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Abstract—We consider the problem of covert communication
over a state-dependent channel, for which the transmitter and
the legitimate receiver have non-causal access to the channel state
information. Covert communication with respect to an adversary,
referred to as the “warden,” is one in which the distribution
induced during communication at the channel output observed by
the warden is identical to the output distribution conditioned on
an inactive channel-input symbol. Covert communication involves
fooling an adversary in part by a proliferation of codebooks;
for reliable decoding at the legitimate receiver the codebook
uncertainty is removed via a shared secret key that is unavailable
to the warden. Unlike earlier work in state-dependent covert
communication, we do not assume the availability of a shared
key at the transmitter and legitimate receiver. Rather, a shared
randomness is extracted at the transmitter and the receiver from
the channel state, in a manner that keeps the shared randomness
secret from the warden despite the influence of the channel state
on the warden’s output. An inner bound on the covert capacity,
in the absence of an externally provided secret key, is derived.

I. INTRODUCTION

Covert communication refers to scenarios in which reliable
communication over a channel must occur while simultane-
ously ensuring that a separate channel output at a node called
the warden has a distribution identical to that induced by
an inactive channel symbol [1]-[4]. For discrete memoryless
channels (DMC), the inactive input symbol is denoted xzq. It
is known that in a point-to-point DMC without state, if the
output distribution (at the warden) induced by x( is a convex
combination of the output distributions generated by the other
input symbols, then it is possible to achieve a positive rate;
otherwise the number of possible bits that can be reliably and
covertly communicated over n channel transmissions scales at
most as O(y/n). This result has motivated the study of other
models in which positive rates are achievable.

Of particular relevance to the present work, Lee et al. [5]
have considered the problem of covert communication over a
state dependent channel in which the channel state is known
to the transmitter but unknown to the receiver and the warden.
The authors derived the covert capacity when the transmitter
and the receiver share a sufficiently long secret key and also
derived a lower bound on the minimum length of the secret
key needed to achieve the covert capacity. Given the presence
of a channel state, one can wonder if covert communication
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Fig. 1. Model of Covert Communication Over State Dependent DMC

with positive rate is still possible without requiring an exter-
nal secret key. In particular, several works demonstrate the
benefits of exploiting common randomness and channel states
to generate secret keys. For instance, the problem of stealth
secret key generation from correlated sources has been studied
in [6], [7] and covert secret key generation has been studied in
[8], [9]. Most importantly, the usefulness of exploiting states
for secrecy has been extensively investigated. The discrete
memoryless wiretap channel with random states was first
studied by Chen and Han Vinck [10], who studied a scenario
in which the CSI is available only at the encoder. They
established a lower bound on the secrecy-capacity based on a
combination of wiretap coding with Gelfand-Pinsker coding.
Generally speaking, the coding scheme with Channel State
Information (CSI) outperforms the one without CSI, because
perfect knowledge of the CSI not only enables the transmitter
to beamform its signal toward the legitimate receiver but
also provides a source of common randomness from which
to generate a common secret key and enhance the secrecy
capacity. Khisti et al. [11] studied the problem of secret key
generation from the channel state and established the secret
key capacity. Chia and El Gamal studied the state-dependent
wiretap channel with weak secrecy, proposing a scheme in
which the transmitter and the receiver extract a key from
the state, and protect the confidential message via a one-
time-pad driven with the extracted key [12] (see also [13]
and [14]). Han and Sasaki [15] subsequently extended the
coding scheme to achieve strong secrecy. Goldfeld et al. [16]
proposed a superposition coding scheme for the problem
of transmitting a semantically secure message over a state
dependent channel while the channel state is available non-
causally at the transmitter.

We study here the problem of covert communications over



a state dependent discrete memoryless channel with channel
state available non-causally at both the transmitter and the
receiver (see Fig. 1). The main innovation of this work is to
show that the channel state can be used to simultaneously and
efficiently accomplish two necessary tasks: using the channel
state for a Gelfand-Pinsker style encoding to assist covert
communication while also extracting shared randomness at the
two legitimate terminals that is kept secret from the warden, to
resolve the multiple codebooks that are necessary for covert
communication. The shared randomness extracted from the
state effectively takes the place of the external secret key in
other models, thus generalizes and expands the applicability
of covert communication. We derive an inner bound on the
covert capacity of this problem, as well as a condition that
shows when this scheme results in a positive rate.

II. PRELIMINARIES

Throughout this paper, random variables are denoted by
capital letters and their realizations by lower case letters.
The set of e—strongly jointly typical sequences of length n,
according to Pxy, is denoted by 72(") (Px,y). For conve-
nience, whenever there is no danger of confusion, typicality
will reference the random variables rather than the distribu-
tion, e.g., we write 7" (X,Y) or T (X|[Y'). Superscripts
denote the dimension of a vector, e.g., X"™. The integer set
{1,..., M} is denoted by [1, M], and X{;.; indicates the set
{Xi, Xit1,...,X;}. The cardinality of a set is denoted by |-|.
The total variation between probability mass functions (pmfs)
is defined as ||g—p|[1 = 1 >, |p—q/ and the Kullback-Leibler
(KL) divergence between pmfs is defined as D(P||Q) =
> p(x)log % The support of a probability distribution
P is denoted by supp(P). The n-fold product distribution
constructed from the same distribution P is denoted P".
Px =~ Qx indicates D(Px||Qx) < € (or ||Px — Qx|l; < e).

Consider a discrete memoryless state-dependent channel
as shown in Fig. 1. The finite sets (X,S,),Z) and the
transition probability distribution Wy, 7 x s are the consti-
tutive components of this channel. Here, X is the channel
input, ) and Z are the channel outputs at the legitimate
receiver and the warden, respectively. All of these alphabets
are finite. Let zp € X be a symbol corresponding to the
case in which the transmitter is not communicating with the
receiver. We assume that the channel state is independent
and identically distributed (i.i.d.) and drawn according to
Ps. Define Qo(-) = > cs®@s(s)Wzx,s(|20,5) and let
Q4 = [1;-, Qo. We define a non-negative cost g(z) for every
channel input x € X. The average cost of an input sequence
a" € X" is g(z") = LY | g(x;). The channel state is
available non-causally at both the transmitter and the receiver
(see Fig. 1) while the warden does not have access to it. An
(IM],n) code consists of an encoder that maps (M, S™) to
X™ € X", and a decoder at the receiver that maps Y to
M € M. The transmitter and the receiver want to design a
code that is both reliable and covert. The code is defined to
be reliable if the probability of error P\ = P(M # M)

goes to zero when n — oo. The code is covert if the war-
den cannot determine whether communication is happening
(hypothesis H;) or not (hypothesis Hy). The probabilities of
false alarm (accepting H; when the transmitter is not sending
a meaningful information) and missed detection (accepting Hy
when the transmitter is sending a meaningful information), are
denoted by « and [, respectively. We know that a blind test
without looking at the channel output satisfies « + 3 = 1. If
Pz~ denotes the distribution induced at the warden’s output
when the transmitter sends a message, the optimal hypothesis
test by the warden satisfies o + 8 > 1 — /D(Pz»||QR)
[17]. Therefore, to show that the communication is covert
it is sufficient to show that D(Pz~||Qf) — 0. Note that
supp(Qo) = Z otherwise D(Pz=||Qf) — oo. Consequently,
our goal is to design a sequence of (2"%, n) codes such that

lim P™ — 0, 1)
n— o0

Jim D(Pz|Qg) = 0, (2)
lim E[g(X"™)] <G. 3)

We define the covert capacity as the supremum of all achiev-
able covert rates and denote it by Cyc.

III. MAIN RESULT

Our main result is a lower bound for the covert capacity, ob-
tained by designing a coding scheme in which the transmitter
not only generates a key from S but also selects its codeword
according to S by using a likelihood encoder [18].

Theorem 1. The covert capacity of DMC Wy, 7|5 x with
noncausal CSI at the transmitter and the receiver is lower-
bounded as

Cnec > max

p(u), z(u,s)

I(U;S8,Y) - 1(U; 9), “4)

where the maximum is distributions of the form
QsPuisPxiu,sWyz|x,ss (5)
such that
H(S|Z) > 1(U; S, Z) —1(U; S,Y), (6)
E[g(X)] < G, and Qz = Qo.

Remark 1. Theorem 1 suggests that the key rate that we
extract from channel state (i.e. H(S|Z)) should be at least
as large as the Right Hand Side (RHS) of the (6).

Proof. We adapt a block-Markov encoding scheme over B >
0 consecutive and dependent blocks. This scheme involves
the transmission of B — 1 independent messages over B
channel block transmissions each of length r, indexed by
7 = 1,2,...,B, such that n = rB. Here, we assume B
and B — 1 are fixed and sufficiently large positive integers.
Therefore, the warden’s channel output observation Z" can
be described as Z" = (Z7,...,Zp) in which each Z} for
j € [1, B] indicates the channel output in block j. Hence,
the induced distribution by the coding scheme at output of the
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Fig. 2. Functional dependence graph for the block-Markov encoding scheme

warden is Pyn £ PZ{,..., zr, and the target output distribution
. B
is Q% = [[;=, Q%. Note that

Q%) =D(Pg;..z;|1Q%)
B

D(Pgn

D(PZ}‘|ZJJ.3H||QTZ|PZ;BH)

<
—

B

=) [D(Pz[|Q%) + D(Pyr 75,1 ||Pz; | Py.0)]
j=1
B
g T B,r
= [D(Pz Q) +1(Z}; 27, (7
j=1
where Zﬁﬂ {Z;41,... Zp}. Therefore, to show

D(Pz»||Q%) — 0 we need to show that Vj € {1,... B}
n—oo

both D(Pzr[|Qy) — 0 and I(Z5;Z7]) — 0. As
. 700 . . r—oo .

shown in the following, we achieve this by constructing a
code that approximates ()7, in each block and show that the
dependencies across blocks, created by block-Markov coding,
can be eliminated. The random code generation is as follows:

Fix Py(u), Pyis(uls), z(u,s), Psu x,v,z(s u,z,y,2) =
QS(S)PU|S(U‘S)ﬂ{m(u,s):z}WY,Z X,S> and €; > eo > 0 such
that, Qz = Qo and E[g(X)] < 1.
Codebook for Key Generation: For each block j € [1, B], to
generate an efficient key K of rate Rx by using the channel
state S}, we create a function ®(S7) € [1,2"#«] through
random binning. The key K; = ®(S7) obtained in block j €
[1, B] is used to assist the encoder in the next block.

Codebook for Message Transmission: For each block j €
[1,B] and for each k;j_; € [1,2"%], m; € [1,2"F], and
l; € [[1,2”%/]], randomly and independently generate or R
codewords u"(k;j_1,m;,¢;) according to []._, p(u;). These
constitute the codebook C,,. The indices (k;_1,m;,{;) can be
seen as a two layer binning. We define an ideal Probability
Mass Function (PMF) for codebook C,, as

(Cn) . ) YL T T ) —
FKj_l,Mj,Lj,Ur,S;,Z;,Kj(kjfl’mgvéjaU 75]-,23',]%) =

27T(Rk+R+R/)

X L (g -1my )=
X Pgy (silu”) x Wy (85, 25 10") X Lia(sr)=p;}-

®)

where Wz 5 is the marginal distribution of Wy 7|y, 5 in (5).

Encoding: In the first block, we choose a codeword ran-
domly and transmit it over the channel and use the CSI to
generate a key k; for the next block. In block j € [2, B], the
codeword U™ will be chosen based on message, key and the

current CSI; simultaneously we generate a key from CSI for
the next block.

For the first block, the transmitter generates a key from
CSI and the encoder chooses (ko,m1,¥;) uniformly at ran-
dom and finds codeword u”(kg, m1,¢1) according to these
indices. It then transmits a codeword z” where x; =
x(ui(k03m17£1)351,1)~

For block j € [2,B], to send message m; according to
the generated key k;_; from the previous block and the CSI
of the current block, the encoder selects index ¢; from bin
(kj—1,m;) according to the distribution

P§|U (S;|UT(kj,17m]‘7fj))

X Py (sylur(kj—r,my, €))7
e1,2rR]
)

where pg‘U is defined from the ideal PMF in (8). Each
coordinate of the transmitted signal is a function of the state, as
well as the corresponding sample of the transmitter codeword
s, i.e., xTr; = x(ui(kj_l, myj, Ej), Si).

For a fixed codebook C,,, the induced joint distribution is

(Cn) ) /R PR Y S NN
PKJ'71,]\/fj,Lj,UT,S;‘,Z;,Kj (k.j_l’m.7’€.77u 78j7zj7k]) -

Q5(sh) x 27T Rt R o £(05]8% kj_1,my)
X Ly —1,my )=y X Wois,o (25185, 07) X Liasr)=n;1-
(10)
Covertness Analysis: Now, we show that this coding scheme
guarantees that Ec, Pécn") — Q%|[i1 —— 0 and therefore
n—oo
Ec, [D(PY]|Q%)] — 0 [19, eq. (323)]. From the expan-
n—oo

sion in (7), note that for every j € [2, B],
T B,’I“ T, B,’I“
I[(Zj ) Zj+1) < H(Zj s K, Zj+1)

@ r

f(5s5, kj—1,my) =

(1)

where (a) is because Z7 — K; — Z JB /) forms a Markov chain
as seen in the functional dependence graph depicted in Fig. 2.
Next, note that

r Cn Cn Cn
(25 K;) = D(PE5 ||\Pg) Pic)

® e .
< D(P" 105 Qx,),

where Qf, is the uniform distribution on [1,2"%%] and (b)
follows from

D(Pzr k,||Pzr P;) = D(Pzr k|| Q2 Qx,)

12)



= D(Pk,[|Qxk,) — D(Pzr[|Q%). (13)
Therefore by combining (12) and (7), we have
B
D(PEI|Q%) < 2 D(PL [1Q4Qxk,)-  (14)
j=1
By using the triangle inequality we have:
Ec,|IPSk, — Q2 Qx, 1l < Ee, IS, — TS5 Il
+ Ee, ||Fzr 'k, — QzQr, - (15)
To bound the first term on the RHS of (15) note that
Fgén;g ) — o—r(R+Rk) _ P(CJ ), . (16)
Ticrisy = Picis (17)
(Lcﬂz)\/fj K187 — fs5, kj—1,my) = Péc\]aIJ,K] 1,87
(18)
Fg:ﬁ)Mj,Kj_l,Lj,s; = Lur(kyo1.my ;) =i}
= P,y my 5 19
F(CH\)M,,KJ_I,L»,S;,UT =Wzu,s = P(C|) Kj_1,L;,87,Um
(20)
where (18) is due to (9). Hence,
Ec,|1P3; %, = T, I
< Ee, ||P(€ 1)v1 Kio1,L5,UT, 27 K *F(sc J)V[ KoLy U 2T K I3
v KJ 1,M; F(Scfgfj,hjwj||1
= Ec,[|Qs — STTI}( —1=1,M; il @D

where (c) follows from the symmetry of the codebook con-
struction with respect to M and K;_;. Based on the soft cov-
ering lemma [20, Corollary VIL.5] the RHS of (21) vanishes
if

R' > 1(U;9). (22)

To bound the second term on the RHS of (15) note that

=2 220 e

sy kj—1 my

Wg,Z\U( IE J|u (kj—1,mj,£5)) x 1{@(5;):kj}~

F(C ) o

(23)

where Wg ., = g\U Z1U,S"

Using Pinsker’s inequality, it is sufficient to bound
Ec, [D(T (ZCT }( ||Q%QK,)] as in (24) shown at the top of next
age. In (26 = min
pae ( ) Hosz (u,5,2)€U,S,Z)

hz = migPZ(z). When r — oo then 5 — 0 and if we
€

PU757z(u, S, Z) and

choose Rx = H(S|Z) — €, ¥y goes to zero when r grows if
R+ R+ R >1(U;8S,2), 27
R+ R+ R >1(U; Z) (28)

where (28) is redundant because of (27).

Decoding and Error Probability Analysis: By following the
same steps as in [5], the probability of error vanishes when n
grows if

R+ R <I(U;S,Y). (29)

Input Cost Analysis: The proof follows similar lines to [S5,
Sec VI.

The region in Theorem 1 is derived by remarking that the
scheme requires Rx > Ry and applying Fourier-Motzkin to
(22), (27), and (29). O
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