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Abstract—NVMe-based SSDs are in huge demand for Big
Data analytics owing to their extremely low latency and high
throughput for both read and write operations. Their inherent
parallelism in request processing makes them ideal to be used in
virtualized environments, where sharing of resources is a given.
Given the shared resource-driven ideology of cloud environments,
it is imperative to design middleware which can provide some
guarantee of service to applications. In this paper, we show
how such QoS can be provided for NVMe SSDs in virtualized
environments. Our contributions are threefold: (1) design of
accurate NVMe emulation mechanisms in QEMU to provide QoS
schemes, (2) theoretical modeling of arbitration mechanisms for
assisting in SLA provisioning, and (3) proposing designs in Intel
SPDK to seamlessly use the hardware-based QoS provided by
NVMe. We provide a complete case for our designs and validate
them through thorough experimental evaluation. We show that
Deficit Round Robin (DRR) as a hardware-based arbitration
scheme is more suited for providing bandwidth guarantees for
NVMe SSDs. Our evaluations show that by combining our
proposed QoS-aware NVMe emulator in QEMU and enhanced
SPDK runtime, we can achieve I/O bandwidth SLA guarantees
in an application oblivious manner.
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I. INTRODUCTION

The architecture of enterprise clouds is rapidly changing.
Novel hardware and software innovations constantly drive the
evolution of cloud environments. The Non-Volatile Memory
express (NVMe) [1] standard is a recent innovation which
has significantly impacted research in storage systems. The
standard allows flash storage devices such as SSDs to achieve
profound improvements in latency and throughput. NVMe-
based SSDs have been emerging as the latest storage technol-
ogy bridging the dreaded performance gap between hard disks
and memory. These new devices are built for extremely low
latency and achieving high degrees of parallel I/O. This makes
them ideal to be used in cloud environments, where sharing
of resources is a given.

In cloud environments, users expect a certain guarantee of
service. Considering the new NVMe technology being intro-
duced in enterprise clouds, it is only natural to ask whether a
similar guarantee of service can be provided for this emerging
hardware. In fact, this issue has been addressed to some extent
in the NVMe standard itself. The standard includes provisions
to enable request arbitration through mechanisms which are to
be provided by hardware. However, there is limited knowledge
on using these provisions to enable service guarantees in cloud
environments. Prior research [2]-[10] has mostly focussed on
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software-based provisions for service guarantees. While pre-
vious approaches [11], [12] have considered using such hard-
ware provisions to provide some Quality of Service (QoS) to
users, their approaches are not holistic. The designs proposed
do not provide a complete solution for providing Service Level
Agreement (SLA) based guarantees to users. For providing
such a solution, there are two key requirements. First, the
SLA provisioning should be completely application oblivious,
i.e., it should be completely handled by the cloud provider
based on the SLA negotiated by the user. Second, there must
be mechanisms in place which allow for the provisioning of
SLAs without violations. Achieving these requires a holistic
approach which we propose in this paper. We show how
existing runtimes can be modified for application oblivious
QoS provisioning. We also theoretically model the arbitration
mechanism available in NVMe and discuss how the model can
be used for SLA mapping and provisioning.

NVMe SSDs are still considered as emerging hardware.
While costs have been rapidly declining in recent years,
they are still high enough to prevent wide-scale adoption in
cloud environments [13]-[15]. Having a system which can
provide NVMe device emulation can prove to be very useful.
Emulation allows for testing NVMe related code without the
need for buying expensive hardware. In addition, emulation
also allows for approximate performance modeling of such
applications. Existing schemes for NVMe emulation do not
provide any mechanisms to test and evaluate the arbitration
mechanisms available in the standard. Moreover, no flash
device has implemented weighted arbitration schemes yet [10].
Thus, we propose designs for accurate modeling of QoS
schemes in the NVMe part of Quick Emulator (QEMU) [16],
[17]. With this solution, cloud providers can not only verify
their middleware and schedulers, but can also use it for
performance modeling and benchmarking.

To summarize, the main contributions of this paper are as
follows:

o Design of QoS-aware NVMe emulator which provides
support for weighted round robin and deficit round robin
arbitration

« Theoretical modeling of arbitration schemes with queuing
theory

o Extension of Storage Performance Development Kit
(SPDK) runtime to allow for application oblivious SLA
provisioning

Our evaluations show that by combining our QoS-aware
NVMe emulator and enhanced SPDK runtime, we can achieve
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Figure 1. Comparison of software overhead for I/O submission and
completion with NVMe SSDs measured using SPDK overhead benchmark.
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I/0 bandwidth SLA guarantees in an application oblivious
manner. We also observe that our QoS-aware emulator can
deliver similar or better performance as compared to the
existing emulator in QEMU. To the best of our knowledge,
our proposed emulator is the first NVMe emulator to offer
support for QoS.

The rest of this paper is organized as follows. Section II
presents the motivation behind our work, Section III discusses
our proposed approach for QoS-aware NVMe emulation in
QEMU. Section IV presents a theoretical modeling of arbi-
tration schemes in NVMe, Section V presents a QoS-aware
SPDK runtime solution, and Section VI discusses NVMe and
Flash specific aspects related to our work. Section VII studies
related work and Section VIII concludes the work.

II. MOTIVATION
In this section, we discuss the motivation behind our work.

A. Time for a change

In this subsection, we compare the performance of the Linux
NVMe driver and Intel SPDK and discuss the benefits of
shifting to SPDK. Before comparing their performance, we
briefly introduce SPDK.

Intel SPDK. Intel SPDK [18] is a userspace library built
for applications with high-performance storage requirements.
SPDK moves all necessary drivers to userspace and operates
in polling mode, thereby enabling high-performance access
to storage. In addition to legacy storage protocols, SPDK
offers support for the NVMe standard, including NVMe over
Fabrics [19]. For processing requests over NVMe, the user
should create a queue pair (QP), which is a set of submission
and completion queues. I/Os for each QP can be submitted
and processed in parallel. Synchronization within a QP is left
for the user to handle. In general, each application thread
requiring I/O is recommended to create a separate QP, allowing
maximum parallel processing and eliminating the need for
synchronization. Processing of I/O operations is completely
asynchronous. Applications need to explicitly ask the SPDK
runtime to poll the completion queues. This asynchronous
operation allows for complete or partial overlap of I/O and
application processing. The SPDK design solves most of
the performance related issues that plague the Linux NVMe
driver [20].

Comparison of POSIX and SPDK. To determine the
best driver to use for NVMe-based applications, we conduct
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Figure 2. Comparing the CPU Overhead of POSIX and SPDK with NVMe
SSDs. POSIX and SPDK achieve nearly the same total CPU usage (top two
lines): The high polling overhead of SPDK is offset by the additional software
overhead in POSIX.

an experiment to measure the software overhead of request
submission and completion for SPDK and POSIX. Our testbed
consists of one node with a 8 core, 16 thread sandy bridge
CPU with 32GB DRAM and an Intel P3700 NVMe SSD.
We use CentOS 7.1 with the 4.9 Linux kernel. We run a
random read workload with a queue depth of one (to nullify the
effects of queuing delay). Timestamps are collected before and
after the submission and completion calls; since the calls are
asynchronous, this gives us the software overhead. Figure 1
shows the result of this analysis. We observe that the total
software overhead for POSIX is very high compared to SPDK.
In fact, for a 4k write, the software overhead is almost 30% of
the request processing time (~2us v/s ~7us). Next-generation
Intel Optane SSDs have even lower latency, further increasing
the software overhead [21]. The Linux NVMe driver suffers
from some basic flaws [22] including interrupt-based process-
ing and context switches. In terms of latency, SPDK clearly
has much better performance (629.1 ns v/s 6465.9 ns overhead
for 128k I/O; more than 10x improvement). For both POSIX
and SPDK, the submission latency increases with message
size. This increase is minimal for SPDK, where the increase in
latency can be attributed to gathering the list of pages that hold
the request. For POSIX, the increase in latency is significantly
higher as it involves a context switch. Completion latency is
constant for SPDK (around 260 ns), only involving polling
the completion queue. Overall, SPDK latency is negligible
compared to processing latency. This implies that the SSD
throughput is no longer limited by the software overhead.

We also measure the CPU overhead while running the
random read workload, as shown in Figure 2. SPDK has higher
user CPU overhead, while POSIX has higher system CPU
overhead. SPDK uses polling mode to process I/O completions
resulting in increased user CPU usage. POSIX driver is built
into the kernel, hence a higher system CPU usage is expected.
Interestingly, the total CPU usage for both POSIX and SPDK
is almost the same. The high polling overhead in SPDK is
offset by the software overhead in POSIX. Thus, while the
CPU usage for both is similar, SPDK is able to deliver much
better performance.

These experiments point to a clear conclusion; for low
latency applications or cloud environments requiring highly
parallel access to storage, SPDK should be the obvious choice.
While SPDK provides the best performance, it does not offer
compliance with the POSIX standard. It offers its own set
of low-level APIs for accessing NVMe devices. Applica-



tions need to be modified to enable storage access using
SPDK. While application developers are in general reluctant
to modify existing production applications, we believe that
the performance-related benefits are sufficient to encourage
migration from POSIX to SPDK. In fact, many existing appli-
cations and frameworks have already embraced this change
and moved to SPDK for accessing storage. For example,
OpenStack Ceph [23] has recently announced support for
SPDK and Facebook’s RocksDB [24] key-value store has
been modified to run over it. We argue that other applications
and frameworks will follow suit and SPDK is the way to go
moving forward.

B. QEMU NVMe Emulation

NVMe SSDs are still considered as emerging hardware.
Although NVMe SSDs have been commercially available for
several years now, their cost is a significant barrier to their
adoption in large-scale cloud environments. We believe that
over time, as the performance of SSDs increases and their
cost decreases, their adoption will see an exponential increase.
While it is important to design runtime and middleware that
can take advantage of the NVMe standard, it is also important
to provide mechanisms to emulate NVMe devices. Emulation
allows for testing NVMe related code without the need for
buying expensive hardware. In addition, emulation also allows
for approximate performance modeling of such applications.

There exist many solutions that provide the ability to
emulate NVMe devices. The most robust and stable of these
is provided as part of QEMU. QEMU [25] is a popular
open-source hypervisor for hardware virtualization. QEMU
introduced NVMe emulation support a few years ago which
has now developed into a stable tool for NVMe device virtu-
alization. The reason that we chose QEMU for this purpose is
that it is a popular and well-known framework for hardware
virtualization and it already includes mechanisms to virtualize
Memory Mapped I/0O (MMIO), block I/O, hardware interrupts
(e.g. MSI-X), and PCle devices. This makes it perfect for
emulation of NVMe devices.

The working of the QEMU NVMe emulator is as follows.
QEMU has a main thread which is used for processing
interrupts. This thread is also used to process NVMe related
requests in the emulator. There is a timer interface provided
by QEMU which is used by other QEMU subsystems. Timers
provide a mechanism to call a given routine (a callback), after
a time interval has elapsed. Timers are handled by the main
thread. The main thread is essentially a loop which processes
interrupts, checks timers, and processes appropriate callback
functions as and when timers expire. The NVMe emulator
makes heavy use of timers for request submission. Each
submission queue that is created has a timer associated with it.
The callback function of the timer executes the command sub-
mission procedure. The actual command processing is handled
by the Linux aio system. On submission queue initialization
and upon receipt of any request, the emulator sets a 500 ns
timer for that queue. After the timer expires, the main thread
runs the callback function and submits requests for the queue.
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Figure 3. (a) Comparison of random read throughput for Intel P3700 SSD

and QEMU NVMe Emulator. Results taken with SPDK fio benchmark with
queue depth of 128, (b) Demonstrating the lack of QoS Support in QEMU
NVMe Emulator. Results taken with synthetic applications each using a queue
depth of 128 and 4KB 1/Os.

The arbitration burst setting defines the maximum number of
commands that can be submitted in one round from a queue. In
case additional requests are pending after request submission,
the callback function resets the timer so that the remaining
requests can be processed. It is important to note that timers
are required here because everything is processed by the main
thread. Request completion is also handled by the main thread
in the form of a callback function invoked upon completion
of the Linux aio. For the actual I/O, QEMU initially writes
all data in memory and lazily flushes everything to a backup
file located on physical disk. This process is sufficient to
emulate the working of an NVMe device. To determine how
well QEMU emulates the performance of NVMe hardware,
we conduct some performance evaluations.

We first evaluate the performance of the virtualized NVMe
device using QEMU and compare it to that of an Intel P3700
SSD. As we can observe from Figure 3(a), the I/O throughput
of QEMU is much lower than actual hardware for small I/O
sizes. This is because the additional software overhead of
device emulation significantly impacts the latency of small
I/Os. This is especially true since the latency of small I/O sizes
is extremely low. In addition, the P3700 has 18 flash channels
to process requests concurrently. In fact, even within a channel,
chip, die, and plane level parallelism can be used. This
results in notable throughput improvement for small requests.
However, large 1/O performance is better with QEMU than
actual hardware. Since QEMU uses memory for storing data,
the high memory bandwidth of main memory leads to better
performance for large I/O sizes. We are able to achieve up to
16 GB/s bandwidth for a 1 MB I/O. The difference between
QEMU and the SSD is under acceptable levels for large I/O
sizes, but not for small sizes. However, the ability to run any
NVMe workload makes QEMU a viable and useful emulation
tool for NVMe. We do not focus on improving the emulator
to accurately model the performance characteristics of NVMe
devices, but rather on accurate modeling of the command
processing and arbitration mechanisms. This will allow us
to provision service guarantees using the improved QEMU
emulator.

C. The need for QoS-aware emulation and runtime

Quality of Service (QoS) is an extremely important part
of the cloud computing paradigm. In fact, this is one of the



primary reasons for the popularity of cloud computing. Most
cloud providers these days offer Service Level Agreements
(SLAs) to their clients as a basic way of achieving QoS.
In the context of NVMe storage, it is paramount to have a
design that provides some guarantee of service (e.g., latency
or bandwidth) to applications or VMs depending on the service
granularity. NVMe provides hardware-based mechanisms for
command arbitration. Schemes like round robin and weighted
round robin arbitration (WRR) (see Section III-A) have been
included in the NVMe standard, while NVMe SSD vendors
are free to implement vendor specific arbitration mechanisms.
However, none of these schemes have been implemented in
commercially available SSDs.

While the QEMU NVMe emulator supports the entire
NVMe command set, the hardware-based weighted round
robin arbitration mechanism specified in the NVMe standard
is not supported. Cloud providers providing service guarantees
for storage might want to test their scheduling solutions using
hardware virtualization. In this context, having an emulator
for NVMe devices which can provide command arbitration
mechanisms as described in the standard can prove to be
extremely useful. We believe that making such a solution
available will tremendously benefit cloud providers in design-
ing scheduling solutions. To demonstrate the importance of
QoS, we conduct a simple experiment. We run two separate
applications using SPDK over the QEMU NVMe emulator,
one having high priority and the other low priority. We enable
the WRR scheme in SPDK to simulate a QoS scenario. These
applications use the high priority and low priority submission
queues, respectively. Both of these applications submit back-
to-back 4k I/0O requests. In the beginning, only the high-
priority job is running. At the 10* second, the low priority
job is run. Figure 3(b) shows the result of this experiment. It
can be observed that the low priority job significantly impacts
the performance of the high priority job. In fact, both jobs
experience the same I/O throughput, thus confirming that
QEMU does not provide any support for WRR arbitration
mechanism. For testing and evaluating any scenario which
expects a guarantee of service for storage, this emulator will
fall short of expectations. To address these issues, we propose a
QoS-aware NVMe emulator, the details of which are presented
in the next section.

D. Summary
So far, we have made the following observations:

1) SPDK provides the best performance for NVMe devices

2) QoS is an important feature in cloud environments

3) The existing emulator in QEMU does not provide any
kind of service guarantees

These observations lead us to conclude that there is a need
for QoS-aware emulation and runtime. The SPDK runtime
provides some mechanisms to exploit the WRR arbitration
scheme in NVMe. However, the configuration of this scheme
is left to the discretion of the user. Thus, SLA provisioning
cannot be application oblivious. We envision a cloud envi-
ronment where SLAs can be met in an application oblivious
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manner to provide expected features to users. Clearly, existing
emulation and runtime schemes fail to satisfy this vision. In
this context, we propose a QoS-aware NVMe emulator over
QEMU and a QoS-aware SPDK runtime. Our goal is to design
solutions which can provide I/O service guarantees in NVMe
clouds. Sections III and V provide additional details about
these designs.

III. QOS-AWARE NVME EMULATION

In this section, we describe our proposed design for QoS-
aware NVMe emulation. We first briefly describe the Weighted
Round Robbin and Deficit Round Robbin (DRR) arbitration
scheme, then present our solution for implementing these
schemes in QEMU, and finally demonstrate via experimental
evaluation the superiority of our solution over the existing
NVMe emulation in QEMU.

A. WRR arbitration

The WRR arbitration mechanism in the NVMe standard
provides a useful mechanism to implement QoS support in
cloud middleware. The biggest advantage of this mechanism
is that it is implemented completely in hardware resulting in
low latency arbitration and reduced complexity of drivers and
runtimes. This mechanism works as follows. There are three
different priority classes for NVMe submission queues, high,
medium, and low. Each class of priority is assigned a numer-
ical weight. The NVMe controller processes commands for
submission queues in order of their priorities. The maximum
number of commands that can be processed for queues of a
certain priority in one arbitration round is determined by the
weight of that priority class. For a single submission queue,
the maximum number of commands that can be processed
in one arbitration round is determined by the arbitration
burst setting. By adjusting the weights of different classes of
priority, the desired level of QoS can be achieved. The current
NVMe emulator in QEMU does not provide support for the
WRR arbitration mechanism. In this section, we describe our
proposed design for a QoS-aware NVMe emulator.
B. DRR arbitration

While the WRR scheme is efficient in providing a guarantee
of throughput, it requires the sizes of requests to be fixed or
previously known. Otherwise, applications with different sized
requests will result in a higher than intended weight for large
requests. In this context, significant research has been done to
provide solutions which can provide optimal bandwidth QoS
despite request size variation. Schemes like deficit round robin
(DRR) and weighted fair queuing (WFQ) are popular models
widely used in networking. Both DRR [26] and WFQ [27]
can provide bandwidth guarantees. However, WFQ requires
O(log(n)) time to process each request, while DRR only
requires O(1), where n is the number of priority classes.
Even though there are just three priority classes (as defined
in the NVMe standard), DRR is simpler and satisfies our
requirements for QoS. DRR is a modification of WRR, where
instead of giving each request equal cost, its given a cost equal
to its size. This effectively ensures that the overall bandwidths
for each priority class are in the ratio of their weights. We
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believe that DRR is an effective alternative to WRR which can
provide better QoS with the same overhead. We implement the
DRR scheme in the QEMU NVMe emulator and show that it
is much more effective in providing bandwidth guarantees to
cloud users than WRR.

C. Designing arbitration schemes in QEMU

For basic NVMe emulation, the existing designs in QEMU
can be re-used. However, for providing QoS, the software-
based arbitration mechanism in QEMU needs to be redesigned.

Existing emulation design. Figure 4 shows the command
submission process for the existing emulator. The working can
be detailed by the following steps: (1) The host puts an I/O
request in the submission queue, (2) The host rings the queue
doorbell, (3) This triggers an interrupt which is processed by
the QEMU main thread, ) The QEMU main thread updates
the timer of the submission queue, and (5) The timer expires
and the main thread submits Linux aios for each request.
The default design uses the QEMU main thread to execute
the entire I/O processing pipeline. The fundamental flaw with
this approach is that as soon as a command is placed in the
submission queue, the main thread will start processing it.
Submitting an I/O request involves ringing a doorbell which
generates an interrupt. This interrupt is also handled by the
QEMU main thread. Thus, at one time, only one command can
be in any submission queue. This design allows no conception
of QoS and is fundamentally different from the way commands
are processed in an actual NVMe SSD.

Design Considerations. Emulation is an effective tool for
testing the performance and functionality of hardware. A
good emulation requires accurate modeling of hardware, i.e.,
the software implementation should mimic the behavior of
hardware. In addition, specially while proposing new hardware
logic, the functionality, complexity, and memory usage should
be kept as minimal as possible. This allows for cost savings
and latency benefits. In this context, we emulate arbitration
schemes using simplistic space efficient data structures. Each
priority class is assigned a circular linked list for holding
pointers to the submission queues in the priority class. In
addition, 8 bit unsigned integers are used to store remaining
and pre-defined weights for each priority class which will map
to hardware registers or dedicated buffers on device memory
for each queue. After each arbitration round, the remaining
weights are updated to the pre-defined weights. In addition, a
single bit is kept for each submission queue to indicate if it
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has a pending request. This allows for efficient arbitration by
allowing the controller to quickly skip over empty queues. We
believe that this design closely mimics hardware behavior. We
now describe our arbitration scheme designs in QEMU.

Proposed Design. For emulating the NVMe device in a
more realistic manner, we introduce a dedicated thread for
executing the functions of the NVMe controller. We also make
sure that data structures shared with the QEMU main thread
are locked using a mutex before access. In addition, to allow
for software-based arbitration, we introduce a circular linked
list for each priority class. Each submission queue is added
to the appropriate linked list when it is created. We maintain
just one head pointer for each linked list which points to the
submission queue that should be used next by the controller
for command arbitration. The controller processes commands
from each priority class one by one. For each priority class,
the controller will use the appropriate linked list and start
processing commands for the queue pointed to by the head
pointer, moving the pointer each time a queue is serviced.
It will continue processing commands for the priority class
until either all queues have been serviced or the total cost
of commands processed is equal to the weight of the priority
class. Thus in one arbitration round, all priority classes will
be served, but the maximum cost of commands that can be
processed for each class is equal to its weight.

Figure 5 shows the command submission process for the
proposed emulator. The following steps describe the complete
process: (I) The host submits requests directly to the submis-
sion queues, @ The host then rings the doorbell, @ This
generates an interrupt which is handled by the QEMU main
thread, @ The NVMe controller thread first uses the high
priority linked list, (3) It picks up each submission queue with
an outstanding request and submits Linux aios for requests,
@ Controller thread moves onto next submission queue, and
(D After processing requests for all submission queues in a
priority level, the controller moves to next priority linked list.
The NVMe controller thread in parallel continuously scans
the circular linked lists for each priority class. Whenever
it finds pending requests, it submits a Linux aio operation
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Figure 6. (a) Comparison of random write throughput for QEMU NVMe

Emulation, (b) Comparison of random read throughput for QEMU NVMe
Emulation. Results for both taken with SPDK fio benchmark with queue depth
of 128 and 4k I/O Size.

for each request while ensuring WRR/DRR arbitration. Our
NVMe controller thread can execute independently of the
QEMU main thread. This allows the request submission and
processing to proceed in parallel, thereby allowing for the
possibility of multiple outstanding requests in submission
queues. This emulates the actual behavior of an NVMe SSD
more accurately. Applications submit and place a request in the
submission queues independent of the processing of requests
by the NVMe hardware. Thus, our solution provides a better
emulation of NVMe hardware.

There are many possible solutions for designing arbitration
in QEMU. For example, the QEMU aio interface can be used
to process commands for each submission queue parallelly. We
chose our design with the goal of emulating the NVMe device
behavior as accurately as possible with minimal overhead.
In our design, we use just one additional thread, but the
arbitration mechanism and NVMe controller are precisely
emulated. Our experimental analysis also confirms this claim.
D. Comparison with existing emulator

We now present some results comparing the performance
of our proposed solution with QEMU. Figure 6(a) shows
a comparison of the write throughput obtained from the
fio benchmark. We observe some interesting trends here. In
general, the WRR and DRR schemes show better or similar
performance than the default emulator. Since we introduced
an additional thread dedicated to processing NVMe requests,
throughput for most I/O sizes is improved. However, for
8k and 16k sizes, the overheads of threading, data transfer
between cores, and software-based arbitration lead to slightly
lower performance than QEMU. We conclude that our solution
is similar to QEMU in emulating the performance of NVMe
SSDs.

We also evaluate the performance of our solution using a
multi-client benchmark. Each client uses a separate submission
and completion queue for request processing. This design
allows for completely lockless and synchronization free I/O
processing, leading to good scalability. Figure 6(b) shows
the read throughput for different number of client threads.
The host node has 16 threads, thus we go up to 16 client
threads. We observe a constant increase in the throughput
with increasing client threads for the default emulator. DRR
throughput is lower than WRR for all cases. We find that DRR
needs additional arbitration rounds for processing requests
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since the cost of each request is higher than WRR. For our
emulator, the throughput is always higher than the default.
However, for 8 and 16 client threads we notice a slight
decrease in throughput. We introduce a separate thread to
emulate the NVMe controller which competes with client
threads for resources when simulating a large number of
clients. The decrease in throughput is minimal and we believe
that a scenario where continuous I/Os are being submitted
from each core will be rare.

IV. PERFORMANCE MODELING OF ARBITRATION
SCHEMES
In this section, we model the performance of the WRR and
DRR arbitration schemes.

A. Performance modeling

In the previous section, we presented our QoS-aware NVMe
emulator design. To allow cloud providers to fully utilize this
new tool, it is necessary to provide a model for performance
prediction. This will allow for accurate SLA provisioning with
minimal violations.

Symbol Description
h/m/l | high/medium/low priority class weight
A input request rate
o average SSD throughput
o SSD processing rate
P queue utilization
p SSD parallelism
q queue depth
a average request latency

Table I
SYMBOLS USED AND THEIR DESCRIPTIONS

We first model the WRR throughput. The presence of
many varying situations and variables makes the performance
modeling of WRR challenging. For simplicity, we assume
that the average I/O size for each priority class is the same.
For each priority class, the maximum commands processed
in one round will be equal to its weight. However, in case
the submission queues in a priority class do not have more
commands than its weight, other priority classes will be able to
get higher throughput. Thus, the minimum throughput for each
priority class should be in the ratio of their weights. Assuming
that v is the average throughput the NVMe SSD can deliver
and h, m, and [ are the weights of the corresponding priority
classes, the minimum throughput for the high priority class
can be calculated out as

L M

Minimum throughput for other priority classes can be
calculated similarly. For estimating the actual throughput of
each priority class, queuing theory can be used. While each
priority class can have multiple queues, they can be considered
to constitute one combined big queue. If A\p, A, and A; are
the input request rates for the respective priority classes, we
know from queuing theory that v = ), i.e. output rate is equal
to input rate if input rate is not greater than the processing
rate p. This is generally true for NVMe since the command
submission will fail if the submission queue is full. The input



rate will then automatically adjust to be equal to the output
rate. For a general case, the weights in Equation 1 need to
be multiplied by the utilization (p) of each priority class so
that we can determine the average commands processed from
each class in one arbitration round. The utilization of each
class can be computed as % using queuing theory. Thus, the

average throughput for each class can be calculated as

h
7X
h+ pmm + pil U

It is easy to see that if we do not submit any requests in the
medium and low priority classes, i.e p,, and p; are zero, then
~p, will be v or the complete throughput of the SSD as long
as the input rate A, is high enough to keep the SSD busy. The
utilization of each priority class (p) is the ratio of its input rate
to max throughput. Utilization determines how many requests
are available to be processed for the priority class in one
arbitration round. A utilization of one means that the number
of requests available for processing is equal to the weight
of the priority class. For DRR, replacing v with the average
SSD bandwidth should suffice since it is bandwidth based. In
addition, no guarantees on the request size are required.

To calculate the latency for each operation of a priority
class, we need to account for two factors. First, queuing delay
and second, internal parallelism in the SSD. Queuing delay
accounts for the time a request waits to be serviced by the
SSD. In general, a request in a particular priority class must
wait for requests before it in its own class as well as requests
in other priority classes to finish. Assuming requests take an
average of time of a to complete, p requests can be submitted
in parallel, and each priority class can have a maximum of ¢
outstanding requests, we can calculate the maximum latency
for the high priority queue as

) 2

Yr = min(Ap,

g h + Pmm + Pll
h P

This equation should hold true for both DRR and WRR as
long as the average request size for all classes is the same.
Otherwise, ¢ will not remain a constant. The parallelism p
of the SSD can approximately be estimated based on the
number of flash chips it has. This is assuming that requests are
uniformly distributed over the logical address space. For work-
loads with different request distributions, conflicts between
requests will likely reduce the parallelism. Write workloads
will be adversely affected by garbage collection activities fur-
ther reducing the parallelism. Assuming no conflicts between
requests, the effective parallelism can be derived by dividing
the number of flash channels by the write amplification factor.

X X a 3)

tmaz =

B. Model Validation

To prove the validity of our proposed model, we run
experiments on an NVMe SSD to confirm the latency and
throughput characteristics under different load conditions. We
use the same testbed as described in Section II for our
experiments. However, as mentioned before, there does not
exist an actual flash device offering either WRR or DRR
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Figure 7. Model Validation: actual and predicted high priority class
throughput and latency with varying low priority queue utilization (p;)

arbitration in hardware. Hence, we build a thin software layer
over SPDK, providing software-based queues offering DRR
and WRR schemes. This layer is designed to be light weight
with minimal locking to ensure hardware-like performance.
To validate our model, we run a random read benchmark with
three threads using the three separate priority classes. DRR
weights are set to (32k, 64k, 128k) and each thread submits
32k I/O requests. Each priority class is assigned a separate
hardware queue, although, request submission and completion
is handled by a single thread to ensure DRR compliance. We
vary the utilization of the low priority thread and measure
the throughput and latency of the high priority thread. For
our model, we estimate v and a/p through empirical analysis.
Both of these parameters can be estimated by running a simple
multi-client benchmark with one thread per physical core
utilizing a separate hardware NVMe queue. v was found to
be around 240k while ¢ was around 81 us. We compare these
results with those predicted by our model. This comparison
is presented in Figure 7. Figure 7(a) shows the high priority
throughput with varying low priority utilization (p;). pp, and
pm are set to one. Figure 7(b) shows the latency of the high
priority class with varying low priority utilization. We observe
near perfect correlation between the observed and predicted
values with a maximum deviation of less than 5%. Thus, we
believe that our model works well in practical situations and is
a useful tool for performance prediction. Given the estimated
values of 7, a, and p, we can accurately predict the latency
and throughput of any priority class.

C. Model usage scenarios

Calculating the average throughput and maximum latency
for each priority class can prove to be useful in multiple
scenarios while provisioning I/O bandwidth and latency SLAs
in cloud environments. Consider a scenario where some job
is already using an NVMe device and the cloud resource
scheduler would like to schedule another job to use the same
device. By using Equation 2, the scheduler can calculate the
I/O bandwidth for both jobs and determine whether their
respective SLAs will be violated. A decision can then be
made about scheduling the new job to use the NVMe device.
Now consider another scenario where the scheduler would
like to assign weights to each priority class. Equations 2
and 3 can be used to calculate the weights, assuming that
the bandwidth and latency SLAs and utilization of each job
are known beforehand.



We have shown in this section that the performance model-
ing of arbitration schemes in NVMe can serve to be extremely
useful in cloud environments.

V. QO0S-AWARE SPDK RUNTIME
In this section, we describe our proposed approach for
designing a QoS-aware SPDK runtime. We start by presenting
our solution for enabling service guarantees in NVMe-based
cloud environments, before moving on to our application
oblivious design for QoS provisioning using SPDK. Finally,
we present evaluation results with synthetic application sce-

narios to demonstrate the benefits of our design.

A. Enabling service guarantees

In modern cloud environments, users expect a guarantee of
service for their applications. Cloud providers typically nego-
tiate SLAs with users as a way to provide these guarantees.
In such a scenario, cloud middleware and runtime should be
able to provide mechanisms to satisfy these guarantees as
QoS. From an end user’s perspective, the SLA provisioning
should be completely transparent. So, the service guarantee
mechanisms should be completely application oblivious. In
the context of NVMe storage, our goal is to use the hard-
ware provided arbitration mechanisms as a way of providing
applications with a guarantee of I/O bandwidth. Since these
schemes should be application oblivious, we propose to mod-
ify the (SPDK) runtime to allow for QoS support.

A cloud environment typically charges users based on the
level of priority they desire. Since, the NVMe WRR arbitration
scheme allows for three priority classes as discussed before,
we propose the same priority classes for application users as
well. The corresponding priority classes will be mapped to
each other such that an application with high priority will
submit I/O requests to the high priority submission queue
and so on. The DRR scheme is also based on the same
three-priority system. The weight of each priority class, which
determines the maximum number of I/O commands that can
be processed from one class in an arbitration round, can be
determined by the cloud provider based on the SLA negotiated
with the user. Similarly, for scheduling multiple users to share
an NVMe SSD, the I/O priority requested by each user and
the priority class weights need to be considered.

B. Application oblivious QoS provisioning

The SPDK runtime has support for the NVMe WRR
scheme. This is however left to the discretion of the user
himself. To use the WRR scheme, the user has to explicitly
enable it using an SPDK function and set the priority for
each submission queue created. This existing mechanism does
not satisfy our application oblivious requirements. We thus
propose a new priority mapping design in SPDK which does
not require application changes to modify priority. To this end,
we propose to use the Linux I/O priority framework as a means
to transfer the priority class information from the application
to the SPDK runtime, similar to the approach proposed in [11].

The I/O priority class for an application can be set using
the ionice command which expects a value from 0 to 3. We
use the 1-3 classes and map them to high, medium, and low
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Figure 8. Evaluation with Synthetic Application Scenarios: (a) Bandwidth

over time with Scenariol, (b) Job bandwidth ratio for Scenarios 2-5

priority classes. 0 is mapped to the urgent priority class and is
left for cloud administrative purposes. The priority class for the
application can then be obtained by SPDK using the Linux I/O
priority interface (1oprio_get syscall). This design works
because the SPDK runtime will be run in the context of the
thread submitting I/0. We modify the SPDK runtime to always
use the WRR or DRR scheme and set the priority for a QP
based on the I/O priority of the application it is associated to.
The 1/O priority of each application can be set by the cloud
middleware based on the SLA with each user. In this manner,
any application built using SPDK can be provided any level
of service without the need to modify the application.

C. Handling rogue tenants

Our QoS-aware runtime provides tenants with an interface
to provide a certain guarantee of service. In this regard, it
is important to ensure that a rogue tenant cannot influence
the performance of others. In our design, each tenant is
allocated a separate QP for I/O request processing, resulting in
performance isolation. The actual request processing is done in
the QEMU emulator which ensures that the service guarantees
of each priority class are maintained. A rogue tenant might
submit requests at a rate higher that its service guarantee. This
will only result in its submission queue getting filled up, and
eventually it will be unable to submit requests. This will result
in its throughput getting limited to its service guarantee. Thus,
QoS will be ensured regardless of how the tenants submit
requests.

D. Synthetic application scenarios

We use the same testbed as described in Section II for
our evaluations. However, since our SSD does not support
hardware-based arbitration, we instead use our QEMU-based
emulator. We use a modified version of QEMU [17] built for
Open-Channel SSDs and SPDK v17.10 for our evaluations and
as a base for our designs.

To show the benefits of a QoS-aware SPDK runtime, we
simulate five application scenarios and measure the bandwidth
achieved by each job over time. For all scenarios, we set the
priority class weights to (32, 16, 8) for WRR and (128k, 64k,
32k) for DRR, ensuring that the weight ratios are the same. For
the first scenario, we use an experiment similar to the one in
Section II-B. In this scenario, we run one high priority job with
4k requests and one medium priority job with 8k requests. Fig-
ure 8(a) shows the results of this experiment. With the WRR,
both jobs receive the same bandwidth despite having different



priorities. Each request is given equal priority regardless of
its size, leading to a skewed bandwidth distribution. However,
DRR is able to achieve near perfect bandwidth distribution as
per priority weights. We also note that the bandwidth over time
is relatively stable pointing to a robust hardware emulation.

The remaining scenarios all have 2 simultaneous jobs
submitting back-to-back requests. Scenario 2 has two high
priority jobs, both with 4k requests. Scenario 3 has a high
priority job with 4k requests and a low priority job with
8k requests. Scenario 4 is the same as Scenario 3 with
the priorities exchanged. Scenario 5 has two high priority
jobs, one submitting 4k and 8k requests and the other 8k
and 16k requests. We measure the total average bandwidth
for both jobs in each scenario and calculate the bandwidth
ratio. This analysis is presented in Figure 8(b). We also
provide the expected ratio as per the priority weights. We
are more interested in the bandwidth ratios rather than their
actual values since we are focused on QoS and the hardware
performance is only emulated. In all scenarios, the difference
in request sizes leads WRR to incorrectly favor the job with
larger request size, while DRR is able to achieve close to the
expected ratio. The only case where WRR provides the desired
ratio is Scenario 2, where the request sizes for both jobs
are the same. Default QEMU just provides equal throughput
distribution, not providing any service guarantees whatsoever.
This analysis clearly demonstrated the superiority of DRR over
WRR in achieving bandwidth guarantees.

Although our results are based on NVMe emulation, we
expect similar behavior with actual hardware. There are two
reasons for this expectation. One, both WRR and DRR have
been shown to be easy to implement in hardware [26],
[28] and provide accurate bandwidth ratios. Two, usage of
separate hardware queues for each application along with
lockless request submission and completion paths ensure that
the hardware performance characteristics are reflected in the
application performance. We thus believe that DRR should
either become part of the NVMe standard or be accepted
by vendors as a good implementation choice for vendor
specific arbitration schemes.

VI. DISCUSSION

In this section, we discuss aspects of NVMe and Flash
devices that are particularly relevant to our work.

Performance: The performance of NVMe devices in virtu-
alized environments is a source of concern. The NVMe stan-
dard provides Single Root I/O Virtualization (SR-IOV) [29] for
NVMe device virtualization. With SR-IOV, the NVMe device
can be presented to each VM as a separate physical device.
The VM can directly access the device without hypervisor
intervention. Studies [12], [30], [31] have shown than SR-
IOV performance is close to native. Cloud providers should
provide support for SR-IOV-based NVMe virtualization to
allow for maximum performance. For the software stack,
SPDK offers significantly lower latency and higher throughput
for I/O requests as compared to POSIX. Of course, not all
applications are written using SPDK or can be easily modified
to use it.
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Isolation: The NVMe standard offers the ability to create
namespaces as a way to achieve logical isolation. Namespaces
are a set of logical blocks in the hardware. Each namespace
contains a distinct continuous set of logical blocks and can
be addressed using a namespace id. This design does not
provide any guarantee of performance isolation since the
namespaces are logical and the physical blocks used to store
the data are common for all namespaces. Separate namespaces
offer complete isolation only in terms of security. In a cloud
environment, each VM can be assigned a separate namespace
for security isolation, however performance isolation is still a
matter of concern. Recent work [12] has shown that modifying
the Flash Translation Layer (FTL) to map namespaces to
separate physical blocks can show significant improvement in
I/O performance in virtualized environments.

QoS: We find that DRR is better suited for achieving band-
width QoS. According to the NVMe specification, NVMe ven-
dors can implement their own arbitration schemes. We believe
that NVMe vendors should implement DRR for enterprise
Flash devices to provide an efficient mechanism for hardware-
based QoS. Flash devices suffer from the write amplification
effect [32], [33] which leads to read/write interference. This
can disrupt the performance of DRR when workloads with
mixed read and write requests are executed simultaneously. We
have ignored the effects of write amplification in this paper.
This remains an interesting avenue for future research.

VII. RELATED WORK

There has been a lot of research in emulating PCle devices.
In particular, the rising interest in NVMe has led to the
development of several emulators which provide some basic
NVMe functionality. QEMU [25] provides support for NVMe
emulation which has been discussed at length in this paper.
In addition, VirtualBox also provides basic NVMe emulation.
Several other solutions [34]-[40] are also available. However,
none of these emulators provide mechanisms to exploit the
arbitration mechanisms provided by the NVMe standard. Our
solution is thus unique in providing this support.

Several prior works have studied QoS support over shared
cloud and data-center storage systems [3]—[7]. Particularly for
Flash-based storage, specific cost model based I/O schedulers
such as FIOS [8] and FlashFQ [9] designed for fairness and
throughput guarantees were proposed. On the other hand,
providing QoS-aware runtimes for NVMe devices has been a
topic of recent research. Joshi et al. [11] propose to implement
WRR support for NVMe in the Linux driver. They employ a
similar I/O priority-based approach for application oblivious
QoS provisioning. However, their design suffers from two
fundamental flaws. First, they implement their design in the
Linux driver which we have shown to perform poorly as
compared to SPDK. Second, they provide no mechanism
for cloud providers to provision SLAs using their solution.
We argue that our solution is more applicable in terms of
performance and usability in cloud environments.

With the availability of fast network interconnects, stor-
age disaggregation-based technologies and systems are being



extensively explored [41], [42]. Along these lines, software-
based systems for accessing remote NVMe Flash at latencies
as low as local NVMe access, such as ReFlex [10], have been
proposed. Open-source disaggregated I/O architectures, such
as Crail [42], are built exclusively with user-level I/O support
(e.g., NVMeoF, SPDK, RDMA), allowing heterogeneous stor-
age and networking hardware to interact with each other in an
optimal manner within the data processing engine.
VIII. CONCLUSION

In this paper, we first provided results demonstrating the
clear superiority of SPDK. Next, we evaluated the existing
QEMU-based NVMe emulator using performance and QoS as
our metrics. We concluded that the emulator is insufficient for
providing any service guarantees. We then proposed designs
for accurate modeling of hardware-based WRR and DRR in
the QEMU NVMe emulator. We theoretically modeled the
arbitration schemes and showed how the analysis can be
used for SLA provisioning in cloud environments. Finally, we
discussed a new approach for providing service guarantees
using a QoS-aware SPDK runtime. We demonstrated through
experimental evaluation that our QoS-aware NVMe emulator
with DRR scheme and SPDK runtime can deliver bandwidth
service guarantees in cloud environments in an application
oblivious manner. This paper should prove useful to vendors
while designing arbitration schemes in SSDs and to cloud
providers in provisioning SLAs for tenants. In the future, we
plan to explore more along the communication perspective
through integration with RDMA and NVMe over Fabrics.
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