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Foreword

The present proceeding is a collection of contributions from the Twelfth World
Congress of Structural and Multidisciplinary Optimization (WCSMO12) held at the
Technische Universität Braunschweig in Germany from June 5 to 9, 2017.

The WCSMO12 was organized by the International Society for Structural and
Multidisciplinary Optimization (ISSMO) founded in October 1991 and has held the
WCSMO biennially since 1995. One of the goals of ISSMO is to bring together
researchers and practitioners in the field of structural and multidisciplinary opti-
mization (SMO), by means of international meetings with high scientific standard.
The ISSMO aims at stimulating and promoting research in all aspects of optimal
design of structures as well as multidisciplinary design optimization, where the
involved disciplines deal with the analysis of solids, fluids, or other field problems.

The organizing staff of the WCSMO12 was composed of members of the
Technische Universität Braunschweig, the University of Wuppertal, the
Volkswagen AG, the Technical University of Munich, and the University of
Colorado Boulder.

We would like to express our gratitude to all the contributing authors who helped
to create this comprehensive proceeding. Also, we thank the members of the
International Papers Committee of the WCSMO12: Byeng Dong Youn from the
Seoul National University in Korea, Qing Li from the University of Sydney in
Australia, Ramana Grandhi from the Wright State University in Ohio, Zhan Kang
from the Dalian University of Technology in China, and Niels Pedersen from the
Technical University of Denmark.

This proceeding provides a detailed overview of the current research activities of
methods for structural and multidisciplinary optimization. The content is subdi-
vided into several parts. In part I to VI, we collect all contributions concerning
general approaches and strategies for optimization processes, like robust design or
surrogate models. Parts VII to VIII deal with optimization algorithms. In parts IX to
XV, there are contributions dealing with structural optimization methods like shape
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and topology optimization. Parts XVI to XXII contain contributions dealing with
different physical models, like crash simulation, acoustic simulation, or the con-
sideration of manufacturing aspects. Industrial applications are collected in parts
XXIII to XXVII.

Axel SchumacherNovember 2017
Thomas Vietor

Sierk Fiebig
Kai-Uwe Bletzinger

Kurt Maute
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Abstract. Topology optimization under uncertainty poses extreme dif-
ficulty to the already challenging topology optimization problem. This
paper presents a new computational method for calculating topologi-
cal sensitivities of statistical moments of high-dimensional complex sys-
tems subject to random inputs. The proposed method, capable of eval-
uating stochastic sensitivities for large-scale, robust topology optimiza-
tion (RTO) problems, integrates a polynomial dimensional decomposi-
tion (PDD) of multivariate stochastic response functions and determin-
istic topology derivatives. In addition, the statistical moments and their
topology sensitivities are both determined concurrently from a single sto-
chastic analysis. When applied in collaboration with the gradient based
optimization algorithm, the proposed method affords the ability of solving
industrial-scale RTO design problems. Numerical examples indicate that
the new method developed provides computationally efficient solutions.

Keywords: Stochastic sensitivity analysis · Polynomial dimensional
decomposition · Robust design topology optimization · Topological
derivatives

1 Introduction

Topology optimization is a computational design framework to identify the opti-
mal distribution of materials for complex engineering systems [1,2,10,17,18,
20,21]. Uncertainties, unavoidable in the manufacturing process and operating
environment, often plague those engineering systems, thus need to be taken into
account during the design process. Conventional deterministic design approaches
typically lead to inefficient and overly conservative designs that overcompensate
for uncertainties, or unknowingly risky designs due to the underestimation of
uncertainties. Aimed at minimizing the propagation of input uncertainty, robust
topology optimization (RTO) discovers insensitive topology design in the pres-
ence of uncertainty. In the past decade, it is increasingly viewed as an enabling
c© Springer International Publishing AG 2018
A. Schumacher et al. (eds.), Advances in Structural and Multidisciplinary Optimization,
https://doi.org/10.1007/978-3-319-67988-4_26
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technology for topology design of aerospace, automotive, and civil structures
subject to uncertainty.

The objective or constraint functions in RTO usually consist of first two
moment properties, such as means and standard deviations, of certain stochas-
tic responses, describing the objective robustness or feasibility robustness of a
given topology. Therefore, solving a practical RTO problem draws in statistical
moments and their sensitivity analysis for random responses. The fundamen-
tal problem rooted in statistical moment analysis entails calculation of a high-
dimensional integral with respect to the probability measure fX(x) of X over
R

N , where N is the number of random variables. In general, such an integral
cannot be evaluated analytically. Direct numerical integration can be performed,
but it is not economically feasible for the cases that N exceeds three or four, espe-
cially when expensive finite element analyses (FEA) are involved in the evalua-
tion of response functions. Existing approximate methods for statistical moment
analysis include the point estimate method (PEM) [8], Taylor series expansion or
perturbation method [8], tensor product quadrature (TPQ) [9], Neumann expan-
sion method [24], polynomial chaos expansion (PCE) [19], statistically equivalent
solution [5], dimension-reduction method [22,23], and others [6].

Two major concerns are relevant to existing approaches when conducting
stochastic moment and their sensitivity analysis. First, the commonly used sto-
chastic methods, such as the perturbation or Taylor series expansions, PEM,
PCE, TPQ, and dimension-reduction methods begin to be inapplicable or inade-
quate when performing uncertainty quantification for many large-scale engineer-
ing problems. For example, although the Taylor series expansion and PEM are
inexpensive and simple, they may deteriorate when the nonlinearity of response
function is high and/or when the input uncertainty is large. PCE, commonly
used in stochastic mechanics, is an infinite series involving Hermite polynomials
of Gaussian variables (or others). However, for high-dimensional systems, PCE
requires astronomically large numbers of terms or coefficients to capture the high
nonlinearity of a stochastic response, easily succumbing to the curse of dimen-
sionality. The dimension-reduction methods, to some extent, mitigate the curse
of dimensionality, but they are based on the referential dimensional decomposi-
tion (RDD), often leading to sub-optimal approximations of a response function.
Second, applied to design sensitivity analysis of the statistical moments, many
of the aforementioned methods invoke finite-difference techniques, which require
repetitive stochastic analyses at both perturbed and nominal design points.
Therefore, they are often computationally expensive. Although some methods,
such as Taylor series expansions, also provide the design sensitivities economi-
cally, its sensitivity estimates are either inaccurate or unreliable due to inherited
errors from the associated second-moment analysis.

This paper presents a new approach for evaluating topology design sensitiv-
ities of statistical moments of complex engineering structures subject to ran-
dom inputs. The method proposes a novel integration of polynomial dimen-
sional decomposition (PDD) of a multivariate stochastic response function and
deterministic topological derivative. For stochastic moment analysis, it leads to
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analytical formulations for the first two moments. Furthermore, it is capable
of incorporating both moment calculation and their topology design sensitivity
evaluation in a single stochastic analysis. Section 2 describes the PDD approx-
imation of a multivariate function, resulting in explicit formulae for the first
two moments. Section 3 described the new integration of PDD and deterministic
topological derivative as well as numerical procedures for topology sensitivities of
moments. The calculation of PDD expansion coefficients, required in sensitivity
analyses of moments, is discussed in Sect. 4. In Sect. 5, two numerical examples
are presented to probe the accuracy and computational efficiency of the proposed
method. Finally, conclusions are drawn in Sect. 6.

2 PDD and Moment Analysis

2.1 Robust Topology Optimization

The mathematical formulation for robust topology optimization involving a sin-
gle objective function and 1 ≤ K < ∞ constraint functions requires:

min
Ω

c0(Ω) := w1
E [y0(Ω,X)]

μ∗
0

+ w2

√
var [y0(Ω,X)]

σ∗
0

,

subject to ck(Ω) := αk

√
var [yk(Ω,X)] − E [yk(Ω,X)] ; k = 1, · · · ,K, (1)

Ω ⊆ D,

where w1 ∈ R
+
0 and w2 ∈ R

+
0 are two non-negative, real-valued weights,

satisfying w1 + w2 = 1, μ∗
0 ∈ R \ {0} and σ∗

0 ∈ R
+
0 \ {0} are two non-zero, real-

valued scaling factors; αk ∈ R
+
0 , k = 0, 1, · · · ,K, are non-negative, real-valued

constants associated with the probabilities of constraint satisfaction; D ⊂ R
3 is a

bounded domain in which all admissible Ω are included; X := (X1, · · · ,XN )T ∈
R

N is an N -dimensional random input vector completely defined by a family of
joint probability density functions {fX(x), x ∈ R

N} on the probability triple
(ΩX,F , P ), where ΩX is the sample space; F is the σ-field on ΩX; and P is
the probability measure associated with probability density fX(x). Equation (1)
describes a generic RTO problem involving the first two moments of certain
responses.

To Solve Eq. (1) for an optimal topology employing gradient based algorithm,
efficient methods for stochastic moments and their topology design sensitivities
are required. The following subsections describe the recently developed poly-
nomial dimensional decomposition method for stochastic moments and their
sensitivities.

2.2 PDD

Consider a multivariate stochastic response y(Ω,X), representing any of the
performance function yk in Eq. (1) that depends on the random vector
X = {X1, · · · ,XN}T . Let L2(ΩX,F , P ) be a Hilbert space of square-integrable
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functions y with corresponding probability measure fX(x)dx supported on R
N .

Assuming independent coordinates, the PDD expansion of function y is hierar-
chical:

y(Ω,X) = y∅(Ω) +
∑

∅�=u⊆{1,··· ,N}

∑

j|u|∈N|u|

Cuj|u|(Ω)ψuj|u|(Xu; Ω), (2)

in terms of a set of multivariate orthonormal polynomials [12,13]
ψuj|u|(Xu; Ω) :=

∏|u|
p=1 ψipjp

(Xi; Ω) where j|u| = (j1, · · · , j|u|) ∈ N
|u| is a |u|-

dimensional multi-index; yφ(Ω) is a constant; for |u| = 1, Cuj|u|(Ω)ψuj|u|(Xu; Ω)
is a univariate component function representing the individual contribution to
y(Ω,X) by a single input variable; for |u| = 2, it is a bivariate component func-
tion describing the cooperative influence of two input variables; and for |u| = S,
it is an S-variate component function quantifying the interactive effects of S
input variables. For most performance functions, Eq. (2) can be truncated by
retaining, at most, the interactive effects of S < N input variables and m-th
order polynomials as follows

ỹS,m(Ω,X) := y∅(Ω) +
∑

∅�=u⊆{1,··· ,N}
1≤|u|≤S

∑

j|u|∈N
|u|

‖j|u|‖∞≤m

Cuj|u|(Ω)ψuj|u|(Xu; Ω), (3)

where
y∅(Ω) =

∫

RN

y(x,Ω)fX(x)dx (4)

and

Cuj|u|(Ω) :=

∫
RN

y(x, Ω)ψuj|u|(xu; Ω)fX(x)dx, ∅ �= u ⊆ {1, · · · , N}, j|u| ∈ N
|u|,

(5)
are various expansion coefficients. For S > 0, Eq. (3) contains interactive effects
of at most S input variables Xi1 , · · · ,XiS

, 1 ≤ i1 < · · · < iS ≤ N , on y, thus
resulting in the S-variate, mth-order PDD approximation. When S → N and
m → ∞, ỹS,m converges to y and engenders a sequence of hierarchical and
convergent approximations of y. Depending on the dimensional structure and
nonlinearity of a stochastic response, the truncation parameters S and m can
be chosen accordingly. The higher the values of S and m permit the higher the
accuracy, but also endow the computational cost of an Sth-order polynomial
computational complexity [12,13]. Henceforth, the S-variate, mth-order PDD
approximation will be simply referred to as truncated PDD approximation in
this paper.

2.3 Moment Analysis

Let m(r)(Ω) := E[yr(Ω,X)], if it exists, denote the raw moment of y of order r,
where r ∈ N. Provided an S-variate, mth-order PDD approximation ỹS,m(Ω,X)
of y(Ω,X), let m̃(r)(Ω) := E[ỹr

S,m(Ω,X)] denote the raw moment of ỹS,m of order
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r. The analytical expressions or explicit formulae for calculating the moments
using PDD approximations are described as follows.

Applying the expectation operator on ỹS,m(Ω,X) and ỹ2
S,m(Ω,X), the first

moment or mean [14]

m̃
(1)
S,m(Ω) := E [ỹS,m(Ω,X)] = y∅(Ω) = E [y(Ω,X)] =: m(1)(Ω) (6)

of the S-variate, mth-order PDD approximation reproduces the exact mean of
y, whereas the second moment [14]

m̃
(2)
S,m(Ω) := E

[
ỹ2

S,m(Ω,X)
]

= y2
∅(Ω) +

∑

∅�=u⊆{1,··· ,N}
1≤|u|≤S

∑

j|u|∈N
|u|

‖j|u|‖∞≤m

C2
uj|u|(Ω) (7)

is evaluated as the sum of squares of all expansion coefficients of ỹS,m(Ω,X). It
is elementary to show that the estimation of second moment provided by Eq.
(7) approaches the exact second moment

m(2)(Ω) := E
[
y2(Ω,X)

]
= y2

∅(Ω) +
∑

∅�=u⊆{1,··· ,N}

∑

j|u|∈N
|u|

C2
uj|u|(Ω) (8)

of y when S → N and m → ∞. The mean-square convergence of ỹS,m is guaran-
teed as its component functions will include all required members of the associ-
ated Hilbert spaces. Furthermore, the variance of ỹS,m(Ω,X) is also mean-square
convergent.

3 Topology Sensitivity of Stochastic Moments

3.1 Deterministic Topological Derivative

For a given reference domain Ω ⊂ R
n, n = 2 or 3, consider the following linear

elastic system ⎧
⎪⎨

⎪⎩

∇ · (C : ε) = 0 in Ω
u = ū on ΓD

n · (C : ε) = t̄ on ΓN

, (9)

where C is the elastic tensor, ε = 1
2 (u∇ + ∇u) is the Cauchy strain tensor, ΓD

and ΓN are Dirichlet boundary and Neumann boundary of Ω, respectively. For
a point ξ0 ∈ Ω and a spherical hole ω ∈ R

n with a fixed radius and boundary
∂ω, the translated and rescaled hole can be defined by ωρ = ξ0 + ρω, ∀ρ > 0
and the perforated domain is Ωρ = Ω\ωρ, the new problem with the Neumann
boundary on the perforated hole is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ · (C : ερ) = 0 in Ωρ

uρ = ū on ΓD

n · (C : ερ) = t̄ on ΓN

n · (C : ερ) = 0 on ∂ωρ

. (10)
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In engineering design, it is often of interest to investigate a certain response func-
tion y defined over the domain Ω and its variation when the domain is perforated
by a small hole. In general, y is the function of Ω as well as the displacement
u, and is differentiable with respect to u, although it is often denoted as y(Ω)
for simplicity. For a small ρ > 0, if y(Ωρ) admits the topological asymptotic
expansion y(Ωρ) = y(Ω) + ρkDT y(Ω, ξ0) + o(ρk), then ρkDT y(Ω, ξ0) represents
the variation of the response function when the domain changes from Ω to Ωρ,
and DT y(Ω, ξ0) is called the topological derivative at point ξ0. The concept of
topological derivative is applicable to general boundary value problems including
linear elastic systems.

When the total compliance of the structure is selected as the response func-
tion y, aided by the adjoint method, the domain truncation technique, and the
asymptotic expansion with respect to the small parameter ρ, the deterministic
topological derivative DT y(Ω, ξ0) reads [4]

DT y(Ω, ξ0) = a (C : ε (ξ0)) : ε̃ (ξ0) (11)

where ε̃ is the strain solution of the following adjoint problem
⎧
⎪⎨

⎪⎩

∇ · (C : ε̃) = 0 in Ω
ũ = −ū on ΓD

n·(C : ε̃) = t̄ on ΓN

. (12)

and a (C : ε (ξ0)) is a second order tensor function implicitly related to C : ε (ξ0)
and its components read

aij =
∫

∂ωρ

(n · C : ε̂) · eiξjdγ(ξ), (13)

in which ei is ith orthonormal basis vector of the reference frame, and ε̂ is the
strain solution of the following problem

{
∇ · (C : ε̂) = 0 in R

n\ωρ

n·(C : ε̂) = n · C : ε (ξ0) on ∂ωρ

. (14)

For the case that the domain consist of isotropic linear elastic material, Eq.
(14) has an analytical asymptotic solution [4,7,11], thus Eq. (11) can be further
simplified and the topological derivative DT y(Ω, ξ0) has a concrete form

DT y(Ω, ξ0) = [C : ε̃(ξ0)] : A : [C : ε(ξ0)] (15)

in which A is a fourth order tensor related to Young’s modulus E and Poisson’s
ratio ν as follows

A =
2π

3E(7 − 5ν)
[
2

(
11 + ν − 10ν2

)
I − 3

(
1 + 4ν − 5ν2

)
I ⊗ I

]
(16)
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where I is the symmetric fourth order identity tensor and I is the second order
identity tensor.

For anisotropic linear elastic materials or nonlinear materials, the analytical
solution for Eq. (14) is hardly available, so further investigations or alternatives
are in demands.

3.2 Topology Sensitivity of Stochastic Moments

Let y(Ω,X) be a response function of the linear system (9) subject to certain
random input X. For a point ξ0 ∈ Ω, taking topology derivative of rth moments
of the response function y(Ω,X) and applying the Lebesgue dominated conver-
gence theorem, which permits interchange of the differential and integral oper-
ators, yields

DT m(r)(Ω, ξ0) := DTE [yr(Ω,X)]|ξ0 =
∫

RN

ryr−1(Ω,X)DT y(Ω,X, ξ0)fX(x)dx

= E
[
ryr−1(Ω,X)DT y(Ω,X, ξ0)

]
(17)

that is, the topology derivative is obtained from the expected value of the
response function multiplied by its topology derivative.

For simplicity, we denote DT y(Ω,X, ξ0) by z(Ω,X, ξ0), existing an S-variate,
mth-order PDD approximation z̃S,m as

z̃S,m(Ω,X, ξ0) := z∅(Ω, ξ0) +
∑

∅�=u⊆{1,··· ,N}
1≤|u|≤S

∑

j|u|∈N
|u|

‖j|u|‖∞≤m

Duj|u|(Ω, ξ0)ψuj|u|(Xu; Ω),

(18)
Replacing y and DT y of Eq. (17) by their S-variate, mth-order PDD approx-

imations ỹS,m and z̃S,m, respectively, we have

DT m̃
(r)
S,m(Ω, ξ0) = E

[
rỹr−1

S,m(Ω,X)z̃S,m(Ω,X, ξ0)
]

(19)

For r = 1, 2, 3, employing the zero mean property and orthonormal property of
the PDD basis ψuj|u|(Xu; Ω) yields analytical formulation for topology sensitivity
of first three moments

DT m̃
(1)
S,m(Ω, ξ0) = z∅(Ω, ξ0), (20)

DT m̃
(2)
S,m(Ω, ξ0) = 2 ×

⎡
⎢⎢⎢⎢⎣

y∅(Ω)z∅(Ω, ξ0) +
∑

∅�=u⊆{1,··· ,N}
1≤|u|≤S

∑

j|u|∈N
|u|

||j|u|||∞≤m

Cuj|u| (Ω)Duj|u| (Ω, ξ0)

⎤
⎥⎥⎥⎥⎦
,

(21)
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DT m̃
(3)
S,m(Ω, ξ0) = 3 ×

⎡

⎢⎢
⎣z∅(Ω, ξ0)m̃

(2)
S,m(Ω) + 2y∅(Ω)

∑

∅�=u⊆{1,··· ,N}
1≤|u|≤S

∑

j|u|∈N
|u|

||j|u|||∞≤m

Cuj|u|(Ω)Duj|u|(Ω, ξ0) + Tk

⎤

⎥⎥⎥
⎦

, (22)

Tk =
∑

∅�=u,v,w⊆{1,··· ,N}
1≤|u|,|v|,|w|≤S

∑

j|u|,j|v|,j|w|∈N
|u|

||j|u|||∞,||j|v|||∞,||j|w|||∞≤m

Cuj|u|(Ω)Cvj|v|(Ω)Dwj|w|(Ω, ξ0)

×Ed

[
ψuj|u|(Xu; Ω)ψvj|v|(Xv; Ω)ψwj|w|(Xw; Ω)

]
, (23)

which requires expectations of various products of three random orthonormal
polynomials. However, if X follows Classical distributions such as Gaussian,
Exponential, and Uniform distribution, then the expectations are easily deter-
mined from the properties of univariate Hermite, Laguerre, and Legendre poly-
nomials [3,15,16]. For general distribution, numerical integration methods will
apply.

4 Calculation of PDD Coefficients

The determination of truncated PDD expansion coefficients y∅(Ω) and Cuj|u|(Ω),
where ∅ �= u ⊆ {1, · · · , N} and j|u| ∈ N

|u||; |j|u|||∞ ≤ mu, is vitally important
for calculating the statistical moments and probability of failure, as well as asso-
ciated design sensitivities, of the responses of interest. The PDD coefficients
in Eq. (2), require calculations of various N -dimensional integrals over R

N . For
large N , it is computationally prohibitive to perform a N -dimensional numerical
integration by an N -dimensional tensor product of a univariate quadrature rule.
Therefore, the dimension-reduction integration (DRI) scheme, developed by Xu
and Rahman [22], is adopted in this work to evaluate the coefficients accurately
and effectively [22,23].

Let c = (c1, · · · , cN )T ∈ R
N , which is commonly adopted as the mean of X,

be a reference point, and y(Ω,xv, c−v) represent an |v|-variate RDD component
function of y(Ω,x), where v ⊆ {1, · · · , N}. Given a positive integer S ≤ R ≤ N ,
when y(Ω,x) in Eqs. (4) and (5) is replaced with its R-variate RDD approxima-
tion, the coefficients y∅(Ω) and Cuj|u|(Ω) are estimated from [22]

y∅(Ω) ∼=
R∑

i=0

(−1)i

(
N − R + i − 1

i

) ∑

v⊆{1,··· ,N}
|v|=R−i

∫

R|v|
y(Ω,xv, c−v)fXv

(xv)dxv

(24)
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and

Cuj|u| (Ω) ∼=
R∑

i=0

(−1)i
(N − R + i − 1

i

) ∑
v⊆{1,··· ,N}

|v|=R−i,u⊆v

∫

R|v|
y(Ω,xv , c−v)ψuj|u| (xu, Ω)fXv (xv)dxv ,

(25)

respectively, requiring evaluation of at most R-dimensional integrals. The
reduced integration facilitates calculation of the coefficients approaching their
exact values as R → N and is significantly more efficient than performing one
N -dimensional integration, particularly when R � N . Hence, the computa-
tional effort is significantly lowered using the dimension-reduction integration.
For instance, when R = 1 or 2, Eqs. (24) and (25) involve one-, or at most,
two-dimensional integrations, respectively. Nonetheless, numerical integrations
are still required for performing various |v|-dimensional integrals over R|v|, where
0 ≤ |v| ≤ R.

5 Numerical Examples

Two examples, comprising a three-point bending beam and a three-hole bracket,
are illustrated to examine the efficiency of the PDD methods developed for
calculating the first-order topology sensitivities of statistical moments. The PDD
expansion coefficients were estimated by dimension-reduction integration with
the mean input as the reference point, R = S, and the number of Gauss points
ng = m + 1, where S = 1 and m = 1 for all two problems. In both examples,
orthonormal polynomials and associated Gauss quadrature rules consistent with
the probability distributions of input variables, including classical forms, if they
exist, were employed. No unit for length, force, and Young’s modulus is specified
in both examples for simplicity, while permitting any consistent unit system for
the results.

5.1 A Three Point Bending Beam

The three point bend test is a classical experiment in engineering mechanics,
often employed to measure the Young’s modulus of a material. In this exam-
ple, we employ it to illustrate topology design sensitivities. Consider a beam,
of length 300 and height 100, resting on two roller supports and is subject to a
concentrated load F at its top centre as shown in Fig. 1, where F ∼ N (10, 1) is
a Gaussian random variable with mean value of 10 and standard deviation of 1.
The beam consists of isotropic linear elastic material, of random Young’s mod-
ulus E and deterministic Poisson’s ratio 0.3, where E ∼ N (100, 1) is another
Gaussian random variable with mean value of 100 and standard deviation of 1.
The response function of interest is the total compliance of the beam, that is

y(Ω) =
∫

Ω

1
2
σ : εdΩ. (26)
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Fig. 1. A three point bending beam

Fig. 2. A three point bending beam: topology sensitivity of the first moment of the
total compliance

The objective of this example is to evaluate the topology sensitivity of the first
two moments for the compliance response, i.e. DT m(1)(Ω, ξ0) and DT m(2)(Ω, ξ0),
for any point ξ0 in the beam. Figures 2 and 3 present the contours of approxi-
mate topology sensitivities, DT m̃

(1)
S,m(Ω, ξ0) and DT m̃

(2)
S,m(Ω, ξ0) by the proposed

truncated PDD method. Based on the Eqs. (20) and (21), it is reasonable that
two contour plots demonstrated a similar pattern by which the topology sen-
sitivity varies with the location. For the particular response function, the total
compliance, investigated in this example, the significant values of topology sensi-
tivities of moments occurred in the location with high stress value, for instance,
the top centre where the concentrated force is applied and the two lower corners
where two roller supports are defined. Whereas two upper corners incurs negli-
gible topology sensitivities, which can be inferred from the inappreciable stress
of those locations.

5.2 A Three-Hole Bracket

This example involves topology sensitivity analysis of a two-dimensional, three-
hole bracket. The bottom two holes are fixed, and a deterministic horizontal
force F is applied at the center of the top hole as shown in Fig. 4, where F ∼
N (15000, 1500) is a Gaussian random variable with mean value of 15000 and
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Fig. 3. A three point bending beam: topology sensitivity of the second moment of the
total compliance

Fig. 4. A three-hole bracket

Fig. 5. A three-hole bracket: topology sensitivity for (a) the first moment and (b) the
second moment of the total compliance
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standard deviation of 1500. The bracket material has random elastic modulus
E and deterministic Poisson’s ratio ν = 0.3, where E follows the Gaussian
distribution with mean value of 207400 and standard deviation of 20740. The
total compliance y(Ω) =

∫
Ω

1
2σ : εdΩ is also selected as the response function.

The topology sensitivity of the first two moments for the compliance response,
i.e. DT m(1)(Ω, ξ0) and DT m(2)(Ω, ξ0), are calculated by the proposed method.
Their contours are presented in Fig. 5(a) and (b). In the same manner with the
beam example, two contour plots demonstrated a similar pattern by which the
topology sensitivity varies with the location. The location with high stress value
likewise has the significant value of topology sensitivities. To obtain the contour
of topology sensitivity, the total number of FEA required in either beam example
or bracket example is 5, owing to the truncated polynomial dimensional decom-
position of the response function and its deterministic topology derivatives.

6 Conclusions

The novel computational method grounded in PDD was developed for topol-
ogy sensitivity analysis of high-dimensional complex systems subject to random
inputs. The proposed method, capitalizing on a novel integration of PDD and
deterministic topological derivatives, provides analytical expressions of approxi-
mate topology sensitivities of the first three moments that are mean-square con-
vergent. Both the statistical moments and their topology sensitivities are deter-
mined concurrently from a single stochastic analysis. Numerical results indicate
that the new methods developed provide computationally efficient solutions. The
future work can be envisioned at least from the following three aspects: (1) con-
vergence study for different S and m values, (2) subtly designed examples, for
which the analytical topology sensitivity exists, to benchmark the accuracy of
the proposed method, and (3) cases involving nonlinear materials.
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