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Abstract—In recent years, GPU-based platforms have received
significant success for parallel applications. In addition to highly
optimized computation kernels on GPUs, the cost of data move-
ment on GPU clusters plays critical roles in delivering high
performance for end applications. Many recent studies have been
proposed to optimize the performance of GPU- or CUDA-aware
communication runtimes and these designs have been widely
adopted in the emerging GPU-based applications. These studies
mainly focus on improving the communication performance on
native environments, i.e., physical machines, however GPU-based
communication schemes on cloud environments are not well
studied yet. This paper first investigates the performance char-
acteristics of state-of-the-art GPU-based communication schemes
on both native and container-based environments, which show a
significant demand to design high-performance container-aware
communication schemes in GPU-enabled runtimes to deliver
near-native performance for end applications on clouds. Next,
we propose the C-GDR approach to design high-performance
Container-aware GPUDirect communication schemes on RDMA
networks. C-GDR allows communication runtimes to successfully
detect process locality, GPU residency, NUMA, architecture
information, and communication pattern to enable intelligent
and dynamic selection of the best communication and data
movement schemes on GPU-enabled clouds. We have integrated
C-GDR with the MVAPICH2 library. Our evaluations show
that MVAPICH2 with C-GDR has clear performance benefits
on container-based cloud environments, compared to default
MVAPICH2-GDR and Open MPI. For instance, our proposed C-
GDR can outperform default MVAPICH2-GDR schemes by up to
66% on micro-benchmarks and up to 26% on HPC applications
over a container-based environment.

I. INTRODUCTION

Graphics Processing Unit (GPU)-based platforms have been

widely used in many modern HPC and Cloud Computing envi-

ronments. The computational power of the GPU has changed

the way for researchers and developers to highly parallelize

their applications on such high-performance heterogeneous

computing platforms. For instance, GPU has been becoming

one of the most important driving factors of fast and scalable

applications such as artificial intelligence, computation chem-

istry, and weather forecasting. To efficiently utilizing GPUs

for parallel applications, in addition to design highly opti-

mized computing kernels on GPUs, the performance of data

movement operations on GPU clusters also makes significant

impact.

However, the existence of GPUs significantly complicates

the communication runtime designs on heterogeneous clusters.

As shown in Figure 1, we classify the state-of-the-art data
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movement approaches that can be applied for moving GPU-

resident data within a node as the following four schemes.

cudaMemcpy: The default mechanism can be used to copy

data from GPU memory to system (CPU) memory region,

which could be shared between processes. The process can

also copy the data from the shared system memory to the GPU

memory. GDRCOPY: A data movement library based on

GPUDirect Remote Direct Memory Access (RDMA) technol-

ogy to provide low-latency data copy between GPU memory

and system memory [28]. cudaIPC: NVIDIA has introduced

Inter-Process Communication (IPC) in the Compute Unified

Device Architecture (CUDA) for directly moving data between

GPUs [23]. With this feature, the data movement can be

occurred through Peripheral Component Interconnect express

(PCIe) bus or NVLink without involving CPU and system

memory. GDR: With GPUDirect RDMA (GDR) technology,

third-party hardware such as InfiniBand Host Channel Adapter

(HCA) can directly access GPU memory through PCIe bus. In

this way, one can leverage GDR read and write operations to

allow HCA performing the data movement between GPUs and

bypass the CPU. The problem gets even more complicated on

the cloud environment. For instance, we can deploy multiple

containers on the same pysical or virtualized host with differ-

ent placement schemes (intra-socket or inter-socket). Each data

movement approach introduced above might have different

applicable scenarios or bring different performance character-

istics on such diverse container configurations compared to the

cases on native environments.

A. Motivation

Many recent studies [7], [19], [27] have been proposed in

the community to optimize the performance of GPU-aware (or

CUDA-aware) communication runtimes to take advantage of

the novel features of GPU and RDMA capable networks and

these designs have been well received in the HPC community.

However, most of these studies focus on improving the com-

munication performance with GPUs on native environments

(i.e., physical machines). With more and more adoptions of

GPUs in cloud computing environments, especially container-

based cloud platforms, it is desired to investigate whether

these existing communication schemes can still perform well

on cloud-based platforms (e.g., Docker). Unfortunately, we

find GPU-based communication schemes are not well studied

yet in container-based cloud computing environments. The

complexity of designing efficient GPU-based communica-

tion schemes on clouds is significantly increased under the
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container environments on such heterogeneous systems. The

challenges of supporting efficient GPU-based communication

under the container environments can be broadly summarized

as follows.

• What are the performance characteristics of applying

existing native GPU-based communication schemes in the

container environments?

• How to intelligently and transparently select an optimal

communication scheme for end applications to adapt

with different communication patterns, (e.g., latency-

or bandwidth-sensitive), different container deployment

cases (e.g., intra-socket or inter-socket), different message

sizes, and hardware architectures?

• How to design an adaptive and modular approach to

dynamically use the optimal GPU-based communication

schemes in the communication runtime such as Message

Passing Interface (MPI) library for container environ-

ments?

Fig. 1: Data Movement Strategies between GPUs in Container

Environments within a node

B. Contributions

The selection of the optimal GPU-based communication

schemes in clouds is not a trivial problem. Unfortunately,

there is a dearth of intelligent container-aware communi-

cation scheduling mechanisms to provide adaptive and op-

timal GPU-based communication schemes in clouds. As

presented in Table I, Intel MPI and MVAPICH2 support

CPU-based (Host memory) communication in native envi-

ronment, while MVPIACH2-Virt supports CPU-based (Host

memory) communication in cloud environments (VM/Contain-

er/Nested Virtualization). Open MPI, IBM Spectrum MPI, and

MVAPICH2-GDR support both CPU-based and GPU-based

(Device memory with GPUDirect RDMA) communication in

native environment. Container-aware GPU-to-GPU communi-

cation schemes do not exist even though it is highly demanded

with the emerging trend of HPC clouds. To the best of our

knowlegde, C-GDR proposed in this paper is the first work to

fill this gap and proven to work efficiently in the container-

based cloud environments.

This paper first investigates the performance characteristics

of state-of-the-art GPU-based communication schemes on

container-based environments. Our studies expose a signifi-

cant demand on designing high-performance container-aware

TABLE I: Existing MPI stacks Comparison on Usage
MPI CPU GPU(Direct) Native Cloud
Intel MPI [1]

√ √
MVAPICH2 [2]

√ √
Open MPI [5]

√ √ √
IBM Spectrum MPI [15]

√ √ √
MVAPICH2-GDR [22]

√ √ √
MVAPCH2-Virt [17], [18], [30]

√ √
C-GDR

√ √ √

communication schemes in GPU-enabled runtimes, e.g., GPU-

aware MPI, to deliver the optimal communication perfor-

mance for applications on clouds. Next, we propose the C-

GDR approach to design high-performance container-aware

GPUDirect communication schemes on RDMA networks. C-

GDR allows communication runtimes to detect process lo-

cality, GPU residency, non-uniform memory access (NUMA),

architecture information, and communication pattern. Hence,

C-GDR enables communication libraries to intelligently select

the best communication paths during runtime to speed up

data communication between GPUs on container-based cloud

environments. We have integrated C-GDR designs into the

MVAPICH2 MPI library. We conduct extensive performance

evaluations of MVAPICH2 with C-GDR schemes on native

and cloud environments. The results show that our pro-

posed C-GDR designs can outperform default MVAPICH2-

GDR schemes by up to 66% with MPI micro-benchmarks

on a containter-based environment. Moreover, the evaluation

with multiple important HPC applications such as HOOMD-

blue [12] and Jacobi computation shows that our proposed

design can achieve up to 26% performance benefit compared to

default schemes running on 16 Docker instances. MVAPICH2

with C-GDR also presents significant performance benefit

compared to Open MPI. Overall, C-GDR brings clear benefit

to HPC workloads on container-based GPU systems without

changing users’ usage behavior. To summary, this paper makes

the following key contributions:

• Provide a detailed performance study of the existing

GPU-based communication schemes on container-based

cloud environments

• Design container-aware GPUDirect communication

schemes on RDMA networks to enable intelligent

communication between GPUs

• Implement the proposed schemes into the widely used

MVAPICH2 MPI library to support container-aware fea-

tures on GPU-enabled systems

• Conduct comprehensive performance evaluations of the

proposed container-aware designs with benchmarks and

applications on a real Docker-based cloud environment

The rest of this paper is organized as follows. Section II pro-

vides background knowledge related to this work. Section III

presents the study and analysis of the current GPU-based

communication schemes on the cloud environment, followed

by the proposed designs in Section IV. Performance evaluation

is demonstrated in Section V. Finally, we present related work

in the literature in Section VI and conclude the work in

Section VII.
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II. BACKGROUND

In this section, we provide the necessary background knowl-

edge related to this work.

A. Container-based Virtualization

Virtualization provides abstractions of multiple virtual re-

sources by utilizing an intermediate software layer on top of

the underlying system. Hypervisor-based virtualization is one

of the most popular virtualization techniques, such as Xen,

VMware, KVM. Virtualization, in its most common form,

consists of a hypervisor on top of a host operating system

that provides a full abstraction of virtual machine (VM).

Container-based virtualization is a lightweight alternative to

the hypervisor-based virtualization. The host kernel allows the

execution of several isolated user-space instances run a differ-

ent software stack (e.g., system libraries, services, applica-

tions). Container-based virtualization provides self-contained

execution environments, effectively isolating applications that

rely on the same kernel in the Linux operating system, but

it does not introduce a layer of virtual hardware. There are

two core mature Linux technologies to build containers. First,

namespace isolation isolates a group of processes at various

levels: networking, filesystem, users, process identifiers, etc.

Second, cgroups (control groups) groups processes and limits

their resources usage. Several container-based solutions have

been developed, such as Docker, LXC, and Googles lmctfy. In

this paper, we deploy Docker, which is a popular open-source

platform for building and running containers and offers several

important features, including portable deployment across ma-

chines, versioning, reuse of container image and a searchable

public registry for images.

B. GPUDirect Technology and CUDA-Aware MPI

NVIDIA GPUDirect technology [3] is a set of features to

enable efficient communication among NVIDIA GPUs and

other devices. It significantly enhances communications per-

formance on GPU clusters. GPUDirect, through RDMA fea-

ture, allows third-party PCIe devices with direct access to GPU

memory. This feature is called GPUDirect RDMA (GDR) and

is currently supported by Mellanox InfiniBand network host

channel adapters (HCAs). This provides a path for moving data

to/from GPU device memory over an InfiniBand network that

completely bypasses the host CPU and its memory. Through

GDR technology, several MPI implementations such as Open

MPI, MVAPICH2, Spectrum MPI and Cray MPI provide

“CUDA awareness”. These CUDA-Aware MPI runtimes can

deliver both high performance and productivity.

III. PERFORMANCE CHARACTERISTICS OF GPU

COMMUNICATION SCHEMES ON CONTAINER-BASED

ENVIRONMENTS

Choosing the optimal data movement scheme for a given

message is a challenging task in the native environment.

It becomes even more complicated in the container-based

cloud environment because various configurations of container

deployment can be used in the cloud. In this section, we

conduct experiments to understand the performance character-

istics of the GPU communication schemes on native and cloud

environments. Based on the performance study, we provide

design guidance to optimize GPU communication on clouds.

A. GPU Communication Schemes on Cloud

Communication schemes on HPC systems have been sub-

stantially studied and optimized in the last few decades.

However, it has been significantly changed since GPU joins

the HPC community. Specifically, GPU-to-GPU communica-

tion can be roughly categorized into Intra-node and Inter-

node cases. Intra-node refers to the case that two or more

GPU devices are equipped onto the same physical node. The

communication happens from one GPU buffer to another GPU

buffer within the node, while Inter-node case means the GPU-

to-GPU communication goes across different physical nodes

via the network. Table II describes existing GPU-to-GPU data

movement mechanisms in details.

B. Performance Study of GPU Communication on Cloud

In this section, we conduct the experiments to understand

the performance characteristics of GPU-to-GPU communi-

cation with different data movement schemes in the cloud

environment.

As presented in Figure 2, we observe the clear performance

differences across different data movement schemes. This

observation implies the necessity and significance of studying

the GPU-to-GPU communication performance in the cloud

environment. Moreover, this paper focuses on optimizing intra-

node MPI communication across GPUs in containers. Thus,

the performance of inter-node communication will not be

affected, which is also verified in Section V-B. Please also

note that some data movement strategies, like GDR-loopback,

are typically not enabled for the MPI runtime in the native

environment. This is because the MPI processes with the same

hostname are automatically identified as co-located, intra-node

GPU-to-GPU communication schemes will be applied. Thus,

in order to make the lines in Figure 2 be more focused and

more precise for container environments, we do not include

native performance here. The native performance will be

shown and discussed in Section V to provide a comprehensive

evaluation.

1) Latency-sensitive Benchmark: In the latency-sensitive

benchmark, i.e., osu latency in OSU Micro-Benchmarks

(OMB), it uses blocking communication interfaces like

MPI Send and MPI Recv to ensure the completion of each

communication operation.

From Figure 2(a)-2(b), we can see that GDRCOPY in

the container environment brings the lowest latency for the

small messages (1-16 bytes), while GDR-loopback achieves

the optimal performance for the medium messages (16-16K

bytes), then cudaIPC outperforms other schemes for the large

messages. Because of the high latency of GDRCOPY for large

messages, we ignore and remove it from Figure 2(b) in order

to show clear performance comparison among other schemes.

Our observation indicates that there is no one particular data
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TABLE II: Existing GPU-to-GPU Data Movement Mechanisms
Data Movement Description

In
tr

a-
n
o
d
e

cudaIPC CUDA Inter-Process Communication (IPC) facilitates direct copy of data between GPU device buffers allocated by different processes on the
same node, which bypasses the host memory and thus eliminates the data staging overhead (from GPU device memory to the host memory). As
shown in Figure 1, this is only applicable in the intra-node case.

cudaMemcpy Whenever cudaIPC is not available or does not provide good performance, an explicit data staging scheme through the shared memory region on
the host is unavoidable. cudaMemcpy is one of the data staging schemes, which copies data between GPU device memory and host memory by
specifying the direction of the copy.

GDRCOPY GDRCOPY is another data staging scheme, which provides a low-latency GPU memory copy operation based on NVIDIA GPUDirect RDMA
technology. Basically, it offers the capability to create user-space mappings of GPU memory via one PCIe BAR (Base Address Register) of the
GPU. The user-space mappings can then be manipulated as if it is the plain host memory [28], as shown in Figure 1.

In
te

r-
n
o
d
e

GDR As introduced in Section II-B, GDR technology enables a path for moving data to/from GPU device memory over an InfiniBand Host Channel
Adaptor (HCA) that completely bypasses the host CPU and its memory. If the GDR feature is available, HCA can directly read the source data on
one GPUs memory and write to another GPUs memory. However, due to the performance concern, many communication runtimes have designs
to stage the GPU-resident data through the host memory, where an advanced host-based pipeline design is common [8], [22], [27]. The same
staging schemes, as described in the Intra-node case can be applied here as well.

GDR-loopback In the container-based cloud environment, container deployment is flexible. Multiple containers could be deployed on the same node. However,
they do not recognize each other, even though the communicating peers are within the same node physically. The communication in this case
actually operates in the loopback manner with GDR.

movement strategy that can benefit for all message sizes. It

is critical to carefully organize the different data movement

strategies according to the varying message size.

Moreover, we notice that the shared memory-based intra-

node GPU-to-GPU data movement schemes, such as GDR-

COPY and cudaIPC, cannot be applied in the co-located

containers scenario due to lack of locality-aware support. The

only one scheme they can utilize is GDR-loopback, even

though the communicating peers are physically co-located.

2) Bandwidth-sensitive Benchmark: Here, the bandwidth

test, i.e., osu bw in OMB, is performed between two processes

within a node. The test is issuing multiple non-blocking com-

munications like MPI Isend and MPI Irecv calls to saturate

the available bandwidth of IB HCA. As shown in Figure 2(c)-

2(d), we can observe that the performance is very different

for different data movement schemes in the container. As we

have seen in the latency tests. This again implies the different

communication paths and data movement strategies need to be

carefully selected for different message sizes in the container

environment.

In order to achieve optimal performance, we also notice that

the switch points to the optimal schemes are different between

latency-sensitive tests and bandwidth-sensitive tests on the

same physical configuration. For instance, in Figure 2(b), in

order to deliver the lowest latency, GDR-loopback is switched

to cudaIPC at around 16K bytes message size, while it is ap-

proximately 512K bytes for the bandwidth test in Figure 2(d).

C. Analysis and Design Principles for Optimal GPU Commu-
nication on Cloud

The major difference between the container and native

environments is the capability to detect the physical location

of CPUs and GPUs. In the container environment, the commu-

nication between the co-located containers is always treated as

the inter-node case due to the lack of locality-aware capability

in the current GPU-aware communication runtimes. Therefore,

GDR-loopback communication path will always be used, and

the GPU communication cannot leverage other communication

schemes such as GDRCOPY, cudaMemcpy, and cudaIPC. The

experimental results in Figure 2 provide following insights:

1) No one particular data movement scheme can deliver

optimal communication performance over all the different

message sizes.

2) In order to deliver optimal communication performance,

it is necessary to appropriately coordinate the different data

movement strategies.

3) For the co-located container case, the shared memory

based intra-node data movement schemes cannot be applied

currently, even though they perform the best on some message

sizes. Therefore, it is required to have locality-aware support

to enable the selection of the optimal communication channel.

4) As comparing Figure 2(b) with Figure 2(d), we can find

that the switch points among different optimal schemes are

different for latency-intensive and bandwidth-intensive tests.

Based on these insights, the design principles of optimal

GPU-based communication schemes in the container-based

environment can be summarized as follows:

• A locality-aware support is required to allow runtimes

to enable the intra-node communication paths such as

GDRCOPY, cudaMemcpy, and cudaIPC if applicable

• An intelligent communication path scheduling mech-
anism is needed to allow runtimes to dynamically select

the optimal communication path and data movement

scheme for the given message size

• A real-time workload characterization tracing mech-
anism, to allow runtimes to be aware of the latency-

sensitive or bandwidth-sensitive communication work-

loads, is needed to dynamically switch the communica-

tion path during application runtime

IV. PROPOSED DESIGN OF C-GDR IN MVAPICH2

In this section, we take MVAPICH2, a popular MPI library

as a case study to provide the high performance container-

aware GPUDirect communication schemes on RDMA net-

works, based on the insights and guidance what we have

explored in Section III for the container-based HPC cloud

environment. Figure 3 presents an overview of our proposed

C-GDR designs in MVAPICH2. As we can see, a node

is equipped with one multi-core processor, one HCA, and

multiple GPU devices. Accordingly, multiple containers are
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Fig. 2: Latency and Bandwidth comparison of data movement strategies on Docker container environment within a node. The
testbed cloud is described in Section V. MVAPICH2-GDR 2.3a, which is a GPU-aware MPI library, and OSU Micro-Benchmark [6] suite are used. To evaluate the performance of
cudaMemcpy, GDRCOPY, and cudaIPC, one Docker container is deployed, which equips with a 4-core CPU and two GPUs. To evaluate the performance of GDR-loopback, two
Docker containers are deployed on the same host, and each container is allocated with a 4-core CPU and one dedicated GPU device. The HCA is shared by the two containers. In
this deployment, each container launches one MPI process and exchanges the data on GPU with each other. The experiments are conducted over ten runs with 1,000 iterations of
each run.

deployed to fully take advantage of these powerful computing

resources.

In order to support high-performance GPUDirect commu-

nication schemes with RDMA network on container-based

HPC cloud environments, three new modules are introduced

into the MPI library, which includes a GPU Locality-aware

Detection module, a Workload Characterization Tracing mod-

ule, and a Communication Coordinator (Scheduling) module.

As introduced in Section III, there exist multiple different

communication paths on a GPU-based platform. In the bare-

metal environment, MVAPICH2 library uses cudaMemcpy,

cudaIPC, and GDRCOPY communication channels for intra-

node GPU-to-GPU (i.e., device to device) message transfer

while utilizing GDR and Host-based Pipeline channels for

inter-node GPU to GPU communication, as presented in the

bottom layer of Figure 3.

In the container-based HPC cloud environment, the commu-

nication channels and the communication channel coordination

can work in the same way as the ones in the bare-metal envi-

ronment. However, the GPU-to-GPU communication between

two co-resident containers will be considered as the inter-

node communication (GDR-loopback), due to the lack of GPU

locality-aware support. Therefore, the GPU Locality-aware

Detection module can help MPI runtime and the applications

running on top of it to dynamically and transparently detect the

MPI processes in the co-resident containers. With this mod-

ule, we have the opportunities to reschedule the MPI-based

communications between co-resident containters with GPUs

going over more efficient communication channels. Moreover,

there can be multiple different container deployment schemes

on NUMA architecture. Accordingly, the communication be-

tween co-resident GPUs can be significantly affected by

the varying container deployments from both functionality

and performance perspectives. The NUMA-aware Support

module is responsible for providing NUMA information to

MPI processes. With the aid of the NUMA-aware Support

module, the source process is able to figure out whether the

destination process is running on the same socket or the

different ones before the real communication takes place.

The Communication Scheduling module will leverage the

GPU locality information and NUMA information generated

by GPU Locality-aware Detection module and NUMA-aware

Support module, respectively to reschedule the communication

going through the appropriate and optimal underlying channel,

based on the communication characteristics, which we have

explored on the container-based HPC cloud environment in

Section III.

Fig. 3: Overview of C-GDR in MVAPICH2

A. GPU Locality-aware Detection

The GPU Locality-aware Detection module is responsible

for dynamically and transparently detecting the location infor-

mation of communication processes between the co-resident

GPUs. Since the shared memory segments, semaphores and

message queues can be shared across multiple Docker contain-

ers by sharing the IPC namespace when launching containers.

We allocate such shared memory segments on each physical

node and create a GPU Locality-aware List on it. Each MPI

process associating with one GPU in co-resident containers

writes its locality information into this shared list structure

according to its global rank. After a synchronization, it can

be guaranteed that the locality information of all local MPI

processes has been collected up and stored in the GPU

Locality-aware List. If the user launches two MPI processes

to carry out GPU-to-GPU communication, the GPU Locality-

aware Detection module is able to quickly identify whether

it is the co-resident GPUs communication by checking the

locality information on the list according to their global MPI

ranks.

Figure 4 illustrates an example of launching a 6-process

MPI job. Two containers (Container-A and Container-B) are
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deployed on the same host, and each container is equipped

with one GPU device. There is one MPI process in each con-

tainer, and the other four MPI processes are running on another

host. In the GPU Locality-aware Detection module, the two

MPI processes (rank 0 and rank 1) write their identifications on

positions 0 and 1 on the GPU Locality-aware List, respectively.

There will be ‘0’ in the other four positions on the list as those

four MPI processes are not running on the same host. If MPI

processes with rank 0 and 1 are going to execute GPU-to-GPU

message transfers, the fact of co-residence of the GPU devices

can be efficiently identified by checking the corresponding

positions in the GPU Locality-aware List. The number of

local processes on the host can be acquired by traversing and

counting the positions with the written identifications. Their

local ordering will still be maintained by their positions in

the list. It is costly to frequently access the GPU Locality-

aware Detection module for each message transfer. Each MPI

process, therefore, scans the locality results generated by

GPU Locality-aware Detection module and maintains its local

copy for all the peer processes. When considering process

migration or other scenarios which might cause the locality to

change, the proposed Locality-aware Detection module need

to be re-triggered to update the locality information. Take the

migration for instance, the communication channel will be

suspended before migration to guarantee that there is no on-

the-fly messages during migration [31]. Once the migration

procedure finishes, the locality information of all processes

needs to be updated in order to resume the communication

onward.

The fixed number of bytes is used to tag each MPI process

in GPU Locality-aware List. This guarantees that multiple

processes belonging to co-resident containers are able to write

their locality information on their corresponding positions

concurrently without introducing lock/unlock operations. This

approach reduces the overhead of the locality detection proce-

dure. For instance, an MPI job with one million processes only

occupies T × 1M bytes memory space for the list, assuming

T as the fixed number of bytes for tagging each MPI process.

The space complexity is O(N), where N is the number of

MPI processes. It thus brings good scalability on the container-

based HPC cloud environment.

Fig. 4: GPU Locality-aware Detection Module in C-GDR

In addition, there can be different placement schemes to

deploy the containers on a NUMA architecture. The communi-

cation performance will also be affected by the placements ac-

cordingly. The GPU Locality-aware Detection module can also

be used to provide NUMA information of peer MPI processes

for the following Communication Scheduling module, so that

some performance bottlenecks and functional limitations can

be avoided during the communication rescheduling phase. We

assume that the administrators or cloud deployment stack can

specify the CPU cores to launch the containers and different

containers will not be launched with the same sets of the cores

to eliminate the unnecessary performance interference. When

the Docker engine is invoked to launch a container with the

specified core IDs, it forms a tuple with the container name, the

corresponding core IDs, and the associated NUMA node ID,

e.g., [Container, Cores, and Sockets]. Then such tuple is visible

to each MPI process in the co-resident containers through

shared IPC namespace. If the destination process is identified

as co-resident through GPU Locality-aware Detection module,

NUMA-aware Support is triggered to further compare the

NUMA node IDs of the destination MPI processes with its

own ID to identify the relative NUMA information. More

specifically, it can be identified that whether the message

transfer will be across a socket or not.

B. Workload Characterization Tracing

In Section III, we observe that latency and bandwidth

benchmarks have different switch points of their best per-

formance numbers for different communication channels in

the container environment. This implies that it is required to

dynamically control the channel switch point in the runtime

in order to deliver the optimal communication performance

for different types of workloads. C-GDR provides a Workload

Characterization Tracing module, which is responsible for

keeping track of the communication patterns. The Workload

Characterization Trace module can persistently update the

respective counters of MPI Send/Recv and MPI Isend/Irecv

to decide the workload is latency-intensive or bandwidth-

intensive. For instance, Figure 5 shows Rank 0’s structure of

Workload Characterization Tracing Module. When the process

with rank 0 needs to send/receive a message to/from the

process with rank 3, it first checks the locality information

of the destination process (Rank 3) by its locality detection

module. If the destination process is detected as a co-located

process, it updates the Send/Recv counter if the communi-

cation is in the blocking mode; otherwise, the Isend/Irecv

counter is updated for the non-blocking communication. Upon

one of these two counters exceeds the predefined threshold,

like Send/Recv counter, we treat the workload as the latency-

intensive workload, and the communication channel switch

point can be adaptively updated to achieve the optimal latency

performance. The threshold could be different with different

underlying configurations. The user can tune it through the

runtime parameter. As the workload characterization tracing

results can be quickly updated and easily maintained in the

performance critical path, it does not incur severe performance

overhead.
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Fig. 5: Workload Characterization Tracing Module in C-GDR

C. Communication Scheduling

The Communication Scheduling module reschedules the

message to go through the appropriate communication channel

in order to deliver the optimal GPU-to-GPU communication

performance in container-based cloud environments. In this

module, there are four function units including GPU Locality

Loader, Workload Characterization Parser, Message Attribute

Parser, and Communication Scheduler. GPU Locality Loader

reads the locality information including the NUMA placement

of the destination process from the GPU Locality-aware De-

tection module. Workload Characterization Parser parses the

tracing results from the Workload Characterization Tracing

module. Message Attribute Parser obtains the attributes of

the message, such as message type and message size. For

a communication request to a specific destination process,

Communication Scheduler selects the appropriate communi-

cation channel based on all the information in the above three

aspects. By utilizing the Locality-aware Detection module, the

communications between the co-located processes are able to

use the high-performance intra-node communication channels,

such as GDRCOPY, cudaMemcpy, and cudaIPC for different

message sizes. From our experiments, we observe that GDR-

loopback scheme can deliver better performance than those

shared memory based intra-node data movement schemes for

some message sizes. In this scenario, the Communication

Scheduling module can also select the GDR-loopback com-

munication channel for the specific range of message size,

even though the communication processes are detected as

the co-located case. If the workload characterization tracing

result indicate that one of the counters exceeds the predefined

threshold, the Communication Scheduling module will select

the communication channel based on the comparison result

between the message size and the channel switch point. For

instance, once the Isend/Irecv counter exceeds the threshold,

the workload is identified as the bandwidth-intensive workload

and the switch point from GDR-loopback to cudaIPC will be

updated from 16KB to 512KB. After that, messages less than

512KB will still go through the GDR-loopback channel.

Through our experiments, we summarize the optimal

scheduling policy in container-based cloud environments in

Table III. For the latency-sensitive workloads, GDRCOPY

is selected for GPU-to-GPU communication with 1-16 bytes

message size. For the message size which is larger than 16

bytes and less than 16K bytes, GDR-loopback is selected

instead of the intra-node data movement schemes. Then cu-

daIPC is utilized for the large messages transfer. As there is

TABLE III: Best schemes discovered for given message ranges

for latency-sensitive and bandwidth-sensitive benchmarks

Latency-sensitive Bandwidth-sensitive
msg ≤ 16B GDRCOPY
16B < msg < 16KB GDR-loopback

GDR-loopback16KB ≤ msg ≤ 512KB
cudaIPCmsg > 512KB cudaIPC

a different performance characterization for the bandwidth-

sensitive workloads, GDR-loopback is chosen as the optimal

GPU-to-GPU communication scheme with the message size

range from 16 bytes to 512K bytes.

V. PERFORMANCE EVALUATION

A. Experimental Testbed

Our testbed consists of eight physical nodes. Each node has

a dual-socket 28-core 2.4 GHz Intel Xeon E5-2680 (Broad-

well) processor with 128 GB main memory and is equipped

with one Mellanox ConnectX-4 EDR (100 Gbps) HCA and

one NVIDIA K-80 GK210GL GPU. Please note that each K-

80 is a dual-GPU card. The two GPU cards and the HCA are

connected to the same socket. We deploy 16 Docker containers

using NVIDIA Docker 1.01 [21] on these eight physical nodes

to make the images agnostic of the NVIDIA driver. Each node

has two containers, which are pinned to the same socket. Each

container is equipped with one GPU card. On both physical

nodes and containers, we use CentOS Linux 7 as the operating

system. In addition, we use MLNX OFED LINUX-3.4-2.0.0,

NVIDIA Driver 384.81 and CUDA Toolkit 8.0. ‘Native’

denotes the performance of the running process in the bare-

metal environment with MVAPICH2-GDR. ‘Container-Def’

denotes the performance of the running process in container

environment binding with the same physical core and GPU

device like the ones in the ‘Native’ scheme. ‘Container-Opt’

denotes the corresponding performance in the container case

with our proposed optimizations.

B. MPI Level Point-to-Point Micro-benchmarks

In this subsection, we evaluate the influence of our proposed

designs on point to point communication performance with

OSU Micro-Benchmark suite. We focus on the performance

evaluation of inter-node and single node inter-container case

in this section.

Figures 6(a) and 6(c) show the evaluation results of la-

tency and bandwidth performance results for small messages.

We can observe that both Native and proposed container

(Container-Opt) schemes perform better than the default con-

tainer (Container-Def) scheme for 1-16 bytes messages. The

performance benefit comes from choosing GDRCOPY as the

optimal communication channel. For example, the latencies

of Native, Container-Def, and Container-Opt with 4 bytes

message size are 1.55us, 2.1us, and 1.57us, respectively. Com-

pared to the Container-Def case, the Container-Opt scheme

could reduce the latency by up to 27%. The bandwidths

of Native, Container-Def, and Container-Opt with 16 bytes

message size are 12.61 MB/s, 10.14 MB/s, and 12.55 MB/s,
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Fig. 6: MPI Point-to-Point Performance for GPU-to-GPU Communication

respectively. Compared to the Container-Def scheme, the

Container-Opt scheme could improve the bandwidth by up to

24%. In addition, Container-Opt only incurs minor overhead,

compared to the Native scheme.

From Figure 6(a)-6(b) and Figure 6(c)-6(d), we can clearly

observe that both Container-Def and Container-Opt schemes

start having a similar performance after 16 bytes message

size. The is because GDR-loopback scheme is selected by

the communication coordinator. For example, the latencies

of Container-Def and Container-Opt with 8K bytes message

size are 7.2us, and 7.34us, respectively, as shown in Fig-

ure 6(b). The bandwidths of Container-Def and Container-Opt

with 256K bytes message size are 6.59GB/s and 6.43GB/s,

respectively, as shown in Figure 6(d). Compared to the Native

scheme, both Container-Opt and Container-Def can deliver

the near-native performance. For large messages, cudaIPC

performs better than other schemes, that is why we can see

Container-Opt brings up to 46% improvement for latency and

32% improvement for bandwidth, compared with Container-

Def. Note that the optimal communication channel switch

points (from GDR-loopback to cudaIPC) are different for

latency (around 16KB) and bandwidth (around 512KB), which

further verifies the performance characterization results in

Table III. As we can see, the proposed Container-Opt keeps

delivering near-native performance. To compare with other

MPI stacks, we also present the intra-node point-to-point

performance with Open MPI in the native environment, which

is denoted as ‘Native-OpenMPI’. As can be seen in Figure 6,

the evaluation results show clear performance gaps on both

latency and bandwidth tests as comparing Native-OpenMPI

with our proposed C-GDR design. This implies that there is no

container-aware design in Open MPI for GPU communication.

In addition, all GPU-to-GPU data movement schemes that

we have investigated are applied across multiple containers

within a single node. The data movement scheme for inter-

node case remains the same. Thus, the inter-node latency and

bandwidth performance of both Container-Def and Container-

Opt schemes achieve similar performance as the Native

scheme. We omit these results due to the space limit. The

MPI micro-benchmark level point-to-point evaluation results

indicate that the Container-Opt scheme could always select

the optimal communication channel for different message

sizes and communication patterns to achieve the optimal

performance, compared with the Container-Def scheme.

C. MPI Level Collective Micro-benchmarks

In this section, we evaluate the proposed C-GDR com-

munication schemes with four MPI level collective opera-

tions including MPI Bcast, MPI Allgather, MPI Allreduce,

and MPI Alltoall. We choose these four collective operations

since they are widely used by GPU-based applications. The

performance results are shown in Figure 7. The evaluation

results indicate that our optimized communication scheme

Container-Opt can achieve near-native performance for col-

lectives also. Compared with the performance of Container-

Def scheme in the container environment, our optimized

scheme brings up to 63%, 66%, 49%, and 50% performance

improvement for MPI Bcast, MPI Allgather, MPI Allreduce,

and MPI Alltoall, respectively. We also evaluate these four

collective operations with Open MPI. The evaluation results

with Open MPI again show significant performance gaps

as compared with our proposed C-GDR design. To clearly

illustrate the benefit between Container-Opt and Container-

Def, we do not include Open MPI results in Figure 7.

D. Application Performance Evaluation

In this section, we evaluate our proposed C-GDR scheme

Container-Opt with several end applications, which include

Jacobi solver, HOOMD-blue Lennard-Jones liquid (Hoomd-

LJ), and Anelastic Wave Propagation (AWP-ODC), as shown

in Figure 8. Jacobi solves the Poisson equation on a rectangle

with Dirichlet boundary conditions. It leverages the CUDA-

aware MPI to directly send/receive (MPI Sendrecv) through

the device buffer without explicitly staging the data to the

host buffer. We can adjust the message size for sending and

receiving. Jacobi-16B and Jacobi-512KB mean that we use 16

bytes and 512K bytes as message sizes, respectively.

In the Jacobi-16B case, the evaluation results indicate that

our proposed Container-Opt can bring 25% communication

performance improvement, compared with the default case,

while having a similar performance with the one on the

native environment. This is because the GDRCOPY is used in

the native and Container-Opt case, which can bring optimal

communication performance for message transfer with 16

bytes message size, as what we summarized in Table III. In the

Jacobi-512K case, the cudaIPC scheme is used to deliver the

optimal communication performance. This is the reason we see

similar communication times between Native and Container-
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Fig. 7: MPI Collective Communication Performance across 16 GPU Devices

Opt schemes, and 26% performance improvement compared

with the Container-Def scheme.

Both Hoomd-LJ and AWP-ODC dominantly use around 1M

bytes message for communication, and the intra-node based

communication scheme (cudaIPC) performs better than the

GDR-loopback scheme, as we summarized in Table III. Ac-

cordingly, we can see from Figure 8, our proposed Container-

Opt is able to achieve the optimal performance for applications

Hoomd-LJ and AWP-ODC. Our C-GDR design can bring 10%

and 14% performance improvement for Hoomd-LJ and AWP-

ODC, respectively, compared with the Container-Def case.

VI. RELATED WORK

There are four ways to use GPU in a Virtual Machine

(VM): I/O pass-through, device emulation, API remoting, and

mediated pass-through. In a virtualized environment, the GPU

device could be directly passed through to a specific VM [9].

Using this technique, Amazon has provided GPU instances

to HPC customers. Intel has introduced VT-d allows GPU

to be passed to a virtual machine exclusively [10]. With

GPU device passthrough, the device is dedicated to a specific

virtual machine, so it sacrifices the sharing capability of the

virtualized environment. CPU virtualization could be done

through device emulation; however, such emulation technique

could be done with GPUs easily.

GPU virtualization could also be achieved through API

remoting which is commonly used in commercial software.

API remoting forwards GPU commands from guest OS to

host. VMGL [20] replaces the standard OpenGL library in

Linux Guests with its own implementation to pass the OpenGL

commands to VMM. Shi et al. present a CUDA-oriented

GPU virtualization solution in [26]. It uses API interception

to capture CUDA calls on the guest OS with a wrapper

library, and then redirects them to the host OS where a stub

service was running. Duato et al. [11] have proposed a library

to allow each node in a cluster access any of the CUDA-

compatible accelerators installed in the cluster nodes. Remote

GPUs are virtualized devices made available by a wrapper

library replacing the CUDA Runtime. This library forwards the

API calls to a remote server and retrieves the results from those

remote executions to offer them to the calling application.

Gupta, et al. [14] use the same technique to forward CUDA

command and OpenCL commands, solving the problem of

virtualizing GPGPU devices. VMware products consist of a

virtual PCI device and its corresponding driver for different

operating systems. The host handles all accesses to the virtual

PCI device inside a VM by a user-level process, where the

actual GPUvm presents a GPU virtualization solution on an

NVIDIA card [29] and it implements both para- and full-

virtualization. However, full-virtualization exhibits a consid-

erable overhead for MMIO handling. Compared to native, the

performance of optimized para-virtualization is two to three

times slower. Since NVIDIA has individual graphics memory

on the PCI card, GPUvm cannot handle page faults caused

by NVIDIA GPUs [13]. NVIDIA GRID [4] is a proprietary

virtualization solution from NVIDIA for Kepler architecture.

However, there are no technical details about their products

available to the public. Reano et al. propose optimizations

at InfiniBand network verbs-level to accelerate GPU virtual-

ization framework [25]. Ravi et al. implement a scheduling

policy, based on affinity score between GPU kernels when

consolidating kernels among multiple VMs [24]. Iserte et al.

propose to decouple real GPUs from the compute nodes by

using the virtualization technology rCUDA [16]. Compared to

these work, our work focuses on analyzing and characterizing

different GPU-to-GPU communication schemes on container-

based cloud environments, identifying performance bottle-

necks. Based on our findings, we further propose C-GDR, a

high performance container-aware GPUDirect communication

schemes on RDMA networks, which can dynamically schedule

the optimal communication channels.

VII. CONCLUSION AND FUTURE WORK

The increase of cloud-based applications leveraging GPUs

has made it vital for researchers and developers to understand

and design efficient GPU-based communication schemes in

cloud environments. This paper first investigates the perfor-

mance characteristics of state-of-the-art GPU-based commu-

nication schemes on both native and container-based environ-

ments and identifies performance bottlenecks for communi-

cation in GPU-enabled cloud environments. To alleviate the

bottlenecks identified, this paper presents the C-GDR approach

to design high-performance container-aware GPUDirect com-

munication schemes on RDMA networks and integrates C-

GDR with the MVAPICH2 MPI library. The proposed designs

provide locality-aware, NUMA-aware, and communication-

pattern-aware capabilities to enable intelligent and adaptive

communication coordination for the optimal communication

performance on GPU-enabled clouds. The techniques we used

are based on tradeoffs for performance and easy-to-adopt
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for a large user base. Performance evaluations show that

MVAPICH2 with C-GDR has notable performance benefit

compared with Open MPI. Further, MVAPICH2 with C-GDR

can outperform default MVAPICH2-GDR schemes by up to

66% on micro-benchmarks and 26% performance benefit for

various applications on container-based GPU-enabled clouds.
In the future, we plan to explore VM live migration support

with GPU-enabled VM environments.
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