


a hypothesis.

• We compare OPS on classifying the points of a point

cloud according to plane orientation and on plane

segmentation with two allternative approaches: an ex-

tension of FSPF that samples three unoriented point

proposed here and 3D-KHT that operates in octrees.

II. RELATED WORK

There are many different methods of plane detec-

tion. These methods can be generally classified into

three categories: (i) point clustering; (ii) region growing;

(iii) RANSAC-based plane fitting.

Methods based on point clustering rely on similarity mea-

sures, such as proximity between points and angle between

surface normals. Strom et al. [23] generated an 8-connected

graph from successive laser scans, colored using RGB im-

ages, and clustered neighboring points according to differ-

ences in color and angle between surface normals. Holz et

al. [24] computed per-point normals and clustered the points

according to normal orientation and offset of hypothetical

planes going through the oriented points. Enjarini and Graser

[25] computed the gradient of depth feature on the depth

image and performed a voting-based clustering process,

followed by region merging. Pham et al. [26] initially cluster

the input into supervoxels and then perform clustering on

the adjacency graph of the supervoxels. Adjacent regions are

then classified as belonging to the same or different objects.

Lee and Campbell [27] proposed an efficient surface normal

estimation method which discretized the space into grid cells

with occupancy information and infered the surface normal

direction for each cell utilizing the occupancy information

of the neighboring cells. Planes are detected by clustering

points with similar normals. Dzitsiuk et al. [11] presented a

fast and robust plane detection method for de-noising, 3D

reconstruction and hole filling based on Signed Distance

Functions (SDFs). The scene is discretized into a set of

volumes which contain blocks of voxels with SDF values.

Two ways to generate plane candidates in each volume are

compared: RANSAC and least squares fitting on the SDF.

3D-KHT [22] is based on a Hough transform and works

by clustering approximately co-planar points and by casting

votes for these clusters on a spherical accumulator using a

trivariate Gaussian kernel. An octree is used to recursively

subdivide the points while a coplanarity test is performed in

each node. The recursive subdivision process stops when the

points in the node pass the coplanarity test or when there are

not enough points in the node.

Methods based on region growing select seed points or

regions as the original patches and cluster compatible points

with each patch. Poppinga et al. [14] proposed a plane fitting

algorithm based on region growing followed by a polygonal-

ization algorithm to find a set of convex polygons covering

the same area as the set of triangles that is produced by con-

necting all triplets of points neighboring in the range image.

Deschaud and Goulette [28] presented a fast and accurate

algorithm to detect planes in unorganized point clouds using

filtered normals and voxel growing. Holz and Behnke [29]

constructed a triangular mesh from the input point cloud and

computed local surface normals and curvature estimates. The

resulting information was used to segment the range images

into planar regions and other geometric primitives. Arbeiter

et al. [30] proposed an efficient normal based region growing

method to obtain segments containing points with common

geometric properties. Planes are produced after classifying

the segments according to point feature descriptors. Feng et

al. [17] performed agglomerative hierarchical clustering on

the point graph to merge nodes belonging to the same plane.

The extracted planes were refined using pixel-wise region

growing. Monszpart et al. [31] proposed a global approach

to simultaneously detect a set of planes along with their

relations. Zermas et al. [32] extracted a set of seed points

with low height values which were then used to estimate

the initialize the ground surface. Then, points near the initial

ground plane were used as seeds to refine the estimate of the

ground plane in an iterative process.

RANSAC-based methods address plane detection by sam-

pling points from the point cloud, fitting planar models

to them and accepting hypotheses that have accumulated

sufficient support. Oehler et al. [33] extracted surface ele-

ments at multiple resolutions, from coarse to fine. Surface

elements that cannot be associated with planes from coarser

resolutions are grouped into coplanar clusters using a Hough

transform. Connected components are extracted from these

clusters and planes are fit using RANSAC. Gallo et al. [34]

proposed a modification of the RANSAC algorithm, dubbed

CC-RANSAC, that only considers the largest connected

components of inliers to evaluate the fitness of a candidate

plane. Hulik et al. [35] split the depth map into square tiles

and applied RANSAC within each tile. Then, two seed-fill

algorithms are successively applied to group all connected

planes in the current tile and across tile borders. Qian and

Ye [36] proposed NCC-RANSAC, which performs a normal

coherence check on all points of the inlier patches and

removes points whose normal directions are contradictory to

that of the fitted plane. The removed points are used to form

candidate planes, which are recursively clustered. Marriott

et al. [18] extract planar models from depth-data by fitting

the data with a piecewise-linear Gaussian mixture regression

model and fusing contiguous and coplanar components to

generate the final set of planes.

An integral part of our paper is the FSPF algorithm of

Biswas and Veloso [15], [21], which groups points in the

depth image and classifies them as belonging to planes or

not. To form a plane hypothesis, three points are sampled in a

local area, while support for the hypothesis is also estimated

locally for efficiency. The detected planes are converted into

a set of convex polygons, which are merged across successive

depth images. See Section III for more details.

III. APPROACH

In this section, we present a method to detect planes

of all orientations in a point cloud. We show results on

horizontal planes, vertical planes and other planes which

are of interest as support surfaces, bounding walls and other
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objects. We introduce two methods. The first one is Oriented

Point Sampling (OPS) which can find all-direction planes in

real time. The second one is a fast sampling plane filtering

method inspired by [15], [21] which we use to compare with

OPS in accuracy and speed.

A. Oriented Point Sampling

OPS accepts as input a point cloud denoted by P =
{p1, p2, p3, · · · , pN} , pi ∈ R

3, where N is the number of

points. The output is a set of planes Π. Each plane is stored

in a 2 × 3 matrix M . The first row of M is the plane’s

centroid and the second row of M is its normal.

Processing begins by estimating the normals of a fraction

αs of the points. On one hand, the availability of oriented

points allows the generation of plane hypotheses by sampling

just one inlier. On the other hand, accurate normal estimation

is computationally expensive and the planes of interest

should comprise large numbers of points. Therefore, we only

compute the normals of a subset of the points, but use all

points for hypotheses verification.

Normal Estimation: Given the sampling rate αs,

we uniformly sample a subset of the points Ps =
{

p
(s)
1 , p

(s)
2 , p

(s)
3 , · · · , p

(s)
Ns

}

, p
(s)
i ∈ R

3, where Ns is the

cardinality of Ps. We assume that surface normals can

be estimated by performing SVD on the neighbors of the

reference point, for which we want to estimate the normal.

The current reference point is denoted by pi =
(pi,x, pi,y, pi,z) and its normal is denoted by ni =
(ni,x, ni,y, ni,z). The k nearest neighbors of pi are

found using a k-d tree and denoted by Qi =
{qi1, qi2, qi3, · · · , qik} , qij ∈ P and qij 6= pi. k is a key

parameter for the accuracy of normal estimation. According

to [37], we compute the following matrix Mi of each

reference point and compute the normal as the eigenvector

corresponding to the minimum eigenvalue of Mi.

Mi =
∑

qij∈Qi

e−
‖qij−pi‖

2

2

2σ2
(qij − pi) (qij − pi)

T

‖qij − pi‖
2
2

(1)

This formula includes a weight term e−
‖qij−pi‖

2

2

2σ2 in order to

reduce the effects of neighboring points which are far from

the reference point pi. All vectors connecting neighbors to

the reference point are normalized.

One-Point RANSAC: After normal computation, we apply

one-point RANSAC to find the largest plane. As opposed to

conventional RANSAC-based plane detection, that requires

minimal samples of three points, OPS requires only one point

with its normal to define a plane. Given the set of sampled

points Ps, we randomly pick one point with its normal which

determine a plane. We compute the distance from all the

other sampled points to this plane and count the number

of inliers that are within a distance threshold θh. We also

define a threshold value θN to decide the minimum number

of points for a plane to be accepted.

We iterate the above steps to find the plane model with the

largest number of inliers. The number of iterations Niter is

Algorithm 1: OPS

Input : An unorganized point cloud

P = {p1, p2, p3, · · · , pN} , pi ∈ R
3, sampling

rate αs, k, p, distance threshold θh, inlier

threshold θN
Output: The largest horizontal plane model M , the

inlier set bestInliers

1 Randomly sample αsN 3D points

Ps =
{

p
(s)
1 , p

(s)
2 , p

(s)
3 , · · · , p

(s)
Ns

}

, p
(s)
i ∈ R

3

2 Compute their normals using local SVD on k neighbors

3 The normals of the sampled points are
{

n
(s)
1 , n

(s)
2 , n

(s)
3 , · · · , n

(s)
Ns

}

4 iter ← 0
5 inNum← 0
6 Niter ← N

7 while iter < Niter do

8 inliers← NULL

9 randInd← rand()%Ns

10 for each p
(s)
i ∈ Ps do

11 pr ← p
(s)
i − p

(s)
randInd

12 d← pr ·N
(s)
randInd

13 if d < θh then

14 Add p
(s)
i to inliers

15 end

16 end

17 if inliers.size() > θN then

18 if inliers.size() > inNum then

19 inNum← inliers.size()
20 bestInliers← inliers

21 e← 1−
(

inliers.size()
Nh

)

22 Niter ←
log(1−p)

log(1−(1−e))

23 end

24 end

25 iter ← iter + 1
26 end

27 for each bestInliersi ∈ bestInliers do

28 pointsInlier(i, :)← bestInliersi
29 end

30 (u, v)← SV DCompute(pointsInlier)
31 M(1, :)← v(2, :)
32 M(0, :)← centroid of plane

33 return M , bestInliers

adaptively determined by Niter = log(1−p)
log(1−(1−e)) [38]. Niter is

initialized as the number of all the points in the point cloud.

p is the probability that at least one random sample is free

from outliers and e is the proportion of outliers among all

points. e is updated in each iteration as we find more inliers.

Since we only need to select one true inlier, the number

of iterations is much smaller than alternatives that require

sampling three inliers. After we find the largest plane, we

re-estimate the normal using SVD on all inliers. OPS is

summarized in Algorithm 1.
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Detection of Multiple Planes: To detect all planes, we

apply OPS multiple times. After a plane has been detected,

we remove all its inliers from the point cloud and apply OPS

on the remaining points until there are not enough points

(θN ) to constitute a plane.

Detecting planes in multiple orientations: To extract basic

scene semantics, we divide the detected planes into three

groups: vertical, horizontal and other. We have tried two

strategies to detect these three groups of planes after sam-

pling some points. (1) Apply OPS on the sampled points

and divide the detected planes into three groups. (2) Divide

the sampled points into three groups based on the estimated

normals, and then apply OPS separately on each of the three

groups. We chose the second strategy due to its superior

performance in our experiments, as shown in Section IV.

B. Fast Sampling Plane Filtering

In order to compare with OPS, we make some modifi-

cations to the Fast Sampling Plane Filtering method [15],

[21], which was designed for depth images. Since we are

interested in unorganized point clouds, which, unlike RGB-

D images, do not take 2D parametrizations, we make the

following two modifications to FSPF. First, while the original

FSPF samples neighboring points by adding random integers

to the image coordinates of the reference point, we sample

neighboring points in a sphere around the reference point.

Second, we design a new plane merging method described

in Section III-C. We use FSPF to refer to the algorithm

including these modifications in this paper.

FSPF (Algorithm 2) begins by sampling three points

pr,0, pr,1, pr,2 from the 3D point cloud. The first point pr,0
is selected uniformly in the point cloud, while pr,1 and pr,2
are sampled within a sphere with a radius r1 around pr,0. We

use a k-d tree to find the neighbors in the sphere. pr,0, pr,1
and pr,2 determine a plane π and we use a cross product

to compute its normal. A search sphere with radius r2 is

then constructed around point pr,0 using the k-d tree and

an additional Nloc local samples are randomly sampled in

the search sphere. The plane fitting error is computed as the

distance between each point in the local samples and the

plane π. Points are considered inliers if their error is less

than θh, which has the same value as in OPS. If more than

αminNloc points in the search sphere are classified as inliers,

then all the points in the sphere are classified as inliers of π

and π is recorded as one of the planes found by FSPF. We

repeat the above steps for Kmax iterations or until we find

Nmax inlier points.

We use FSPF to find all the planes in a point cloud and

divide the detected planes into three groups: vertical, hori-

zontal and other. Filtering planes after the initial three points

are sampled is ineffective because the normals estimated

via the cross product are very noisy. Grouping these planes

into vertical, horizontal and other at this stage leads to the

detection of numerous planes that are not correctly classified

once their normals are re-estimated using all inliers. Filtering

planes only after re-estimation is by far the best strategy.

Algorithm 2: Fast Sampling Plane Filtering

Input : An unorganized point cloud

P = {p1, p2, p3, · · · , pN} , pi ∈ R
3, Nmax,

Kmax, Nloc, αmin, θh, r1, r2
Output: A set of planes Π and the corresponding inliers

1 Π← NULL

2 n, k ← 0
3 while n < Nmax

∧

k < Kmax do

4 k ← k + 1
5 i = rand(1, N)
6 pr,0 ← pi
7 P1 ← kdtree.radiusSearch(pr,0, r1)
8 pr,1 ← RandomlyP ickPoint(P1)
9 pr,2 ← RandomlyP ickPoint(P1)

10 nπ =
(pr,1−pr,0)×(pr,2−pr,0)

‖(pr,1−pr,0)×(pr,2−pr,0)‖2

11 Π̂← NULL

12 Ninlier ← 0
13 P2 ← kdtree.radiusSearch(pr,0, r2)
14 for j ← 3 · · ·Nloc do

15 pj ← RandomlyP ickPoint(P2)
16 e = abs(nπ · (pj − pr,0))
17 if e < θh then

18 Add pj to Π̂
19 Ninlier ← Ninlier + 1
20 end

21 end

22 if Ninlier > αminNloc then

23 for each Π̂i ∈ Π̂ do

24 inlierPoints(i, :)← Π̂i

25 end

26 (u, v)← SV DCompute(inlierPoints)
27 M(1, :)← v(2, :)
28 M(0, :)← centroid of plane

29 Add M to Π
30 Add inlierPoints to allInliers n← n+Ninlier

31 end

32 end

33 return Π, allInliers

C. Merging Process for Both Methods

FSPF returns a lot of small planes because it searches for

planes locally. The results of OPS also require some merging,

even though it produces larger planes in general. We merge

small planes by applying a coplanarity test on each pair of

planes. Specifically, we test whether the (1) angle between

the normals of the two planes, (2) the distance between the

centroid of the second plane and the first plane, and (3)

the distance between the centroid of the first plane and the

second plane are below appropriate thresholds. If a pair of

planes passes the coplanarity test, we merge them into one

plane and re-estimate the normal of the new plane using

SVD on all points. To ensure a fair comparison, we apply

the same merging process to both FSPF and OPS. Some

results of merging are shown in Figure 2.
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