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Abstract

We present a signal representation framework called the sparse manifold transform
that combines key ideas from sparse coding, manifold learning, and slow feature
analysis. It turns non-linear transformations in the primary sensory signal space
into linear interpolations in a representational embedding space while maintaining
approximate invertibility. The sparse manifold transform is an unsupervised and
generative framework that explicitly and simultaneously models the sparse dis-
creteness and low-dimensional manifold structure found in natural scenes. When
stacked, it also models hierarchical composition. We provide a theoretical descrip-
tion of the transform and demonstrate properties of the learned representation on
both synthetic data and natural videos.

1 Introduction

Inspired by Pattern Theory [40], we attempt to model three important and pervasive patterns in natural
signals: sparse discreteness, low dimensional manifold structure and hierarchical composition.
Each of these concepts have been individually explored in previous studies. For example, sparse
coding [43, 44] and ICA [5, 28] can learn sparse and discrete elements that make up natural signals.
Manifold learning [56, 48, 38, 4] was proposed to model and visualize low-dimensional continuous
transforms such as smooth 3D rotations or translations of a single discrete element. Deformable,
compositional models [60, 18] allow for a hierarchical composition of components into a more
abstract representation. We seek to model these three patterns jointly as they are almost always
entangled in real-world signals and their disentangling poses an unsolved challenge.

In this paper, we introduce an interpretable, generative and unsupervised learning model, the sparse
manifold transform (SMT), which has the potential to untangle all three patterns simultaneously and
explicitly. The SMT consists of two stages: dimensionality expansion using sparse coding followed
by contraction using manifold embedding. Our SMT implementation is to our knowledge, the first
model to bridge sparse coding and manifold learning. Furthermore, an SMT layer can be stacked to
produce an unsupervised hierarchical learning network.

The primary contribution of this paper is to establish a theoretical framework for the SMT by
reconciling and combining the formulations and concepts from sparse coding and manifold learning.
In the following sections we point out connections between three important unsupervised learning
methods: sparse coding, local linear embedding and slow feature analysis. We then develop a single
framework that utilizes insights from each method to describe our model. Although we focus here
on the application to image data, the concepts are general and may be applied to other types of data
such as audio signals and text. All experiments performed on natural scenes used the same dataset,
described in Supplement D.
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1.1 Sparse coding

Sparse coding attempts to approximate a data vector, x 2 IRn, as a sparse superposition of dictionary
elements �i:

x = Φ↵+ ✏ (1)

where Φ 2 IRn⇥m is a matrix with columns �i, ↵ 2 IRm is a sparse vector of coefficients and ✏ is
a vector containing independent Gaussian noise samples, which are assumed to be small relative
to x. Typically m > n so that the representation is overcomplete. For a given dictionary, Φ, the
sparse code, ↵, of a data vector, x, can be computed in an online fashion by minimizing an energy
function composed of a quadratic penalty on reconstruction error plus an L1 sparseness penalty on ↵
(see Supplement A). The dictionary itself is adapted to the statistics of the data so as to maximize
the sparsity of ↵. The resulting dictionary often provides important insights about the structure of
the data. For natural images, the dictionary elements become ‘Gabor-like’—i.e., spatially localized,
oriented and bandpass—and form a tiling over different locations, orientations and scales due to the
natural transformations of objects in the world.

The sparse code of an image provides a representation that makes explicit the structure contained
in the image. However the dictionary is typically unordered, and so the sparse code will lose the
topological organization that was inherent in the image. The pioneering works of Hyvärinen and
Hoyer [27], Hyvärinen et al. [29] and Osindero et al. [45] addressed this problem by specifying a fixed
2D topology over the dictionary elements that groups them according to the co-occurrence statistics
of their coefficients. Other works learn the group structure from a statistical approach [37, 3, 32], but
do not make explicit the underlying topological structure. Some previous topological approaches
[34, 11, 10] used non-parametric methods to reveal the low-dimensional geometrical structure in local
image patches, which motivated us to look for the connection between sparse coding and geometry.
From this line of inquiry, we have developed what we believe to be the first mathematical formulation
for learning the general geometric embedding of dictionary elements when trained on natural scenes.

Another observation motivating this work is that the representation computed using overcomplete
sparse coding can exhibit large variability for time-varying inputs that themselves have low variability
from frame to frame [49]. While some amount of variability is to be expected as image features move
across different dictionary elements, the variation can appear unstructured without information about
the topological relationship of the dictionary. In section 3 and section 4, we show that considering the
joint spatio-temporal regularity in natural scenes can allow us to learn the dictionary’s group structure
and produce a representation with smooth variability from frame to frame (Figure 3).

1.2 Manifold Learning

In manifold learning, one assumes that the data occupy a low-dimensional, smooth manifold embed-
ded in the high-dimensional signal space. A smooth manifold is locally equivalent to a Euclidean
space and therefore each of the data points can be linearly reconstructed by using the neighboring data
points. The Locally Linear Embedding (LLE) algorithm [48] first finds the neighbors of each data
point in the whole dataset and then reconstructs each data point linearly from its neighbors. It then em-
beds the dataset into a low-dimensional Euclidean space by solving a generalized eigendecomposition
problem.

The first step of LLE has the same linear formulation as sparse coding (1), with Φ being the whole
dataset rather than a learned dictionary, i.e., Φ = X , where X is the data matrix. The coefficients, ↵,
correspond to the linear interpolation weights used to reconstruct a datapoint, x, from its K-nearest
neighbors, resulting in a K-sparse code. (In other work [17], ↵ is inferred by sparse approximation,
which provides better separation between manifolds nearby in the same space.) Importantly, once
the embedding of the dataset X ! Y is computed, the embedding of a new point xNEW ! yNEW

is obtained by a simple linear projection of its sparse coefficients. That is, if ↵NEW is the K-sparse
code of xNEW, then yNEW = Y ↵NEW. Viewed this way, the dictionary may be thought of as a discrete
sampling of a continuous manifold, and the sparse code of a data point provides the interpolation
coefficients for determining its coordinates on the manifold. However, using the entire dataset as the
dictionary is cumbersome and inefficient in practice.

Several authors [12, 53, 58] have realized that it is unnecessary to use the whole dataset as a dictionary.
A random subset of the data or a set of cluster centers can be good enough to preserve the manifold
structure, making learning more efficient. Going forward, we refer to these as landmarks. In Locally
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Linear Landmarks (LLL) [58], the authors compute two linear interpolations for each data point x:

x = ΦLM ↵+ n (2)

x = ΦDATA � + n0 (3)

where ΦLM is a dictionary of landmarks and ΦDATA is a dictionary composed of the whole dataset.
As in LLE, ↵ and � are coefficient vectors inferred using KNN solvers (where the � coefficient
corresponding to x is forced to be 0). We can substitute the solutions to equation (2) into ΦDATA,
giving ΦDATA ⇡ ΦLMA, where the jth column of the matrix A is a unique vector ↵j . This leads to an
interpolation relationship:

ΦLM↵ ⇡ ΦLM A � (4)

The authors sought to embed the landmarks into a low dimensional Euclidean space using an
embedding matrix, PLM, such that the interpolation relationship in equation (4) still holds:

PLM↵ ⇡ PLM A � (5)

Where we use the same ↵ and � vectors that allowed for equality in equations (2) and (3). PLM is
an embedding matrix for ΦLM such that each of the columns of P represents an embedding of a
landmark. PLM can be derived by solving a generalized eigendecomposition problem [58].

The similarity between equation (1) and equation (2) provides an intuition to bring sparse coding and
manifold learning closer together. However, LLL still has a difficulty in that it requires a nearest
neighbor search. We posit that temporal information provides a more natural and efficient solution.

1.3 Slow Feature Analysis (SFA)

The general idea of imposing a ‘slowness prior’ was initially proposed by [20] and [59] to extract
invariant or slowly varying features from temporal sequences rather than using static orderless data
points. While it is still common practice in both sparse coding and manifold learning to collect data
in an orderless fashion, other work has used time-series data to learn spatiotemporal representations
[57, 41, 30] or to disentangle form and motion [6, 9, 13]. Specifically, the combination of topography
and temporal coherence in [30] provides a strong motivation for this work.

Here, we utilize temporal adjacency to determine the nearest neighbors in the embedding space (eq. 3)
by specifically minimizing the second-order temporal derivative, implying that video sequences form
linear trajectories in the manifold embedding space. A similar approach was recently used by
[23] to linearize transformations in natural video. This is a variation of ‘slowness’ that makes the
connection to manifold learning more explicit. It also connects to the ideas of manifold flattening [14]
or straightening [24] which are hypothesized to underly perceptual representations in the brain.

2 Functional Embedding: A Sensing Perspective

The SMT framework differs from the classical manifold learning approach in that it relies on the
concept of functional embedding as opposed to embedding individual data points. We explain this
concept here before turning to the sparse manifold transform in section 3.

In classical manifold learning [26], for a m-dimensional compact manifold, it is typical to solve
a generalized eigenvalue decomposition problem and preserve the 2nd to the (d + 1)th trailing
eigenvectors as the embedding matrix PC 2 IRd⇥N , where d is as small as possible (parsimonious)
such that the embedding preserves the topology of the manifold (usually, m  d  2m due to the
strong Whitney embedding theorem[35]) and N is the number of data points or landmarks to embed.
It is conventional to view the columns of an embedding matrix, PC, as an embedding to an Euclidean
space, which is (at least approximately) topologically-equivalent to the data manifold. Each of the
rows of PC is treated as a coordinate of the underlying manifold. One may think of a point on the
manifold as a single, constant-amplitude delta function with the manifold as its domain. Classical
manifold embedding turns a non-linear transformation (i.e., a moving delta function on the manifold)
in the original signal space into a simple linear interpolation in the embedding space. This approach is
effective for visualizing data in a low-dimensional space and compactly representing the underlying
geometry, but less effective when the underlying function is not a single delta function.

In this work we seek to move beyond the single delta-function assumption, because natural images
are not well described as a single point on a continuous manifold of fixed dimensionality. For any
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recovery of an underlying 4-sparse function on the manifold using all 21 functionals, from p01 to p021.
From this representation, we can recover an estimate of ↵ with positive-only sparse inference:

↵REC = g(�) ⌘ argmin
α

k� � P ↵k2F + �zT↵, s.t. ↵ ⌫ 0, (6)

where z = [kp1k2, · · · , kpNk2]
T and pj 2 IR21 is the jth column of P . Note that although ↵REC is

not an exact recovery of ↵, the 4-sparse structure is still well preserved, up to a local shift in the
locations of the delta functions. We conjecture this will lead to a recovery that is perceptually similar
for an image signal.

The functional embedding concept can be generalized beyond functionals defined on a single manifold
and will still apply when the underlying geometrical domain is a union of several different manifolds.
A thorough analysis of the capacity of this sensing method is beyond the scope of this paper, although
we recognize it as an interesting research topic for model-based compressive sensing.

3 The Sparse Manifold Transform

The Sparse Manifold Transform (SMT) consists of a non-linear sparse coding expansion followed
by a linear manifold sensing compression (dimension reduction). The manifold sensing step acts to
linearly pool the sparse codes, ↵, with a matrix, P , that is learned using the functional embedding
concept (sec. 2) in order to straighten trajectories arising from video (or other dynamical) data.

The SMT framework makes three basic assumptions:

1. The dictionary Φ learned by sparse coding has an organization that is a discrete sampling of
a low-dimensional, smooth manifold, M (Fig. 1).

2. The resulting sparse code ↵ is a discrete k-sparse approximation of an underlying h-sparse
function defined on M . There exists a functional manifold embedding, ⌧ : Φ ,! P , that
maps each of the dictionary elements to a new vector, pj = ⌧(�j), where pj is the jth

column of P s.t. both the topology of M and h-sparse function’s structure are preserved.

3. A continuous temporal transformation in the input (e.g., from natural movies) lead to a
linear flow on M and also in the geometrical embedding space.

In an image, the elements of the underlying h-sparse function correspond to discrete components
such as edges, corners, blobs or other features that are undergoing some simple set of transformations.
Since there are only a finite number of learned dictionary elements tiling the underlying manifold, they
must cooperate (or ‘steer’) to represent each of these components as they appear along a continuum.

The desired property of linear flow in the geometric embedding space may be stated mathematically
as

P↵t ⇡
1

2
P↵t�1 +

1

2
P↵t+1. (7)

where ↵t denotes the sparse coefficient vector at time t. Here we exploit the temporal continuity
inherent in the data to solve the otherwise cumbersome nearest-neighbor search required of LLE or
LLL. The embedding matrix P satisfying (7) may be derived by minimizing an objective function
that encourages the second-order temporal derivative of P ↵ to be zero:

min
P

kPADk2F , s.t. PV PT = I (8)

where A is the coefficient matrix whose columns are the coefficient vectors, ↵t, in temporal order, and
D is the second-order differential operator matrix, with Dt�1,t = �0.5, Dt,t = 1, Dt+1,t = �0.5
and Dτ,t = 0 otherwise. V is a positive-definite matrix for normalization, I is the identity matrix and
k • kF indicates the matrix Frobenius norm. We choose V to be the covariance matrix of ↵ and thus
the optimization constraint makes the rows of P orthogonal in whitened sparse coefficient vector
space. Note that this formulation is qualitatively similar to applying SFA to sparse coefficients, but
using the second-order derivative instead of the first-order derivative.

The solution to this generalized eigen-decomposition problem is given [58] by P = V �
1

2U , where
U is a matrix of f trailing eigenvectors (i.e. eigenvectors with the smallest eigenvalues) of the matrix
V �

1

2ADDTATV �
1

2 . Some drawbacks of this analytic solution are that: 1) there is an unnecessary
ordering among different dimensions, 2) the learned functional embedding tends to be global, which
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elements combine together to form more global and abstract dictionary elements in higher layers, e.g.
layer-2 units tend to be more curved, many of them are corners, textures or larger blobs.

Another important property that emerges at higher levels of the network is that dictionary elements are
steerable over a larger range, since they are learned from progressively more linearized representations.
To demonstrate this, we trained a three-layer network and performed linear interpolation between two
third-layer dictionary elements, resulting in a non-linear interpolation in the image space that shifts
features far beyond what simple linear interpolation in the image space would accomplish (Figure
5C). A thorough visualization of the dictionary elements and groups is provided in the Supplement F.

5 Discussion

A key new perspective introduced in this work is to view both the signals (such as images) and their
sparse representations as functions defined on a manifold domain. A gray-scale image is a function
defined on a 2D plane, tiled by pixels. Here we propose that the dictionary elements should be viewed
as the new ‘pixels’ and their coefficients are the corresponding new ‘pixel values’. The pooling
functions can be viewed as low pass filters defined on this new manifold domain. This perspective is
strongly connected to the recent development in both signal processing on irregular domains [52] and
geometric deep learning [7].

Previous approaches have learned the group structure of dictionary elements mainly from a statistical
perspective [27, 29, 45, 32, 37, 39]. Additional unsupervised learning models [51, 46, 33, 62] combine
sparse discreteness with hierarchical structure, but do not explicitly model the low-dimensional
manifold structure of inputs. Our contribution here is to approach the problem from a geometric
perspective to learn a topological embedding of the dictionary elements.

The functional embedding framework provides a new perspective on the pooling functions commonly
used in convnets. In particular, it provides a principled framework for learning the pooling operators
at each stage of representation based on the underlying geometry of the data, rather than being
imposed in a 2D topology a priori as was done previously to learn linearized representations from
video [23]. This could facilitate the learning of higher-order invariances, as well as equivariant
representations [50], at higher stages. In addition, since the pooling is approximately invertible
due to the underlying sparsity, it is possible to have bidirectional flow of information between
stages of representation to allow for hierarchical inference [36]. The invertibility of SMT is due
to the underlying sparsity of the signal, and is related to prior works on the invertibility of deep
networks[22, 8, 61, 16]. Understanding this relationship may bring further insights to these models.
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