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Abstract—

Plane detection in 3D point clouds is a crucial pre-processing
step for applications such as point cloud segmentation, semantic
mapping and SLAM. In contrast to many recent plane detection
methods that are only applicable on organized point clouds,
our work is targeted to unorganized point clouds that do not
permit a 2D parametrization. We compare three methods for
detecting planes in point clouds efficiently. One is a novel
method proposed in this paper that generates plane hypotheses
by sampling from a set of points with estimated normals. We
named this method Oriented Point Sampling (OPS) to contrast
with more conventional techniques that require the sampling
of three unoriented points to generate plane hypotheses. We
also implemented an efficient plane detection method based on
local sampling of three unoriented points and compared it with
OPS and the 3D-KHT algorithm, which is based on octrees, on
the detection of planes on 10,000 point clouds from the SUN
RGB-D dataset.

I. INTRODUCTION

As depth cameras and 3D sensors have become widely
available recently, they are extensively used in various
robotics and computer vision applications, such as Simul-
taneous Localization and Mapping (SLAM) [1], [2], [3], [4],
dense 3D reconstruction [5], [6], [7], [8], [9], [10], [11] and
3D object recognition [12], [13]. 3D point clouds acquired
by such depth cameras are generally noisy and redundant,
and do not provide semantics of the scene.

An important first step to obtain more useful represen-
tations is to detect planar segments in the point clouds. In
outdoor scenes, the ground is typically piecewise planar. In
indoor scenes, most important surfaces, including ceilings,
walls and floors, are planar. We can divide the planes into
three groups: (1) horizontal planes, which are important due
to their roles as support surfaces for other objects and as
potentially traversable terrain for robots; (2) vertical planes,
which are also important because many obstacles and the
walls are vertical; (3) other planes, which constitute most
of the other objects. It should be noted, however, that
many of the recent plane detection approaches [14], [15],
[16], [17], [17], [18] accept organized point clouds, i.e.
2%-D depth images, as input. Here, we are interested in
developing methods applicable on unorganized point clouds.
This requires the search for neighboring points in 3D [19]
since 2%-D information cannot be exploited.
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(a) Input point cloud (b) Output of OPS

Fig. 1. Sample input and output of OPS. (a) shows a point cloud from the
SUN RGB-D dataset [20]. (b) shows the detected planes after merging.

In this paper, we seek to compare the effectiveness and ef-
ficiency of sampling oriented and unoriented points for plane
detection in a RANSAC framework. Since sampling one
oriented point is sufficient for generating a plane hypotheses,
a small number of RANSAC iterations is required to detect
the true planes. This, however, requires the computation of
relatively accurate surface normals. Since we are interested
in planes comprising many points, however, we only have
to estimate normals for a small fraction of the points. On
the other hand, a sample of three unoriented points can also
lead to a plane equation requiring no pre-computations but
more RANSAC iterations to draw three inliers from the same
plane. This process can be accelerated by sampling the three
points in a local neighborhood. The drawbacks are that it
is harder to sample three inliers from the same plane, even
locally, and that planes seeded this way are often noisy and
may fail the hypothesis verification step.

To enable this comparison, we propose a novel algorithm
called Oriented Points Sampling (OPS), which is based on
sparsely sampling points from the point cloud, estimating
their normals, using these oriented points to generate plane
hypotheses and finally verifying the hypotheses on all points.
The second algorithm is a modification of the work of Biswas
and Veloso [15], [21], which is referred to as Fast Sampling
Point Filtering (FSPF). FSPF can efficiently detect planes
in depth images by sampling points to build and verify
plane hypotheses in the vicinity of an original point sampled
uniformly from the depth image. We modify the algorithm
to sample in spheres around the original point. We evaluate
the effectiveness and the computational efficiency of both
methods, as well as 3D-KHT algorithm [22], on the SUN
RGB-D dataset [20] that comprises over 10,000 point clouds.
Figure 1 shows an example from the SUN RGB-D dataset.

The main contributions of this paper are the following:

e We propose OPS, a fast, RANSAC-based, plane detec-

tion method in unorganized point clouds that requires a
minimal sample of only one oriented point to generate
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a hypothesis.

e We compare OPS on classifying the points of a point
cloud according to plane orientation and on plane
segmentation with two allternative approaches: an ex-
tension of FSPF that samples three unoriented point
proposed here and 3D-KHT that operates in octrees.

II. RELATED WORK

There are many different methods of plane detec-
tion. These methods can be generally classified into
three categories: (i) point clustering; (ii) region growing;
(iii)) RANSAC-based plane fitting.

Methods based on point clustering rely on similarity mea-
sures, such as proximity between points and angle between
surface normals. Strom et al. [23] generated an 8-connected
graph from successive laser scans, colored using RGB im-
ages, and clustered neighboring points according to differ-
ences in color and angle between surface normals. Holz et
al. [24] computed per-point normals and clustered the points
according to normal orientation and offset of hypothetical
planes going through the oriented points. Enjarini and Graser
[25] computed the gradient of depth feature on the depth
image and performed a voting-based clustering process,
followed by region merging. Pham et al. [26] initially cluster
the input into supervoxels and then perform clustering on
the adjacency graph of the supervoxels. Adjacent regions are
then classified as belonging to the same or different objects.
Lee and Campbell [27] proposed an efficient surface normal
estimation method which discretized the space into grid cells
with occupancy information and infered the surface normal
direction for each cell utilizing the occupancy information
of the neighboring cells. Planes are detected by clustering
points with similar normals. Dzitsiuk et al. [11] presented a
fast and robust plane detection method for de-noising, 3D
reconstruction and hole filling based on Signed Distance
Functions (SDFs). The scene is discretized into a set of
volumes which contain blocks of voxels with SDF values.
Two ways to generate plane candidates in each volume are
compared: RANSAC and least squares fitting on the SDF.

3D-KHT [22] is based on a Hough transform and works
by clustering approximately co-planar points and by casting
votes for these clusters on a spherical accumulator using a
trivariate Gaussian kernel. An octree is used to recursively
subdivide the points while a coplanarity test is performed in
each node. The recursive subdivision process stops when the
points in the node pass the coplanarity test or when there are
not enough points in the node.

Methods based on region growing select seed points or
regions as the original patches and cluster compatible points
with each patch. Poppinga et al. [14] proposed a plane fitting
algorithm based on region growing followed by a polygonal-
ization algorithm to find a set of convex polygons covering
the same area as the set of triangles that is produced by con-
necting all triplets of points neighboring in the range image.
Deschaud and Goulette [28] presented a fast and accurate
algorithm to detect planes in unorganized point clouds using
filtered normals and voxel growing. Holz and Behnke [29]

constructed a triangular mesh from the input point cloud and
computed local surface normals and curvature estimates. The
resulting information was used to segment the range images
into planar regions and other geometric primitives. Arbeiter
et al. [30] proposed an efficient normal based region growing
method to obtain segments containing points with common
geometric properties. Planes are produced after classifying
the segments according to point feature descriptors. Feng et
al. [17] performed agglomerative hierarchical clustering on
the point graph to merge nodes belonging to the same plane.
The extracted planes were refined using pixel-wise region
growing. Monszpart et al. [31] proposed a global approach
to simultaneously detect a set of planes along with their
relations. Zermas et al. [32] extracted a set of seed points
with low height values which were then used to estimate
the initialize the ground surface. Then, points near the initial
ground plane were used as seeds to refine the estimate of the
ground plane in an iterative process.

RANSAC-based methods address plane detection by sam-
pling points from the point cloud, fitting planar models
to them and accepting hypotheses that have accumulated
sufficient support. Oehler et al. [33] extracted surface ele-
ments at multiple resolutions, from coarse to fine. Surface
elements that cannot be associated with planes from coarser
resolutions are grouped into coplanar clusters using a Hough
transform. Connected components are extracted from these
clusters and planes are fit using RANSAC. Gallo et al. [34]
proposed a modification of the RANSAC algorithm, dubbed
CC-RANSAC, that only considers the largest connected
components of inliers to evaluate the fitness of a candidate
plane. Hulik et al. [35] split the depth map into square tiles
and applied RANSAC within each tile. Then, two seed-fill
algorithms are successively applied to group all connected
planes in the current tile and across tile borders. Qian and
Ye [36] proposed NCC-RANSAC, which performs a normal
coherence check on all points of the inlier patches and
removes points whose normal directions are contradictory to
that of the fitted plane. The removed points are used to form
candidate planes, which are recursively clustered. Marriott
et al. [18] extract planar models from depth-data by fitting
the data with a piecewise-linear Gaussian mixture regression
model and fusing contiguous and coplanar components to
generate the final set of planes.

An integral part of our paper is the FSPF algorithm of
Biswas and Veloso [15], [21], which groups points in the
depth image and classifies them as belonging to planes or
not. To form a plane hypothesis, three points are sampled in a
local area, while support for the hypothesis is also estimated
locally for efficiency. The detected planes are converted into
a set of convex polygons, which are merged across successive
depth images. See Section III for more details.

III. APPROACH

In this section, we present a method to detect planes
of all orientations in a point cloud. We show results on
horizontal planes, vertical planes and other planes which
are of interest as support surfaces, bounding walls and other
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objects. We introduce two methods. The first one is Oriented
Point Sampling (OPS) which can find all-direction planes in
real time. The second one is a fast sampling plane filtering
method inspired by [15], [21] which we use to compare with
OPS in accuracy and speed.

A. Oriented Point Sampling

OPS accepts as input a point cloud denoted by P =
{p1,p2,p3, -+ ,pN},pi € R, where N is the number of
points. The output is a set of planes II. Each plane is stored
in a 2 x 3 matrix M. The first row of M is the plane’s
centroid and the second row of M is its normal.

Processing begins by estimating the normals of a fraction
a of the points. On one hand, the availability of oriented
points allows the generation of plane hypotheses by sampling
just one inlier. On the other hand, accurate normal estimation
is computationally expensive and the planes of interest
should comprise large numbers of points. Therefore, we only
compute the normals of a subset of the points, but use all
points for hypotheses verification.

Normal Estimation: Given the sampling rate o,
we uniformly sample a subset of the points P, =

{p§S>,p;S)7p§)S>7 : ,p(s) (-S) € R3, where N, is the
cardinality of P,. We assume that surface normals can
be estimated by performing SVD on the neighbors of the
reference point, for which we want to estimate the normal.
The current reference point is denoted by p; =
(Pi,w, Piy,Pi,>) and its normal is denoted by n; =
(M@, NMiy,Niz). The Kk nearest neighbors of p; are
found using a k-d tree and denoted by @; =
{¢i1, di2, @i3, - -, qir} ,qi; € P and g # pi. k is a key
parameter for the accuracy of normal estimation. According
to [37], we compute the following matrix M; of each
reference point and compute the normal as the eigenvector
corresponding to the minimum eigenvalue of M.

lais—pill2 (q,: — ;) (g3 — p:i) T
D e it DLCC Rt DY

M; = 5
pv=r: lgi; — pill;
. . . _Nlaig=rill3
This formula includes a weight term e 202 in order to

reduce the effects of neighboring points which are far from
the reference point p;. All vectors connecting neighbors to
the reference point are normalized.

One-Point RANSAC: After normal computation, we apply
one-point RANSAC to find the largest plane. As opposed to
conventional RANSAC-based plane detection, that requires
minimal samples of three points, OPS requires only one point
with its normal to define a plane. Given the set of sampled
points Ps, we randomly pick one point with its normal which
determine a plane. We compute the distance from all the
other sampled points to this plane and count the number
of inliers that are within a distance threshold 6. We also
define a threshold value 6 to decide the minimum number
of points for a plane to be accepted.

We iterate the above steps to find the plane model with the
largest number of inliers. The number of iterations Nj;, 1S

Algorithm 1: OPS
Input

¢ An unorganized point cloud

P = {p17p2ap3a t 7pN} ' Di € R3’ sampling
rate oy, k, p, distance threshold 6}, inlier
threshold 6y

The largest horizontal plane model M, the
inlier set bestInliers

1 Randomly sample a; /N 3D points

Ps:{ S)7p25)7p3 ) T 7p§\sl)}7p§)€R3

2 Compute their normals using local SVD on k neighbors
3 The normals of the sampled points are

Output:

{n(l ),n2 vngé s 7”5\2}
4 iter <0
5 imNum + 0
6 Niter ~ N
7 while iter < Ny, do
8 inliers < NULL
9 randInd < rand() %N,
0 | for each p{*) € P, do
1 Dr pz('s) - pf:jz)ndlnd
12 d < Dr - NandInd
13 if d < 6}, then
14 | Add p”) to inliers
15 end
16 end
17 if inliers.size() > 6 then
18 if inliers.size() > inNum then
19 inNum < inliers.size()
20 bestInliers < inliers
21 e 1— ’mlz@?}\s[.hszze())
23 end
24 end
25 iter < iter + 1
26 end

27 for each bestInliers; € bestInliers do
38 | pointsInlier(i,:) < bestInliers;
29 end

30 (u,v) < SV DCompute(pointsInlier)
3t M(1,:) «+ v(2,:)

32 M(0,:) < centroid of plane

33 return M, bestInliers

adaptively determined by Njze, = lo;‘(’lg U=P) _ [38]. Nisep is

initialized as the number of all the pomts( 11ne%ﬂe point cloud.
p is the probability that at least one random sample is free
from outliers and e is the proportion of outliers among all
points. e is updated in each iteration as we find more inliers.
Since we only need to select one true inlier, the number
of iterations is much smaller than alternatives that require
sampling three inliers. After we find the largest plane, we
re-estimate the normal using SVD on all inliers. OPS is
summarized in Algorithm 1.
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Detection of Multiple Planes: To detect all planes, we
apply OPS multiple times. After a plane has been detected,
we remove all its inliers from the point cloud and apply OPS
on the remaining points until there are not enough points
(6n) to constitute a plane.

Detecting planes in multiple orientations: To extract basic
scene semantics, we divide the detected planes into three
groups: vertical, horizontal and other. We have tried two
strategies to detect these three groups of planes after sam-
pling some points. (1) Apply OPS on the sampled points
and divide the detected planes into three groups. (2) Divide
the sampled points into three groups based on the estimated
normals, and then apply OPS separately on each of the three
groups. We chose the second strategy due to its superior
performance in our experiments, as shown in Section IV.

B. Fast Sampling Plane Filtering

In order to compare with OPS, we make some modifi-
cations to the Fast Sampling Plane Filtering method [15],
[21], which was designed for depth images. Since we are
interested in unorganized point clouds, which, unlike RGB-
D images, do not take 2D parametrizations, we make the
following two modifications to FSPF. First, while the original
FSPF samples neighboring points by adding random integers
to the image coordinates of the reference point, we sample
neighboring points in a sphere around the reference point.
Second, we design a new plane merging method described
in Section III-C. We use FSPF to refer to the algorithm
including these modifications in this paper.

FSPF (Algorithm 2) begins by sampling three points
Dr,0,Pr,1, Pr,2 from the 3D point cloud. The first point p;. o
is selected uniformly in the point cloud, while p, ; and p, o
are sampled within a sphere with a radius r; around p, 9. We
use a k-d tree to find the neighbors in the sphere. p, o, pr 1
and p, o determine a plane 7 and we use a cross product
to compute its normal. A search sphere with radius 75 is
then constructed around point p, o using the k-d tree and
an additional Nj,. local samples are randomly sampled in
the search sphere. The plane fitting error is computed as the
distance between each point in the local samples and the
plane 7. Points are considered inliers if their error is less
than 6;,, which has the same value as in OPS. If more than
minNioe points in the search sphere are classified as inliers,
then all the points in the sphere are classified as inliers of 7
and 7 is recorded as one of the planes found by FSPF. We
repeat the above steps for K, iterations or until we find
Npaz inlier points.

We use FSPF to find all the planes in a point cloud and
divide the detected planes into three groups: vertical, hori-
zontal and other. Filtering planes after the initial three points
are sampled is ineffective because the normals estimated
via the cross product are very noisy. Grouping these planes
into vertical, horizontal and other at this stage leads to the
detection of numerous planes that are not correctly classified
once their normals are re-estimated using all inliers. Filtering
planes only after re-estimation is by far the best strategy.

Algorithm 2: Fast Sampling Plane Filtering

Input : An unorganized point cloud
P = {p17p25p3; T ,pN} 'y Di € RS, Nmazs
Kmaxv Nloca Qmin, eha T1, T2

Output: A set of planes II and the corresponding inliers

I+ NULL

n, k<0

while n < Npo0 Ak < Koo do

E+—k+1

i =rand(1,N)

Pro < Pi

Py « kdtree.radiusSearch(pro,71)

pr1 < RandomlyPickPoint(Pr)

pr2 < RandomlyPickPoint(P;)
(Pr,l —Pr,0) X (PTJ —Pr,o)
Pr,1 _P7‘,0) X (p7‘,2 _phU) Hz

u | I+ NULL

12 Ninlicr +0

13 P, « kdtree.radiusSearch(pro,72)
14 for j < 3--- Ny, do

o 0 NN N T R W N -

—
=

e =T

15 pj < RandomlyPickPoint(Pz)

16 e=abs(ny - (p; — Pro))

17 if e < 6, then

18 Add pj to TI

19 Nintier < Nintier +1

20 end

21 end

22 if Niptier > QminNioe then

23 for each f[i €1l do

2 ‘ inlier Points(i, :) « II;

25 end

26 (u,v) <= SV DCompute(inlier Points)
27 M(1,:) + v(2,:)

28 M (0,:) < centroid of plane

29 Add M to II

30 Add inlierPoints to alllnliers n < n + Ninlier
31 end

32 end

33 return II, alllnliers

C. Merging Process for Both Methods

FSPF returns a lot of small planes because it searches for
planes locally. The results of OPS also require some merging,
even though it produces larger planes in general. We merge
small planes by applying a coplanarity test on each pair of
planes. Specifically, we test whether the (1) angle between
the normals of the two planes, (2) the distance between the
centroid of the second plane and the first plane, and (3)
the distance between the centroid of the first plane and the
second plane are below appropriate thresholds. If a pair of
planes passes the coplanarity test, we merge them into one
plane and re-estimate the normal of the new plane using
SVD on all points. To ensure a fair comparison, we apply
the same merging process to both FSPF and OPS. Some
results of merging are shown in Figure 2.
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(a) Unmerged OPS

(c) Unmerged FSPF (d) Merged FSPF

Fig. 2. The first row is the output of OPS before and after merging. The
second row is the output of FSPF before and after merging.

IV. EXPERIMENTS

We perform experiments on the SUN RGB-D dataset [20]
to compare the performance and run time of OPS, FSPF,
modified according to Section III and 3D-KHT [22]. Using
the ground truth planes (see below), we compute the average
classification and segmentation accuracy on 10,355 point
clouds for all three methods. Classification accuracy refers to
assigning each point to the correct plane orientation, while
segmentation accuracy refers to assigning each point to the
correct plane. We use the Hungarian Algorithm to solve the
assignment problem for segmentation accuracy.

A. Datasets and Experimental Setup

In the experiments, we use the SUN RGB-D dataset [20]
which is captured by four different sensors and contains
10,335 RGB-D images, which we treat as unorganized point
clouds. The entire dataset is densely annotated and includes
146,617 2D polygons and 64,593 3D bounding boxes. We
convert the RGB-D images to point clouds, which are the
only inputs to the algorithms. To detect the ground truth
planes, we estimate the normals of all the points and itera-
tively use region growing considering distance and normal
similarity to extract dense planes. We use 0.05 m as the
distance threshold 6}, and we use 7 degrees for the threshold
of angle between normals. Points on small planes, with
under 50 points, are labeled as “other”. Points on horizontal
planes are labeled horizontal and points on vertical planes
are labeled vertical.

We run our version of FPSF using the following param-
eters: the number of local samples N;,. is 80, the plane
offset error #;, is 0.05 m, and the minimum inlier fraction
Qmin to accept a local sample is 0.8. We vary ri, the radius
of the sphere for finding p,1 and p,2, and 7o, the radius
of the search sphere for finding inliers. For 3D-KHT, the
minimum number of samples required in a cluster is 30 and
the octree level for checking for approximate coplanarity
is 5. For OPS, the tolerance to classify a surface normal
as vertical or horizontal is 7 degrees, the probability p for

adaptively determining RANSAC iterations is 0.99, and the
minimum number of points for plane fitting 0y is 20. We
vary the fraction of points we sample and the number of
nearest neighbors for normal estimation. Timing results are
reported for single-threaded C++ implementations on an Intel
Core i7 7700 processor.

B. Results

First, we try different values of r; and ro for FSPF. We
use two configurations: (1) 7o = 71; (2) ro = 2r;. The
performance metrics and run time of FSPF are shown in
Table 1. The performance improves as r; increases. FSPF
performs the best when r; is 0.1 m and ro = 2r;.

TABLE I
CLASSIFICATION ACCURACY AND RUN TIME OF FSPF.
r1 ro Accuracy | FSPF Time | Merge Time | Total Time
0.03 | 0.03 61.34% 0.0974 sec 0.1895 sec 0.2997 sec
0.05 | 0.05 68.07% 0.1102 sec 0.2103 sec 0.3003 sec
0.07 | 0.07 69.68% 0.2106 sec 0.1937 sec 0.4043 sec
0.1 0.1 71.14% 0.2479 sec 0.2145 sec 0.4642 sec
0.3 0.3 73.12% 2.6423 sec 0.3293 sec 2.9716 sec
0.03 | 0.06 69.01% 0.1139 sec 0.2415 sec 0.3554 sec
0.05 0.1 71.11% 0.1973 sec 0.2487 sec 0.4460 sec
0.07 | 0.14 72.50 % 0.3441 sec 0.2785 sec 0.6226 sec
0.1 0.2 73.61% 0.7277 sec 0.3180 sec 1.0457 sec
0.3 0.6 66.26% 2.7624 sec 0.4960 sec 3.2584 sec

The run time of FSPF consists of plane detection and
merging. The former ranges from 0.1 to 0.7 seconds. FSPF
plane detection time becomes longer as r; increases. When
r1 becomes larger than 0.3, the detection is very slow. Since
our focus is on real-time plane detection, we only show
results for 7; < 0.3m. The merging time ranges from 0.2
to 0.5 seconds. FSPF detects more planes when r; and 7o
become larger. Merging takes longer when r; increases, since
there are more planes to be merged.

Second, we evaluate the accuracy and run time of 3D-
KHT, as shown in Table II. 3D-KHT uses a spherical
accumulator to cast votes based on Hough transform. We
tried different number of cells in the angular ¢ and radius r
direction. The more cells it uses, the more time it costs and
the more accurate planes it detects.

TABLE II
CLASSIFICATION ACCURACY AND RUN TIME OF 3D-KHT.
Angular bins | Radial bins | Accuracy | Run Time
30 300 67.08% 0.0837 sec
40 400 67.86% 0.1448 sec
60 600 69.53% 0.3674 sec
80 800 71.01% 0.7941 sec

Last, we evaluate the effects of different sampling rates
and different numbers of nearest neighbors on the perfor-
mance of OPS. The experimental results are shown in Table
III. The average classification accuracy of OPS improves as
the sampling rate increases. Using a larger number of nearest
neighbors for normal estimation improves the results of OPS
at the cost of longer run time. However, when the sampling
rate is more than 0.5% even 10 nearest neighbors are
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TABLE III
CLASSIFICATION ACCURACY AND RUN TIME OF OPS. THE COLUMNS
SHOW THE SAMPLING RATE, THE NUMBER OF NEAREST NEIGHBORS,
AVERAGE ACCURACY, RUN TIME FOR PLANE DETECTION AND TOTAL
TIME, INCLUDING MERGING.

Sampl. rate | NN | Accuracy | OPS Time | Total Time
0.3% 10 71.52% 0.0244 sec | 0.0359 sec
0.3% 20 72.18% 0.0347 sec | 0.0460 sec
0.3% 30 72.29% 0.0458 sec | 0.0565 sec
0.5% 10 77.11% 0.0452 sec | 0.0625 sec
0.5% 20 77.48% 0.0644 sec | 0.0803 sec
0.5% 30 77.59% 0.0833 sec | 0.0987 sec
0.7% 10 80.04% 0.0656 sec | 0.0853 sec
0.7% 20 80.28% 0.0906 sec | 0.1093 sec
0.7% 30 80.34% 0.1184 sec | 0.1363 sec

1% 10 82.55% 0.1008 sec | 0.1233 sec
1% 20 82.66% 0.1375 sec | 0.1587 sec
1% 30 82.71% 0.1759 sec | 0.1967 sec
3% 10 86.91% 0.4092 sec | 0.4377 sec
3% 20 87.23% 0.5096 sec | 0.5366 sec
3% 30 87.39% 0.6188 sec | 0.6455 sec

sufficient for OPS to achieve high accuracy. As mentioned
in Section III, we tried the first strategy for detecting planes
in multiple orientations. The average accuracy is 74.25%,
75.04% and 75.89% when we estimate normals for 3% of
the points and the number of nearest neighbors is 10, 20 and
30. This is worse than the last three rows of Table III

OPS is better than FSPF with any r; in classification
accuracy when the sampling rate is between 0.5% and 3%.
When r; = 0.1,79 = 2r;, FSPF achieves the highest
accuracy with a run time of about 1 second. In addition
to higher accuracy, OPS is also faster than FSPF when the
sampling rate is between 0.5% and 3%. The merging process
of OPS is also much faster than that of FSPF because OPS
detects larger planes than FSPF. On average, in each point
cloud OPS detects 34.62 planes before merging and 27.59
planes after merging. The corresponding numbers for FSPF
are 386.92 and 29.44. The ground truth contains on average
25.38 planes. The left column of Fig. 3 shows the results
of classifying the points according to the three possible
orientations and the right column shows results where each
plane is marked in a pseudo-random color.

We pick the best parameter settings of the three methods
and evaluate segmentation accuracy, as shown in Table IV.
The best parameter setttings are: (1) r; = 0.07,72 = 0.14 for
FSPF; (2) 80 angular bins and 800 radius bins for 3D-KHT;
(3) 3% sampling rate and 30 nearest neighbors for OPS. OPS
is able to assign points to the correct plane with much higher
accuracy. Note that the ground truth was generated by region
growing which different than all three algorithms.

TABLE IV
SEGMENTATION ACCURACY OF FSPF, 3D-KHT AND OPS.

FSPF 3D-KHT OPS
7472% | 62.26% | 82.99%

V. CONCLUSIONS

In this paper, we introduced a new sampling-based method
for detecting plane in point clouds and compared it with

(a) Ground Truth for 3 classes

(c) FSPF for 3 classes

(e) 3D-KHT for 3 classes

(h) OPS

(g) OPS for 3 classes

Fig. 3. Some results of FSPF, 3D-KHT and OPS. The left and right
columns show classification and segmentation results, respectively.

two other approaches. We introduced OPS which is based
on sparsely sampling points from the point cloud, estimating
their normals and then using these oriented points to generate
plane hypotheses for verification. We modified FSPF, which
was originally designed for depth images, to be applicable
to unorganized point clouds. We also used the 3D-KHT
algorithm which relies on an octree to cluster approximately
coplanar points. We experimentally evaluated the accuracy
and computational efficiency of all methods on the large
scale SUN RGB-D dataset. Our conclusions are that OPS
is superior in both speed and accuracy. These experiments
provide evidence that may help resolve the debate on whether
investing computational resources for normal estimation is
beneficial for plane detection. While estimating the normals
of all points using more than 10 nearest neighbors and a
large number of queries to a k-d tree is too costly in terms
of computation, it is sufficient to compute normals for only
a small fraction of the points, as low as 0.3% in these
experiments. The availability of these privileged, oriented
points allows the use of a one-point RANSAC scheme which
can detect almost all planes in the scene.
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