets for Multi-objective Topology Optimisation Problems	145
David J. Munk, Gareth A. Vio, Grant P. Steven, and Timoleon Kipouros	
Multicriterial Optimization of Geometrical and Structural Properties of the Basic Module of a Single-Branch Truss-Z Structure	163
Machi Zawidzki and Łukasz Jankowski	
Pseudo Expected Improvement Matrix Criteria for Parallel Expensive Multi-objective Optimization	175
Dawei Zhan, Jiachang Qian, Jun Liu, and Yuansheng Cheng	
Optimal Near Sun Synchronous Orbital Design of a Nadir-Pointing Cubic Satellite with the Purpose of Thermal Load Control	191
Asad Saghari, Shima Rahmani, and Amir-reza Kosari	

Part III: General Approaches and Strategies: Design of Experiments and Surrogate Models (Meta-Models)

Simple Intuitive Multi-objective Parallelization of Efficient Global Optimization: SIMPLE-EGO	205
Carla Grobler, Schalk Kok, and Daniel N. Wilke	
Gaussian Process for Aerodynamic Pressures Prediction in Fast Fluid Structure Interaction Simulations	221
Ankit Chiplunkar, Elisa Bosco, and Joseph Morlier	
Efficient Metamodeling Strategy Using Multivariate Linear Interpolation for High Dimensional Problems	234
Kyeonghwan Kang, Ikjin Lee, and Donghyun Kim	
Surrogate Modeling in the Design Optimization of Structures with Discontinuous Responses with Respect to the Design Variables – A New Approach for Crashworthiness Design	242
C. Boursier Niutta, E.J. Wehrle, F. Duddeck, and G. Belingardi	

RBF-Based High Dimensional Model Representation Method	
Using Proportional Sampling Strategy	259
Xin Li, Teng Long, G. Gary Wang, Kambiz Haji Hajikolaei, and Renhe Shi	
A Surrogate-Based Optimization Using Polynomial Response Surface in Collaboration with Population-Based Evolutionary Algorithm	269
Shima Rahmani, Masoud Ebrahimi, and Ayat Honaramooz	
Using Gaussian Process to Enhance Support Vector Regression	281
Yi Zhang, Wen Yao, Xiaoqian Chen, and Fred van Keulen	

Part IV: General Approaches and Strategies: Uncertainty and Robust Design

Improved Sequential Optimization and Reliability Assessment for Reliability-Based Design Optimization	289
Sang-Hyeon Choi and Ikjin Lee	
Improved Adaptive-Loop Method for Non-probabilistic Reliability-Based Design Optimization	299
Yutian Wang, Peng Hao, Chen Liu, Wu Fangzhou, and Bo Wang	
Multi-objective Reliability-Based Design Optimization for Energy Absorption Components Considering Manufacturing Effects	310
Huile Zhang, Guangyong Sun, Guangyao Li, and Qing Li	
Robust Design Optimization of Vehicle and Adaptive Cruise Control Parameters Considering Fuel Efficiency	320
Hansu Kim, Tae Hee Lee, Yuho Song, and Kunsoo Huh	
Bootstrap Guided Information Criterion for Reliability Analysis Using Small Sample Size Information	326
Eshan Amalnerkar, Tae Hee Lee, and Woochul Lim	
Stochastic Sensitivity Analysis for Robust Topology Optimization	334
Xuchun Ren and Xiaodong Zhang	
An Improved MPP-Based Importance Sampling Method for Reliability Analysis	347
Guijian Tang, Wen Yao, Xiaoqian Chen, and Yong Zhao	
Characterization of Geometric Uncertainty in Gas Turbine Engine Components Using CMM Data	361
Jennifer Forrester and Andy Keane	
An Optimal Configuration of an Aircraft with High Lift Configuration Using Surrogate Models and Optimisation Under Uncertainties	375
Joachim Rang and Wolfgang Heinze	

Reliability-Based Topology Optimization for Continuum Structures with Non-probabilistic Uncertainty	390
Jing Zheng and Zhen Luo	
Big-Data Based Rule-Finding for Analysis of Crash Simulations	396
C. Diez, P. Kunze, D. Toewe, C. Wieser, L. Harzheim, and A. Schumacher	
Mathematical Models and Methods of Effective Estimation in Multi-objective Optimization Problems Under Uncertainties	411
Menialov Ievgen, Khustochka Olexandr, Ugryumova Kateryna, Chernysh Sergey, Yepifanov Sergiy, and Ugryumov Mykhaylo	
A Shifted-Constraint RBDO Framework Using Monte Carlo Simulations	428
Shima Rahmani, Asad Saghari, and Masoud Ebrahimi	
Optimization of Manufacturing Tolerances on Sheet Metal Components in the Development Process	439
C. Hayer, S. Fiebig, T. Vietor, and J. Sellschopp	

Part V: General Approaches and Strategies: Sensitivity Analysis and Parameter Identification

A Gradient-Based Topology Optimisation for Radar Cross Sections in Two-Dimensional Acoustics	455
Hiroshi Isakari, Toru Takahashi, and Toshiro Matsumoto	
A Topology Optimisation of Wave Absorbers in Two-Dimentional Electro-Magnetic Field with an Accelerated BEM by the \mathcal{H}-Matrix Method	469
Kenta Nakamoto, Hiroshi Isakari, Toru Takahashi, and Toshiro Matsumoto	
High-Fidelity Aero-Structure Gradient Computation Techniques. Application to the Onera M6 Wing	483
Timothée Achard, Christophe Blondeau, and Roger Ohayon	
Identification for Input Sound Pressure Level in Hammering Test Based on Adjoint Variable and Finite Element Methods	500
Eiki Matsuoka, Takahiko Kurahashi, Yuki Murakami, Shigehiro Toyama, Fujio Ikeda, Tetsuro Itama, and Yoshihiro Tawara	
Application of Digital Image Correlation to Material Parameter Identification	507
Nielen Stander, Katharina Witowski, Christian Ilg, Andre Haufe, Martin Helbig, and David Koch	

Part VI: General Approaches and Strategies: General Aspects of Single-Objective Optimization

A Novel Adaptive Region-Based Global Optimization Method for High Dimensional Problem	525
Fan Ye and Hu Wang	
Coupling of Computer-Aided Methods: Supporting Product Developer During Embodiment Synthesis	536
Albert Albers, Markus Spadiner, Manuel Serf, Stefan Reichert, Steffen Heldmaier, Micha Schulz, and Nikola Bursac	
Optimization Design of Smart Reversible Diaphragms Using Shape Memory Polymer	549
Qing-Sheng Yang, Ran Tao, and Pin Wen	
Experimental and Numerical Analysis of Mechanical Properties of Tape Spring Hinges and Optimal Design	562
Hong-ling Ye, Yang Zhang, Qing-sheng Yang, and Ramana V. Grandhi	
Multidisciplinary Structural Optimization Using of NSGA-II and ϵ-Constraint Method in Lightweight Application	573
Vahid Ghaffari Mejlej, Paul Falkenberg, Eiko Türck, and Thomas Vietor	
Fast Dynamic Analysis of Beam-Type Structures Based on Reduced-Order Model	590
Yuwei Li, Bo Wang, Peng Hao, Yan Zhou, and Yang Zhao	
Parametric Modeling and Optimal Design of Space Tubular Extendable Booms via a One-Dimensional Unified Formulation	597
Yi Hu, Yong Zhao, Zhouhui Tuo, and Jie Wang	

Part VII: Optimization Algorithms: Local Mathematical Methods

Multi-Fidelity Optimization of Complex Physics Involved Engineering Systems	613
C. Corey Fischer and Ramana V. Grandhi	
Efficient Optimal Surface Texture Design Using Linearization	632
Chendi Lin, Yong Hoon Lee, Jonathon K. Schuh, Randy H. Ewoldt, and James T. Allison	
Quadratic Multipoint Exponential Approximation: Surrogate Model for Large-Scale Optimization	648
Robert A. Canfield	
Topology Optimization of General-Joint Planar Linkage Mechanisms with an Application to Finger Rehabilitation Device Design	662
Seok Won Kang, Jeong Han Yu, Sang Min Han, and Yoon Young Kim	

**Part VIII: Optimization Algorithms: Global Methods
(e.g. Evolutionary Algorithms)**

A Cross-Entropy Optimization Algorithm for Continuous Function Based on Improved Sampling	675
Zhengyang Ma, Wen Yao, Yong Zhao, and Yiyong Huang	
Surrogate Based Global Optimization Using Adaptive Switching Infill Sampling Criterion	692
Dohyun Park, In-Bum Chung, and Dong-Hoon Choi	
Enhanced Firefly Algorithm with Implicit Movement	700
Ronald Bartz, Sierk Fiebig, Thilo Franke, Paul Falkenberg, and Joachim Axmann	
Application of Multilevel Optimization Algorithms	710
László Kota and Károly Jármai	

Part IX: Structural Optimization: Sizing

Structure Sizing Optimization Capabilities at AIRBUS	719
Stéphane Grihon	
Mixed-Integer Linear Programming Reformulation Approach for Global Discrete Sizing Optimization of Trussed Steel Portal Frames	738
Roxane Van Mellaert, Kristo Mela, Teemu Tiainen, Markku Heinisuo, Geert Lombaert, and Mattias Schevenels	
Optimal Design of Double-Pipe Heat Exchangers	755
Máté Petrik, Gábor Szepesi, and Károly Jármai	

**Part X: Structural Optimization:
Fiber and Composite Optimization**

Optimization of Oriented and Parametric Cellular Structures by the Homogenization Method	767
Perle Geoffroy-Donders, Grégoire Allaire, Julien Cortial, and Olivier Pantz	
Generating the Best Stacking Sequence Table for the Design of Blended Composite Structures	779
F. Farzan Nasab, H.J.M. Geijselaers, I. Baran, and A. de Boer	
A Lean Method for Local Patch Reinforcement Using Principal Stress Lines	789
Philipp Gebhardt, Eiko Türck, and Thomas Vietor	
Frequency Response Characteristics of 2D Wings in Uncertain Environments: A Random Matrix Theory Approach	799
Aditya Vishwanathan, David Munk, and Gareth Vio	

Gradient Based Structural Optimization of a Stringer Stiffened Composite Wing Box with Variable Stringer Orientation	814
Sascha Dähne and Christian Hühne	
Optimization Approach for Free-Orientation of a Laminated Shell Structure with Orthotropic Material	827
Yoshiaki Muramatsu and Masatoshi Shimoda	
Structural Optimization of Stiffened Composite Panels for Highly Flexible Aircraft Wings	838
Tobias Bach and Christian Hühne	
SIMP Based Topology Optimization for Injection Molding of SFRPs	850
Felix Ospald and Roland Herzog	

Part XI: Structural Optimization: Shape Optimization

Optimization of Stepped Plates in the Elastic Plastic Range	865
Jaan Lellep and Julia Polikarpus	
Geometric Design of Tumbling Mill Lifter Bars Utilizing the Discrete Element Method	878
Daniel N. Wilke, Nicolin Govender, Raj K. Rajamani, and P. Pizette	
Shape Optimization of Shell Structure for Controlling Transient Response	889
Mamoru Wakasa and Masatoshi Shimoda	
Shape Optimization for Microstructure Design of Porous Materials Described by the Biot model in the Homogenization Framework	904
Eduard Rohan, Daniel Hübner, Vladimír Lukeš, and Michael Stingl	
Optimum Morphing Shape Design for Morphing Wing with Corrugated Structure Using RBF Network	916
Gen Nakamura, Kengo Uehara, Nozomu Kogiso, and Tomohiro Yokozeki	

Part XII: Structural Optimization: Topology Optimization with Density Methods - Principal Approach

Comparison of Different Formulations of a Front Hood Free Sizing Optimization Problem Using the ESL-Method	933
Artem Karev, Lothar Harzheim, Rainer Immel, and Matthias Erzgräber	
A Study on the Design of Large Displacement Compliant Mechanisms with a Strength Criteria Using Topology Optimization	952
Daniel M. De Leon, Juliano F. Gonçalves, and Carlos E. de Souza	

Efficient Density Based Topology Optimization Using Dual-Layer Element and Variable Grouping Method for Large 3D Applications	967
Jaeeun Yoo and Ikjin Lee	
Topology Optimization and Reinforcement Derivation Method (RDM®) of a Hybrid Material Sump	979
Marine Favre Decloux, Alex Desmond, Lucy Fusco, Martin Gambling, and Markus Hose	
Topology Optimization with Stress Constraints Using Isotropic Damage with Strain Softening	991
Yakov Zelickman and Oded Amir	
Simultaneous Topology Optimization of Material Density and Anisotropy	1009
Narindra Ranaivomiarana, François-Xavier Irisarri, Dimitri Bettebghor, and Boris Desmorat	
A Simple Approach to Deal with Zero Densities in Topology Optimisation	1019
Kazem Ghabraie	
Using Exact Particular Solutions and Modal Reduction in Topology Optimization of Transient Thermo-Mechanical Problems	1027
Max van der Kolk, Evert C. Hooijkamp, Matthijs Langelaar, and Fred van Keulen	
Optimal Tendon Layouts for Concrete Slabs in Buildings Derived Through Density-Based Topology Optimization Algorithms	1042
Mark Sarkisian, Eric Long, Alessandro Beghini, Rupa Garai, David Shook, Ricardo Henoch, and Abel Diaz	
Contributions to Handle Maximum Size Constraints in Density-Based Topology Optimization	1054
Eduardo Fernández, Maxime Collet, Simon Bauduin, Etienne Lemaire, and Pierre Duysinx	
Multimaterial Topology Optimization of Contact Problems Using Allen-Cahn Approach	1069
Andrzej Myśliński	
Conceptual Design of Aircraft Structure Based on Topology Optimization Method	1083
Guanghui Shi, Yupeng Zhang, Dongliang Quan, Dongtao Wu, and Chengqi Guan	
Singular, Large-Scale Solutions in Local Stress-Constrained Topology Optimization	1094
Dirk Munro and Albert Groenwold	

Robust Multi-material Topology Optimization for Lattice Structure Under Material Uncertainties	1110
Kohei Shintani, Yu-Chin Chan, and Wei Chen	

Part XIII: Structural Optimization: Topology Optimization with Density Methods – Special Extensions

An Element Deactivation and Reactivation Scheme for the Topology Optimization Based on the Density Method	1127
Robert Dienemann, Axel Schumacher, and Sierk Fiebig	
Topology and Cost Optimization Applied to Develop New Designs for a Monorail Structure	1143
Christopher Carrick and Il Yong Kim	
Knowledge Discovery in Dataset Generated by Topology Optimization	1156
Shintaro Yamasaki, Kentaro Yaji, and Kikuo Fujita	
Automatic Definition of Density-Driven Topology Optimization with Graph-Based Design Languages	1168
Manuel Ramsaier, Ralf Stetter, Markus Till, Stephan Rudolph, and Axel Schumacher	
A PDE-Based Approach to Constrain the Minimum Overhang Angle in Topology Optimization for Additive Manufacturing	1185
Emiel van de Ven, Can Ayas, Matthijs Langelaar, Robert Maas, and Fred van Keulen	
Optimal External Support Structure Design in Additive Manufacturing	1200
Yu-Hsin Kuo and Chih-Chun Cheng	
Topology Optimization of Large Scale Turbine Engine Bracket Assembly with Additive Manufacturing Considerations	1211
Bradley Taylor, Jamal Zeinalov, and Il Yong Kim	
Solving 2D/3D Heat Conduction Problems by Combining Topology Optimization and Anisotropic Mesh Adaptation	1224
Kristian Ejlebjer Jensen	

Part XIV: Structural Optimization: Topology Optimization with Level Set Methods

Integrated Topology Optimization of Multi-component System Considering Interface Behavior of Interconnection Based on Conforming Mesh and Interface Elements	1241
Pai Liu and Zhan Kang	

Stress Topology Optimisation for Architected Material Using the Level Set Method	1254
Renato Picelli, Raghavendra Sivapuram, Scott Townsend, and H. Alicia Kim	
 Part XV: Structural Optimization: Topology Optimization with Other Methods	
Multi-objective Structural Optimization and Design of Microsatellite Supporting Legs	1273
Hao Xu, Yong Zhao, Wen Yao, Ning Wang, and Bingxiao Du	
Dynamic Behavior of Hanging Truss Having Shape Memory Alloys (From the Optimization Viewpoint of Vibration Isolation and Attenuation)	1283
Xuan Zhang, Kazuyuki Hanahara, and Yukio Tada	
A Novel Heuristic Generator of Structural Topologies Based on Sorted Compliances	1296
Monika Mazur, Katarzyna Tajs-Zielińska, and Bogdan Bochenek	
Modifications of Bidirectional Evolutionary Structural Optimization for Structure Compliance	1306
Vu Truong Vu	
Constrained Versions of the Free Material Design Methods and Their Applications in 3D Printing	1317
Tomasz Lewiński, Sławomir Czarnecki, Radosław Czubacki, Tomasz Łukasiak, and Paweł Wawruch	
Macroscopically Isotropic and Cubic-Isotropic Two-Material Periodic Structures Constructed by the Inverse-Homogenization Method	1333
Tomasz Łukasiak	
Pylon and Engine Mounts Performance Driven Structural Topology Optimization	1349
Simone Coniglio, Christian Gogu, Rémi Amargier, and Joseph Morlier	
Human-in-the-Loop Layout and Geometry Optimization of Structures and Components	1364
Linwei He, Matthew Gilbert, Thomas Johnson, and Chris Smith	
Young's Modulus Control in Material and Topology Optimization	1374
Grzegorz Dzierżanowski and Tomasz Lewiński	
Regularization Scheme for Controlling Length Scale in Topology Optimization Based on Bacterial Quemotaxis	1386
J.X. Leon-Medina, J.F. Giraldo-Avila, and M.A. Guzmán	

Structural Optimization Under Buckling Constraints Using Frame Elements with Anisotropic Cross Sections	1394
Florian Mitjana, Sonia Cafieri, Florian Bugarin, Christian Gogu, and Fabien Castanie	
On the Numerical Approximation of Michell Trusses and the Improved Ground Structure Method	1411
Tomasz Sokół	
Cost and Weight Optimization of Hybrid Parts Using a Multi-material Topology Optimization Approach	1418
Paul Falkenberg, Eiko Türck, and Thomas Vietor	
 <u>Part XVI: Optimization with Emphasis on Particular Physics Model: Considering Non-Linear Effects (e.g. Material, Geometric, Contact)</u>	
Topology Optimization of Orthotropic Elastic Design Domains with Mortar Contact Conditions	1427
Niclas Strömberg	
Topology Optimization of Structures with Elasto-Plastic Strain Hardening Material Modeling	1439
Mengxiao Li and Hexin Zhang	
Investigation of Contact Settings on the Result of Topology Optimization to Avoid Contact Stiffness Supports	1455
Daniel Billenstein, Christian Glenk, Pascal Diwisch, and Frank Rieg	
Optimal Design of Skeletal Structures Exhibiting Nonlinear Response	1468
Hazem Madah and Oded Amir	
Evolutionary Topology Optimization for Designing Cellular Fluid Actuators	1484
Daniel Candeloro Cunha and Renato Pavanello	
 <u>Part XVII: Optimization with Emphasis on Particular Physics Model: Considering Dynamic and Acoustic Load-Cases</u>	
Topological Design of Vibro-Acoustic Structures Using a Generalized Incremental Frequency Method	1499
Niels Olhoff and Jianbin Du	
An Approach to Use the Structural Intensity for Acoustical Topology Optimization	1516
Sebastian Rothe and Sabine C. Langer	

Three-Dimensional Topology Optimization of a Flexible Multibody System via Moving Morphable Components	1529
Jialiang Sun, Qiang Tian, and Haiyan Hu	

Part XVIII: Optimization with Emphasis on Particular Physics Model: Considering Crash Load-Cases

Metamodel-Based Global Optimization of Vehicle Structures for Crashworthiness Supported by Clustering Methods	1545
Kai Liu, Duane Detwiler, and Andres Tovar	
Automatic Generation, Validation and Correlation of the Submodels for the Use in the Optimization of Crashworthy Structures	1558
Carlos J. Falconi D., Alexander F. Walser, Harman Singh, and Axel Schumacher	
Multidisciplinary Optimisation of an Automotive Body-in-White Structure Using Crushable Frame Springs and Sub Space Metamodels in Trust-Regions	1572
Charles Mortished, Jonathan Ollar, Peter Benzie, Royston Jones, Johann Sienz, and Vassili Toropov	
Topology Optimization of Thin-Walled Structures Under Static/Crash Loading Case in the Hybrid Cellular Automaton Framework	1585
Duo Zeng and Fabian Duddeck	
A Topology Optimization Scheme for Crash Loaded Structures Using Topological Derivatives	1601
Katrin Weider and Axel Schumacher	
Finding Optimized Layouts for Ribs on Surfaces Using the Graph and Heuristic Based Topology Optimization	1615
Dominik Schneider and Axel Schumacher	

Part XIX: Optimization with Emphasis on Particular Physics Model: Considering Fatigue/Durability/Damage

Blend Repair Shape Optimization for Damaged Compressor Blisks	1631
Ricarda Berger, Jan Häfele, Benedikt Hofmeister, and Raimund Rolfes	
Optimization of Fail-Safe Lattice Structures	1643
Benedikt Kriegesmann, Julian Lüdeker, and Micah Kranz	
Probability-Based Damage Detection of Structures Using Surrogate Model and Enhanced Ideal Gas Molecular Movement Algorithm	1657
Mohammad Reza Ghasemi, Ramin Ghiasi, and Hesam Varae	

Optimization of Finite Element Mesh Division Considering Stress Singularity for Bonded Structures	1675
Kengo Yamagiwa and Takahiko Kurahashi	

Part XX: Optimization with Emphasis on Particular Physics

Model: Considering Piezoelectricity, Magnetic and Electrical Fields

Topology Optimization of Power Semiconductor Devices	1685
Katsuya Nomura, Tsuguo Kondoh, Tsuyoshi Ishikawa, Shintaro Yamasaki, Kentaro Yaji, and Kikuo Fujita	

Conductor Layout Optimization for Reducing the Magnetic Coupling Noise of a Filter Circuit Board	1693
Hiroki Bo, Shintaro Yamasaki, Kentaro Yaji, Katsuya Nomura, Atsuhiro Takahashi, and Kikuo Fujita	

Integrated Design of Permanent Magnet Synchronous Motor by Incorporating Magnet Layout and Yoke Topology Optimizations	1705
Shun Maruyama, Shintaro Yamasaki, Kentaro Yaji, and Kikuo Fujita	

Part XXI: Optimization with Emphasis on Particular Physics Model: Considering Other Specialty Disciplines

Shape and Structural Design Optimization of Graphene Sheets in Natural Vibration Problem	1719
Jin-Xing Shi, Keiichiro Ohmura, and Masatoshi Shimoda	

Two-Scale Concurrent Topology Optimization with Multiple Micro Materials Based on Principal Stress Direction	1726
Liang Xu and Gengdong Cheng	

Topology Optimization of Viscoelastic Materials for Maximizing Damping and Natural Frequency of Macrostructures	1738
Qiming Liu and Xiaodong Huang	

Design of Adsorbed Natural Gas Tanks with Metal Inclusions by Topology Optimisation	1757
R.C.R. Amigo, R.W. Hewson, and E.C.N. Silva	

Part XXII: Optimization with Emphasis on Particular Physics Model: Considering Manufacturing Aspects

Topology Optimization for Unifying Deposit Thickness in Electroplating Process	1767
Naoko Ishizuka, Takayuki Yamada, Kazuhiro Izui, and Shinji Nishiwaki	

Multiscale, Thermomechanical Topology Optimization of Cellular Structures for Porous Injection Molds	1783
Tong Wu, Kim Brand, Doyle Hewitt, and Andres Tovar	

Multidisciplinary Shape Optimization of Ductile Iron Castings by Considering Local Microstructure and Material Behaviour	1798
Jakob Olofsson, Riccardo Cenni, Matteo Cova, Giacomo Bertuzzi, Kent Salomonsson, and Joel Johansson	

Topology Optimization with Integrated Casting Simulation and Parallel Manufacturing Process Improvement	1815
Thilo Franke, Sierk Fiebig, Karsten Paul, Thomas Vietor, and Jürgen Sellschopp	

Part XXIII: Optimization with Efocusing on Particular Industrial Applications: Automotive

Parameterization Setup for Metamodel Based Optimizations of Tailor Rolled Blanks	1833
Niklas Klinke and Axel Schumacher	

A Study of Topology Optimization for Joint Locations of Automotive Full Vehicle	1851
Takanobu Saito, Yoshiyo Tamai, and Jiro Hiramoto	

Part XXIV: Optimization with Efocusing on Particular Industrial Applications: Aircraft

On Fast Design of Innovative Hierarchical Stiffened Shells Against Imperfections	1865
Kuo Tian, Bo Wang, Tianyu Zhu, Sijun Xiong, Ke Zhang, and Peng Hao	

Mixed Variable Structural Optimization: Toward an Efficient Hybrid Algorithm	1880
Pierre-Jean Barjhoux, Youssef Diouane, Stéphane Grihon, Dimitri Bettebghor, and Joseph Morlier	

Part XXV: Optimization with Efocusing on Particular Industrial Applications: Civil Engineering

Optimal Estimation of Tidal Flow Based on Kalman Filter FEM Using Time History of Water Elevation	1899
Takahiko Kurahashi, Taichi Yoshiara, Yasuhide Kobayashi, and Noboru Yamada	

Topology Optimization of Elastic Wave Barriers	
Using a Two-and-A-Half Dimensional Finite Element Methodology	1906
Cédric Van hoorickx, Mattias Schevenels, and Geert Lombaert	
Buckling Length in Mixed-Integer Linear Frame Optimization	1923
Teemu Tiainen, Kristo Mela, and Markku Heinisuo	
Optimization of Extradosed Concrete Bridges	1937
Alberto M.B. Martins, Luís M.C. Simões, and João H.J.O. Negrão	
Optimization of Concrete Cable-Stayed Bridges with Discrete Design Variables	1955
L.M.C. Simões, A.M.B. Martins, and J.H.J.O. Negrão	
A Discrete Particle Swarm Algorithm for Sizing Optimization of Steel Truss Structures	1974
Waldir N. Felippe and Luiza F. Carneiro	
Design of Cellular Materials and Mesostructures with Improved Structural and Thermal Performances	1983
Gieljan Vantyghem, Marijke Steeman, Wouter De Corte, and Veerle Boel	
Modified Ideal Gas Molecular Movement Algorithm Based on Quantum Behavior	1997
Mohammad Reza Ghasemi and Hesam Varaee	
 Part XXVI: Optimization with Efocusing on Particular Industrial Applications: Energy Systems	
Development of a Multi-Objective Genetic Algorithm for the Design of Offshore Renewable Energy Systems	2013
Ajit C. Pillai, Philipp R. Thies, and Lars Johanning	
Life Cycle Assessment of Welded Structures Using Cost Optimization	2027
Károly Jármai	
A New Optimisation Framework for Investigating Wind Turbine Blade Designs	2044
T. Macquart, V. Maes, D. Langston, A. Pirrera, and P.M. Weaver	
 Part XXVII: Optimization with Efocusing on Particular Industrial Applications: Others	
Optimum Design on Neck Embossing Decoration of Aluminum Beverage Bottles	2063
Jing Han, Koetsu Yamazaki, and Akiyoshi Matsuzaki	

Preliminary Study on Optimization of a Bulge Tool for Nuclear Fuel Manufacturing	2076
Jae-Jun Lee, Young-Duk Sim, Nam-Gyu Park, Se-Ick Son, and Jong-Sung Yoo	
Design of Bone Plates for Mandibular Reconstruction Using Topology and Shape Optimization	2086
Michael Seebach, Felix Theurer, Peter Foehr, Constantin von Deimling, Rainer Burgkart, and Michael Friedrich Zaeh	
Comparative Study Between Different Strut's Cross Section Shape on Minimizing Low Wall Shear Stress Along Stent Vicinity via Surrogate-Based Optimization	2097
Narendra Kurnia Putra, Pramudita Satria Palar, Hitomi Anzai, Koji Shimoyama, and Makoto Ohta	
Author Index	2111

Stochastic Sensitivity Analysis for Robust Topology Optimization

Xuchun Ren¹(✉) and Xiaodong Zhang²

¹ Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458, USA
xren@georgiasouthern.edu

² State Key Laboratory of Bridge Engineering Structural Dynamics, China Merchant Chongqing Communications Research and Design Institute Co., Ltd., Chongqing 400067, China
zhangxd00@aliyun.com

Abstract. Topology optimization under uncertainty poses extreme difficulty to the already challenging topology optimization problem. This paper presents a new computational method for calculating topological sensitivities of statistical moments of high-dimensional complex systems subject to random inputs. The proposed method, capable of evaluating stochastic sensitivities for large-scale, robust topology optimization (RTO) problems, integrates a polynomial dimensional decomposition (PDD) of multivariate stochastic response functions and deterministic topology derivatives. In addition, the statistical moments and their topology sensitivities are both determined concurrently from a single stochastic analysis. When applied in collaboration with the gradient based optimization algorithm, the proposed method affords the ability of solving industrial-scale RTO design problems. Numerical examples indicate that the new method developed provides computationally efficient solutions.

Keywords: Stochastic sensitivity analysis · Polynomial dimensional decomposition · Robust design topology optimization · Topological derivatives

1 Introduction

Topology optimization is a computational design framework to identify the optimal distribution of materials for complex engineering systems [1, 2, 10, 17, 18, 20, 21]. Uncertainties, unavoidable in the manufacturing process and operating environment, often plague those engineering systems, thus need to be taken into account during the design process. Conventional deterministic design approaches typically lead to inefficient and overly conservative designs that overcompensate for uncertainties, or unknowingly risky designs due to the underestimation of uncertainties. Aimed at minimizing the propagation of input uncertainty, robust topology optimization (RTO) discovers insensitive topology design in the presence of uncertainty. In the past decade, it is increasingly viewed as an enabling

technology for topology design of aerospace, automotive, and civil structures subject to uncertainty.

The objective or constraint functions in RTO usually consist of first two moment properties, such as means and standard deviations, of certain stochastic responses, describing the objective robustness or feasibility robustness of a given topology. Therefore, solving a practical RTO problem draws in statistical moments and their sensitivity analysis for random responses. The fundamental problem rooted in statistical moment analysis entails calculation of a high-dimensional integral with respect to the probability measure $f_{\mathbf{X}}(\mathbf{x})$ of \mathbf{X} over \mathbb{R}^N , where N is the number of random variables. In general, such an integral cannot be evaluated analytically. Direct numerical integration can be performed, but it is not economically feasible for the cases that N exceeds three or four, especially when expensive finite element analyses (FEA) are involved in the evaluation of response functions. Existing approximate methods for statistical moment analysis include the point estimate method (PEM) [8], Taylor series expansion or perturbation method [8], tensor product quadrature (TPQ) [9], Neumann expansion method [24], polynomial chaos expansion (PCE) [19], statistically equivalent solution [5], dimension-reduction method [22, 23], and others [6].

Two major concerns are relevant to existing approaches when conducting stochastic moment and their sensitivity analysis. First, the commonly used stochastic methods, such as the perturbation or Taylor series expansions, PEM, PCE, TPQ, and dimension-reduction methods begin to be inapplicable or inadequate when performing uncertainty quantification for many large-scale engineering problems. For example, although the Taylor series expansion and PEM are inexpensive and simple, they may deteriorate when the nonlinearity of response function is high and/or when the input uncertainty is large. PCE, commonly used in stochastic mechanics, is an infinite series involving Hermite polynomials of Gaussian variables (or others). However, for high-dimensional systems, PCE requires astronomically large numbers of terms or coefficients to capture the high nonlinearity of a stochastic response, easily succumbing to the curse of dimensionality. The dimension-reduction methods, to some extent, mitigate the curse of dimensionality, but they are based on the referential dimensional decomposition (RDD), often leading to sub-optimal approximations of a response function. Second, applied to design sensitivity analysis of the statistical moments, many of the aforementioned methods invoke finite-difference techniques, which require repetitive stochastic analyses at both perturbed and nominal design points. Therefore, they are often computationally expensive. Although some methods, such as Taylor series expansions, also provide the design sensitivities economically, its sensitivity estimates are either inaccurate or unreliable due to inherited errors from the associated second-moment analysis.

This paper presents a new approach for evaluating topology design sensitivities of statistical moments of complex engineering structures subject to random inputs. The method proposes a novel integration of polynomial dimensional decomposition (PDD) of a multivariate stochastic response function and deterministic topological derivative. For stochastic moment analysis, it leads to

analytical formulations for the first two moments. Furthermore, it is capable of incorporating both moment calculation and their topology design sensitivity evaluation in a single stochastic analysis. Section 2 describes the PDD approximation of a multivariate function, resulting in explicit formulae for the first two moments. Section 3 described the new integration of PDD and deterministic topological derivative as well as numerical procedures for topology sensitivities of moments. The calculation of PDD expansion coefficients, required in sensitivity analyses of moments, is discussed in Sect. 4. In Sect. 5, two numerical examples are presented to probe the accuracy and computational efficiency of the proposed method. Finally, conclusions are drawn in Sect. 6.

2 PDD and Moment Analysis

2.1 Robust Topology Optimization

The mathematical formulation for robust topology optimization involving a single objective function and $1 \leq K < \infty$ constraint functions requires:

$$\min_{\Omega} c_0(\Omega) := w_1 \frac{\mathbb{E}[y_0(\Omega, \mathbf{X})]}{\mu_0^*} + w_2 \frac{\sqrt{\text{var}[y_0(\Omega, \mathbf{X})]}}{\sigma_0^*},$$

subject to $c_k(\Omega) := \alpha_k \sqrt{\text{var}[y_k(\Omega, \mathbf{X})]} - \mathbb{E}[y_k(\Omega, \mathbf{X})]; \quad k = 1, \dots, K, \quad (1)$

$$\Omega \subseteq D,$$

where $w_1 \in \mathbb{R}_0^+$ and $w_2 \in \mathbb{R}_0^+$ are two non-negative, real-valued weights, satisfying $w_1 + w_2 = 1$; $\mu_0^* \in \mathbb{R} \setminus \{0\}$ and $\sigma_0^* \in \mathbb{R}_0^+ \setminus \{0\}$ are two non-zero, real-valued scaling factors; $\alpha_k \in \mathbb{R}_0^+$, $k = 0, 1, \dots, K$, are non-negative, real-valued constants associated with the probabilities of constraint satisfaction; $D \subset \mathbb{R}^3$ is a bounded domain in which all admissible Ω are included; $\mathbf{X} := (X_1, \dots, X_N)^T \in \mathbb{R}^N$ is an N -dimensional random input vector completely defined by a family of joint probability density functions $\{f_{\mathbf{X}}(\mathbf{x}), \mathbf{x} \in \mathbb{R}^N\}$ on the probability triple $(\Omega_{\mathbf{X}}, \mathcal{F}, P)$, where $\Omega_{\mathbf{X}}$ is the sample space; \mathcal{F} is the σ -field on $\Omega_{\mathbf{X}}$; and P is the probability measure associated with probability density $f_{\mathbf{X}}(\mathbf{x})$. Equation (1) describes a generic RTO problem involving the first two moments of certain responses.

To solve Eq. (1) for an optimal topology employing gradient based algorithm, efficient methods for stochastic moments and their topology design sensitivities are required. The following subsections describe the recently developed polynomial dimensional decomposition method for stochastic moments and their sensitivities.

2.2 PDD

Consider a multivariate stochastic response $y(\Omega, \mathbf{X})$, representing any of the performance function y_k in Eq. (1) that depends on the random vector $\mathbf{X} = \{X_1, \dots, X_N\}^T$. Let $\mathcal{L}_2(\Omega_{\mathbf{X}}, \mathcal{F}, P)$ be a Hilbert space of square-integrable

functions y with corresponding probability measure $f_{\mathbf{X}}(\mathbf{x})d\mathbf{x}$ supported on \mathbb{R}^N . Assuming independent coordinates, the PDD expansion of function y is hierarchical:

$$y(\Omega, \mathbf{X}) = y_{\emptyset}(\Omega) + \sum_{\emptyset \neq u \subseteq \{1, \dots, N\}} \sum_{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|}} C_{u\mathbf{j}_{|u|}}(\Omega) \psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega), \quad (2)$$

in terms of a set of multivariate orthonormal polynomials [12, 13] $\psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega) := \prod_{p=1}^{|u|} \psi_{i_p j_p}(X_i; \Omega)$ where $\mathbf{j}_{|u|} = (j_1, \dots, j_{|u|}) \in \mathbb{N}^{|u|}$ is a $|u|$ -dimensional multi-index; $y_{\emptyset}(\Omega)$ is a constant; for $|u| = 1$, $C_{u\mathbf{j}_{|u|}}(\Omega) \psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega)$ is a univariate component function representing the individual contribution to $y(\Omega, \mathbf{X})$ by a single input variable; for $|u| = 2$, it is a bivariate component function describing the cooperative influence of two input variables; and for $|u| = S$, it is an S -variate component function quantifying the interactive effects of S input variables. For most performance functions, Eq. (2) can be truncated by retaining, at most, the interactive effects of $S < N$ input variables and m -th order polynomials as follows

$$\tilde{y}_{S,m}(\Omega, \mathbf{X}) := y_{\emptyset}(\Omega) + \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ 1 \leq |u| \leq S}} \sum_{\substack{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|} \\ \|\mathbf{j}_{|u|}\|_{\infty} \leq m}} C_{u\mathbf{j}_{|u|}}(\Omega) \psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega), \quad (3)$$

where

$$y_{\emptyset}(\Omega) = \int_{\mathbb{R}^N} y(\mathbf{x}, \Omega) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} \quad (4)$$

and

$$C_{u\mathbf{j}_{|u|}}(\Omega) := \int_{\mathbb{R}^N} y(\mathbf{x}, \Omega) \psi_{u\mathbf{j}_{|u|}}(\mathbf{x}_u; \Omega) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}, \quad \emptyset \neq u \subseteq \{1, \dots, N\}, \mathbf{j}_{|u|} \in \mathbb{N}^{|u|}, \quad (5)$$

are various expansion coefficients. For $S > 0$, Eq. (3) contains interactive effects of at most S input variables X_{i_1}, \dots, X_{i_S} , $1 \leq i_1 < \dots < i_S \leq N$, on y , thus resulting in the S -variate, m th-order PDD approximation. When $S \rightarrow N$ and $m \rightarrow \infty$, $\tilde{y}_{S,m}$ converges to y and engenders a sequence of hierarchical and convergent approximations of y . Depending on the dimensional structure and nonlinearity of a stochastic response, the truncation parameters S and m can be chosen accordingly. The higher the values of S and m permit the higher the accuracy, but also endow the computational cost of an S th-order polynomial computational complexity [12, 13]. Henceforth, the S -variate, m th-order PDD approximation will be simply referred to as *truncated PDD approximation* in this paper.

2.3 Moment Analysis

Let $m^{(r)}(\Omega) := \mathbb{E}[y^r(\Omega, \mathbf{X})]$, if it exists, denote the raw moment of y of order r , where $r \in \mathbb{N}$. Provided an S -variate, m th-order PDD approximation $\tilde{y}_{S,m}(\Omega, \mathbf{X})$ of $y(\Omega, \mathbf{X})$, let $\tilde{m}^{(r)}(\Omega) := \mathbb{E}[\tilde{y}_{S,m}^r(\Omega, \mathbf{X})]$ denote the raw moment of $\tilde{y}_{S,m}$ of order

r. The analytical expressions or explicit formulae for calculating the moments using PDD approximations are described as follows.

Applying the expectation operator on $\tilde{y}_{S,m}(\Omega, \mathbf{X})$ and $\tilde{y}_{S,m}^2(\Omega, \mathbf{X})$, the first moment or mean [14]

$$\tilde{m}_{S,m}^{(1)}(\Omega) := \mathbb{E} [\tilde{y}_{S,m}(\Omega, \mathbf{X})] = y_\emptyset(\Omega) = \mathbb{E} [y(\Omega, \mathbf{X})] =: m^{(1)}(\Omega) \quad (6)$$

of the S -variate, m th-order PDD approximation reproduces the exact mean of y , whereas the second moment [14]

$$\tilde{m}_{S,m}^{(2)}(\Omega) := \mathbb{E} [\tilde{y}_{S,m}^2(\Omega, \mathbf{X})] = y_\emptyset^2(\Omega) + \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ 1 \leq |u| \leq S}} \sum_{\substack{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|} \\ \|\mathbf{j}_{|u|}\|_\infty \leq m}} C_{u\mathbf{j}_{|u|}}^2(\Omega) \quad (7)$$

is evaluated as the sum of squares of all expansion coefficients of $\tilde{y}_{S,m}(\Omega, \mathbf{X})$. It is elementary to show that the estimation of second moment provided by Eq. (7) approaches the exact second moment

$$m^{(2)}(\Omega) := \mathbb{E} [y^2(\Omega, \mathbf{X})] = y_\emptyset^2(\Omega) + \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\}} \sum_{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|}}} C_{u\mathbf{j}_{|u|}}^2(\Omega) \quad (8)$$

of y when $S \rightarrow N$ and $m \rightarrow \infty$. The mean-square convergence of $\tilde{y}_{S,m}$ is guaranteed as its component functions will include all required members of the associated Hilbert spaces. Furthermore, the variance of $\tilde{y}_{S,m}(\Omega, \mathbf{X})$ is also mean-square convergent.

3 Topology Sensitivity of Stochastic Moments

3.1 Deterministic Topological Derivative

For a given reference domain $\Omega \subset \mathbb{R}^n$, $n = 2$ or 3 , consider the following linear elastic system

$$\begin{cases} \nabla \cdot (\mathbb{C} : \boldsymbol{\varepsilon}) = \mathbf{0} & \text{in } \Omega \\ \mathbf{u} = \bar{\mathbf{u}} & \text{on } \Gamma_D, \\ \mathbf{n} \cdot (\mathbf{C} : \boldsymbol{\varepsilon}) = \bar{\mathbf{t}} & \text{on } \Gamma_N \end{cases} \quad (9)$$

where \mathbb{C} is the elastic tensor, $\boldsymbol{\varepsilon} = \frac{1}{2} (\mathbf{u} \nabla + \nabla \mathbf{u})$ is the Cauchy strain tensor, Γ_D and Γ_N are Dirichlet boundary and Neumann boundary of Ω , respectively. For a point $\boldsymbol{\xi}_0 \in \Omega$ and a spherical hole $\omega \in \mathbb{R}^n$ with a fixed radius and boundary $\partial\omega$, the translated and rescaled hole can be defined by $\omega_\rho = \boldsymbol{\xi}_0 + \rho\omega$, $\forall \rho > 0$ and the perforated domain is $\Omega_\rho = \Omega \setminus \overline{\omega_\rho}$, the new problem with the Neumann boundary on the perforated hole is

$$\begin{cases} \nabla \cdot (\mathbb{C} : \boldsymbol{\varepsilon}_\rho) = \mathbf{0} & \text{in } \Omega_\rho \\ \mathbf{u}_\rho = \bar{\mathbf{u}} & \text{on } \Gamma_D \\ \mathbf{n} \cdot (\mathbb{C} : \boldsymbol{\varepsilon}_\rho) = \bar{\mathbf{t}} & \text{on } \Gamma_N \\ \mathbf{n} \cdot (\mathbb{C} : \boldsymbol{\varepsilon}_\rho) = \mathbf{0} & \text{on } \partial\omega_\rho \end{cases} \quad (10)$$

In engineering design, it is often of interest to investigate a certain response function y defined over the domain Ω and its variation when the domain is perforated by a small hole. In general, y is the function of Ω as well as the displacement \mathbf{u} , and is differentiable with respect to \mathbf{u} , although it is often denoted as $y(\Omega)$ for simplicity. For a small $\rho > 0$, if $y(\Omega_\rho)$ admits the topological asymptotic expansion $y(\Omega_\rho) = y(\Omega) + \rho^k D_T y(\Omega, \xi_0) + o(\rho^k)$, then $\rho^k D_T y(\Omega, \xi_0)$ represents the variation of the response function when the domain changes from Ω to Ω_ρ , and $D_T y(\Omega, \xi_0)$ is called the topological derivative at point ξ_0 . The concept of topological derivative is applicable to general boundary value problems including linear elastic systems.

When the total compliance of the structure is selected as the response function y , aided by the adjoint method, the domain truncation technique, and the asymptotic expansion with respect to the small parameter ρ , the deterministic topological derivative $D_T y(\Omega, \xi_0)$ reads [4]

$$D_T y(\Omega, \xi_0) = \mathbf{a} (\mathbb{C} : \boldsymbol{\varepsilon}(\xi_0)) : \tilde{\boldsymbol{\varepsilon}}(\xi_0) \quad (11)$$

where $\tilde{\boldsymbol{\varepsilon}}$ is the strain solution of the following adjoint problem

$$\begin{cases} \nabla \cdot (\mathbb{C} : \tilde{\boldsymbol{\varepsilon}}) = 0 & \text{in } \Omega \\ \tilde{\mathbf{u}} = -\bar{\mathbf{u}} & \text{on } \Gamma_D \\ \mathbf{n} \cdot (\mathbb{C} : \tilde{\boldsymbol{\varepsilon}}) = \bar{\mathbf{t}} & \text{on } \Gamma_N \end{cases} \quad (12)$$

and $\mathbf{a} (\mathbb{C} : \boldsymbol{\varepsilon}(\xi_0))$ is a second order tensor function implicitly related to $\mathbb{C} : \boldsymbol{\varepsilon}(\xi_0)$ and its components read

$$a_{ij} = \int_{\partial\omega_\rho} (\mathbf{n} \cdot \mathbb{C} : \hat{\boldsymbol{\varepsilon}}) \cdot \mathbf{e}_i \xi_j d\gamma(\xi), \quad (13)$$

in which \mathbf{e}_i is i th orthonormal basis vector of the reference frame, and $\hat{\boldsymbol{\varepsilon}}$ is the strain solution of the following problem

$$\begin{cases} \nabla \cdot (\mathbb{C} : \hat{\boldsymbol{\varepsilon}}) = \mathbf{0} & \text{in } \mathbb{R}^n \setminus \overline{\omega_\rho} \\ \mathbf{n} \cdot (\mathbb{C} : \hat{\boldsymbol{\varepsilon}}) = \mathbf{n} \cdot \mathbb{C} : \boldsymbol{\varepsilon}(\xi_0) & \text{on } \partial\omega_\rho \end{cases} \quad (14)$$

For the case that the domain consist of isotropic linear elastic material, Eq. (14) has an analytical asymptotic solution [4, 7, 11], thus Eq. (11) can be further simplified and the topological derivative $D_T y(\Omega, \xi_0)$ has a concrete form

$$D_T y(\Omega, \xi_0) = [\mathbb{C} : \tilde{\boldsymbol{\varepsilon}}(\xi_0)] : \mathbb{A} : [\mathbb{C} : \boldsymbol{\varepsilon}(\xi_0)] \quad (15)$$

in which \mathbb{A} is a fourth order tensor related to Young's modulus E and Poisson's ratio ν as follows

$$\mathbb{A} = \frac{2\pi}{3E(7-5\nu)} [2(11+\nu-10\nu^2) \mathbb{I} - 3(1+4\nu-5\nu^2) \mathbf{I} \otimes \mathbf{I}] \quad (16)$$

where \mathbb{I} is the symmetric fourth order identity tensor and \mathbf{I} is the second order identity tensor.

For anisotropic linear elastic materials or nonlinear materials, the analytical solution for Eq. (14) is hardly available, so further investigations or alternatives are in demands.

3.2 Topology Sensitivity of Stochastic Moments

Let $y(\Omega, \mathbf{X})$ be a response function of the linear system (9) subject to certain random input \mathbf{X} . For a point $\xi_0 \in \Omega$, taking topology derivative of r th moments of the response function $y(\Omega, \mathbf{X})$ and applying the Lebesgue dominated convergence theorem, which permits interchange of the differential and integral operators, yields

$$\begin{aligned} D_T m^{(r)}(\Omega, \xi_0) &:= D_T \mathbb{E}[y^r(\Omega, \mathbf{X})]|_{\xi_0} = \int_{\mathbb{R}^N} r y^{r-1}(\Omega, \mathbf{X}) D_T y(\Omega, \mathbf{X}, \xi_0) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} \\ &= \mathbb{E}[r y^{r-1}(\Omega, \mathbf{X}) D_T y(\Omega, \mathbf{X}, \xi_0)] \end{aligned} \quad (17)$$

that is, the topology derivative is obtained from the expected value of the response function multiplied by its topology derivative.

For simplicity, we denote $D_T y(\Omega, \mathbf{X}, \xi_0)$ by $z(\Omega, \mathbf{X}, \xi_0)$, existing an S -variate, m th-order PDD approximation $\tilde{z}_{S,m}$ as

$$\tilde{z}_{S,m}(\Omega, \mathbf{X}, \xi_0) := z_{\emptyset}(\Omega, \xi_0) + \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ 1 \leq |u| \leq S}} \sum_{\substack{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|} \\ \|\mathbf{j}_{|u|}\|_{\infty} \leq m}} D_{u\mathbf{j}_{|u|}}(\Omega, \xi_0) \psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega), \quad (18)$$

Replacing y and $D_T y$ of Eq. (17) by their S -variate, m th-order PDD approximations $\tilde{y}_{S,m}$ and $\tilde{z}_{S,m}$, respectively, we have

$$D_T \tilde{m}_{S,m}^{(r)}(\Omega, \xi_0) = \mathbb{E} \left[r \tilde{y}_{S,m}^{r-1}(\Omega, \mathbf{X}) \tilde{z}_{S,m}(\Omega, \mathbf{X}, \xi_0) \right] \quad (19)$$

For $r = 1, 2, 3$, employing the zero mean property and orthonormal property of the PDD basis $\psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega)$ yields analytical formulation for topology sensitivity of first three moments

$$D_T \tilde{m}_{S,m}^{(1)}(\Omega, \xi_0) = z_{\emptyset}(\Omega, \xi_0), \quad (20)$$

$$D_T \tilde{m}_{S,m}^{(2)}(\Omega, \xi_0) = 2 \times \left[y_{\emptyset}(\Omega) z_{\emptyset}(\Omega, \xi_0) + \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ 1 \leq |u| \leq S}} \sum_{\substack{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|} \\ \|\mathbf{j}_{|u|}\|_{\infty} \leq m}} C_{u\mathbf{j}_{|u|}}(\Omega) D_{u\mathbf{j}_{|u|}}(\Omega, \xi_0) \right], \quad (21)$$

$$D_T \tilde{m}_{S,m}^{(3)}(\Omega, \xi_0) = 3 \times \left[z_\emptyset(\Omega, \xi_0) \tilde{m}_{S,m}^{(2)}(\Omega) + 2y_\emptyset(\Omega) \sum_{\substack{\emptyset \neq u \subseteq \{1, \dots, N\} \\ 1 \leq |u| \leq S}} \sum_{\substack{\mathbf{j}_{|u|} \in \mathbb{N}^{|u|} \\ \|\mathbf{j}_{|u|}\|_\infty \leq m}} C_{u\mathbf{j}_{|u|}}(\Omega) D_{u\mathbf{j}_{|u|}}(\Omega, \xi_0) + T_k \right], \quad (22)$$

$$T_k = \sum_{\substack{\emptyset \neq u, v, w \subseteq \{1, \dots, N\} \\ 1 \leq |u|, |v|, |w| \leq S}} \sum_{\substack{\mathbf{j}_{|u|}, \mathbf{j}_{|v|}, \mathbf{j}_{|w|} \in \mathbb{N}^{|u|} \\ \|\mathbf{j}_{|u|}\|_\infty, \|\mathbf{j}_{|v|}\|_\infty, \|\mathbf{j}_{|w|}\|_\infty \leq m}} C_{u\mathbf{j}_{|u|}}(\Omega) C_{v\mathbf{j}_{|v|}}(\Omega) D_{w\mathbf{j}_{|w|}}(\Omega, \xi_0) \\ \times \mathbb{E}_{\mathbf{d}} [\psi_{u\mathbf{j}_{|u|}}(\mathbf{X}_u; \Omega) \psi_{v\mathbf{j}_{|v|}}(\mathbf{X}_v; \Omega) \psi_{w\mathbf{j}_{|w|}}(\mathbf{X}_w; \Omega)], \quad (23)$$

which requires expectations of various products of three random orthonormal polynomials. However, if \mathbf{X} follows Classical distributions such as Gaussian, Exponential, and Uniform distribution, then the expectations are easily determined from the properties of univariate Hermite, Laguerre, and Legendre polynomials [3, 15, 16]. For general distribution, numerical integration methods will apply.

4 Calculation of PDD Coefficients

The determination of truncated PDD expansion coefficients $y_\emptyset(\Omega)$ and $C_{u\mathbf{j}_{|u|}}(\Omega)$, where $\emptyset \neq u \subseteq \{1, \dots, N\}$ and $\mathbf{j}_{|u|} \in \mathbb{N}^{|u|}$; $\|\mathbf{j}_{|u|}\|_\infty \leq m_u$, is vitally important for calculating the statistical moments and probability of failure, as well as associated design sensitivities, of the responses of interest. The PDD coefficients in Eq. (2), require calculations of various N -dimensional integrals over \mathbb{R}^N . For large N , it is computationally prohibitive to perform a N -dimensional numerical integration by an N -dimensional tensor product of a univariate quadrature rule. Therefore, the dimension-reduction integration (DRI) scheme, developed by Xu and Rahman [22], is adopted in this work to evaluate the coefficients accurately and effectively [22, 23].

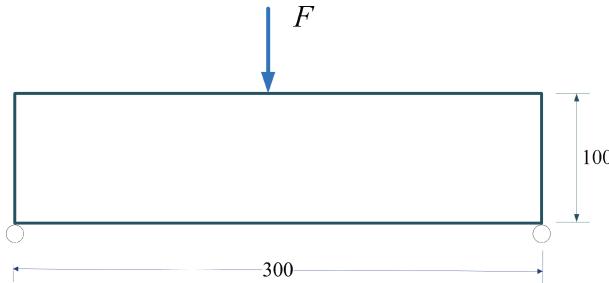
Let $\mathbf{c} = (c_1, \dots, c_N)^T \in \mathbb{R}^N$, which is commonly adopted as the mean of \mathbf{X} , be a reference point, and $y(\Omega, \mathbf{x}_v, \mathbf{c}_{-v})$ represent an $|v|$ -variate RDD component function of $y(\Omega, \mathbf{x})$, where $v \subseteq \{1, \dots, N\}$. Given a positive integer $S \leq R \leq N$, when $y(\Omega, \mathbf{x})$ in Eqs. (4) and (5) is replaced with its R -variate RDD approximation, the coefficients $y_\emptyset(\Omega)$ and $C_{u\mathbf{j}_{|u|}}(\Omega)$ are estimated from [22]

$$y_\emptyset(\Omega) \cong \sum_{i=0}^R (-1)^i \binom{N-R+i-1}{i} \sum_{\substack{v \subseteq \{1, \dots, N\} \\ |v|=R-i}} \int_{\mathbb{R}^{|v|}} y(\Omega, \mathbf{x}_v, \mathbf{c}_{-v}) f_{\mathbf{X}_v}(\mathbf{x}_v) d\mathbf{x}_v \\ (24)$$

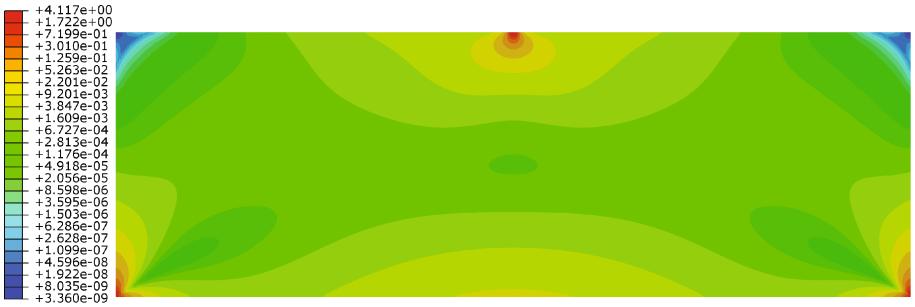
and

$$C_{u\mathbf{j}_{|u|}}(\Omega) \cong \sum_{i=0}^R (-1)^i \binom{N-R+i-1}{i} \sum_{\substack{v \subseteq \{1, \dots, N\} \\ |v|=R-i, u \subseteq v}} \int_{\mathbb{R}^{|v|}} y(\Omega, \mathbf{x}_v, \mathbf{c}_{-v}) \psi_{u\mathbf{j}_{|u|}}(\mathbf{x}_u, \Omega) f_{\mathbf{x}_v}(\mathbf{x}_v) d\mathbf{x}_v, \quad (25)$$

respectively, requiring evaluation of at most R -dimensional integrals. The reduced integration facilitates calculation of the coefficients approaching their exact values as $R \rightarrow N$ and is significantly more efficient than performing one N -dimensional integration, particularly when $R \ll N$. Hence, the computational effort is significantly lowered using the dimension-reduction integration. For instance, when $R = 1$ or 2 , Eqs. (24) and (25) involve one-, or at most, two-dimensional integrations, respectively. Nonetheless, numerical integrations are still required for performing various $|v|$ -dimensional integrals over $\mathbb{R}^{|v|}$, where $0 \leq |v| \leq R$.


5 Numerical Examples

Two examples, comprising a three-point bending beam and a three-hole bracket, are illustrated to examine the efficiency of the PDD methods developed for calculating the first-order topology sensitivities of statistical moments. The PDD expansion coefficients were estimated by dimension-reduction integration with the mean input as the reference point, $R = S$, and the number of Gauss points $n_g = m + 1$, where $S = 1$ and $m = 1$ for all two problems. In both examples, orthonormal polynomials and associated Gauss quadrature rules consistent with the probability distributions of input variables, including classical forms, if they exist, were employed. No unit for length, force, and Young's modulus is specified in both examples for simplicity, while permitting any consistent unit system for the results.

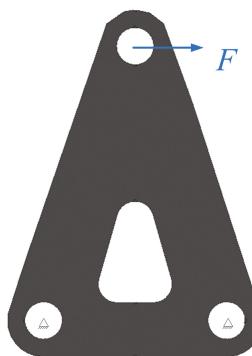

5.1 A Three Point Bending Beam

The three point bend test is a classical experiment in engineering mechanics, often employed to measure the Young's modulus of a material. In this example, we employ it to illustrate topology design sensitivities. Consider a beam, of length 300 and height 100, resting on two roller supports and is subject to a concentrated load F at its top centre as shown in Fig. 1, where $F \sim \mathcal{N}(10, 1)$ is a Gaussian random variable with mean value of 10 and standard deviation of 1. The beam consists of isotropic linear elastic material, of random Young's modulus E and deterministic Poisson's ratio 0.3, where $E \sim \mathcal{N}(100, 1)$ is another Gaussian random variable with mean value of 100 and standard deviation of 1. The response function of interest is the total compliance of the beam, that is

$$y(\Omega) = \int_{\Omega} \frac{1}{2} \boldsymbol{\sigma} : \boldsymbol{\varepsilon} d\Omega. \quad (26)$$

Fig. 1. A three point bending beam

Fig. 2. A three point bending beam: topology sensitivity of the first moment of the total compliance


The objective of this example is to evaluate the topology sensitivity of the first two moments for the compliance response, i.e. $D_T m^{(1)}(\Omega, \xi_0)$ and $D_T m^{(2)}(\Omega, \xi_0)$, for any point ξ_0 in the beam. Figures 2 and 3 present the contours of approximate topology sensitivities, $D_T \tilde{m}_{S,m}^{(1)}(\Omega, \xi_0)$ and $D_T \tilde{m}_{S,m}^{(2)}(\Omega, \xi_0)$ by the proposed truncated PDD method. Based on the Eqs. (20) and (21), it is reasonable that two contour plots demonstrated a similar pattern by which the topology sensitivity varies with the location. For the particular response function, the total compliance, investigated in this example, the significant values of topology sensitivities of moments occurred in the location with high stress value, for instance, the top centre where the concentrated force is applied and the two lower corners where two roller supports are defined. Whereas two upper corners incur negligible topology sensitivities, which can be inferred from the inappreciable stress of those locations.

5.2 A Three-Hole Bracket

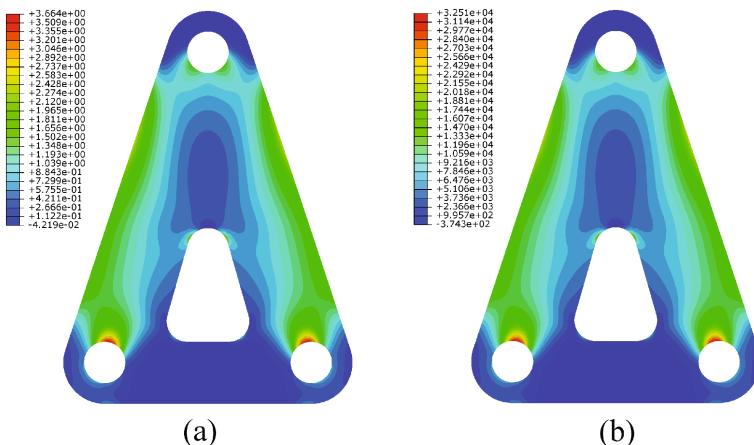

This example involves topology sensitivity analysis of a two-dimensional, three-hole bracket. The bottom two holes are fixed, and a deterministic horizontal force F is applied at the center of the top hole as shown in Fig. 4, where $F \sim \mathcal{N}(15000, 1500)$ is a Gaussian random variable with mean value of 15000 and

Fig. 3. A three point bending beam: topology sensitivity of the second moment of the total compliance

Fig. 4. A three-hole bracket

Fig. 5. A three-hole bracket: topology sensitivity for (a) the first moment and (b) the second moment of the total compliance

standard deviation of 1500. The bracket material has random elastic modulus E and deterministic Poisson's ratio $\nu = 0.3$, where E follows the Gaussian distribution with mean value of 207400 and standard deviation of 20740. The total compliance $y(\Omega) = \int_{\Omega} \frac{1}{2} \boldsymbol{\sigma} : \boldsymbol{\varepsilon} d\Omega$ is also selected as the response function.

The topology sensitivity of the first two moments for the compliance response, i.e. $D_{Tm}^{(1)}(\Omega, \xi_0)$ and $D_{Tm}^{(2)}(\Omega, \xi_0)$, are calculated by the proposed method. Their contours are presented in Fig. 5(a) and (b). In the same manner with the beam example, two contour plots demonstrated a similar pattern by which the topology sensitivity varies with the location. The location with high stress value likewise has the significant value of topology sensitivities. To obtain the contour of topology sensitivity, the total number of FEA required in either beam example or bracket example is 5, owing to the truncated polynomial dimensional decomposition of the response function and its deterministic topology derivatives.

6 Conclusions

The novel computational method grounded in PDD was developed for topology sensitivity analysis of high-dimensional complex systems subject to random inputs. The proposed method, capitalizing on a novel integration of PDD and deterministic topological derivatives, provides analytical expressions of approximate topology sensitivities of the first three moments that are mean-square convergent. Both the statistical moments and their topology sensitivities are determined concurrently from a single stochastic analysis. Numerical results indicate that the new methods developed provide computationally efficient solutions. The future work can be envisioned at least from the following three aspects: (1) convergence study for different S and m values, (2) subtly designed examples, for which the analytical topology sensitivity exists, to benchmark the accuracy of the proposed method, and (3) cases involving nonlinear materials.

Acknowledgments. The authors acknowledge financial support from the U.S. National Science Foundation under Grant No. CMMI-1635167 and the startup funding of Georgia Southern University.

References

1. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. *Arch. Appl. Mech.* **69**(9–10), 635–654 (1999)
2. Bendsøe, M.P., Sigmund, O.: Topology optimization: Theory, methods and applications (2003)
3. Busbridge, I.W.: Some integrals involving hermite polynomials. *J. Lond. Math. Soc.* **23**, 135–141 (1948)
4. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for pde systems: the elasticity case. *SIAM J. Control Optim.* **39**(6), 1756–1778 (2001)
5. Grigoriu, M.: Statistically equivalent solutions of stochastic mechanics problems. *J. Eng. Mech.* **117**(8), 1906–1918 (1991)

6. Grigoriu, M.: *Stochastic Calculus: Applications in Science and Engineering*. Springer, New York (2002)
7. Guzina, B.B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. *Q. J. Mech. Appl. Math.* **57**, 161–179 (2004)
8. Huang, B., Du, X.: Analytical robustness assessment for robust design. *Struct. Multi. Optim.* **34**(2), 123–137 (2007)
9. Lee, S.H., Chen, W., Kwak, B.M.: Robust design with arbitrary distributions using gauss-type quadrature formula. *Struct. Multi. Optim.* **39**(3), 227–243 (2009)
10. Liu, P., Luo, Y.J., Kang, Z.: Multi-material topology optimization considering interface behavior via xfem and level set method. *Comput. Methods Appl. Mech. Eng.* **308**, 113–133 (2016)
11. Lurie, A.I., Belyaev, A.: *Theory of Elasticity. Foundations of Engineering Mechanics*. Springer, Heidelberg (2010)
12. Rahman, S.: A polynomial dimensional decomposition for stochastic computing. *Int. J. Numer. Methods Eng.* **76**(13), 2091–2116 (2008)
13. Rahman, S.: Extended polynomial dimensional decomposition for arbitrary probability distributions. *J. Eng. Mech. ASCE* **135**(12), 1439–1451 (2009)
14. Rahman, S.: Statistical moments of polynomial dimensional decomposition. *J. Eng. Mech.* **136**(7), 923–927 (2010)
15. Rahman, S., Ren, X.C.: Novel computational methods for high-dimensional stochastic sensitivity analysis. *Int. J. Numer. Methods Eng.* **98**(12), 881–916 (2014)
16. Ren, X.C., Rahman, S.: Robust design optimization by polynomial dimensional decomposition. *Struct. Multi. Optim.* **48**(1), 127–148 (2013)
17. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. *Struct. Multi. Optim.* **16**(1), 68–75 (1998)
18. Sui, Y.K., Yang, D.Q.: A new method for structural topological optimization based on the concept of independent continuous variables and smooth model. *Acta Mech. Sinica* **14**(2), 179–185 (1998)
19. Wang, H., Kim, N.H.: Robust design using stochastic response surface and sensitivities. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2006)
20. Wang, M.Y., Wang, X.M.: Color level sets: a multi-phase method for structural topology optimization with multiple materials. *Comput. Methods Appl. Mech. Eng.* **193**(6), 469–496 (2004)
21. Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. *Comput. Methods Appl. Mech. Eng.* **192**(1), 227–246 (2003)
22. Xu, H., Rahman, S.: A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. *Int. J. Numer. Methods Eng.* **61**(12), 1992–2019 (2004)
23. Xu, H., Rahman, S.: Decomposition methods for structural reliability analysis. *Probab. Eng. Mech.* **20**(3), 239–250 (2005)
24. Yamazaki, F., Shinozuka, M., Dasgupta, G.: Neumann expansion for stochastic finite element analysis. *J. Eng. Mech.* **114**(8), 1335–1354 (1988)