2018 IEEE International Conference on Big Data (Big Data)

Spark-uDAPL: Cost-Saving Big Data Analytics on
Microsoft Azure Cloud with RDMA Networks®*

Xiaoyi Lu, Dipti Shankar, Haiyang Shi, and Dhabaleswar K. (DK) Panda
Department of Computer Science and Engineering, The Ohio State University
{1u.932, shankar.50, shi.876, panda.2} @osu.edu

Abstract—Efficient Big Data analytics on Cloud Computing
systems is still full of challenges. One of the biggest hurdles is the
unsatisfactory performance offered by underlying virtualized I/0
devices such as networks. To address this issue, the modern cloud
resource providers (e.g., Microsoft Azure) have deployed high-
performance networks, such as Remote Direct Memory Access
(RDMA) capable networks in their clouds. However, in this paper,
we find that by far, the RDMA networks on Microsoft Azure
cannot support either IPolB or native standard Verbs-based
RDMA protocols. Instead, applications need to use the uDAPL
(i.e., user Direct Access Programming Library) interface to enable
RDMA communication on Azure Cloud, which makes impossible
for modern Big Data stacks to leverage these high-performance
networks as none of them can support the uDAPL interface yet.
To address this issue, we first design an efficient uDAPL-based
communication library with the best combinations of uDAPL
communication operations. Then, we adapt the designed uDAPL
library into the Hadoop RPC ping-pong message passing engine
and the Spark Shuffle engine for bulk data transferring. Through
our designs, we can improve the performance of Big Data
analytics workloads with Hadoop RPC and Spark on RDMA-
enabled Azure VMs by up to 90% and 82%, respectively, and
save users’ cloud resource renting cost by 4.24x. To the best of
our knowledge, this is the first work to design a uDAPL-based
RDMA communication engine for Big Data analytics stacks (e.g.,
Spark).

I. INTRODUCTION

Cloud Computing with TaaS (Infrastructure as a Service)
offers attractive flexibility to deliver resources by providing a
platform for consolidating complex IT resources in a scalable
manner. Microsoft Azure is one of the most popular IaaS Cloud
Computing platforms in the world. The ‘pay-as-you-go’ model
of clouds makes cloud virtual machines be fully controlled by
the users as long as they pay the associated costs of how long
the users’ applications have been using them. In this model,
how fast the users’ applications can be fully completed on the
clouds will consequently influence how much the users should
pay. Thus, application efficiency matters a lot for the Cloud
Computing model.

However, efficiently running Big Data applications on
Cloud Computing systems is still full of challenges. One of the
biggest hurdles in building efficient clouds is the unsatisfactory
performance offered by underlying virtualized I/O devices
such as networks. To address this issue, the modern cloud
resource providers (e.g., Microsoft Azure, Alibaba Cloud) have
deployed high-performance networks, such as Remote Direct
Memory Access (RDMA) capable networks in their clouds.

*This research is supported in part by National Science Foundation grants
#11S-1636846 and #CCF-1822987. The Microsoft Azure Cloud resources used
in this paper are supported by Microsoft Azure Sponsorship.

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 321

This motivates us to explore what kind of performance char-
acteristics, programmability, and cost model do these RDMA
networks capable clouds provide.

In this paper, we take Microsoft Azure as an example cloud
platform with RDMA network support. We first investigate
what kind of communication protocols and programming in-
terface it supports. We first follow Azure’s official guides [3] to
perform experiments on RDMA-enabled VMs. Based on [4],
we can run Intel MPI based parallel programs on RDMA-
enabled VM instances, such as A8 and A9. Figure 1 shows the
results we have taken on two A8 VM instances on Microsoft
Azure Cloud.

Through these experiments, we find that by far, RDMA-
enabled virtual machines on Azure cannot support either IP-
over-IB (i.e., IPoIB) protocol or the full set of standard
verbs [13] interface, which is the typical programming inter-
face for using RDMA devices. To make the RDMA device
work on Azure, we need to use a programming interface called
uDAPL (i.e., user Direct Access Programming Library) [9],
which is a user-space direct access framework to enable
direct memory access over RDMA-capable networks. Intel
MPI supports uDAPL channel which makes it achieve desired
performance in terms of latency and bandwidth on the Azure
RDMA network. In the community, another alternative high-
performance MPI library, called MVAPICH2, also supports the
uDAPL interface.

In our study of latency performance, Figure 1 demonstrates
that uDAPL-based MPI libraries (e.g., Intel MPI and MVA-
PICH2) improve the latency performance up to 98.5%, 98.3%,
and 98.1% for small messages (Figure 1a), medium messages
(Figure 1b), and large messages (Figure 1c), respectively,
compared with using the traditional Ethernet interface. In
the meantime, our experiments of bandwidth performance
in Figure 1d show that uDAPL significantly improves the
bandwidth performance by up to 53.7x compared to the default
Ethernet card in the A8 instance. This is because the default
Ethernet card on A8 VM is just a virtualized 1Gig Ethernet
and the virtualized RDMA network card is about 32Gbps (i.e.,
QDR).

These numbers clearly show that there are good oppor-
tunities to gain performance benefits for Big Data analytics
workloads, which typically have huge data movement require-
ments, by running them over the fast RDMA-based network
channel on Azure. Unfortunately, so far, the default Big Data
analytics stacks such as Apache Hadoop and Spark can only
run on top of RDMA networks with IPoIB protocol. The
community distributions of RDMA-Hadoop [8, 10, 15] and
RDMA-Spark [11, 12] can only support native Verbs-based

——MV2-Ether ——~MV2-uDAPL

3000

[S]
(=%
(=]

Y
3

= 2400
w
2
— 120 1800
2
% 80 1200
- 40 600
0 o= 0l ¢—o—o—eo—e
S & \6 (SN \Qﬁ)‘ @96 & ,bq,‘@ \,fg&

(a) Latency (Small Messages)

(b) Latency (Medium) (c) Latency (Large)

——IMPI-Ether ——IMPI-uDAPL

15000 4500
@

12000 & 3600
S

9000 = 2700
=
5

6000 S 1800
el

3000 S 900
M

0 ——r—

,}5@55\”} b A RIS qjﬁ \\)’7}‘ &096 \6(‘ 6&(’,7’581‘ N

(d) Bandwidth

Fig. 1: Performance Gains by Using uDAPL-based RDMA Network on Microsoft Azure Cloud. Tested with Intel MPI and
MVAPICH2 over A8 VM Instances on Azure. Note that the RDMA devices on Azure cannot support IPoIB protocol so far.

This is the reason why there is no [PoIB numbers in the graphs.

interfaces to utilize RDMA functions. Neither of them can be
supported efficiently on current generation Azure cloud.

In addition, to the best of our knowledge, none of these
Big Data analytics stacks (such as Hadoop and Spark) can
support uDAPL interface yet, which means there is no way
for a broad range of Big Data analytics applications to run
efficiently over these RDMA-enabled VM instances on Azure.
There is a clear need to design an efficient communication
substrate to enable high-performance RDMA protocols for Big
Data analytics applications running on Azure.

To address this need, in this paper, we first design an
efficient uDAPL-based communication library with the best
combinations of uDAPL communication operations, such as
DAPL-based two-sided (Send/Recv) and one-sided RDMA
operations (Read/Write). Then, we adapt our designed uDAPL
library into the Hadoop RPC ping-pong message passing
engine and the Spark Shuffle engine for bulk data transferring.

Performance evaluations of Hadoop RPC show that, com-
pared with Ethernet, our proposed design can improve the
latency performance by up to 71.9%, 90.1%, and 89.9%
for small, medium, and large messages, respectively, and
significantly accelerate the throughput performance of small
and large messages by up to 4.5x and 10.6x, respectively.
Performance evaluations of Spark show that, our proposed
design can achieve 47-81% and 58-82% performance improve-
ment for GroupBy and SortBy, respectively, compared with
running Spark over Ethernet on 9-VM based virtual clusters
on Microsoft Azure.

We further calculate the costs of running Big Data analytics
jobs on different Microsoft Azure VM instance types. We find
that with our proposed designs, we are able to significantly
reduce the users’ cost up to 4.24x by achieving much shorter
job execution times on the cloud.

To the best our knowledge, this is the first design for
accelerating Spark-like Big Data analytics stacks with native
uDAPL interface over RDMA networks. Our designs can
accelerate Big Data processing over bare-metal and virtualized
RDMA networks with uDAPL support in clouds.

II. BACKGROUND & RELATED WORK

In this section, we present a brief overview of the necessary
background information and some related work.

322

A. uDAPL Overview

Remote Direct Memory Access (RDMA) capable net-
works, such as InfiniBand (IB) [7], Virtual Interface Archi-
tecture (VIA) [6], iWarp [16], do not commonly provide a
common set of APIs. Towards overcoming this issue, DAT
(Direct Access Transport) Collaborative [5] defined the DAPL
interface, providing a common interface for different RDMA-
capable interconnects. Efforts have been made to standardize
APIs for both the kernel-space (kDAPL) and the user-space
(uDAPL), as shown in Figure 2.

Application

User

Kernel
o
3
(e]
o
3

=
=
3
s
b
o
3.
<
[¢)
W

A
=
o

I

el
(o

..... N * v
| DAT-Compliant Interface Adapter |

DAT = Direct Access Transport — -eeeeeees » Control Flow

———> Data Flow

Fig. 2: DAPL User Model

Specifically, uDAPL (user Direct Access Programming
Library) [9] defines a set of standard and lightweight set
of APIs that can be used to design transport- and platform-
independent RDMA-aware portable user-applications across
different RDMA interconnects. To support multiple vendors,
uDAPL creates a registry between the consumer and the
vendor-specific software. It supports reliable connections (RC)
using a client/server-like connection model via endpoints
(EPs). It also enables both two-sided (Send/Receive) and
one-sided (Read/Write) RDMA data movement operations.
They can be issued by placing the appropriate operations
onto send/receive queues for processing, and either poll the
completion queue or wait for an event for signaling the oper-
ation completion. The applicability of uDAPL-based designs
for scientific middleware, such as Message Passing Interface
(MPI) [17, 18] has been studied. However, not much research
has been carried out to see how uDAPL can benefit Big
Data middleware (e.g., Hadoop, Spark, etc.) over modern HPC
clouds.

VM type

A8 A9 Al0 All Hi6r Hi6mr
Features
Node Config. 8 cores 16 cores 8 cores 16 cores 16 cores 16 cores
(Cores / RAM) 56 GB 112GB | 56GB | 112GB | (Haswell) | (Haswell)
112 GB 224 GB
B QDR | IB QDR B FDR B FDR
Network Type (uDAPL) | (upapL) | ! GPE | 1GbE (uDAPL) | (uDAPL)
Est. Price 1.466 2933 1173 | 2346 3.859 5.169
($/hour)

TABLE I: Microsoft Azure VM instances (QDR = 32 Gbps, FDR = 56 GBps); based on [2] for East U.S.

B. Microsoft Azure Cloud with RDMA Networks

Microsoft Azure [3] provides VM instances, such as, (1)
A8, A9, (2) H16r, H16mr, and (3) NC24r, which have RDMA
connectivity enabled via InfiniBand networks. The A-series
instances are general purpose and H-series are provisioned
specifically for HPC applications. These RDMA capabilities
are introduced to particularly boost the scalability and per-
formance of certain MPI applications. Details for some of
these instances are furnished in Table I; the costs are based
on East U.S. region (in US dollars) [2]. It is vital to note
that TCP/IP protocol over IB (IPoIB) [1] is not supported on
Microsoft Azure. Native verbs library [13] is also not directly
accessible. Only RDMA over IB is supported via the uDAPL
library. This makes a majority of the TCP/IP-over-IB and
RDMA-based native-IB Big Data middleware (e.g., Apache
Spark [12, 19]) incompatible with these RDMA-aware VM
instances on Azure, especially in terms of maximizing cost-
performance.

C. RDMA-aware Designs for Big Data Middleware

With the increased need to design Big Data middleware
capable that can deliver high-performance on modern HPC
clusters, several studies have been devoted to exploring the
advantages of re-designing their components to be RDMA-
aware. RDMA-aware designs for Apache Spark [12, 14],
which is the basis for this paper, have shown tremendous
performance improvement and scalability. However, they only
support native IB via the verbs interface.

With the increasing usage of Big Data frameworks in the
cloud, there is a vital need for supporting these RDMA-based
middleware over uDAPL. In this paper, we address this missing
link by making the attempt to integrate RDMA-aware Spark
and Hadoop RPC with uDAPL to maximize cost-efficient
performance in the Azure cloud environment.

III. PROPOSED DESIGN

In this section, we present our proposed uDAPL-based
designs.

A. uDAPL-based RDMA Protocol Design and Study

To co-design RDMA-aware middleware with uDAPL, we
first perform detailed analysis of the performance characteris-
tics of different RDMA-based communication protocols with
uDAPL operations. Based on supported primitives in uDAPL,
we can design the following three basic communication proto-
cols as shown in Figure 3. Note that all these three protocols
are generic for all message sizes, while they can be used
differently in different communication scenarios.

323

(1) uDAPL Send/Receive protocol (uDAPL-SR): In this
protocol, as shown in Figure 3(a), the sender will initial
the send request by copying user data into the header body
(in an eager manner) and the receiver needs to post receive
operation, which means this is a two-sided communication
protocol and both sides need to be involved during the
communication process. This protocol can be used to per-
form small message transfers since it can avoid handshaking
overhead. The corresponding primitives for implementing this
protocol with uDAPL include dat_ep_post_send and
dat_ep_post_recv.

(2) uDAPL RDMA Read Protocol (uDAPL-RR): This
protocol employs one-sided RDMA Reads for data transfers as
shown in Figure 3(b). To avoid pre-registering many buffers
for RDMA operations on both sides, we need to first send
a ‘Request-To-Send (RTS)’ message to the receiver side to
notify where the data can be read. Then, the receiver will
perform a follow-up RDMA Read operation to fetch the data.
For a high-performance design, we typically need to support
message chunking and overlapping in the protocol design. The
corresponding primitive for implementing this protocol with
uDAPL is dat_ep_post_rdma_read.

(3) uDAPL RDMA Write Protocol (uDAPL-RW): As
shown in Figure 3(c), this protocol employs one-sided RDMA
Writes for data transfers. Different than the RR protocol, the
RDMA Write operation is initiated by the sender side with the
received target address in the ‘Clear-To-Send (CTS)’ message.
This protocol can also be designed to support chunking and
overlapping. The corresponding primitive for implementing
this protocol with uDAPL is dat_ep_post_rdma_write.
Both uDAPL-RR and uDAPL-RW protocols are good for
transferring large messages since it can achieve zero-copy data
transfers.

Figure 4 presents the point-to-point latency measured with
the three uDAPL protocols identified above. One important
insight of our study is that uDAPL-SR outperforms other two
protocols for relatively small messages (messages less than or
equal to 32KB on A8). More specifically, we see only around
4-5us latency for the uDAPL-SR protocol to send less than
2KB payloads. Note that 2KB is the default MTU (Maximum
Transmission Unit) size on A8 VMs. However, both uDAPL-
RR and uDAPL-RW protocols need around twice of the time to
perform the short message transfers, which is mainly because
of the handshaking overhead.

While for the medium and large message transfers,
the uDAPL-RW and uDAPL-RR protocols can outperform
uDAPL-SR. This is mainly due to the message copying
overhead in the uDAPL-SR protocol. The copy overhead will
be significantly increased when the message becomes larger.

|
|

‘ Sender ‘

Payload ‘

‘ Receiver ‘

HdrMessagg :

; UDAPL sgnp | uDAPLRECY

: :m essag}
: ACK |
E Payload

v v \

(a) Send/Receive Protocol (uDAPL-SR)

(b) RDMA-Read Protocol (uDAPL-RR)

Sender Receiver

_Payload
' :

i)
: (FIN) :
; : [Fiarviossage]
i : Payload
v v v

(c) RDMA-Write Protocol (uDAPL-RW)

Fig. 3: uDAPL-aware Data Movement Protocols for Spark/RPC

Motivated by this, we design an optimized protocol as the
fourth protocol:

(4) uDAPL-OPT, that uses a hybrid uDAPL-SR + uDAPL-
RW/RR approach for message sizes varying from small to
large. Based on this, from Figure 4, we further demonstrate
that by combining the benefits of uDAPL-SR and uDAPL-
RW/RR, uDAPL-OPT can always conduct communication in
the most efficient manner.

<uDAPL-SR <uDAPL-RR 3«uDAPL-RW -2uDAPL-OPT

30 70 500
7
2 56 400
N
2 18 42 300
§ 121 o2 HW! 28 200
<6 N N N S - . S S . =114 100
— T - W Ry S

0 0 0

A R S \Q’Lb‘ @qe & @‘5 \’ﬁ& 1661, o

Fig. 4: Performance with different uDAPL RDMA Protocols.
X-axis represents payload size (Unit: Byte).

B. Adapting uDAPL into Hadoop RPC and Spark

Figure 5 presents an architecture overview of RDMA-
based Apache Spark running over Hadoop in a cloud environ-
ment with InfiniBand or Ethernet networks. By default, Spark
fetches remote blocks as needed and the operations to which
are initiated by the ShuffleManager layer.

As shown in Figure 5, the Spark ShuffleManager
and Hadoop RPC engine over Azure VM instances, such
as A10/A11, use the ‘Default TCP/IP path’ for performing
data communication. On the other hand, for RDMA-capable
instances, such as A8/A9, Spark and Hadoop can utilize the
‘RDMA path’ by employing the native uDAPL-based RDMA
communication engine that we propose in this paper. We
design an interface for Spark and RPC engines that can be
used to offload data transfers in the Scala/Java layer to the
native uDAPL engine that is written in native C, via the Java
Native Interface (JNI).

We choose Spark and Hadoop RPC as example systems
because Spark mostly involves bulk data transfer patterns
with large messages, while Hadoop RPC follows ping-pong
message transfer patterns with small or medium messages. As
RPC workloads are more latency-oriented due to their ping-
pong nature, we use the uDAPL-SR + uDAPL-RW hybrid
protocol as our optimized uDAPL-OPT protocol.

324

Big Data Analytical Applications |

High-Performance Spark Stack

y
‘ Java Sockets Interface ‘ ‘ Java Native Interface (JNI) ‘
I i
Native uDAPL-based RDMA
TCP/IP over Ethernet Communication Engine
(e.g, A10, A1) uDAPL interface (e.g., A8, A9)

1 Gbe Ethernet | | infiniBand Network (QDR/FDR)

«++-+-» Default TCP/IP path <—> RDMA path

Fig. 5: Architecture of uDAPL-based RDMA-enhanced
Apache Spark and Hadoop RPC

On the other hand, for large block transfers in Spark, we
can not use the eager-based transfer since the copy overhead of
large block will be high. Thus, RDMA-based zero-copy data
transfer is chosen for large block data transfers. As Spark shuf-
fle needs to be co-ordinated among multiple Spark instances
across multiple VMs, it is inclined to be more throughput-
oriented. As a result, we can enable better performance at
the shuffle server instance by offloading more communication
tasks at the shuffle client. By leveraging uDAPL-RR, the
server can be near bypassed for the actual block transfers;
thus facilitating a high-throughput approach. Hence, we use
the uDAPL-SR + uDAPL-RR hybrid protocol as our optimized
uDAPL-OPT protocol for Spark.

These optimizations while used as default, are flexible
enough to be employed in any hybrid combination to cater
to the user application’s performance and data movement
patterns. We enable chunking-based uDAPL-RR and uDAPL-
RW, as presented in Figures 3(b) and 3(c), respectively. The
chunk size can be tuned to optimal based on the underlying
network interconnect (e.g., QDR, FDR, EDR, etc.).

IV. PERFORMANCE EVALUATION

In this section, we present the detailed performance eval-
uations.

A. Experimental Setup

Table II shows the specifications of A8 and A10 VM
instances used in this paper. We choose A8 and A1l0 to
compare performance since their hardware configurations are
very similar and the main difference between them is that A10
does not have the RDMA network device equipped. We have
used up to nine VMs (i.e., one RPC server VM and eight
client VMs for Hadoop experiments; One master VM and
eight worker VMs for Spark experiments) in the following
experiments.

\ Specification
Processor Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
RAM (DDR) | 56 GB
Interconnect IB QDR 32Gbps on A8, 1 GbE on A10
Storage HDD 500GB
oS CentOS 7.3
Hypervisor Microsoft Hyper-V
DAPL Linux Integration Services (LIS) Driver 4.2.4 + dapl-2.1.10
JDK OpenJDK 1.8.0
Hadoop RDMA-Apache-Hadoop-2.x 1.3.5
Spark RDMA-Spark 0.9.5

TABLE II: Testbed Specifications

B. Performance Evaluation of Apache Hadoop RPC

In this section, all evaluations of Apache Hadoop are
conducted with six handler threads within RPC engine. We
choose six threads based on tuning. On an A8 VM, we only
have eight cores, which results in six handlers giving the best
performance for RPC engine.

In our latency performance evaluation on top of Hadoop
RPC, as depicted in Figure 6, when compared with A10-
Ether, A8-uDAPL reduces the latencies of transferring small,
medium, and large messages by up to 71.9%, 90.1%, and
89.9%, respectively.

---A10-Ether -A8-uDAPL

300 3000 18000
@ 250 2500 15000
E 200 fomeeaag pa e | 2000 12000
2 150 1500 9000
5 100 1000 6000
8 50 500 3000
— 0 0 H——x’*’x 0)e—‘)/x

VoA 0 g b (© ¥ b RO
Fig. 6: Latency Performance Evaluation of Hadoop RPC. X-

axis represents payload size (Unit: Byte).

In evaluating the throughput performance of Hadoop RPC
over A10-Ether and A8-uDAPL, we conduct two representative
experiments to illustrate how well A8-uDAPL works. In the
first experiment, we choose a payload size of 512B to represent
small messages. Figure 7a shows that A8-uDAPL accelerates
small message passing by 2.7x to 4.5x with variant scalability
(one to 64 clients as shown on the x-axis). While for evaluating
the impact on large messages, a payload size of 32KB is chosen
as a representative. Since in RPC framework, a payload with
size of 32KB becomes a message with size larger than 32KB
because of serialization. As demonstrated in Figure 7b, AS8-
uDAPL improves throughput by 5.8x to 10.6x compared to
A10-Ether with different scales.

325

-=-A10-Ether -A8-uDAPL
& 150000 50000
8 120000 40000
‘\S/ 90000 30000
& 60000 20000
2030000 10000
e 0 0l Zee—
ﬁ 1 2 4 8 16 32 64 1 2 4 8 16 32 64
(a) Payload Size (512B) (b) Payload Size (32KB)

Fig. 7: Throughput Performance Evaluation of Hadoop RPC.

X-axis represents number of clients.

These numbers show that our designed uDAPL communi-
cation protocols and engine can perfectly fit with ping-pong
type of message passing pattern in RPC frameworks.

C. Performance Evaluation of Apache Spark

The performance evaluation of Apache Spark is conducted
with the following settings: nine VMs, 48GB executor memory,
2GB daemon memory, and 8 worker cores per Spark executor.

Figure 8 shows that our proposed design (Spark-uDAPL-
A8) reduces the execution time of Spark GroupBy significantly
compared with running Spark over Ethernet on A10 (Spark-
Def-1GigE-Al0). For the experiment with two tasks per VM
instance, as shown in Figure 8a, the improvements we achieve
are from 60% to 81% with different workloads (8GB to 32GB
as shown on the x-axis). Figure 8b depicts that execution time
is reduced by 47% to 74% if four tasks are employed on each
VM instance. Figure 8a and Figure 8b show that employing
more tasks on the same VM is beneficial to performance, if we
compare jobs with the same workload but a different number of
tasks on each VM. As aforementioned, there are eight cores on
both A8 and A10, thus utilizing more CPU cores appropriately
definitely performs better.

For evaluation of SortBy, Spark-uDAPL-A8 reduces the
execution time by 59% to 82% compared with Spark-Def-
1GigE-A10 when running two tasks per instance (shown in
Figure 9a). Figure 9b illustrates that utilizing more CPU cores
is also helpful to improve the performance of Spark SortBy.
With four tasks per VM, the improvements of Spark-uDAPL-
A8 are from 58% to 81% with varied workloads (16 GB to
64 GB as shown on the x-axis).

These numbers demonstrate that our designed uDAPL com-
munication protocols and engine can clearly accelerate Spark
shuffle tasks with the bulk data transferring communication
pattern.

D. Cost-Efficiency with uDAPL-based RDMA-aware designs

RDMA networks can deliver better application perfor-
mance than the traditional low-speed networks on clouds. This
has been proved by the results in this paper. However, since
RDMA network based VM instances cost more money than
the traditional network based VM instances, cloud users may
doubt that “should we use the RDMA-enabled VM instances
or regular ones?” This leads to an interesting research problem
that renting which type of VMs can lead to more cost-efficient
plans.

To further demonstrate the gains that can be obtained via
uDAPL-based RDMA-aware designs with Big Data analytical

’g @ Spark-Def-1GigE-A10 @ Spark-uDAPL-AS

Z 600 600

ﬂé 500 500

= 400 400

= 300 300

-2 200 200

3 100 100

£ 0 : 0

M 8 16 32 16 32 64

(a) Two Tasks / VM

(b) Four Tasks / VM

Fig. 8: Performance Evaluation of Spark GroupBy. X-axis
represents workload size (Unit: GB).

frameworks, such as Spark, we study the cost of running 16-
64 GB shuffle-intensive GroupBy and SortBy workloads on
the nine Azure-VMs (i.e., one master VM and eight worker
VMs) based Spark cluster. We contrast the cost-performance
characteristics of the non-uDAPL-RDMA instances based on
Azure’s A10 VMs that run over 1GigE with the uDAL-RDMA-
optimized Azure A8 instances running over IB QDR (32
Gbps).

We calculate the average cost-per-Spark-job run based on
the $-per-hour furnished in Table 1. From Table III, we observe
that we can achieve cost-efficiency of about 1.51x to 4.24x
with our high-performance uDAPL-RDMA designs for Spark,
and cloud customers can save more money if they process
and analyze more data with our proposed Spark-uDAPL on
Microsoft Azure.

GroupBy SortBy
Shuffle Size (GB) 16 32 64 16 32 64
Cost A10-Ether 0.161 0.349 1.422 0.182 0.354 1.835
$) A8-uDAPL | 0.106 0.223 0.454 0.095 0.175 0.432
Cost Savings 1.52X 1.56X 3.13X 191X 2.02X 4.24X

TABLE III: Cost-efficiency of non-uDAPL-RDMA (A10) vs.
uDAPL-RDMA (A8) with Spark GroupBy and SortBy

Thus, we demonstrate that we can enable both high-
performance and cost-effective designs for Big Data analytical
workloads on the Azure cloud with RDMA-capable VM
instances over uDAPL.

V. CONCLUSION

In this paper, we present a detailed performance analysis
on uDAPL-based communication operations and protocols.
We propose designs to incorporate high-performance uDAPL-
based RDMA substrate into Apache Spark stack as well as
Hadoop RPC engine, which can enable Big Data analytics
workloads efficiently running over uDPAL interface based
RDMA networks. Our evaluation results show that compared
to the default Spark running over virtualized Ethernet network
on Azure cloud, our proposed design can achieve up to
82% performance improvement for Spark benchmarks (e.g.,
GroupBy, SortBy), which can lead to 4.24x cost efficiency for
end users.

In the future, we plan to investigate how can we easily
support more Big Data stacks by using our proposed uDAPL-
based RDMA communication library and protocols.

326

(1]
(2]
(3]
(4]

[5]
(6]

(7]
(8]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

’g O Spark-Def-1GigE-A10 @ Spark-uDAPL-A8

& 900 900

g 750 750

= 600 600

= 450 450

-8 300 300

3 150 150

g 0 55 WY [= 0 G N

e 8 16 32 16 32 64

(a) Two Tasks / VM

(b) Four Tasks / VM

Fig. 9: Performance Evaluation of Spark SortBy. X-axis repre-
sents workload size (Unit: GB).

REFERENCES

“IP over InfiniBand Working Group,” http://www.ietf.
org/html.charters/ipoib-charter.html.

“Microsoft Azure: Cloud Services pricing,” https://azure.microsoft.com/
en-us/pricing/details/cloud-services/.

“Microsoft Azure: High performance compute VM sizes,” https://docs.
microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc.
“Microsoft Azure: Set up a Linux RDMA cluster to run MPI appli-
cations,” https://docs.microsoft.com/en-us/azure/virtual-machines/linux/
classic/rdma-cluster.

D. Collaborative, “uDAPL: User Direct Access Programming Library
Version 1.2, 2004.

D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry,
A. M. Merritt, E. Gronke, and C. Dodd, “The Virtual Interface Archi-
tecture,” IEEE Micro, no. 2, pp. 66-76, 1998.

InfiniBand Trade Association, “Infiniband,” http://www.infinibandta.org/.
N. S. Islam, X. Lu, M. W. Rahman, D. Shankar, and D. K. Panda,
“Triple-H: A Hybrid Approach to Accelerate HDFS on HPC Clusters
with Heterogeneous Storage Architecture,” in 15th IEEE/ACM Intl.
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015.

J. Lentini, V. Pham, S. Sears, and R. Smith, “Implementation and
Analysis of the User Direct Access Programming Library.”

X. Lu, N. S. Islam, M. W. Rahman, J. Jose, H. Subramoni, H. Wang,
and D. K. Panda, “High-Performance Design of Hadoop RPC with
RDMA over InfiniBand,” in The Proceedings of IEEE 42nd International
Conference on Parallel Processing (ICPP), France, October 2013.

X. Lu, M. Rahman, N. Islam, D. Shankar, and D. Panda, “Accelerating
Spark with RDMA for Big Data Processing: Early Experiences,” in
2014 IEEE 22nd Annual Symposium on High-Performance Interconnects
(HOTI), 2014.

X. Lu, D. Shankar, S. Gugnani, and D. K. D. Panda, “High-performance
Design of Apache Spark with RDMA and its Benefits on Various Work-
loads,” in Big Data (Big Data), 2016 IEEE International Conference on.
IEEE, 2016, pp. 253-262.

OpenFabrics Alliance, https://www.openfabrics.org/.

OSU NowLab, “The High-Performance Big Data
http://hibd.cse.ohio-state.edu.

M. W. Rahman, X. Lu, N. S. Islam, and D. K. Panda, “HOMR: A
Hybrid Approach to Exploit Maximum Overlapping in MapReduce
over High Performance Interconnects,” in International Conference on
Supercomputing (ICS), Munich, Germany, 2014.

RDMA Consortium, “Architectural Specifications for RDMA over
TCP/IP,” http://www.rdmaconsortium.org/.

J. Singh and Y. Sonawane, “Multiplexing Endpoints of HCA for Scaling
MPI Applications: Design and Performance Evaluation with uDAPL,”
in 2010 IEEE International Conference on Cluster Computing. 1EEE,
2010, pp. 136-145.

A. Vishnu, P. Gupta, A. R. Mamidala, and D. K. Panda, “A Software
based Approach for Providing Network Fault Tolerance in Clusters with
uDAPL Interface: MPI Level Design and Performance Evaluation,” in
Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
ACM, 2006, p. 85.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud),
Boston, MA, 2010.

Project,”

