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Abstract—In recent years, GPU-based platforms have received
significant success for parallel applications. In addition to highly
optimized computation kernels on GPUs, the cost of data move-
ment on GPU clusters plays critical roles in delivering high
performance for end applications. Many recent studies have been
proposed to optimize the performance of GPU- or CUDA-aware
communication runtimes and these designs have been widely
adopted in the emerging GPU-based applications. These studies
mainly focus on improving the communication performance on
native environments, i.e., physical machines, however GPU-based
communication schemes on cloud environments are not well
studied yet. This paper first investigates the performance char-
acteristics of state-of-the-art GPU-based communication schemes
on both native and container-based environments, which show a
significant demand to design high-performance container-aware
communication schemes in GPU-enabled runtimes to deliver
near-native performance for end applications on clouds. Next,
we propose the C-GDR approach to design high-performance
Container-aware GPUDirect communication schemes on RDMA
networks. C-GDR allows communication runtimes to successfully
detect process locality, GPU residency, NUMA, architecture
information, and communication pattern to enable intelligent
and dynamic selection of the best communication and data
movement schemes on GPU-enabled clouds. We have integrated
C-GDR with the MVAPICH2 library. Our evaluations show
that MVAPICH2 with C-GDR has clear performance benefits
on container-based cloud environments, compared to default
MVAPICH2-GDR and Open MPL. For instance, our proposed C-
GDR can outperform default MVAPICH2-GDR schemes by up to
66% on micro-benchmarks and up to 26% on HPC applications
over a container-based environment.

I. INTRODUCTION

Graphics Processing Unit (GPU)-based platforms have been
widely used in many modern HPC and Cloud Computing envi-
ronments. The computational power of the GPU has changed
the way for researchers and developers to highly parallelize
their applications on such high-performance heterogeneous
computing platforms. For instance, GPU has been becoming
one of the most important driving factors of fast and scalable
applications such as artificial intelligence, computation chem-
istry, and weather forecasting. To efficiently utilizing GPUs
for parallel applications, in addition to design highly opti-
mized computing kernels on GPUs, the performance of data
movement operations on GPU clusters also makes significant
impact.

However, the existence of GPUs significantly complicates
the communication runtime designs on heterogeneous clusters.
As shown in Figure 1, we classify the state-of-the-art data
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movement approaches that can be applied for moving GPU-
resident data within a node as the following four schemes.
cudaMemcpy: The default mechanism can be used to copy
data from GPU memory to system (CPU) memory region,
which could be shared between processes. The process can
also copy the data from the shared system memory to the GPU
memory. GDRCOPY: A data movement library based on
GPUDirect Remote Direct Memory Access (RDMA) technol-
ogy to provide low-latency data copy between GPU memory
and system memory [28]. cudaIPC: NVIDIA has introduced
Inter-Process Communication (IPC) in the Compute Unified
Device Architecture (CUDA) for directly moving data between
GPUs [23]. With this feature, the data movement can be
occurred through Peripheral Component Interconnect express
(PCIe) bus or NVLink without involving CPU and system
memory. GDR: With GPUDirect RDMA (GDR) technology,
third-party hardware such as InfiniBand Host Channel Adapter
(HCA) can directly access GPU memory through PCle bus. In
this way, one can leverage GDR read and write operations to
allow HCA performing the data movement between GPUs and
bypass the CPU. The problem gets even more complicated on
the cloud environment. For instance, we can deploy multiple
containers on the same pysical or virtualized host with differ-
ent placement schemes (intra-socket or inter-socket). Each data
movement approach introduced above might have different
applicable scenarios or bring different performance character-
istics on such diverse container configurations compared to the
cases on native environments.

A. Motivation

Many recent studies [7], [19], [27] have been proposed in
the community to optimize the performance of GPU-aware (or
CUDA-aware) communication runtimes to take advantage of
the novel features of GPU and RDMA capable networks and
these designs have been well received in the HPC community.
However, most of these studies focus on improving the com-
munication performance with GPUs on native environments
(i.e., physical machines). With more and more adoptions of
GPUs in cloud computing environments, especially container-
based cloud platforms, it is desired to investigate whether
these existing communication schemes can still perform well
on cloud-based platforms (e.g., Docker). Unfortunately, we
find GPU-based communication schemes are not well studied
yet in container-based cloud computing environments. The
complexity of designing efficient GPU-based communica-
tion schemes on clouds is significantly increased under the
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container environments on such heterogeneous systems. The
challenges of supporting efficient GPU-based communication
under the container environments can be broadly summarized
as follows.

o« What are the performance characteristics of applying
existing native GPU-based communication schemes in the
container environments?

« How to intelligently and transparently select an optimal
communication scheme for end applications to adapt
with different communication patterns, (e.g., latency-
or bandwidth-sensitive), different container deployment
cases (e.g., intra-socket or inter-socket), different message
sizes, and hardware architectures?

o How to design an adaptive and modular approach to
dynamically use the optimal GPU-based communication
schemes in the communication runtime such as Message
Passing Interface (MPI) library for container environ-
ments?

== » cudaMemcpy GDRCOPY ---»cudalPC  -----»GDR

=EE=

Fig. 1: Data Movement Strategies between GPUs in Container
Environments within a node

B. Contributions

The selection of the optimal GPU-based communication
schemes in clouds is not a trivial problem. Unfortunately,
there is a dearth of intelligent container-aware communi-
cation scheduling mechanisms to provide adaptive and op-
timal GPU-based communication schemes in clouds. As
presented in Table I, Intel MPI and MVAPICH2 support
CPU-based (Host memory) communication in native envi-
ronment, while MVPIACH2-Virt supports CPU-based (Host
memory) communication in cloud environments (VM/Contain-
er/Nested Virtualization). Open MPI, IBM Spectrum MPI, and
MVAPICH2-GDR support both CPU-based and GPU-based
(Device memory with GPUDirect RDMA) communication in
native environment. Container-aware GPU-to-GPU communi-
cation schemes do not exist even though it is highly demanded
with the emerging trend of HPC clouds. To the best of our
knowlegde, C-GDR proposed in this paper is the first work to
fill this gap and proven to work efficiently in the container-
based cloud environments.

This paper first investigates the performance characteristics
of state-of-the-art GPU-based communication schemes on
container-based environments. Our studies expose a signifi-
cant demand on designing high-performance container-aware
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TABLE I: Existing MPI stacks Comparison on Usage

MPI

Intel MPI [1]

MVAPICH?2 [2]

Open MPI [5]

IBM Spectrum MPI [15]
MVAPICH2-GDR [22]
MVAPCH2-Virt [17], [18], [30]
C-GDR

CPU GPU(Direct) | Native Cloud
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v
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communication schemes in GPU-enabled runtimes, e.g., GPU-
aware MPI, to deliver the optimal communication perfor-
mance for applications on clouds. Next, we propose the C-
GDR approach to design high-performance container-aware
GPUDirect communication schemes on RDMA networks. C-
GDR allows communication runtimes to detect process lo-
cality, GPU residency, non-uniform memory access (NUMA),
architecture information, and communication pattern. Hence,
C-GDR enables communication libraries to intelligently select
the best communication paths during runtime to speed up
data communication between GPUs on container-based cloud
environments. We have integrated C-GDR designs into the
MVAPICH2 MPI library. We conduct extensive performance
evaluations of MVAPICH2 with C-GDR schemes on native
and cloud environments. The results show that our pro-
posed C-GDR designs can outperform default MVAPICH2-
GDR schemes by up to 66% with MPI micro-benchmarks
on a containter-based environment. Moreover, the evaluation
with multiple important HPC applications such as HOOMD-
blue [12] and Jacobi computation shows that our proposed
design can achieve up to 26% performance benefit compared to
default schemes running on 16 Docker instances. MVAPICH2
with C-GDR also presents significant performance benefit
compared to Open MPI. Overall, C-GDR brings clear benefit
to HPC workloads on container-based GPU systems without
changing users’ usage behavior. To summary, this paper makes
the following key contributions:

o Provide a detailed performance study of the existing
GPU-based communication schemes on container-based
cloud environments

e Design container-aware GPUDirect communication
schemes on RDMA networks to enable intelligent
communication between GPUs

o Implement the proposed schemes into the widely used
MVAPICH2 MPI library to support container-aware fea-
tures on GPU-enabled systems

o Conduct comprehensive performance evaluations of the
proposed container-aware designs with benchmarks and
applications on a real Docker-based cloud environment

The rest of this paper is organized as follows. Section II pro-

vides background knowledge related to this work. Section III
presents the study and analysis of the current GPU-based
communication schemes on the cloud environment, followed
by the proposed designs in Section I'V. Performance evaluation
is demonstrated in Section V. Finally, we present related work
in the literature in Section VI and conclude the work in
Section VII.



II. BACKGROUND

In this section, we provide the necessary background knowl-
edge related to this work.

A. Container-based Virtualization

Virtualization provides abstractions of multiple virtual re-
sources by utilizing an intermediate software layer on top of
the underlying system. Hypervisor-based virtualization is one
of the most popular virtualization techniques, such as Xen,
VMware, KVM. Virtualization, in its most common form,
consists of a hypervisor on top of a host operating system
that provides a full abstraction of virtual machine (VM).
Container-based virtualization is a lightweight alternative to
the hypervisor-based virtualization. The host kernel allows the
execution of several isolated user-space instances run a differ-
ent software stack (e.g., system libraries, services, applica-
tions). Container-based virtualization provides self-contained
execution environments, effectively isolating applications that
rely on the same kernel in the Linux operating system, but
it does not introduce a layer of virtual hardware. There are
two core mature Linux technologies to build containers. First,
namespace isolation isolates a group of processes at various
levels: networking, filesystem, users, process identifiers, etc.
Second, cgroups (control groups) groups processes and limits
their resources usage. Several container-based solutions have
been developed, such as Docker, LXC, and Googles Imctfy. In
this paper, we deploy Docker, which is a popular open-source
platform for building and running containers and offers several
important features, including portable deployment across ma-
chines, versioning, reuse of container image and a searchable
public registry for images.

B. GPUDirect Technology and CUDA-Aware MPI

NVIDIA GPUDirect technology [3] is a set of features to
enable efficient communication among NVIDIA GPUs and
other devices. It significantly enhances communications per-
formance on GPU clusters. GPUDirect, through RDMA fea-
ture, allows third-party PCle devices with direct access to GPU
memory. This feature is called GPUDirect RDMA (GDR) and
is currently supported by Mellanox InfiniBand network host
channel adapters (HCAs). This provides a path for moving data
to/from GPU device memory over an InfiniBand network that
completely bypasses the host CPU and its memory. Through
GDR technology, several MPI implementations such as Open
MPI, MVAPICH2, Spectrum MPI and Cray MPI provide
“CUDA awareness”. These CUDA-Aware MPI runtimes can
deliver both high performance and productivity.

III. PERFORMANCE CHARACTERISTICS OF GPU
COMMUNICATION SCHEMES ON CONTAINER-BASED
ENVIRONMENTS

Choosing the optimal data movement scheme for a given
message is a challenging task in the native environment.
It becomes even more complicated in the container-based
cloud environment because various configurations of container
deployment can be used in the cloud. In this section, we
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conduct experiments to understand the performance character-
istics of the GPU communication schemes on native and cloud
environments. Based on the performance study, we provide
design guidance to optimize GPU communication on clouds.

A. GPU Communication Schemes on Cloud

Communication schemes on HPC systems have been sub-
stantially studied and optimized in the last few decades.
However, it has been significantly changed since GPU joins
the HPC community. Specifically, GPU-to-GPU communica-
tion can be roughly categorized into Intra-node and Inter-
node cases. Intra-node refers to the case that two or more
GPU devices are equipped onto the same physical node. The
communication happens from one GPU buffer to another GPU
buffer within the node, while Inter-node case means the GPU-
to-GPU communication goes across different physical nodes
via the network. Table II describes existing GPU-to-GPU data
movement mechanisms in details.

B. Performance Study of GPU Communication on Cloud

In this section, we conduct the experiments to understand
the performance characteristics of GPU-to-GPU communi-
cation with different data movement schemes in the cloud
environment.

As presented in Figure 2, we observe the clear performance
differences across different data movement schemes. This
observation implies the necessity and significance of studying
the GPU-to-GPU communication performance in the cloud
environment. Moreover, this paper focuses on optimizing intra-
node MPI communication across GPUs in containers. Thus,
the performance of inter-node communication will not be
affected, which is also verified in Section V-B. Please also
note that some data movement strategies, like GDR-loopback,
are typically not enabled for the MPI runtime in the native
environment. This is because the MPI processes with the same
hostname are automatically identified as co-located, intra-node
GPU-to-GPU communication schemes will be applied. Thus,
in order to make the lines in Figure 2 be more focused and
more precise for container environments, we do not include
native performance here. The native performance will be
shown and discussed in Section V to provide a comprehensive
evaluation.

1) Latency-sensitive Benchmark: In the latency-sensitive
benchmark, i.e., osu_latency in OSU Micro-Benchmarks
(OMB), it uses blocking communication interfaces like
MPI_Send and MPI_Recv to ensure the completion of each
communication operation.

From Figure 2(a)-2(b), we can see that GDRCOPY in
the container environment brings the lowest latency for the
small messages (1-16 bytes), while GDR-loopback achieves
the optimal performance for the medium messages (16-16K
bytes), then cudalPC outperforms other schemes for the large
messages. Because of the high latency of GDRCOPY for large
messages, we ignore and remove it from Figure 2(b) in order
to show clear performance comparison among other schemes.
Our observation indicates that there is no one particular data



TABLE II: Existing GPU-to-GPU Data Movement Mechanisms

Data Movement

Description

cudalPC

CUDA Inter-Process Communication (IPC) facilitates direct copy of data between GPU device buffers allocated by different processes on the
same node, which bypasses the host memory and thus eliminates the data staging overhead (from GPU device memory to the host memory). As
shown in Figure 1, this is only applicable in the intra-node case.

cudaMemcpy

Intra-node

Whenever cudalPC is not available or does not provide good performance, an explicit data staging scheme through the shared memory region on
the host is unavoidable. cudaMemcpy is one of the data staging schemes, which copies data between GPU device memory and host memory by
specifying the direction of the copy.

GDRCOPY

GDRCOPY is another data staging scheme, which provides a low-latency GPU memory copy operation based on NVIDIA GPUDirect RDMA
technology. Basically, it offers the capability to create user-space mappings of GPU memory via one PCle BAR (Base Address Register) of the
GPU. The user-space mappings can then be manipulated as if it is the plain host memory [28], as shown in Figure 1.

GDR

As introduced in Section II-B, GDR technology enables a path for moving data to/from GPU device memory over an InfiniBand Host Channel
Adaptor (HCA) that completely bypasses the host CPU and its memory. If the GDR feature is available, HCA can directly read the source data on
one GPUs memory and write to another GPUs memory. However, due to the performance concern, many communication runtimes have designs
to stage the GPU-resident data through the host memory, where an advanced host-based pipeline design is common [8], [22], [27]. The same
staging schemes, as described in the Intra-node case can be applied here as well.

Inter-node

GDR-loopback

In the container-based cloud environment, container deployment is flexible. Multiple containers could be deployed on the same node. However,
they do not recognize each other, even though the communicating peers are within the same node physically. The communication in this case

actually operates in the loopback manner with GDR.

movement strategy that can benefit for all message sizes. It
is critical to carefully organize the different data movement
strategies according to the varying message size.

Moreover, we notice that the shared memory-based intra-
node GPU-to-GPU data movement schemes, such as GDR-
COPY and cudalPC, cannot be applied in the co-located
containers scenario due to lack of locality-aware support. The
only one scheme they can utilize is GDR-loopback, even
though the communicating peers are physically co-located.

2) Bandwidth-sensitive Benchmark: Here, the bandwidth
test, i.e., osu_bw in OMB, is performed between two processes
within a node. The test is issuing multiple non-blocking com-
munications like MPI_Isend and MPI_Irecv calls to saturate
the available bandwidth of IB HCA. As shown in Figure 2(c)-
2(d), we can observe that the performance is very different
for different data movement schemes in the container. As we
have seen in the latency tests. This again implies the different
communication paths and data movement strategies need to be
carefully selected for different message sizes in the container
environment.

In order to achieve optimal performance, we also notice that
the switch points to the optimal schemes are different between
latency-sensitive tests and bandwidth-sensitive tests on the
same physical configuration. For instance, in Figure 2(b), in
order to deliver the lowest latency, GDR-loopback is switched
to cudalPC at around 16K bytes message size, while it is ap-
proximately 512K bytes for the bandwidth test in Figure 2(d).

C. Analysis and Design Principles for Optimal GPU Commu-
nication on Cloud

The major difference between the container and native
environments is the capability to detect the physical location
of CPUs and GPUs. In the container environment, the commu-
nication between the co-located containers is always treated as
the inter-node case due to the lack of locality-aware capability
in the current GPU-aware communication runtimes. Therefore,
GDR-loopback communication path will always be used, and
the GPU communication cannot leverage other communication
schemes such as GDRCOPY, cudaMemcpy, and cudalPC. The
experimental results in Figure 2 provide following insights:
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1) No one particular data movement scheme can deliver
optimal communication performance over all the different
message sizes.

2) In order to deliver optimal communication performance,
it is necessary to appropriately coordinate the different data
movement strategies.

3) For the co-located container case, the shared memory
based intra-node data movement schemes cannot be applied
currently, even though they perform the best on some message
sizes. Therefore, it is required to have locality-aware support
to enable the selection of the optimal communication channel.

4) As comparing Figure 2(b) with Figure 2(d), we can find
that the switch points among different optimal schemes are
different for latency-intensive and bandwidth-intensive tests.

Based on these insights, the design principles of optimal
GPU-based communication schemes in the container-based
environment can be summarized as follows:

o A locality-aware support is required to allow runtimes
to enable the intra-node communication paths such as
GDRCOPY, cudaMemcpy, and cudalPC if applicable

« An intelligent communication path scheduling mech-
anism is needed to allow runtimes to dynamically select
the optimal communication path and data movement
scheme for the given message size

o A real-time workload characterization tracing mech-
anism, to allow runtimes to be aware of the latency-
sensitive or bandwidth-sensitive communication work-
loads, is needed to dynamically switch the communica-
tion path during application runtime

IV. PROPOSED DESIGN OF C-GDR IN MVAPICH2

In this section, we take MVAPICH2, a popular MPI library
as a case study to provide the high performance container-
aware GPUDirect communication schemes on RDMA net-
works, based on the insights and guidance what we have
explored in Section III for the container-based HPC cloud
environment. Figure 3 presents an overview of our proposed
C-GDR designs in MVAPICH2. As we can see, a node
is equipped with one multi-core processor, one HCA, and
multiple GPU devices. Accordingly, multiple containers are
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Fig. 2: Latency and Bandwidth comparison of data movement strategies on Docker container environment within a node. The
testbed cloud is described in Section V. MVAPICH2-GDR 2.3a, which is a GPU-aware MPI library, and OSU Micro-Benchmark [6] suite are used. To evaluate the performance of
cudaMemcpy, GDRCOPY, and cudalPC, one Docker container is deployed, which equips with a 4-core CPU and two GPUs. To evaluate the performance of GDR-loopback, two
Docker containers are deployed on the same host, and each container is allocated with a 4-core CPU and one dedicated GPU device. The HCA is shared by the two containers. In
this deployment, each container launches one MPI process and exchanges the data on GPU with each other. The experiments are conducted over ten runs with 1,000 iterations of

each run.

deployed to fully take advantage of these powerful computing
resources.

In order to support high-performance GPUDirect commu-
nication schemes with RDMA network on container-based
HPC cloud environments, three new modules are introduced
into the MPI library, which includes a GPU Locality-aware
Detection module, a Workload Characterization Tracing mod-
ule, and a Communication Coordinator (Scheduling) module.
As introduced in Section III, there exist multiple different
communication paths on a GPU-based platform. In the bare-
metal environment, MVAPICH2 library uses cudaMemcpy,
cudalPC, and GDRCOPY communication channels for intra-
node GPU-to-GPU (i.e., device to device) message transfer
while utilizing GDR and Host-based Pipeline channels for
inter-node GPU to GPU communication, as presented in the
bottom layer of Figure 3.

In the container-based HPC cloud environment, the commu-
nication channels and the communication channel coordination
can work in the same way as the ones in the bare-metal envi-
ronment. However, the GPU-to-GPU communication between
two co-resident containers will be considered as the inter-
node communication (GDR-loopback), due to the lack of GPU
locality-aware support. Therefore, the GPU Locality-aware
Detection module can help MPI runtime and the applications
running on top of it to dynamically and transparently detect the
MPI processes in the co-resident containers. With this mod-
ule, we have the opportunities to reschedule the MPI-based
communications between co-resident containters with GPUs
going over more efficient communication channels. Moreover,
there can be multiple different container deployment schemes
on NUMA architecture. Accordingly, the communication be-
tween co-resident GPUs can be significantly affected by
the varying container deployments from both functionality
and performance perspectives. The NUMA-aware Support
module is responsible for providing NUMA information to
MPI processes. With the aid of the NUMA-aware Support
module, the source process is able to figure out whether the
destination process is running on the same socket or the
different ones before the real communication takes place.
The Communication Scheduling module will leverage the
GPU locality information and NUMA information generated

246

by GPU Locality-aware Detection module and NUMA-aware
Support module, respectively to reschedule the communication
going through the appropriate and optimal underlying channel,
based on the communication characteristics, which we have
explored on the container-based HPC cloud environment in
Section III.

GDDR GDDR GDDR
Mem Mem Mem

[ﬁﬁﬁ
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Fig. 3: Overview of C-GDR in MVAPICH2

A. GPU Locality-aware Detection

The GPU Locality-aware Detection module is responsible
for dynamically and transparently detecting the location infor-
mation of communication processes between the co-resident
GPUs. Since the shared memory segments, semaphores and
message queues can be shared across multiple Docker contain-
ers by sharing the IPC namespace when launching containers.
We allocate such shared memory segments on each physical
node and create a GPU Locality-aware List on it. Each MPI
process associating with one GPU in co-resident containers
writes its locality information into this shared list structure
according to its global rank. After a synchronization, it can
be guaranteed that the locality information of all local MPI
processes has been collected up and stored in the GPU
Locality-aware List. If the user launches two MPI processes
to carry out GPU-to-GPU communication, the GPU Locality-
aware Detection module is able to quickly identify whether
it is the co-resident GPUs communication by checking the
locality information on the list according to their global MPI
ranks.

Figure 4 illustrates an example of launching a 6-process
MPI job. Two containers (Container-A and Container-B) are



deployed on the same host, and each container is equipped
with one GPU device. There is one MPI process in each con-
tainer, and the other four MPI processes are running on another
host. In the GPU Locality-aware Detection module, the two
MPI processes (rank 0 and rank 1) write their identifications on
positions 0 and 1 on the GPU Locality-aware List, respectively.
There will be ‘0’ in the other four positions on the list as those
four MPI processes are not running on the same host. If MPI
processes with rank 0 and 1 are going to execute GPU-to-GPU
message transfers, the fact of co-residence of the GPU devices
can be efficiently identified by checking the corresponding
positions in the GPU Locality-aware List. The number of
local processes on the host can be acquired by traversing and
counting the positions with the written identifications. Their
local ordering will still be maintained by their positions in
the list. It is costly to frequently access the GPU Locality-
aware Detection module for each message transfer. Each MPI
process, therefore, scans the locality results generated by
GPU Locality-aware Detection module and maintains its local
copy for all the peer processes. When considering process
migration or other scenarios which might cause the locality to
change, the proposed Locality-aware Detection module need
to be re-triggered to update the locality information. Take the
migration for instance, the communication channel will be
suspended before migration to guarantee that there is no on-
the-fly messages during migration [31]. Once the migration
procedure finishes, the locality information of all processes
needs to be updated in order to resume the communication
onward.

The fixed number of bytes is used to tag each MPI process
in GPU Locality-aware List. This guarantees that multiple
processes belonging to co-resident containers are able to write
their locality information on their corresponding positions
concurrently without introducing lock/unlock operations. This
approach reduces the overhead of the locality detection proce-
dure. For instance, an MPI job with one million processes only
occupies 17" x 1M bytes memory space for the list, assuming
T as the fixed number of bytes for tagging each MPI process.
The space complexity is O(N), where N is the number of
MPI processes. It thus brings good scalability on the container-
based HPC cloud environment.

shared IPC
namespace

[ 1

Fig. 4: GPU Locality-aware Detection Module in C-GDR

In addition, there can be different placement schemes to
deploy the containers on a NUMA architecture. The communi-
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cation performance will also be affected by the placements ac-
cordingly. The GPU Locality-aware Detection module can also
be used to provide NUMA information of peer MPI processes
for the following Communication Scheduling module, so that
some performance bottlenecks and functional limitations can
be avoided during the communication rescheduling phase. We
assume that the administrators or cloud deployment stack can
specify the CPU cores to launch the containers and different
containers will not be launched with the same sets of the cores
to eliminate the unnecessary performance interference. When
the Docker engine is invoked to launch a container with the
specified core IDs, it forms a tuple with the container name, the
corresponding core IDs, and the associated NUMA node ID,
e.g., [Container, Cores, and Sockets]. Then such tuple is visible
to each MPI process in the co-resident containers through
shared IPC namespace. If the destination process is identified
as co-resident through GPU Locality-aware Detection module,
NUMA-aware Support is triggered to further compare the
NUMA node IDs of the destination MPI processes with its
own ID to identify the relative NUMA information. More
specifically, it can be identified that whether the message
transfer will be across a socket or not.

B. Workload Characterization Tracing

In Section III, we observe that latency and bandwidth
benchmarks have different switch points of their best per-
formance numbers for different communication channels in
the container environment. This implies that it is required to
dynamically control the channel switch point in the runtime
in order to deliver the optimal communication performance
for different types of workloads. C-GDR provides a Workload
Characterization Tracing module, which is responsible for
keeping track of the communication patterns. The Workload
Characterization Trace module can persistently update the
respective counters of MPI_Send/Recv and MPI_Isend/Irecv
to decide the workload is latency-intensive or bandwidth-
intensive. For instance, Figure 5 shows Rank 0’s structure of
Workload Characterization Tracing Module. When the process
with rank 0 needs to send/receive a message to/from the
process with rank 3, it first checks the locality information
of the destination process (Rank 3) by its locality detection
module. If the destination process is detected as a co-located
process, it updates the Send/Recv counter if the communi-
cation is in the blocking mode; otherwise, the Isend/Irecv
counter is updated for the non-blocking communication. Upon
one of these two counters exceeds the predefined threshold,
like Send/Recv counter, we treat the workload as the latency-
intensive workload, and the communication channel switch
point can be adaptively updated to achieve the optimal latency
performance. The threshold could be different with different
underlying configurations. The user can tune it through the
runtime parameter. As the workload characterization tracing
results can be quickly updated and easily maintained in the
performance critical path, it does not incur severe performance
overhead.
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C. Communication Scheduling

The Communication Scheduling module reschedules the
message to go through the appropriate communication channel
in order to deliver the optimal GPU-to-GPU communication
performance in container-based cloud environments. In this
module, there are four function units including GPU Locality
Loader, Workload Characterization Parser, Message Attribute
Parser, and Communication Scheduler. GPU Locality Loader
reads the locality information including the NUMA placement
of the destination process from the GPU Locality-aware De-
tection module. Workload Characterization Parser parses the
tracing results from the Workload Characterization Tracing
module. Message Attribute Parser obtains the attributes of
the message, such as message type and message size. For
a communication request to a specific destination process,
Communication Scheduler selects the appropriate communi-
cation channel based on all the information in the above three
aspects. By utilizing the Locality-aware Detection module, the
communications between the co-located processes are able to
use the high-performance intra-node communication channels,
such as GDRCOPY, cudaMemcpy, and cudalPC for different
message sizes. From our experiments, we observe that GDR-
loopback scheme can deliver better performance than those
shared memory based intra-node data movement schemes for
some message sizes. In this scenario, the Communication
Scheduling module can also select the GDR-loopback com-
munication channel for the specific range of message size,
even though the communication processes are detected as
the co-located case. If the workload characterization tracing
result indicate that one of the counters exceeds the predefined
threshold, the Communication Scheduling module will select
the communication channel based on the comparison result
between the message size and the channel switch point. For
instance, once the Isend/Irecv counter exceeds the threshold,
the workload is identified as the bandwidth-intensive workload
and the switch point from GDR-loopback to cudalPC will be
updated from 16KB to 512KB. After that, messages less than
512KB will still go through the GDR-loopback channel.

Through our experiments, we summarize the optimal
scheduling policy in container-based cloud environments in
Table III. For the latency-sensitive workloads, GDRCOPY
is selected for GPU-to-GPU communication with 1-16 bytes
message size. For the message size which is larger than 16
bytes and less than 16K bytes, GDR-loopback is selected
instead of the intra-node data movement schemes. Then cu-
dalPC is utilized for the large messages transfer. As there is
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TABLE III: Best schemes discovered for given message ranges
for latency-sensitive and bandwidth-sensitive benchmarks

Latency-sensitive ‘ Bandwidth-sensitive

msg < 16B GDRCOPY

16B < msg < 16KB GDR-loopback

16KB < msg < 512KB dalPC GDR-loopback
msg > S12KB e cudalPC

a different performance characterization for the bandwidth-
sensitive workloads, GDR-loopback is chosen as the optimal
GPU-to-GPU communication scheme with the message size
range from 16 bytes to 512K bytes.

V. PERFORMANCE EVALUATION
A. Experimental Testbed

Our testbed consists of eight physical nodes. Each node has
a dual-socket 28-core 2.4 GHz Intel Xeon E5-2680 (Broad-
well) processor with 128 GB main memory and is equipped
with one Mellanox ConnectX-4 EDR (100 Gbps) HCA and
one NVIDIA K-80 GK210GL GPU. Please note that each K-
80 is a dual-GPU card. The two GPU cards and the HCA are
connected to the same socket. We deploy 16 Docker containers
using NVIDIA Docker 1.01 [21] on these eight physical nodes
to make the images agnostic of the NVIDIA driver. Each node
has two containers, which are pinned to the same socket. Each
container is equipped with one GPU card. On both physical
nodes and containers, we use CentOS Linux 7 as the operating
system. In addition, we use MLNX_OFED_LINUX-3.4-2.0.0,
NVIDIA Driver 384.81 and CUDA Toolkit 8.0. ‘Native’
denotes the performance of the running process in the bare-
metal environment with MVAPICH2-GDR. ‘Container-Def’
denotes the performance of the running process in container
environment binding with the same physical core and GPU
device like the ones in the ‘Native’ scheme. ‘Container-Opt’
denotes the corresponding performance in the container case
with our proposed optimizations.

B. MPI Level Point-to-Point Micro-benchmarks

In this subsection, we evaluate the influence of our proposed
designs on point to point communication performance with
OSU Micro-Benchmark suite. We focus on the performance
evaluation of inter-node and single node inter-container case
in this section.

Figures 6(a) and 6(c) show the evaluation results of la-
tency and bandwidth performance results for small messages.
We can observe that both Native and proposed container
(Container-Opt) schemes perform better than the default con-
tainer (Container-Def) scheme for 1-16 bytes messages. The
performance benefit comes from choosing GDRCOPY as the
optimal communication channel. For example, the latencies
of Native, Container-Def, and Container-Opt with 4 bytes
message size are 1.55us, 2.1us, and 1.57us, respectively. Com-
pared to the Container-Def case, the Container-Opt scheme
could reduce the latency by up to 27%. The bandwidths
of Native, Container-Def, and Container-Opt with 16 bytes
message size are 12.61 MB/s, 10.14 MB/s, and 12.55 MB/s,
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respectively. Compared to the Container-Def scheme, the
Container-Opt scheme could improve the bandwidth by up to
24%. In addition, Container-Opt only incurs minor overhead,
compared to the Native scheme.

From Figure 6(a)-6(b) and Figure 6(c)-6(d), we can clearly
observe that both Container-Def and Container-Opt schemes
start having a similar performance after 16 bytes message
size. The is because GDR-loopback scheme is selected by
the communication coordinator. For example, the latencies
of Container-Def and Container-Opt with 8K bytes message
size are 7.2us, and 7.34us, respectively, as shown in Fig-
ure 6(b). The bandwidths of Container-Def and Container-Opt
with 256K bytes message size are 6.59GB/s and 6.43GB/s,
respectively, as shown in Figure 6(d). Compared to the Native
scheme, both Container-Opt and Container-Def can deliver
the near-native performance. For large messages, cudalPC
performs better than other schemes, that is why we can see
Container-Opt brings up to 46% improvement for latency and
32% improvement for bandwidth, compared with Container-
Def. Note that the optimal communication channel switch
points (from GDR-loopback to cudalPC) are different for
latency (around 16KB) and bandwidth (around 512KB), which
further verifies the performance characterization results in
Table III. As we can see, the proposed Container-Opt keeps
delivering near-native performance. To compare with other
MPI stacks, we also present the intra-node point-to-point
performance with Open MPI in the native environment, which
is denoted as ‘Native-OpenMPI’. As can be seen in Figure 6,
the evaluation results show clear performance gaps on both
latency and bandwidth tests as comparing Native-OpenMPI
with our proposed C-GDR design. This implies that there is no
container-aware design in Open MPI for GPU communication.

In addition, all GPU-to-GPU data movement schemes that
we have investigated are applied across multiple containers
within a single node. The data movement scheme for inter-
node case remains the same. Thus, the inter-node latency and
bandwidth performance of both Container-Def and Container-
Opt schemes achieve similar performance as the Native
scheme. We omit these results due to the space limit. The
MPI micro-benchmark level point-to-point evaluation results
indicate that the Container-Opt scheme could always select
the optimal communication channel for different message
sizes and communication patterns to achieve the optimal
performance, compared with the Container-Def scheme.
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C. MPI Level Collective Micro-benchmarks

In this section, we evaluate the proposed C-GDR com-
munication schemes with four MPI level collective opera-
tions including MPI_Bcast, MPI_Allgather, MPI_Allreduce,
and MPI_Alltoall. We choose these four collective operations
since they are widely used by GPU-based applications. The
performance results are shown in Figure 7. The evaluation
results indicate that our optimized communication scheme
Container-Opt can achieve near-native performance for col-
lectives also. Compared with the performance of Container-
Def scheme in the container environment, our optimized
scheme brings up to 63%, 66%, 49%, and 50% performance
improvement for MPI_Bcast, MPI_Allgather, MPI_Allreduce,
and MPI_Alltoall, respectively. We also evaluate these four
collective operations with Open MPI. The evaluation results
with Open MPI again show significant performance gaps
as compared with our proposed C-GDR design. To clearly
illustrate the benefit between Container-Opt and Container-
Def, we do not include Open MPI results in Figure 7.

D. Application Performance Evaluation

In this section, we evaluate our proposed C-GDR scheme
Container-Opt with several end applications, which include
Jacobi solver, HOOMD-blue Lennard-Jones liquid (Hoomd-
LJ), and Anelastic Wave Propagation (AWP-ODC), as shown
in Figure 8. Jacobi solves the Poisson equation on a rectangle
with Dirichlet boundary conditions. It leverages the CUDA-
aware MPI to directly send/receive (MPI_Sendrecv) through
the device buffer without explicitly staging the data to the
host buffer. We can adjust the message size for sending and
receiving. Jacobi-16B and Jacobi-512KB mean that we use 16
bytes and 512K bytes as message sizes, respectively.

In the Jacobi-16B case, the evaluation results indicate that
our proposed Container-Opt can bring 25% communication
performance improvement, compared with the default case,
while having a similar performance with the one on the
native environment. This is because the GDRCOPY is used in
the native and Container-Opt case, which can bring optimal
communication performance for message transfer with 16
bytes message size, as what we summarized in Table III. In the
Jacobi-512K case, the cudalPC scheme is used to deliver the
optimal communication performance. This is the reason we see
similar communication times between Native and Container-
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Opt schemes, and 26% performance improvement compared
with the Container-Def scheme.

Both Hoomd-LJ and AWP-ODC dominantly use around 1M
bytes message for communication, and the intra-node based
communication scheme (cudalPC) performs better than the
GDR-loopback scheme, as we summarized in Table III. Ac-
cordingly, we can see from Figure 8, our proposed Container-
Opt is able to achieve the optimal performance for applications
Hoomd-LJ and AWP-ODC. Our C-GDR design can bring 10%
and 14% performance improvement for Hoomd-LJ and AWP-
ODC, respectively, compared with the Container-Def case.

VI. RELATED WORK

There are four ways to use GPU in a Virtual Machine
(VM): I/O pass-through, device emulation, API remoting, and
mediated pass-through. In a virtualized environment, the GPU
device could be directly passed through to a specific VM [9].
Using this technique, Amazon has provided GPU instances
to HPC customers. Intel has introduced VT-d allows GPU
to be passed to a virtual machine exclusively [10]. With
GPU device passthrough, the device is dedicated to a specific
virtual machine, so it sacrifices the sharing capability of the
virtualized environment. CPU virtualization could be done
through device emulation; however, such emulation technique
could be done with GPUs easily.

GPU virtualization could also be achieved through API
remoting which is commonly used in commercial software.
API remoting forwards GPU commands from guest OS to
host. VMGL [20] replaces the standard OpenGL library in
Linux Guests with its own implementation to pass the OpenGL
commands to VMM. Shi et al. present a CUDA-oriented
GPU virtualization solution in [26]. It uses API interception
to capture CUDA calls on the guest OS with a wrapper
library, and then redirects them to the host OS where a stub
service was running. Duato et al. [11] have proposed a library
to allow each node in a cluster access any of the CUDA-
compatible accelerators installed in the cluster nodes. Remote
GPUs are virtualized devices made available by a wrapper
library replacing the CUDA Runtime. This library forwards the
API calls to a remote server and retrieves the results from those
remote executions to offer them to the calling application.
Gupta, et al. [14] use the same technique to forward CUDA
command and OpenCL commands, solving the problem of
virtualizing GPGPU devices. VMware products consist of a
virtual PCI device and its corresponding driver for different
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operating systems. The host handles all accesses to the virtual
PCI device inside a VM by a user-level process, where the
actual GPUvm presents a GPU virtualization solution on an
NVIDIA card [29] and it implements both para- and full-
virtualization. However, full-virtualization exhibits a consid-
erable overhead for MMIO handling. Compared to native, the
performance of optimized para-virtualization is two to three
times slower. Since NVIDIA has individual graphics memory
on the PCI card, GPUvm cannot handle page faults caused
by NVIDIA GPUs [13]. NVIDIA GRID [4] is a proprietary
virtualization solution from NVIDIA for Kepler architecture.
However, there are no technical details about their products
available to the public. Reano et al. propose optimizations
at InfiniBand network verbs-level to accelerate GPU virtual-
ization framework [25]. Ravi et al. implement a scheduling
policy, based on affinity score between GPU kernels when
consolidating kernels among multiple VMs [24]. Iserte et al.
propose to decouple real GPUs from the compute nodes by
using the virtualization technology rCUDA [16]. Compared to
these work, our work focuses on analyzing and characterizing
different GPU-to-GPU communication schemes on container-
based cloud environments, identifying performance bottle-
necks. Based on our findings, we further propose C-GDR, a
high performance container-aware GPUDirect communication
schemes on RDMA networks, which can dynamically schedule
the optimal communication channels.

VII. CONCLUSION AND FUTURE WORK

The increase of cloud-based applications leveraging GPUs
has made it vital for researchers and developers to understand
and design efficient GPU-based communication schemes in
cloud environments. This paper first investigates the perfor-
mance characteristics of state-of-the-art GPU-based commu-
nication schemes on both native and container-based environ-
ments and identifies performance bottlenecks for communi-
cation in GPU-enabled cloud environments. To alleviate the
bottlenecks identified, this paper presents the C-GDR approach
to design high-performance container-aware GPUDirect com-
munication schemes on RDMA networks and integrates C-
GDR with the MVAPICH2 MPI library. The proposed designs
provide locality-aware, NUMA-aware, and communication-
pattern-aware capabilities to enable intelligent and adaptive
communication coordination for the optimal communication
performance on GPU-enabled clouds. The techniques we used
are based on tradeoffs for performance and easy-to-adopt
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for

a large user base. Performance evaluations show that

MVAPICH2 with C-GDR has notable performance benefit
compared with Open MPI. Further, MVAPICH2 with C-GDR
can outperform default MVAPICH2-GDR schemes by up to
66% on micro-benchmarks and 26% performance benefit for
various applications on container-based GPU-enabled clouds.

In the future, we plan to explore VM live migration support
with GPU-enabled VM environments.
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