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A Bit More Than a Bit Is More Than a Bit Be�er
Faster (essentially) optimal-rate many-server PIR

Abstract: We study both the practical and theoretical effi-
ciency of private information retrieval (PIR) protocols in a
model wherein several untrusted servers work to obliviously
service remote clients’ requests for data and yet no pair of
servers colludes in a bid to violate said obliviousness. In ex-
change for such a strong security assumption, we obtain new
PIR protocols exhibiting remarkable efficiency with respect
to every cost metric—download, upload, computation, and
round complexity—typically considered in the PIR literature.

The new constructions extend a multiserver PIR proto-
col of Shah, Rashmi, and Ramchandran (ISIT 2014), which ex-
hibits a remarkable property of its own: to fetch a b-bit record
from a collection of r such records, the client need only down-
load b + 1 bits total. We find that allowing “a bit more” down-
load (and optionally introducing computational assumptions)
yields a family of protocols offering very attractive trade-
offs. In addition to Shah et al.’s protocol, this family includes
as special cases (2-server instances of) the seminal proto-
col of Chor, Goldreich, Kushilevitz, and Sudan (FOCS 1995)
and the recent DPF-based protocol of Boyle, Gilboa, and Ishai
(CCS 2016). An implicit “folklore” axiom that dogmatically
permeates the research literature on multiserver PIR posits
that the latter protocols are the “most efficient” protocols pos-
sible in the perfectly and computationally private settings, re-
spectively. Yet our findings soundly refute this supposed ax-
iom: These special cases are (by far) the least performant rep-
resentatives of our family, with essentially all other parameter
settings yielding instances that are significantly faster.
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1 Introduction
Private information retrieval (PIR) is a cryptographic primi-
tive enabling clients to fetch records from a remote database
without revealing to the database holder(s) which records
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they fetch. This paper concerns both the practical and theoret-
ical efficiency of so-called “1-private PIR protocols”, wherein
the database is hosted jointly by several, say ` > 1, computa-
tionally bounded and pairwise non-colluding servers.

In recent work, Shah, Rashmi, and Ramchandran [28]
proposed a construction in this model1 with the following
remarkable property: to fetch a b-bit record from a database
comprising r such records, the client need only download b+1
bits total. In other words, their construction imposes just one
bit of download overhead compared with the most efficient
conceivable non-private protocol, thereby establishing that
the (download) capacity of 1-private multiserver PIR is effec-
tively perfect. Inspired by Shah et al.’s result, the information-
theory research community has produced a steady succes-
sion of papers characterizing the download capacity of mul-
tiserver PIR protocols under a variety of constraints—when
the number of servers is fixed [31]; when a threshold number
of servers can collude [30]; when a subset of the servers may
be non-responsive [32] or Byzantine [3]; and so on. One can
justifiably view Shah et al.’s result and the body of work it in-
spired as a breakthrough in our understanding of multiserver
PIR’s theoretical underpinnings and yet, to date, this work has
had essentially zero impact on PIR research within the cryp-
tography and applied privacy research communities. Indeed,
so aggressively optimizing download cost at the expense of
all else imposes rather exorbitant costs for the other metrics
of interest—so exorbitant, in fact, that the constructions in
each of the aforementioned papers end up falling short of sat-
isfying any reasonable definition of “non-triviality” for a PIR
protocol (see Definition 3 below).

Our contributions

In this paper, we revisit the “one-extra-bit” construction of
Shah et al. with an eye toward mathematical rigor and con-
crete practicality. Specifically, we present and analyze a novel
family of what we call “one-extra-word” protocols, of which
the one-extra-bit construction is an extreme special case. In-
terestingly, the new family also captures as special cases
the 2-server perfectly 1-private protocol of Chor, Goldreich,
Kushilevitz, and Sudan [11, §2.1] and the computationally 1-

1 In fact, the servers in Shah et al.’s construction—much like the servers in all but
the most efficient of our constructions—need not be computationally bounded for
the privacy guarantee to hold.
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private protocol of Boyle, Gilboa, and Ishai [8, §3.2]. In terms
of practicality, the fact that our family captures the latter
two protocols is significant; indeed, an implicit “folklore” con-
jecture positing that these protocols are the “most efficient”
possible appears to underlie a good deal of existing PIR re-
search [20, 27, 34]. Yet our findings soundly refute this folk-
lore conjecture: These special cases are among the least prac-
tical representatives of our family, with essentially all other
reasonable parameter settings yielding instances that are sig-
nificantly more practical. Specifically, the performance im-
provements we obtain relative to these special cases grows in
proportion to the number of pairwise non-colluding servers
that participate in each query, up to some inflection point af-
ter which further marginal improvements to download and
computation costs are dwarfed by rapidly growing upload
costs to an unrealistically large number of servers. (Contin-
uing well beyond this inflection point eventually yields the
one-extra-bit construction.) The new family sports detailed
security and concrete efficiency analyses, which help to elu-
cidate (and improve on) some curious properties of the effi-
ciency and privacy (or lack thereof) of the original one-extra-
bit protocol.

As our main contribution, we exhibit, for any L ≥ 1,
a 2L-server one-extra-word protocol instance that, although
falling short of imposing only a single bit of download over-
head, nonetheless (i) provides superior privacy guarantees
compared to the one-extra-bit construction and (ii) is shock-
ingly efficient (when L > 1) with respect to every cost
metric—download, upload, computation, and round complex-
ity—typically considered in the PIR literature. For a database
comprising r -many b-bit records, the client in our protocol
uploads just 130L(dlg re−7) bits and downloads justb/(2L − 1)
bits of data per server, while each server performs Ldr/64e
AES-128 evaluations and an expected rb/(2L − 1) bit opera-
tions (at the 128-bit security level). These download and com-
putation costs sharply match known lower bounds, suggest-
ing that our protocols are among the most efficient possible.
We also extend this protocol to arbitrarily many (non-power-
of-2) servers, at the cost of increasing the upload cost and
AES-128 evaluation count each by a (small) factor polynomial
in the security parameter. This all compares very favorably
with prior work; in fact, based on our analysis and empirical
performance measurements from our prototype implementa-
tion, we hazard to claim that, all told, ours is the most prac-
tical multiserver PIR protocol proposed and implemented to
date—by a significant margin.

In short: Our main contribution is to transform Shah et
al.’s one-extra-bit construction from a (highly impractical)
theoretical result into what we believe to be the most efficient
PIR protocol currently in existence, albeit under the same very
strong trust assumption employed by the original.

Outline: Section 2 gives formal definitions for private in-
formation retrieval. Section 3 presents the one-extra-word
family of protocols (deferring its “one-extra-bit” instantiation
to Appendix B and a detailed security analysis for the fam-
ily as a whole to Appendix C). Section 4 introduces the bit-
more-than-a-bit construction, a subfamily of one-extra-word
protocols that improves on one-extra-bit in several respects.
Section 5 describes an efficient, computationally 1-private bit-
more-than-a-bit construction, first for 2L servers (§5.2) and
then for arbitrarily many servers (§5.3). Section 6 presents
findings from our prototype implementation, including head-
to-head comparisons with the “folklore” protocols of Chor et
al. and Boyle et al. in addition to a selection of multiserver
protocols from the open-source Percy++ (§6.4) and RAID-PIR
(§6.5) libraries. Section 7 wraps up with some concluding re-
marks and directions for future work. Appendix A briefly dis-
cusses of our results in the context of related work.

2 Private information retrieval
Let F be a finite field and let D ∈ Fr×s be a database con-
sisting of r many s-element records (called blocks), each of
which is indexed by a positive integer less than or equal to
r . Intuitively, PIR is a cryptographic technique that allows a
client to fetch one or more blocks of its choosing fromD with-
out disclosing to the remote server (or servers) holding D any
information about which blocks it fetches. We formalize this
intuitive notion of privacy using an indistinguishability-based
definition, as described below.

Formally defining PIR: Consider the interaction that oc-
curs between a client who seeks the block D⃗i ∈ Fs indexed
by i and a remote database server (or servers) who holds D.
The client initiates the interaction by sending a query string
q ∈ {0,1}∗ to the server(s), who return a response string
z ∈ {0,1}∗ from which the client extracts its desired block.
Let I , Q , R, and E respectively denote the random variables
that describe (i) the index i ∈ [1. .r ] of the block the client
seeks, (ii) the query string q ∈ {0,1}∗ the client sends to the
server, (iii) the response string z ∈ {0,1}∗ the server(s) returns
to the client, and (iv) the string d ∈ Fs the client ultimately
outputs. From the client’s perspective, the 4-tuple (I ,Q,R,E)
completely characterizes the interaction that occurs in a given
protocol run.

“Impossibly perfect” privacy: Ideally, a PIR protocol would
guarantee that an adversary who controls the database
server(s)—no matter how powerful and well-positioned to
launch an attack—cannot possibly deduce anything from a
client’s requests (beyond the trivial fact that the client is look-
ing for something). One could formalize this requirement by
insisting that the distribution of I be statistically independent
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from that ofQ . This requirement leads to a notion that we re-
fer to as “impossibly perfect” privacy, so called because Chor
et al. observed in their seminal paper [11, §5.1] that this level
of privacy is impossible for any “reasonable” PIR construction
to provide. (We elaborate on what we mean by “reasonable”
shortly.) It is nevertheless instructive to state a formal defini-
tion for impossibly perfect privacy—no matter how unsatisfi-
able—as it will serve as a useful starting point for our actual,
satisfiable privacy definition (Definition 4) below.

Definition 1. The interaction described by (I ,Q,R,E) provides
impossibly perfect privacy if, for all block indices i, i∗ ∈ [1. .r ]
and for all query strings q ∈ {0,1}∗, we have

Pr
[
Q = q

|︁|︁ I = i] = Pr
[
Q = q

|︁|︁ I = i∗] ,
where the probability is over all the random coin tosses made by
the client.

Definition 1 insists that the conditional distribution ofQ given
I = i be identical in its entirety to that of Q given I = i∗ (as
opposed to merely insisting that these distributions be ε-close
or polynomial-time indistinguishable, or insisting that certain
substrings of Q be identically distributed); that is, it insists
that the client’s query string q contains “no information”—in
a strict, information-theoretic sense—about which block the
client is using that query string to fetch. This suggests two
natural relaxations that might lead to “possible” notions of
privacy: (i) insist that the above distributions be merely com-
putationally indistinguishable or (ii) restrict the attacker to
observing only part of any given sample from Q .

In fact, the privacy definition we ultimately use—called
computational 1-privacy—adopts both relaxations. Before
stating that definition, we define two additional requirements
(correctness and non-triviality) for a PIR protocol, which col-
lectively describe what we meant above when we spoke of
“reasonable” PIR protocols with respect to which Definition 1
is impossible to satisfy.

Correctness: One trivial way to satisfy Definition 1 is to
have the client choose q ∈ {0,1}∗ arbitrarily and without re-
gard for i . Upon receiving q from the client, the server(s) like-
wise responds with arbitrary z ∈ {0,1}∗, unrelated to q or D.
This interaction clearly offers perfect privacy, but it is not ter-
ribly useful: the response z provides nothing to help the client
correctly extract its desired block. The following correctness
criterion disqualifies such “useless” protocols, requiring that
the client actually learns its desired block.

Definition 2. The interaction described by (I ,Q,R,E) provides
(perfect) correctness if

Pr
[
E = D⃗i

|︁|︁ I = i] = 1,

where D⃗i ∈ Fs denotes the block indexed by i within D.

Notice that the distribution of E is dependent not only on
those of I andQ but also on that of R; thus, correctness is nec-
essarily contingent on the faithful execution of the protocol
by the server(s).

Non-triviality: Another trivial way to satisfy Definition 1,
while simultaneously satisfying Definition 2, is to again have
the client choose q ∈ {0,1}∗ arbitrarily and without regard
for i , but then to have the server(s) respond with the entire
database; that is, with z = D. Upon receiving D, the client
would then extract the block D⃗i from D on her local ma-
chine, thus ensuring perfect privacy in exchange for consid-
erable download overhead. The following non-triviality crite-
rion disqualifies such “trivially correct” protocols by insisting
that the (bidirectional) communication cost of the interaction
be asymptotically smaller than the size of D.

Definition 3. The interaction described by (I ,Q,R,E) provides
non-trivial communication if∑

n∈N
n · Pr

[
|Q | + |R | = n

]
∈ o(|D |);

that is, if the expected (combined) bitlength of the query and
response strings scale sublinearly with the bitlength |D | of D.2

We remark that the various capacity-achieving PIR construc-
tions described in the body of work [3, 28, 30–32] cited in Sec-
tion 1 satisfy a weaker definition of non-triviality wherein
only download (i.e., |Q |) is required to scale sublinearly
with |D |. In fact, in several of those constructions—e.g., the
capacity-achieving constructions of Sun and Jafar [30–32]—
the upload cost |R| scales (super-)exponentially in |D |.

Computational and perfect C-privacy: The confluence of
Definitions 2 and 3 rules out the “useless” and “trivial” PIR
candidates we have considered thus far; indeed, as noted pre-
viously, Chor et al. proved in their seminal paper on PIR that
it would be impossible to construct any protocol—no mat-
ter how clever—that satisfies Definitions 1–3 simultaneously.
Nevertheless, in the very same paper, they proposed a (simul-
taneously correct and non-trivial) protocol involving several
(say, ` > 1) non-colluding but otherwise untrusted servers
that does perfectly hide the client’s request from each of the
` servers in isolation. In such a multiserver interaction, the
query and response are both `-tuples, say q = (q1, . . . ,q`) and
z = (z1, . . . , z`), from which the client sends qj ∈ {0,1}∗ to
and receives zj ∈ {0,1}∗ from the j th server.

It is clear that a grand coalition comprising all ` servers
in such a multiserver interaction wields privacy-infringing
powers tantamount to those of the lone server in a single-

2 One could also consider a variant of Definition 3 that considers the maximum
possible—rather than expected—communication cost of an interaction.
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server interaction, in which case Chor et al.’s impossibility re-
sult applies.3 Consequently, no multiserver protocol can hope
to provide perfect privacy unless certain coalitions among
the servers do not form. In order to capture this limitation,
it is necessary to both extend and relax Definition 1. Let
C ⊆ [1. . `] be an arbitrary coalition among the ` servers and
let QC denote the random variable that describes the subse-
quence of query strings (qj )j ∈C that the client sends to the
servers in C .

Definition 4. The interaction described by (I ,Q,R,E) provides
perfect privacy with respect toC (or perfectC-privacy) if, for
all block indices i, i∗ ∈ [1. .r ],

Pr
[
QC = (qj )j ∈C

|︁|︁ I = i] = Pr
[
QC = (qj )j ∈C

|︁|︁ I = i∗] ,
where the probability is over all the random coin tosses made by
the client.

Notice that the conditional probabilities on QC depend only
on the distributions of I and Q : Definition 4 permits no re-
strictions on the computational abilities of nor strategies em-
ployed by the servers in C—it merely assumes that they
learn nothing of the qj for j ∈ [1. . `] \ C . Many of the PIR
constructions considered herein are provably private in the
sense of Definition 4; however, proving that our most effi-
cient construction (see Section 5) is private requires—in ad-
dition to a non-collusion assumption—a computational as-
sumption (namely, the existence of fixed-expansion pseudo-
random generators). Such a “computational” notion of privacy
formultiserver PIR protocols was first considered byChor and
Gilboa [9] shortly after the introduction of perfectly private
PIR.

Definition 5. The interaction described by (I ,Q,R,E) provides
computational privacy with respect to C (or computational
C-privacy) if, for all block indices i, i∗ ∈ [1. .r ], the distribution
ensembles {QC

|︁|︁ I = i}λ∈N and {QC

|︁|︁ I = i∗}λ∈N are computa-
tionally indistinguishable (with security parameter λ).

We stress that the hardness of distinguishing distribution en-
sembles depends not on D but on some underlying secu-
rity parameter (the size of which will invariably impact the
computationally burden on the client and honest servers).
Looking ahead, the security parameter in our computation-
ally 1-private bit-more-than-a-bit constructions will dictate
the seed-length for some fixed-expansion pseudorandom gen-
erator (which we concretely realize using AES).

3 Indeed, given an `-server protocol that maintains privacy against such a grand
coalition, one could easily construct a single-server protocol inwhich the lone server
takes on the roles of all ` servers. The resulting protocol would clearly contradict
Chor et al.’s impossibility result.

An interaction that satisfies either Definition 4 or 5 with
respect to all coalitions in the family of subsets Γ =

{
C ⊆

[1. . `]
|︁|︁ |C | ≤ t

}
for some positive-integer threshold t < ` is

colloquially said to be (perfectly or computationally) t-private.
Given Definitions 2–5, we can now provide a formal defini-
tion for 1-private PIR protocols.

Definition 6. The interaction described by (I ,Q,R,E) is a
(perfectly or computationally) 1-private information retrieval
protocol if it provides (i) (perfect) correctness, (ii) non-trivial
communication, and (iii) (perfect or computational) 1-privacy
(in the senses of Definitions 2–5, respectively).

3 “One-extra-word” protocols
We now present our generalization of the “one-extra-bit” con-
struction over an arbitrary finite field F; we refer to this gen-
eralization as the “one-extra-word” family of PIR protocols.
Members of the one-extra-word family are parametrized by
(i) the underlying field F, (ii) the number s of F elements
needed to represent each block, (iii) the number of partici-
pating servers ` > 1, and (iv) a vector ν⃗ ∈ Fs and mapping
φ to be described below. We call such a tuple of parameters
(F, s, `,φ, ν⃗ ) a one-extra-word instance. (To recover one-extra-
bit as a one-extra-word instance, we simply set F = GF(2)
and ` = s + 1, and then instantiate the ν⃗ and φ in a particular
way—more on this in Appendix B.)

Notation and preliminaries: Recall that the database D is
an r ×s matrix over a finite field F, in which each of the r rows
is an s-word block of fetchable data. For each j ∈ [1. .s + 1],
let e⃗j denote the j th standard basis vector of Fs+1. (We also
overload e⃗1, . . . , e⃗s to denote the standard basis vectors in Fs ;
the dimension of the vector space in which a given e⃗j resides
will always be clear from context.)

Denote byM(r,s) ⊆ Fr×(s+1) the set of all height-r matrices
whose rows are vectors from the standard basis

{
e⃗1, . . . , e⃗s+1

}
,

and consider the family (indexed by i ∈ [1. .r ]) of equivalence
relations ≡i defined on the A,B ∈ M(r,s) as

A ≡i B iff Rowi∗ (A − B ) ≠ 0⃗ implies i∗ = i,

where Rowi∗ (A − B ) denotes the i∗ th row of A − B and 0⃗
denotes the zero vector in Fs+1. Read the expression A ≡i B
as “A is i-equivalent to B ”.

The following two-part observation is an immediate con-
sequence of the above definitions of M(r,s) and the ≡i .

Observation 1. Given any A,B ∈ M(r,s) and i, i∗ ∈ [1. .r ],
(i) there exists an equivalence class Eq(i; A) ⊆ M(r,s) compris-

ing precisely s + 1 matrices (including A itself) such that
A ≡i B iff B ∈ Eq(i; A), and

(ii) if A ≡i B and A ≡i∗ B , then i = i∗ or A = B .
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The s + 1 matrices in Eq(i; A) whose existences are guar-
anteed by Part (i) of Observation 1 are precisely those
matrices in M(r,s) that are identical to A in all but (per-
haps) their i th rows. Moreover, the i th rows of the matri-
ces in Eq(i; A) collectively span the entire standard basis
for Fs+1; in other words, if Eq(i; A) =

{
B1, . . . ,Bs+1

}
, then{

Rowi (B1), . . . ,Rowi (Bs+1)
}
=

{
e⃗1, . . . , e⃗s+1

}
up to order-

ing. By convention, we assume the subscripts indexing the
B j ∈ Eq(i; A) are selected so as to induce a “sorted” view in
which Rowi (B j ) = e⃗j for each j ∈ [1. .s + 1]. Part (ii) of Ob-
servation 1 merely adds that a given pair of distinct matrices
can be i-equivalent for at most one index i ∈ [1. .r ]. An easy
counting argument establishes that a given pair (A,B ) need
not be i-equivalent for any of the i ∈ [1. .r ].

Encoding the database: The database encoding algorithm
takes as input the database D ∈ Fr×s , a vector ν⃗ ∈ Fs , and
a (surjective) function φ : M(r,s) → [1. . `] mapping each ma-
trixA ∈ M(r,s) to a positive integer; it outputs a collection of `
buckets—one per server—indexed by the j ∈ [1. . `]. The algo-
rithm first initializes the ` buckets to empty and “augments”
the databaseD ∈ Fr×s by affixing an (s+1)th column, which it
computes as the matrix-vector product D ν⃗ T ∈ Fs×1. Denote
the augmented database by D∗ ≔ D‖

(
D ν⃗ T) ∈ Fr×(s+1) and

observe that, by construction, the final column of D∗ is just a
linear combination of its first s columns.

Next, to populate the buckets, the algorithm computes,
for each of the (s +1)r matricesA inM(r,s), the Frobenius inner
product4, 〈D∗,A〉F, of D∗with A, and then it places the result
(a scalar from F) in the bucket indexed by φ(A). In the sim-
plest possible instantiations, φ is a bijection so that each of
the (s + 1)r resulting scalars constitutes the sole contents of
its own bucket (thus necessitating ` = (s + 1)r non-colluding
servers). In the sequel, we discussmore efficient instantiations
of φ (including the one employed by one-extra-bit), which al-
low the scheme to use significantly fewer servers.

Fetching a block: Recall that the database D comprises r
blocks and that we defined r equivalence relations ≡i over
M(r,s). A query for D⃗i, the block at index i within D, cor-
responds to a random equivalence class of M(r,s) under ≡i .
Specifically, the client fetches D⃗i by first selecting a uniform
randommatrixA ∈R M(r,s), and then retrieving 〈D∗,B j 〉F from
bucket φ(B j ) for each B j ∈ Eq(i; A). Because ≡i is symmet-
ric (so that B ∈ Eq(i; A) iff A ∈ Eq(i; B )), for any given in-
dex i , there exist precisely (s + 1)r / (s + 1) = (s + 1)r−1 distinct
queries with which the client can request D⃗i. The next obser-
vation is a direct consequence of the remarks following Ob-
servation 1.

4 The Frobenius inner product ofD∗andA is 〈D∗, A 〉F ≔ tr(D∗AT) or, equivalently,
the sum of the products of each pair of corresponding components in D∗ and A .

Observation 2. If Eq(i; A) =
{
B1, . . . ,Bs+1

}
, then the s equa-

tions (e⃗j − ν⃗ ) · 〈x1, . . . ,xs 〉T = 〈D∗,B j 〉F − 〈D∗,Bs+1〉F for
j ∈ [1. .s] form a system of s linear equations in s unknowns.
Moreover, D⃗i = 〈x1, . . . ,xs 〉 is in the solution set of this system.

Note that Observation 2 implies that the client can com-
pute D⃗i given ν⃗ and the sequence of Frobenius products
〈D∗,B1〉F, . . . , 〈D∗,Bs+1〉F whenever the system of linear equa-
tions 

e⃗1 − ν⃗
...

e⃗s − ν⃗

D⃗i
T =


〈D∗,B1〉F − 〈D∗,Bs+1〉F

...

〈D∗,Bs 〉F − 〈D∗,Bs+1〉F

 (2.1)

has full rank and, therefore, a unique solution.

Theorem 1. A one-extra-word instance provides (perfect) cor-
rectness (in the sense of Definition 2) provided ‖ν⃗ ‖1 ≠ 1.5

Proof. Write
∑s

j=1 cj (e⃗j − ν⃗ ) = 0⃗, so that
∑s

j=1 cj e⃗j =
∑s

j=1 cjν⃗ .
If

∑s
j=1 cj = 0, then

∑s
j=1 cj e⃗j = 0⃗, which (due to the

linear independence of e⃗1, . . . , e⃗s ) can only happen when
cj = 0 for every j ∈ [1. .s]. Otherwise, if ∑s

j=1 cj ≠ 0,
then ν⃗ =

(∑s
j=1 cj e⃗j

)
/ (∑s

j=1 cj
) , in which case ‖ν⃗ ‖1 =∑s

j=1
(
cj/

(∑s
j=1 cj

))
=
(∑s

j=1 cj
)
/ (∑s

j=1 cj
)
= 1. �

We note that the choice ν⃗ = 0⃗ yields an especially convenient
(i.e., “already solved”) system of equations in which the ma-
trix on the left-hand side of Equation (2.1) is just the identity
matrix in Fs×s so that 〈D∗,B j 〉F − 〈D∗,Bs+1〉F is equal to the
j th word of D⃗i for each j ∈ [1. .s]. We consider arbitrary ν⃗ not
because it is ever beneficial to use a ν⃗ ≠ 0⃗—indeed, it seems
always best to set ν⃗ = 0⃗—but to ensure that the one-extra-bit
construction remains a special case of our own.

Communication cost analysis: By inspection, the down-
load cost aggregated across all servers (i.e., |R|) is s + 1 field
elements—one element from each of s+1many buckets.When
F = GF(2), this yields a download cost of justb+1 bits to fetch
a b-bit block, which is the lowest possible download cost for
any PIR protocol [28, Theorem 1].

For each j ∈ [1. .s + 1], the client must specify to the
server holding bucket φ(B j ) which of the |φ−1

(
φ(B j )

)
| Frobe-

nius products from that bucket it seeks; thus, the upload cost
aggregated across all servers (i.e., |Q |) is

F (A) ≔
∑s+1

j=1 max
(⌈
lg
|︁|︁φ−1 (φ(B j )

) |︁|︁⌉, 1) bits,
where themax is due to the fact that the client must still send
at least one bit to the server holding bucketφ(B j ), as a “signal”,
even if |φ−1

(
φ(B j )

)
| = 1 so that dlg|φ−1

(
φ(B j )

)
|e = 0.

5 Here ‖ν⃗ ‖1 ≔
∑s

j=1 νj denotes the L1-norm of ν⃗ = 〈ν1, . . . , νs 〉.
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Theorem 2. A one-extra-word instance provides non-trivial
communication (in the sense of Definition 3) provided the map-
ping φ satisfies

max
A∈M(r,s)

{
lg
|︁|︁φ−1 (φ(A)) |︁|︁} ∈ o(rw )

,

where w ∈ Ω(lg|F|) is the bitlength of (the representation used
to describe) each F element.

Proof. Since |R| = (s + 1)w < 2sw ∈ o
(
|D |

)
, it will suffice to

show that |Q | ∈ o
(
rws

)
. Let x = maxA ∈M(r,s)

{
lg|φ−1

(
φ(A)

)
|
}
.

The size of a query q = (q1, . . . ,qs+1) involving the servers
holding buckets Eq(i; A) =

{
B1, . . . ,Bs+1

}
is|︁|︁(q1, . . . ,qs+1)|︁|︁ =∑s+1

j=1 max
(⌈
lg
|︁|︁φ−1 (φ(B j )

) |︁|︁⌉, 1)
≤
∑s+1

j=1 max
(
dxe, 1

)
= (s + 1)max

(
dxe, 1

)
= (s + 1) o

(
rw

)
∈ o

(
rws

)
. �

The condition on maxA ∈M(r,s)
{
lg|φ−1

(
φ(A)

)
|
}
given by The-

orem 2 is sufficient but far from necessary to obtain non-
triviality. A necessary condition would require only that the
function F (A)mapping each choice ofA ∈ M(r,s) to the upload
cost conditioned on that choice satisfies Exp

[
F (A)

]
∈ o

(
|D |

)
.

However, the simpler (and stricter) condition in Theorem 2
immediately yields the following corollary.

Corollary 1. A one-extra-word instance provides non-trivial
communication (in the sense of Definition 3) if each bucket
holds a number of Frobenius products in 2o(rw ).

Note that Corollary 1 implies that a one-extra-word instance
provides non-trivial communication under the (perfectly rea-
sonable, yet much stronger) assumption that the storage ca-
pacity of each server is polynomially bounded in |D |.

Computation cost analysis: The (online) computation cost
for each server is effectively nil. The computation cost for the
client consists of the cost of setting up the system of equa-
tions—which is s subtractions in F—plus the cost of solving
that system—which is at most an additional O

(
s2+ϵ

)
field op-

erations, for some ϵ ≥ 0. In the special case where ν⃗ = 0⃗,
the latter step is “free” and the total client-side computation
cost is just s subtractions in F. (When F is a binary field, as in
the one-extra-bit construction and our own bit-more-than-a-
bit constructions, each of the s subtractions becomes a bitwise
exclusive-OR.)

Security analysis: Privacy of a one-extra-word instance
depends on the choice of φ. Note that each server holds one
and only one bucket; for convenience, we equate each server
with the bucket it holds. The next theorem gives necessary

and sufficient conditions for the interaction to provide per-
fect privacy against singleton coalitions (i.e., against individ-
ual servers).

Theorem 3. A one-extra-word instance provides perfect 1-
privacy (in the sense of Definition 4) if and only if the mapping
φ : M(r,s) → [1. . `] satisfies the following condition:

∀A ∈ M(r,s) and i ∈ [1. .r ], |︁|︁φ (Eq(i; A)) |︁|︁ = s + 1.
Intuitively, Theorem 3 says that a one-extra-word instance is
private (with respect to singleton coalitions) provided φ never
maps two distinct matrices from the same equivalence class
(under any of the ≡i ) to the same bucket. We note that this
condition is trivially satisfied when φ is a bijection; in the se-
quel, we describe some other choices for φ that also satisfy
the condition set forth in Theorem 3.

The proof of Theorem 3 uses Lemma 1, whose own proof
follows easily from Part (i) of Observation 1. Before stating
and proving the lemma, it will be helpful to briefly recall
the relevant portions of the process by which the client re-
quests a block D⃗i: the client selects a matrix A uniformly at
random from M(r,s), and then it retrieves 〈D∗,B j 〉F for each
B j ∈ Eq(i; A).

Lemma 1. For any i ∈ [1. .r ] and any B ∈ M(r,s), a client
seeking to fetch D⃗i retrieves the Frobenius product 〈D∗,B 〉F from
φ(B ) with probability 1/(s + 1)r−1.

Proof. Fix B ∈ M(r,s) and i ∈ [1. .r ], and let X be the (uniform)
random variable describing the client’s initial selection ofA ∈
M(r,s). We need to prove that Pr

[
B ∈ Eq(i; X )

]
= 1/(s + 1)r−1.

From the Law of Total Probabilities, we have

Pr
[
B ∈Eq(i; X )

]
=
∑

A∈M(r,s) Pr
[
B ∈ Eq(i; X )

|︁|︁ X =A]
·Pr

[
X =A

]
=
∑

A∈M(r,s) Pr
[
B ∈ Eq(i; X )

|︁|︁ X =A]
/(s + 1)r ,

which, since Eq(i; A) = Eq(i; B ) iff B ∈ Eq(i; A), equals

=
∑

A ∈M(r,s) Pr
[
X ∈ Eq(i; B )

|︁|︁ X =A]
/(s + 1)r .

Now, X is a uniform random variable on a sample space
of size (s + 1)r and we know, from Part (i) of Observation 1,
that |Eq(i; B )| = s + 1; hence, it follows that X takes on one of
the s + 1 values in Eq(i; B ) with probability (s + 1)/(s + 1)r =
1/(s + 1)r−1. Therefore,

Pr
[
B ∈ Eq(i; X )

]
=
∑

A ∈M(r,s)
(
1/(s + 1)r−1

)
/(s + 1)r

= 1/(s + 1)r−1. �

We emphasize that the probability in Lemma 1 depends nei-
ther on the particular choice of B ∈ M(r,s) nor on i ∈ [1. .r ].
We are now ready to prove Theorem 3, which follows from
Lemma 1 and Observation 1.
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Proof of Theorem 3. Let I be the random variable describing
the index i ∈ [1. .r ] of the block the client seeks and, for
each j ∈ [1. . `], let Q{j} : M(r,s) → 2φ

−1(j) be the random vari-
able that associates the client’s (uniform random) selection of
A ∈ M(r,s) with the subset of matrices B ∈ φ−1(j) for which
the client retrieves 〈D∗,B 〉F from bucket j as part of its query.
“If”: The “if” direction is an easy corollary to Lemma 1 and
Part (i) of Observation 1. Fix a bucket index j ∈ [1. . `] and
note that, by construction, Q{j}(A) = Eq(I ; A) ∩ φ−1(j).
By Lemma 1, for any given i ∈ [1. .r ] and B ∈ φ−1(j), we
have Pr

[
B ∈ Q{j}

|︁|︁ I = i
]
= 1/(s + 1)r−1; thus, it will suffice

to show that |Q{j}(A)| ≤ 1. But this follows contrapositively
from the condition |φ

(
Eq(i; A)

)
| = s + 1, since |Q{j} | ≥ 2

would imply the existence of B ,B′ ∈ Eq(i; X ) with B ≠ B′

and φ(B ) = φ(B′) so that |φ
(
Eq(i; X )

)
| < |Eq(i; X )| = s + 1.

“Only if”: The “only if” direction follows from Part (ii)
of Observation 1. Suppose there is an A ∈ M(r,s) with
|φ
(
Eq(i; A)

)
| < s + 1. Then, by the Pigeonhole Principle,

there must be a pair of distinct matrices B ,B′ ∈ Eq(i; A)
such that φ(B ) = φ(B′); so, set j = φ(B ) and let q∗ ≔ Q{j}(A)
be the query string for server j arising when the client se-
lects A in a query for D⃗i. By Part (ii) of Observation 1, we
know that B ∉ Eq(i∗; B′) for any i∗ ≠ i; hence, we have
Pr

[
Q{j} = q∗

|︁|︁ I = i
]
> 0 and Pr

[
Q{j} = q∗

|︁|︁ I = i∗
]
= 0,

which proves that the construction is not perfectly {j}-
private. �

Taken together, Theorems 1–3 imply that, given a suitable
vector ν⃗ and mapping φ, the one-extra-word construction
yields a perfectly 1-private PIR protocol. Moreover, as noted
previously, setting F = GF(2) yields a protocol having the
lowest download cost possible. The next section discusses
possible choices for φ.

4 “Bit-more-than-a-bit” protocols
We now describe our new “bit-more-than-a-bit” construc-
tion, a family of perfectly 1-private one-extra-word protocols
parametrized by the number of buckets ` ≥ 2 and the number
of words per block s . (Recall that the number of buckets equals
the number of servers.) Each member of the bit-more-than-a-
bit family uses a binary field F = GF(2w) where w = dbs e,
the all-0s vector ν⃗ = 0⃗, and the mapping φ : M(r,s) → [1. . `]
defined in Equation (1) below.

The “bit-more-than-a-bit” mapping: The new mapping
is much simpler than the one-extra-bit mapping described
in Appendix B. It represents each matrix A ∈ M(r,s) as an
r -digit integer expressed in radix (s + 1) using a “natural”
bijection, and then it assigns each integer to a bucket accord-
ing to its congruence class modulo `. The mapping is given by

φ(A) ≔
∑r

i=1(s + 1)
i−1 Ordi (A) mod `, (1)

where Ordi (A) = j iff Rowi (A) = e⃗j+1.
This mapping induces ` buckets, compared with (s +

1)r−1 buckets for the one-extra-bit mapping (cf. Equation (2));
hence, relative to the one-extra-bit construction, it reduces the
number of servers required from (b + 1)r−1—which is super-
exponential in |D |—to an arbitrary constant ` ≥ 2.

A consequence of this super-exponential reduction in the
number of buckets is that each bucket now contains about
(s + 1)r /` distinct w-bit Frobenius products. Specifically, the
buckets now have a size that grows (at least formally) ex-
ponentially with the number of blocks comprising D. Fortu-
nately, because each Frobenius product is easily computed as
a sum of just r -many words from GF(2w), it suffices for the
servers to store a copy of D and then construct needed Frobe-
nius products on the fly. We discuss this idea further in Sec-
tion 4.1.

Communication cost analysis (or “choosing a field size”):
As each bit-more-than-a-bit instance is just a special instance
of the one-extra-word construction, the analysis in Section 3
implies that the download cost (i.e., |R|) to fetch a b-bit block
is just (s+1)w ≈ (b+w) bits. This suggests that settingw to be
very small—for example, settingw = 1, as in the one-extra-bit
construction—gives an ideal download cost.

Yet small constants like w = 1 lead to enormous bucket
sizes and, thereby, fail to yield protocols that are non-trivial
(in the sense of Definition 3). Indeed, to query for block i ,
the client must uniquely reference a specific Frobenius prod-
uct from among the ≈ (s + 1)r /` such products held by each
of the s + 1 buckets in an i-equivalence class. To reference
the Frobenius product 〈D∗,A〉F, the client uses an ordered
pair (x , j) in which x = b a` c and j = a mod ` respectively
denote the quotient and remainder obtained upon dividing
a ≔

∑r
i=1(s + 1)i−1 Ordi (A) by `; hence, for any choice of

A ∈ M(r,s), the client sends (r −1)dlg (s + 1)e bits to each of the
s + 1 servers in φ

(
Eq(i; A)

)
. This gives an upload cost aggre-

gated across all servers (i.e., |Q |) of (s+1)(r−1)dlg (s + 1)e bits.
Notably, ifw = 1, then this is (b+1)(r−1)dlg (b + 1)e ∈ ω

(
|D |

)
and the construction fails to provide non-trivial communica-
tion. To yield a non-trivial protocol it is therefore necessary
to set w somewhat larger (thereby incurring higher down-
load overhead). The next theorem characterizes the choices
ofw (and, consequently, s) that yield protocols providing non-
trivial communication.

Theorem 4. A bit-more-than-a-bit instance provides non-
trivial communication (in the sense of Definition 3) if and only
ifw ∈ ω(1) or, equivalently, if and only if s ∈ o(b).

In light of Theorem 4, we suggest choosing a desired (say,
small constant) number of words per block s ∈ N and then
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selecting the field to be GF(2w) forw ≔ dbs e. The next obser-
vation follows by inspection.

Observation 3. Let ` and s be positive integers such that ` ≥ 2
and s < min(`,b + 1). A bit-more-than-a-bit instance with `
buckets and s words per b-bit block has upload and download
costs of (s + 1)(r − 1)dlg (s + 1)e and (s + 1)w ≈ s+1

s b bits, re-
spectively.

Notice that setting s = 1 yields a 2× download overhead (ig-
noring ceilings) with an upload cost linear in r—indeed, one
can effectively view a protocol instance with s = 1 as a 2-
server instance of the seminal PIR protocol for blocks due
to Chor et al. [10, §6]. Increasing s decreases the download
overhead geometrically while only increasing the upload cost
arithmetically (ignoring the logarithmic term).

Computation cost analysis: As each Frobenius product is
precomputed during the setup phase, the (online) computa-
tion cost for each server remains effectively nil. The client-
side computation cost is s additions in GF(2w), which equates
to about b bit operations—one exclusive-OR for each bit in
the requested block.

Security analysis: We establish sufficient conditions for
the perfect 1-privacy of our bit-more-than-a-bit constructions
in Theorem 5 below, which is an easy corollary to Theorem 3
and the following lemma.

Lemma 2. Let s and ` be positive integers such that s < `
and gcd(s + 1, `) = 1. If a and b are distinct positive integers
satisfying a ≡ b mod `, then the radix-(s + 1) representation of
a and b differ in at least two digit positions.

Proof. Assume without loss of generality that a > b. If a and b
differ in just one digit position, then there must exist integers
c ∈ [1. .s] and d ≥ 0 such that a − b = c(s + 1)d . Now, since
a ≡ b mod `, it follows that ` | c(s + 1)d . But gcd(s + 1, `) = 1,
so by a generalization of Euclid’s Lemma to arbitrary integers,
we have ` | c , which contradicts the restriction that c ∈ [1. .s]
and the fact that s < `. �

Theorem 5. Let s and ` be positive integers such that s < ` and
gcd(s + 1, `) = 1. A bit-more-than-a-bit instance with ` buckets
and s words per block provides perfect 1-privacy (in the sense
of Definition 4).

Proof. Let A,B ∈ M(r,s) be any pair of distinct matrices. From
Lemma 2,φ(A) = φ(B ) implies thata ≔ ∑r

i=1(s+1)i−1 Ordi (A)
and b ≔ ∑r

i=1(s + 1)i−1 Ordi (B ) differ in at least two digits or,
equivalently, thatA and B differ in at least two rows. In turn,
this implies that B ∉ Eq(i; A) for any i ∈ [1. .r ]. Since this is
true for all distinct A,B ∈ M(r,s), it follows that each element

of Eq(i; A) resides in a different bucket; i.e., that |Eq(i; A)| =
s + 1. Hence, by Theorem 3, it follows that the construction
provides perfect 1-privacy. �

Combining Corollary 5 and Theorem 4 with the fact that
‖0⃗‖1 = 0 (cf. Theorem 1) yields the following theorem.

Theorem 6. Let s and ` be positive integers such that s < ` and
gcd(s + 1, `) = 1. A bit-more-than-a-bit instance with ` buck-
ets and s words per block is a perfectly 1-private `-server PIR
protocol. Moreover, the protocol has download rate s+1

s + o(1).

Wenote that, in contrast to the one-extra-bit construction, our
bit-more-than-a-bit constructions maintain perfect privacy in
the face of “traffic analysis” attacks (cf. Appendix C). Indeed,
if we let X denote the random variable describing which of
the ` servers receive no message in a given query, then for all
i ∈ [1. .r ] and j ∈ [1. . `], we find that Pr[j ∈ X

|︁|︁ I = i] = 1 −
|φ−1(j)|/(s + 1)r−1. The latter probability is a consequence of
(i) the one-to-one correspondence between queries for block i
and equivalence classes under ≡i , and (ii) the fact that server j
holds exactly one element from each of |φ−1(j)| out of (s+1)r−1

such equivalence classes.

4.1 Virtual buckets
Recall that each bucket in a bit-more-than-a-bit instance hav-
ing s words per block contains about (s + 1)r /` distinctw-bit
Frobenius products, a quantity that scales exponentially with
the number of blocks in D. Fortunately, because each Frobe-
nius product is easily computed as a sum of just r -manywords
from GF(2w)—i.e., one word from each row of D∗—it suffices
for a server to store a copy of D and then construct needed
Frobenius products on the fly. In fact, having all servers store
D eliminates the need to associate each server with a fixed
bucket, thereby eliminating the requirement from Theorems
5 and 6 that gcd(s + 1, `) = 1. Indeed, with this approach, we
are free to set ` = s + 1 so that the client simply involves all
servers in all queries. For this reason, we say that a server who
stores all of D and computes arbitrary Frobenius products on
the fly holds a virtual bucket of D.

Virtual buckets fix the per-server storage cost as |D | bits,
while increasing the online computation cost to at most r ad-
ditions in GF(2w), each of which is implemented as a bitwise
exclusive-OR of w-bit binary strings. However, on average a
fraction 1/(s + 1) of the rows of A contain e⃗s+1, which, be-
cause we set ν⃗ = 0⃗, induces a no-op; hence, the expected com-
putation cost per server is closer to r s

s+1 additions inGF(2
w). In

particular, the expected computation cost aggregated across
all servers is about rs additions in GF(2w), or about one
exclusive-OR per bit in D, with each of s + 1 participating
servers shouldering a roughly equal computational burden,
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and theworst-case computation cost is only nominally higher.
This compares favorably with other `-server protocols in the
literature; indeed, Beimel, Ishai, and Malkin [4, Theorem 6.4]
proved that using even one fewer bit operation in expectation is
impossible without increasing the storage cost by having each
server store extra, pre-processed information aboutD.

Observation 4. Suppose ` − 1 | b. A bit-more-than-a-bit con-
struction with ` virtual buckets and s = ` − 1 words per b-bit
block has download cost of exactly (1 + 1

`−1 )b bits.

The (1+ 1
`−1 )b-bit download cost from Observation 4 matches

the best possible download for any `-server PIR protocol, pro-
vided that r is sufficiently large [6, Theorem 2.5].

5 Computational 1-privacy
This section presents our most efficient construction, a com-
putationally 1-private variant of the bit-more-than-a-bit fam-
ily of PIR protocols with virtual buckets. The simplest form
of this computationally 1-private construction, which can be
instantiated with ` = 2L servers for any positive integer L,
reduces the per-server upload cost from rL bits in the per-
fectly 1-private bit-more-than-a-bit construction to just (λ +
2)dlg r

λ eL bits, where λ is a security parameter (say, λ = 128
or 256). The download cost remains unchanged and the com-
putation cost increases only modestly in practice (assuming
both clients and servers are equipped with modern CPUs that
support the AES-NI instruction set).

The computationally 1-private construction replaces the
uniform random query strings from our perfectly 1-private
construction with pseudorandom query strings generated by
an L-tuple of 2-out-of-2 distributed point functions [17], each
mapping integers from [1. .r ] to 1-bit outputs. A point func-
tion in this context refers to a function pi : [1. .r ] → {0, 1}
such that

pi (i∗) =
{
1 if i∗ = i , and
0 otherwise;

while one can think of a distributed point function as an
extremely compact, secret-shared representation of a point
function.

We provide the following formal definition for a 2-out-
of-2 distributed point function with 1-bit outputs, which we
adapt from Definition 2.2 of Boyle, Gilboa, and Ishai [8, §2]
and Definition 1 of Gilboa and Ishai [17, §2].

Definition 7. Let P(r ) denote the set of all point functions
pi : [1. .r ] → {0, 1} with domain [1. .r ] and 1-bit outputs.
A pair of probabilistic polynomial-time algorithms (Gen, Eval)
with syntax

– Gen(1λ ; i), taking λ ∈ N and i ∈ [1. .r ], outputs a DPF key
pair, (k0,k1) ∈ {0,1}∗ × {0,1}∗; and

– Eval(k, i∗), taking k ∈ {0,1}∗ and i∗ ∈ [1. .r ], outputs a bit,
is a 2-out-of-2 distributed point function, or (2, 2)-DPF, for
P(r ) if it provides the following two guarantees:
(i) (Perfect) correctness: For all inputs i, i∗ ∈ [1. .r ], if
(k0,k1) ← Gen(1λ ; i), then

Eval(k0, i∗) ⊕ Eval(k1, i∗) = pi (i∗).

(ii) (Computational) secrecy: There exists a PPT algorithm
Sim such that the distribution ensembles{

Sim(1λ ; b)
}
b ∈{0,1}

and {
kb

|︁|︁ (k0,k1) ← Gen(1λ ; i)
}
b ∈{0,1},i ∈[1..r ]

are computationally indistinguishable.

The following (rather trivial) lemma will be convenient for
proving that our DPF-based query construction provides
computational 1-privacy (à la Definition 5), which is an
indistinguishability-based (rather than simulation-based) no-
tion of privacy.

Lemma 3. If (Gen, Eval) is a (2, 2)-DPF for P(r ), then for all
i, i∗ ∈ [1. .r ] and for all b ∈ {0, 1}, the distribution ensembles{

kb
|︁|︁ (k0,k1) ← Gen(1λ ; i)

}
b ∈{0,1}

and {
kb

|︁|︁ (k0,k1) ← Gen(1λ ; i∗)
}
b ∈{0,1}

are computationally indistinguishable.

Proof (sketch). This follows immediately from the definition
of computational secrecy for a (2, 2)-DPF (Part (ii) of Defini-
tion 7) and the triangle inequality. �

Our construction uses the efficient (2, 2)-DPF construction
of Boyle, Gilboa, and Ishai [8, Figure 1] with 1-bit outputs.
The computational secrecy of that construction relies only on
the existence of a fixed-expansion pseudorandom generator
G : {0,1}λ → {0,1}2λ+2; a computationally efficient candidate
for such a PRG is easily constructed from any block cipher.
A typical choice for concrete instantiations is to use 128- or
256-bit AES (hence our reliance on CPUs with the AES-NI in-
struction set for efficiency in practice).

The efficiency of our construction also benefits from the
fast full-domain evaluation algorithm of Boyle et al. [8, §3.2.1],
which expands a (2, 2)-DPF key k into the length-r bit vector

EvalFull(k) ≔
〈
Eval(k, 1), Eval(k, 2), . . . , Eval(k, r )

〉
using just dr/λe PRG evaluations [7, Theorem 3.3].
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
00

EvalFull(k (1)0 ) 8 EvalFull(k (0)0 )

01

EvalFull(k (1)0 ) 8 EvalFull(k (0)1 )

10

EvalFull(k (1)1 ) 8 EvalFull(k (0)0 )

11

EvalFull(k (1)1 ) 8 EvalFull(k (0)1 )

g
(k (1)0 , k (1)1 ) (k (0)0 , k (0)1 )

Fig. 1. (2, 2)-DPF key distribution and query expansion procedure for ` = 22 servers.

We also introduce the ‘8’ operator to denote the
component-wise concatenation of length-r vectors over
{0,1}∗; in particular, if u⃗ = 〈u0, . . . ,un〉 and ν⃗ = 〈ν0, . . . ,νn〉,
then

u⃗ 8 ν⃗ ≔ 〈u0‖ν0, . . . ,un ‖νn〉,

where νi ‖ui denotes concatenation of ui and νi .

5.1 DPF-based computational 1-privacy

We are now ready to describe our computationally 1-private
query construction. As previously explained, the objective
of the construction is to leverage (2, 2)-DPFs to provide
extremely compact representations of the client’s query
strings in an otherwise standard bit-more-than-a-bit instan-
tiation.

The main technical challenge to overcome is the imped-
ance mismatch between the “1-out-of-2” secrecy of the (2, 2)-
DPFs and the desired “1-out-of-`” privacy of the PIR queries.
We resolve this by using an L-tuple of (2, 2)-DPF key pairs
(all realizing the same underlying point function), which the
client samples independently and distributes to the servers us-
ing a strategy reminiscent of Beimel and Stahl’s generic trans-
formation for 2-out-of-` “robust” PIR from any 2-server PIR
protocol [5, §3.1]. We first examine the simplest and most ef-
ficient case in which ` = 2L for some L ≥ 1; an extension to
the case of arbitrary ` follows in Section 5.3.

5.2 Power-of-2 number of servers

Query construction (aka “DPF key distribution”): The DPF-
based query construction for ` = 2L servers works as follows.
Assign to each of the ` servers a numeric label j between 0 and
` − 1 and then, for each j ∈ [0 . . ` − 1], consider the L-bit bi-
nary representation (jL−1 · · · j1 j0)2 of j, where je denotes the
e th-least-significant bit of j. To query for block D⃗i, the client
samples L independent (2, 2)-DPF key pairs for the point func-

tion pi , say

(k (L−1)0 ,k (L−1)1 ), . . . , (k (0)0 ,k (0)1 ) ← Gen(1λ ; i) × · · · × Gen(1λ ; i),

and then, to each server j ∈ [0 . . ` − 1], it sends the query
string

qj ≔
(
k (L−1)jL−1 , . . . ,k

(0)
j0

)
,

where, as above, je is the e th-least-significant bit of j.
Because each server receives either the 0th or 1th key

from each DPF key pair, and becausewhich key a given server
receives is determined by the corresponding bit in its label, it
follows that (i) no server receives both keys from a single DPF
key pair, and (ii) no two servers receive the same sequence of
DPF keys.

Query expansion: Upon receiving the query stringqj from
the client, server j parses it as a sequence of DPF keys

qj ≔
(
k (L−1), . . . ,k (0)

)
,

and then it performs a full-domain evaluation on each of the
keys and concatenates the resulting bit vectors component-
wise to obtain a length-r vector of L-bit integers; that is, it
computes

q̃j ≔ EvalFull(k (L−1)) 8 · · · 8 EvalFull(k (0)).

From here, the server proceeds exactly as it would upon
receiving the query string q̃j directly from the client in a
perfectly 1-private bit-more-than-a-bit instance with virtual
buckets.

Figure 1 illustrates the DPF key distribution and query
expansion procedure for a protocol instance involving ` = 22

servers. In that figure, the ordered pairs (k (1)0 ,k (1)1 ) and (k (0)0 ,k (0)1 )
are both (2, 2)-DPF key pairs sampled independently using
Gen(1λ ; i).

Correctness analysis: We now analyze the correctness of
the computationally 1-private bit-more-than-a-bit construc-
tion. In particular, Theorem 7 establishes that the vectors
q̃0, . . . , q̃`−1 produced by the ` servers indeed correspond to
an i-equivalence class of M(r,s) where s = ` − 1.
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Theorem 7. If
(
k (L−1)0 ,k (L−1)1

)
, . . . ,

(
k (0)0 ,k

(0)
1
)
←

(
Gen(1λ ; i)

)L is
an L-fold sequence of (2, 2)-DPF key pairs for a point function
pi : [1. .r ] → {0, 1} and if i∗ ∈ [1. .r ], then for any pair of
distinct L-bit binary strings w = (wL−1wL−2 · · · w0)2 and x =
(xL−1 xL−2 · · · x0)2, the vectors

w⃗ ≔EvalFull(k (L−1)wL−1
) 8 · · · 8 EvalFull(k (0)w0

)

and

x⃗ ≔EvalFull(k (L−1)xL−1 ) 8 · · · 8 EvalFull(k (0)x0 )

differ in column i∗ if and only if i∗ = i .

Proof. We prove the “if” and “only if” directions separately.
“If”: Let e be a bit position at which we ≠

xe . From the correctness criterion for a (2, 2)-
DPF, we have Eval(k (e )we , i) ⊕ Eval(k (e )xe , i) = 1. Hence,
Eval(k (e )we , i) ≠ Eval(k (e )xe , i) and it follows that the i th com-
ponents of w⃗ and x⃗ differ in at least one bit.

“Only if”: Suppose that w⃗ and x⃗ differ in column i∗ and let
e ∈ [0 . .L − 1] be the position of a bit at which they differ;
i.e., let e be such that Eval(k (e )we , i

∗) ⊕ Eval(k (e )xe , i
∗) = 1. Then,

from the correctness criterion of a (2, 2)-DPF, pi (i∗) = 1 so
that i∗ = i . �

The preceding theorem together with a simple counting ar-
gument yields the following corollary.

Corollary 2. If
(
k (L−1)0 ,k (L−1)1

)
, . . . ,

(
k (0)0 ,k

(0)
1
)
←

(
Gen(1λ ; i)

)L
is an L-fold sequence of (2, 2)-DPF key pairs for a point function
pi : [1. .r ] → {0, 1}, then the i th components of the 2L vectors{
EvalFull(k (L−1)jL−1 ) 8 · · · 8 EvalFull(k (0)j0 )

|︁|︁ jL−1, . . . , j0 ∈ {0,1}L}
collectively span the interval [0 . .2L − 1].

The next theorem is an immediate consequence of Corollary 2
and the “only if” direction of Theorem 7.

Theorem 8. If (Gen, Eval) is a (2, 2)-DPF for P(r ) providing
(perfect) correctness (in the sense of Part (i) of Definition 7),
then the 2L-server DPF-based bit-more-than-a-bit construction
provides (perfect) correctness (in the sense of Definition 2).

Communication cost analysis: The download cost of a DPF-
based bit-more-than-a-bit protocol instance is identical to that
of a perfectly 1-private instance with the same number of
virtual buckets. In terms of upload cost, the client in a DPF-
based bit-more-than-a-bit instance sends L distinct DPF keys
to each server. Assuming that the DPFs are implemented with
the optimized (2, 2)-DPF construction of Boyle, Gilboa, and
Ishai [8, Figure 1] with 1-bit outputs, the total upload cost is
then L(λ + 2)(dlg r

λ e) bits [7, Theorem 3.3]—in contrast to the

r dlg(s + 1)e = rL bits needed for the perfectly 1-private con-
struction with ` = 2L buckets and s = `− 1 words per block—
and the following theorem is immediate.

Theorem 9. The 2L-server DPF-based bit-more-than-a-bit
construction provides non-trivial communication (in the sense
of Definition 3).

Computation cost analysis: The DPF-based bit-more-than-a-
bit construction imposes some (modest) computation over-
head relative to a perfectly 1-private bit-more-than-a-bit in-
stance. The overhead consists of (i) the cost for the client to
sample the DPF key pairs, and (ii) the cost for each server
to expand its DPF keys using a full-domain evaluation (plus
nominal costs associated with component-wise concatena-
tion). Sampling the DPF key pairs is an extremely lightweight
operation: each sample takes about 2dlg r

λ e evaluations of a
PRG and about 2λdlg r

λ e additional bit operations [7, Figure 1].
The full-domain evaluations for query expansion are also
quite efficient: each uses just d rλ e evaluations of the PRG [7,
Theorem 3.3]. All told, when the PRG is implemented using
AES-128, this equates to a total of about 4L(dlg re − 7) AES-
128 evaluations and 256L(dlg re − 7) additional bit operations
for the client, and about Ld r64 e AES-128 evaluations for each
server.

In Section 6, we present experimental evidence from
our prototype implementation. Our findings suggest that, for
plausible parameter settings, the computation overhead as-
sociated with sampling DPF key pairs and query expansion
are insignificant relative to the time required to compute the
Frobenius products specified by the expanded query vectors.
In fact, the DPF-associated computation times are low enough
that we can reasonably surmise that reductions in upload time
will vastly overshadow them for all but the most contrived of
network settings and parameter choices.

Security analysis: A trivial reduction proves the computa-
tional 1-privacy of a DPF-based bit-more-than-a-bit construc-
tion follows from the perfect 1-privacy of regular bit-more-
than-a-bit and the computational secrecy (Part (ii) of Defini-
tion 7) of the DPFs. In particular, given blackbox oracle access
to a PPT algorithmA distinguishing between the distribution
ensembles {Q{j} | I = i} and {Q{j} | I = i∗} with advantage
µ(λ), we obtain a PPT algorithm B distinguishing between
the distribution ensembles {kb

|︁|︁ (k0,k1) ← Gen(1λ ; i)}b ∈{0,1}
and {kb

|︁|︁ (k0,k1) ← Gen(1λ ; i∗)}b ∈{0,1} with the same advan-
tage (cf. Definition 5 and Lemma 3). The reduction B works
by (i) sampling L DPF keys from its distribution, (ii) concate-
nating the L samples to form qj , (iii) passing qj toA, and then
(iv) returning whatever A returns. This reduction and Theo-
rems 8 and 9 proves the following.
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Theorem 10. If (Gen, Eval) is a (2, 2)-DPF for P(r ) providing
computational secrecy (in the sense of Part (ii) of Definition 7),
then a 2L-server DPF-based bit-more-than-a-bit instance is a
computationally 1-private 2L-server PIR protocol.

5.3 Arbitrary number of servers

We now describe how to extend the computationally 1-
private bit-more-than-a-bit protocol to an arbitrary number of
servers, at the expense of some additional upload and compu-
tation overhead. The challenge to overcome is the existence of
so-calledmodulo bias introduced when reducing integers dis-
tributed uniformly in [1. .2L] modulo `, when ` - 2L .

Query construction (aka “DPF key distribution”): Let
poly : N → N be some positive integer-valued polynomial.
The basic idea behind the extension is quite simple: Set L =
dlg `e + poly(λ) and, as before, have the client sample an L-
fold sequence of DPF key pairs and then send a query string
qj comprising one DPF key from each key pair to each server
j ∈ [0 . . ` − 1]. Note that although there are just ` servers,
there are more than ` + 2poly(λ) possible combinations of DPF
keys from which the client may choose. The client chooses
which sequences of DPF keys to send to each server uniformly,
subject to the values in column i of the ` resulting vectors
being pairwise incongruent modulo `. The additional poly(λ)
DPF keys serve to “smooth out” the distribution, reducing the
magnitude of the modulo bias to a negligible level; thus, we
refer to poly(λ) as the smoothing parameter . We stress that
the smoothing parameter need not be large: Formally prov-
ing computational privacy requires only that poly(λ) ∈ Ω(λϵ )
for some ϵ > 0; in practice it is sufficient to regard poly(λ) as
a small(ish) constant, say poly(λ) = 64 or 80.

Query expansion: Upon receiving the query stringqj from
the client, server j parses it as a sequence of DPF keys and then
performs L full-domain evaluations and an L-ary component-
wise concatenation to obtain a length-r vector of L-bit strings
(which it regards as integers). From here, server j reduces the
vector component-wisemodulo ` to obtain the desired length-
r vector of integers in [0 . . ` − 1].6

Correctness analysis: The “if” direction of Theorem 7
guarantees that the servers generate vectors of L-bit integers
containing identical values in all but the i th column; thus, af-
ter reduction modulo ` the vectors remain identical in all but
(perhaps) the i th column. Furthermore, because the client se-
lects DPF keys so as to ensure that the entries in column i at
the servers are pairwise incongruent modulo `, the values in

6 This is always possible as (i) Corollary 2 ensures the 2L possible sequences of DPF
keys collectively span [0 . . 2L − 1], and (ii) [0 . . ` − 1] ⊆ [0 . . 2L − 1].

column i remain pairwise distinct after reduction modulo `.
This proves the following theorem.

Theorem 11. If (Gen, Eval) is a (2, 2)-DPF for P(r ) providing
(perfect) correctness (in the sense of Part (i) of Definition 7),
then the `-server DPF-based bit-more-than-a-bit construction
provides (perfect) correctness (in the sense of Definition 2).

Communication and computation cost analysis: Relative to the
2L-server construction, the construction for arbitrary ` in-
creases upload cost and computation cost associated with
sampling DPF key pairs and performing full-domain evalu-
ations each by a factor of approximately

(
` + poly(λ)

)
/`; the

download cost is unaffected. Additionally, each server must
perform a component-wise reduction modulo `, although in
implementations it is possible to interleave this operation
with the component-wise concatenation so that it introduces
essentially no overhead (at most one conditional subtraction)
per DPF key.

Theorem 12. The `-server DPF-based bit-more-than-a-bit
construction provides non-trivial communication (in the sense
of Definition 3).

Security analysis: In terms of privacy, the `-server construc-
tion is nearly identical to the 2L-server construction, with one
notable exception: the expanded query vectors in the `-server
construction exhibit a (small) statistical bias. Specifically, writ-
ing 2L = Q ·`+R with 0 ≤ R < ` using the Division Algorithm,
each integer j ∈ [0 . .R−1] is congruent toQ +1 integers from
[0 . .2L − 1], while each j ∈ [R . . ` − 1] is congruent to just Q
integers from [0 . .2L − 1]; thus, the probability mass function
describing each component of an expanded query vector as-
signs a probability of (Q + 1)/2L to each value in [0 . .R − 1]
and Q/2L to each value in [R . .2L − 1]—except for column
i , where the distribution is uniform (since clients choose the
DPF key sequences uniformly). Fortunately, as the smoothing
parameter poly(λ) guarantees that the statistical distance be-
tween these two distributions is bounded above by 2−poly(λ),
we still obtain following theorem.

Theorem 13. If (Gen, Eval) is a (2, 2)-DPF for P(r ) provid-
ing computational secrecy (in the sense of Definition 7) and
if poly(λ) ∈ Ω(λϵ ) for some ϵ > 0, then the `-server DPF-
based bit-more-than-a-bit construction provides computational
1-privacy (in the sense of Definition 4).

6 Implementation & evaluation
To validate the efficiency of the constructions presented in
Sections 4 and 5, we have implemented them as an open-
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Fig. 2. Wall-clock time for client-side DPF key sampling (a) and server-side DPF key expansion (b) as the database height grows. All experiments
use λ = 128; for computationally 1-private protocols with ` not a power of 2, we set the smoothing parameter to poly(λ) = 80.

source C++ library called libbitmore [23], which we built atop
our own dpf++ library [22]. To facilitate a fair head-to-head
comparison with the “folklore optimal” protocols, our code-
base also incorporates hand-optimized implementations of
both the 2-server variant of Chor et al.’s protocol [10] and
the basic 2-server DPF-based protocol incorporating all op-
timizations suggested by Boyle et al. [7].7 We also compare
our implementation with Percy++ v1.0 [19] and RAID-PIR
v0.9.5 [13], a pair of open-sourcemultiserver PIR libraries that
are widely used as benchmarks in the PIR research commu-
nity.

The remainder of this section presents selected findings
from a pool of experiments designed to measure the perfor-
mance implications of various parameter choices and result-
ing speedups relative to prior work. We conducted all exper-
iments on a workstation running Ubuntu 18.04.2 LTS on an
AMD Ryzen 7 2700x eight-core CPU @ 4.30GHz with 16GiB
of RAM and a 1TB NVMe M.2 SSD. (We had this worksta-
tion custom-built for CA$1050 in April 2019.) All experiments
measured the running times for a single client or server in-
stance running in isolation on a single CPU core. We repeated
all experiments for 100 trials and report herein the sample
mean (wall-clock) timings across all trials. With the excep-
tion of RAID-PIR, all experiments exhibited sample standard
deviations that were small relative to the sample means; thus,
we omit error bars in our plots to reduce clutter and improve
visual clarity. When discussing selected statistics in the text,
we write M ± s to indicate a sample mean of M and sample
standard deviation of s . We report all such statistics to one
digit of precision in the sample standard deviation.

7 Although the new constructions include the latter two protocols as special cases,
our standalone implementations are slightly faster than fixing ` = 2 in our imple-
mentation of the general constructions.

6.1 DPF key sampling and expansion

Our first set of experiments measures the time required
for DPF key sampling (by the client) and expansion (by
the server) for various numbers of servers (`) and database
heights (r ) in our computationally 1-private protocols. We
provide log-log plots of our findings in Figure 2. We empha-
size that the costs for DPF key sampling and expansion do
not depend on the bitlength (b) of the database blocks. As
expected, the costs for both operations are consistently low,
even for databases with relatively large numbers (i.e., hun-
dreds of millions) of blocks—notice that the y-axis on both
plots measures wall-clock time in microseconds.

DPF key sampling: For ` = 2L , the running times reported
in our DPF key sampling plot (Figure 2a) consist only of sam-
pling L independent (2, 2)-DPF key pairs. For ` not a power of
2, they also include the time required for (i) the sampling of
poly(λ) = 80 extra DPF key pairs for smoothing and (ii) the
uniform random selection of key sequences to satisfy the req-
uisite pairwise-incongruence property (see Section 5.3); con-
sequently, the running times for these experiments are an or-
der of magnitude higher than for ` = 2L . Nonetheless, all ex-
periments complete in under 100 microseconds.

DPF key expansion: The DPF key expansion plot (Fig-
ure 2b) reports the time required for both the full-domain
evaluation of each DPF key and the subsequent component-
wise concatenation (including modular reductions).

We implement the component-wise concatenation using
our own algorithms based on 256-bit vectorized (AVX2) in-
structions. For ` = 2L , our algorithm iterates over the bits
obtained via full-domain evaluation of each DPF key in 32-
bit increments, using AVX2 intrinsics to expand each 32-bit
segment into a 32-byte vector type. It then uses simple (vec-
torized) masking and bitwise logical ORs to effectively con-
catenate 32 components in parallel. This yields an order-of-
magnitude speedup versus an “obvious” implementation of
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component-wise concatenation, helping to ensure that DPF
key expansion contributes insignificantly to the servers’ total
computation time; however, it also limits our implementation
to at most L = 8 keys per server, thus imposing a limit of
` = 256 on the total number of servers.

Our algorithm for ` not a power of 2 is similar, except it
periodically performs (parallel) partial modulo-` reductions
and uses lookup tables to simulate expanding each bit in the
full-domain evaluations beyond the architecture-imposed 1-
byte boundary. This approach significantly reduces the over-
head from modular reductions, though it imposes an even
stricter limit of ` = 127 on the number of servers (to avoid
overflowing bytes between partial reductions).

As expected, the costs for DPF key expansion (Figure 2b)
are significantly higher than for sampling (Figure 2a); indeed,
the cost for DPF key expansion scales with r , whereas DPF
key sampling scales with lg r . Nonetheless, all experiments
with ` = 2L complete in under 1 second and all experiments
with ` not a power of 2 still complete within about 1 minute.
Focusing on a “modestly” sized database with just r = 220

rows, we find that all experiments for ` = 2L complete within
just over half a millisecond and all experiments with ` not a
power of 2 complete in well under 50 milliseconds.8

Looking ahead to Figure 3, we observe (perhaps sur-
prisingly) that in all cases DPF key expansion ends up be-
ing (slightly) faster than sampling a pseudorandom query of
the same length using arc4random; thus, in addition to sig-
nificantly reducing upload costs (e.g., from 0.5GiB to just
31.66KiB per server when ` = 15 and r = 230), the
computationally 1-private protocols actually have a mod-
estly lower aggregate computation cost relative to their per-
fectly 1-private counterparts! Looking even further to Fig-
ure 4, we conclude that DPF key sampling and expansion con-
tribute insignificantly to the total computation cost of a PIR
query.
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Fig. 3. Wall-clock time for client-side DPF key sampling and server-
side expansion as the smoothing parameter grows. All experiments fix
` = 3 and r = 220.

8 Astute readers may notice that, although the cases of ` = 3, 7, and 15 respec-
tively expand and concatenate 82, 83, and 84 DPF keys, the differences in their
throughputs are nontrivial (ranging from 22.192 ± 0.006M rows/s for ` = 3 to
15.78 ± 0.01M rows/s for ` = 15). This larger-than-expected difference owes to the
frequency with which our implementation must perform partial modular reductions
to avoid overflowing bytes, which is dependent on the bit length of the modulus.

Varying the “smoothing parameter”: Note that the plots in
Figure 2 all fix the smoothing parameter as poly(λ) = 80. We
also conducted a series of experiments to study the implica-
tions of varying poly(λ), from poly(λ) = 0 up to poly(λ) = 6λ
(i.e., from poly(128) = 0 up to poly(128) = 768) for a fixed
number of servers (` = 3) and database height (r = 220).
We provide a log-linear plot of the results in Figure 3. The
results are unsurprising: increasing poly(λ) effects a corre-
sponding increase in DPF key sampling and expansion times,
with key expansion times ranging from 0.470±0.006mswhen
poly(λ) = 0 up to 1681 ± 3ms when poly(λ) = 768. In a prac-
tical deployment, we recommend setting poly(λ) between 64
and 96 to strike a good balance between performance and se-
curity, which in these experiments yielded expansion times
from 31.4 ± 0.1ms up to 55.4 ± 0.2ms.

In terms of upload cost, setting poly(λ) = 0 yields queries
of size 0.41KiB, while poly(λ) = 80 yields queries of size
16.92KiB and setting poly(λ) = 768 yields 158.85KiB. Thus,
even for “unreasonably” large values of the smoothing pa-
rameter, DPF sampling times, DPF expansion times, and per-
server upload costs remain quite modest for a database having
on the order of a few millions of blocks.

6.2 Computational vs. perfect privacy

Our second set of experiments compares the cost of (client-
side) query generation for DPF-based computationally 1-
private protocol instances versus perfectly 1-private protocol
instances as the database height (r ) grows. We provide a log-
log plot of our findings in Figure 4. For ` = 2L , perfectly 1-
private query generation is implemented using a single call
to arc4random_buf, relying on the Linux kernel to provide
the required number of pseudorandom bits as efficiently as it
knows how. For ` not a power of 2, it is implemented using r
consecutive calls to arc4random_uniform, which involves a
modular reduction and the occasional re-sampling (to account
for modulo bias) for each query component; thus, similar to
the computationally 1-private protocol, we observe a notable
performance penalty when ` not a power of 2.



A Bit More Than a Bit Is More Than a Bit Be�er 126

210 212 214 216 218 220 222 224 226 228 230
2−4
20
24
28
212
216
220
224
228

Database height (# of blocks)

W
al
l-c

lo
ck

tim
e
(µ
s)

` = 15 ` = 15
` = 7 ` = 7
` = 3 ` = 3
` = 23 ` = 23
` = 22 ` = 22
` = 21 ` = 21

Perfect Computational

(Boyle et al.)(Chor et al.)

13.67M rows/s
13.69M rows/s
13.58M rows/s

1.21B rows/s
2.31B rows/s
5.71B rows/s

11.44T rows/s
16.09T rows/s
19.81T rows/s

460.64T rows/s
815.29T rows/s

2,060.92T rows/s

Fig. 4. Wall-clock time for client-side query construction in both com-
putationally and perfectly 1-private protocols. For computationally
1-private instances with ` not a power of 2, we set the smoothing pa-
rameter to poly(λ) = 80.

As expected, query generation times in the computation-
ally 1-private protocols scale quite well (indeed, logarithmi-
cally) relative to query generation in the perfectly 1-private
protocols. Indeed, as noted in Section 6.1, even the linear-cost
DPF key expansion consistently outperforms query sampling
(by a factor 2–3× for ` = 2L and by 1.15–1.63× for ` not a
power of 2). We conclude that, for any realistic parameter set-
tings, our computationally 1-private protocol is strictly faster
than its perfectly 1-private counterpart.

6.3 Response generation

Our third set of experiments compares the time required for
each of ` = 2L servers to respond to a query, for various
choices of L and a fixed number of blocks (r = 256), as the
database width (b) grows. We measure here only the time re-
quired to respond to an “expanded” query; thus, we do not
distinguish between perfectly and computationally 1-private
protocols, which perform identically (indeed, run the same
code on inputs from computationally indistinguishable dis-
tributions) for this step of the protocol. We emphasize that
response generation is far and away the most computation-
ally intensive step in all constructionswe consider (notice that
the y-axis on Figure 5 is in milliseconds versus microseconds
in all the other plots); indeed, response-generation speedups
from increasing ` dwarf the comparatively tiny query costs
in Figures 2–4. When ` = 21 (i.e., in the “folklore” protocols),
the servers process the database at a rate of 5.7 ± 0.5GiB/s,
whereas when ` = 26 this throughput increases to a whop-
ping 144 ± 3GiB/s—more than a 25× speedup!
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Fig. 5. Wall-clock time for server-side response generation as block size
grows. All experiments fix r = 256.

Transitioning from b = 224 to b = 226 bytes per
block yields a database that exceeds our 16GiB of physi-
cal memory, resulting in a steepening of each trendline. The
trendlines gradually converge to a new slope—reflecting that
the computation rate is now limited by disk-read through-
put—with instances having fewer servers converging more
quickly. The differing convergence rates stem from our us-
ing posix_madvise to help the Linux kernel prefetchmemory
pages we will soon need—with ` = 26 servers, the (at most)
256 required words occupy about 8GiB and still fit in physical
memory.

The 25× speedup for ` = 26 versus ` = 21 servers is
comparable to the increase in the total number of servers and,
hence, in the total amount of parallelism introduced. This is
not surprising, as the total (expected) number of bit opera-
tions done by all servers is independent of `. It is worth noting,
however, that one cannot simply match the throughput of our
single-threaded ` = 26 computation by running 32 threads on
each of ` = 21 servers, since the response-generation compu-
tation is I/O bound; rather, to match the speed of the ` = 26

protocol, one would need to divy up the work of each server
among multiple compute nodes (à la MapReduce) and allow
each “thread” to saturate its own memory bus. We hasten to
add that, although this would roughly match the throughput
of our new protocols with an equivalent hardware invest-
ment, the result would remain non-competitive in terms of
communication and client-side reconstruction costs.

Client-side reconstruction: We also measured the time re-
quired for the client to reconstruct the responses. We pro-
vide log-log plots of our findings in Figure 6. As expected,
the cost of reconstruction is essentially constant across all ex-
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periments, at one (vectorizable) bit operation for each bit in a
block. When b = 1GiB, took about 128.7 ± 0.7ms.
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Fig. 6. Wall-clock time for client-side response reconstruction.

6.4 Head-to-head with Percy++
Our fourth set of experiments compares the performance of
libbitmorewith that of Percy++ v1.0 [19], an open-source C++
implementation of various PIR protocols. Percy++ supports
numerous protocols with varying privacy thresholds [1, 10,
15, 18], Byzantine robustness guarantees [15], query batch-
ing [21, 24, 26], τ -independence [16], and more. Here we re-
peat a subset of our libbitmore experiments on a selection of
“basic” protocols, fixing the privacy threshold and number of
servers in all Percy++ experiments as t = 1 and ` = 2, respec-
tively. These parameter choices provide the best possible per-
formance for query generation and response reconstruction
(whereas server-side computation and per-server communi-
cation cost are both agnostic to these settings [21]).

The fastest protocol Percy++ supports is the folklore-
optimal protocol of Chor et al. [11, 27]—by far the slowest
protocol in libbitmore. Figure 7 shows that the implementa-
tion of that protocol in libbitmore is noticeably faster than
the one in Percy++. We also plot running times for Goldberg’s
protocol [18] with arithmetic in GF(28), GF(216), and integers
modulo 32- and 128-bit primes. We stress although libbitmore
is much faster, many useful features in Percy++ cannot be re-
alized in its simpler setting.

6.5 Head-to-head with RAID-PIR
Our fifth and final set of experiments compares the perfor-
mance of libbitmorewith that of RAID-PIR v0.9.5 [13]. RAID-
PIR is highly configurable: `-server instances can be con-
figured with a tunable privacy level ranging from 1-privacy
through to (` − 1)-privacy. Here we repeat a subset of our lib-
bitmore experiments, fixing the privacy threshold (which they
refer to as the redundancy parameter [14]) as t = 1 to yield in-
stances with computational 1-privacy. Unlike with Percy++, a
direct comparison between libbitmore and RAID-PIR is apt:
in both cases, the cost of a (1-private) query decreases as the
number of servers grows. We find that, given equivalent pa-
rameter choices, libbitmore consistently outperforms RAID-

PIR on every metric, with improvements ranging from modest
(1.3× faster when ` = 22 and b = 4MiB) to extreme (44888.9×
less upload when ` = 22 and r = 230 blocks).

7 Conclusion
In this paper, we revisited the one-extra-bit PIR construction
of Shah et al. with an eye toward rigor and efficiency, trans-
forming that construction from a (highly impractical) theo-
retical result into what we believe to be the most efficient
PIR protocol currently in existence, albeit under a very strong
trust assumption. We have implemented our protocols as an
open-source library and demonstrated their efficiency relative
to existing techniques, including the “folklore optimal” proto-
cols of Chor et al. and Boyle et al. For future work, we plan to
explore how our approach extends to the setting of computa-
tionally t-private protocols for thresholds t > 1.
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A Related Work

The literature on PIR is vast, though relatively few works fo-
cus specifically on 1-private multi-server PIR or on (practical)
protocols exhibiting provably optimal costs. Before conclud-
ing, we briefly highlight a few of the most closely related ef-
forts in this space.

Kiayias, Leonardos, Lipmaa, Pavlyk, and Tang [25] pro-
pose a single-server PIR protocol with asymptotically optimal
download cost. For sufficiently large records—beyond around
1GiB each—the download overhead of their scheme is at most
a few percent; however, their reliance on number-theoretic
assumptions yields computation costs that are prohibitively
high for large-scale deployment [29].

In the multi-server setting, Henry, Huang, and Gold-
berg [24] proposed batch queries for Goldberg’s multi-server
protocol, which allows to amortize the costs associated with
fetching multiple blocks at a time. In followup work, both
Wang, Kuppusamy, Liu, and Cappos [33] and Demmler,
Herzberg, and Schneider [14] extend batch queries to Chor et
al.’s folklore protocol. Formaximally large batch sizes, this ap-

proach significantly reduces the efficiency gaps between our
bit-more-than-a-bit protocols and those in Figures 7 and 8—
provided the client wishes to make sufficiently many queries
in parallel.

In the 2-server setting, several works have employed
(2, 2)-DPFs to achieve low upload costs [8, 12, 17], while An-
gel, Chen, Laine, and Setty [2] proposed a novel technique to
obtain low upload costs in single-server FHE-based PIR using
so-called plaintext slot permutations. For ` > 2 servers, there
does not appear to be any prior work that provides upload
costs scaling sublinearly in r .

B The “one-extra-bit”
construction

Let 1⃗ ≔
∑s

j=1 e⃗j be the all-1s vector in Fs and, for each i ∈
[1. .r ], define Ordi : M(r,s) → [0 . .s] such that

Ordi (A) = j iff Rowi (A) = e⃗j+1.

The “one-extra-bit” construction, as originally proposed
by Shah et al., is a special case of our one-extra-word con-
struction. It uses the binary field F = GF(2), the all-1s vector
ν⃗ = 1⃗, and a special choice for the mapping φ : M(r,s) → [1. . `]
as defined in Equation (2) below.

The “one-extra-bit” mapping: Denote by M(r,s)0 ≔
{
A ∈

M(r,s)
|︁|︁ Ord1(A) = 0

}
the subset of matrices A ∈ M(r,s) having

e⃗1 ∈ Fs+1 as their first rows. The following observation is
immediate.

Observation 5. There are (s + 1)r−1 distinct matrices inM(r,s)0 .

Indeed, a natural bijection associates with each matrix A ∈
M(r,s)0 a non-negative integer less than (s + 1)r−1 by treat-
ing the sequence Ord2(A), . . . ,Ordr (A) as the low- through
high-order digits of an (r − 1)-digit integer expressed in base
(s + 1); that is, it associates with A the integer

∑r
i=2(s +

1)i−2 Ordi (A).
The one-extra-bit mapping extends the aforementioned

bijection betweenM(r,s)0 and [0 . . (s + 1)r−1 − 1] to an injection
from all of M(r,s) to [0 . . (s + 1)r−1 − 1] as follows. For each
A ∈ M(r,s), let PA ∈ F(s+1)×(s+1) denote the cyclic permutation
matrix that acts on A (via right multiplication) by rotating it
column-wise to the left byOrd1(A) positions. (In other words,
PA is the cyclic permutation matrix having the property that
Row1(A · PA ) = e⃗1, thereby ensuring that A · PA ∈ M(r,s)0 for
every A ∈ M(r,s).)

The one-extra-bit mapping is then given by

φ(A) ≔
∑r

i=2(s + 1)
i−2 Ordi (A ·PA ). (2)
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The notation and definition in Equation (2) are quite un-
like the ones proposed by Shah et al. [28, Algorithm 1]; how-
ever, it is a straightforward, if tedious, exercise to verify that
the two definitions are, in fact, equivalent.

Analysis of the “one-extra-bit” construction: Observe that
φ(A) =

∑r
i=2(s + 1)

i−2 Ordi (A) if and only if A ∈ M(r,s)0 . More
generally, we have the following observation.

Observation 6. Let A,B ∈ M(r,s). Then φ(A) = φ(B ) iff B is
among the s + 1 column-wise cyclic permutation of A.

An immediate consequence of Observation 6 is that any two
(distinct) matrices A,B ∈ M(r,s) having φ(A) = φ(B ) neces-
sarily differ on every single row, a fact from which the next
corollary directly follows.

Corollary 3. If A,B ∈ M(r,s) such that A ≠ B but φ(A) =
φ(B ), then A ∉ Eq(i; B ) for any i ∈ [1. .r ].

Note, in particular, that Corollary 3 implies |φ
(
Eq(i; A)

)
| =

s + 1 for every A ∈ M(r,s); hence, this choice of φ satisfies the
necessary and sufficient conditions given by Theorem 3 and
the next corollary is immediate.

Corollary 4. The one-extra-bit construction provides perfect
1-privacy (in the sense of Definition 4).

The (online) computation cost for each server is effectively
nil;9 the computation cost for the client to set up and solve
the resulting system of equations is about s2 bit operations.
The client can uniquely reference a specific Frobenius product
〈D∗,A〉F via the ordered pair (x , j) in which x = Ord1(A) and
j = φ(A); hence, for any A ∈ M(r,s), the client need only send
dlg(s + 1)e bits to each of the s + 1 servers in φ

(
Eq(i; A)

)
.

More precisely, |φ−1
(
φ(A)

)
| = s + 1 for all A ∈ M(r,s) so that

φ satisfies the condition given by Theorem 2 as long as s is
polynomial in r . This proves the following.

Lemma 4. The one-extra-bit construction provides non-trivial
communication (in the sense of Definition 3), provided s ∈ 2o(r ).

Combining Corollary 4 and Lemma 4with the fact that ‖1⃗‖1 =
s (cf. Theorem 1) yields the following theorem.

Theorem 14. If s ∈ 2o(r ) with s > 1, then the one-extra-bit
construction is a perfectly 1-private (s + 1)r−1-server PIR proto-
col.

9 Appendix B.1 recalls a modest optimization due to Shah et al., which slightly re-
duces the per-server storage cost of any one-extra-word construction that uses ν⃗ = 1⃗
together with the one-extra-bit mappingφ (as defined in Equation (2)) at the expense
of requiring a small (amortized) computation cost per query.

The preceding theorem establishes that the one-extra-bit con-
struction provides perfect 1-privacy, which is the strongest
privacy result possible for the construction. Indeed, as we ar-
gue below, there necessarily exist (many) doubleton coalitions
C ⊆ [1. . `] with respect to which the construction is clearly
not C-private. Yet it is apparent that the one-extra-bit con-
struction must be private against at least some non-singleton
coalitions. Appendix C analyzes the necessary and sufficient
conditions on a coalitionC ⊆ [1. . `] under which a one-extra-
word instance is C-private.

B.1 Trading a bit of work for a bit less
storage

In this sub-appendix, we briefly recall and generalize the fol-
lowing simple observation of Shah et al. regarding the one-
extra-bit construction, which leads to a modest improvement
in the per-server storage cost. Recall that one-extra-word uses
ν⃗ = 1⃗

Observation 7. Fix j ∈ [1. . `] and consider the set φ−1(j) ={
A1, . . . ,As+1

}
comprising the s + 1 distinct matrices in M(r,s)

that map to bucket j. We have∑s+1
i=1 〈D

∗,Ai 〉F = 0, (7.1)

or, equivalently, ∑s
i=1〈D

∗,Ai 〉F = 〈D∗,As+1〉F. (7.2)

Observation 7 follows from the choice of ν⃗ = 1⃗ and the fact
that F = GF(2) is a field of characteristic 2. Shah et al. point
out that each server can store just s bits (rather than s + 1
bits), say, 〈D∗,A1〉F, . . . , 〈D∗,As 〉F, and then use Equation (7.2)
to compute the discarded bit 〈D∗,As+1〉F on the fly, as needed.
The tradeoff for this modest optimization is an increase in the
amortized server-side computation cost, which increases from
nil to (just under) oneGF(2) addition per request (on average):
Exactly one out of s +1 servers must reconstruct its discarded
bit for each request and, on average, each server must recon-
struct its discarded bit for one out of every s + 1 requests in
which it participates.

We remark (sans formal proof) that the same idea gen-
eralizes easily to an arbitrary field F by setting ν⃗ = (p − 1)1⃗,
where p = char(F) is the characteristic of F.10

10 Intuitively, for anyφ−1(j) = {A1, . . . , As+1 }, summingA1+ · · ·+As+1 yields the
all-1s matrix in Fr×(s+1) so that

∑s+1
i=1 〈D∗, Ai 〉F is just a summation over all entries

in D∗. Now, by construction, the last entry in each row of D∗ is a product of the
sum of all earlier entries in the row with p − 1; thus, each row sums to p so that∑s+1
i=1 〈D∗, Ai 〉F = rp , which, since F has characteristic p , is equal to 0 in F.
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C Necessary and sufficient
conditions forC-privacy

The privacy guarantees of a one-extra-word instance are com-
pletely determined by the choice of φ. Intuitively, for any
coalitionC , a one-extra-word instance isC-private if (i) it pro-
vides 1-privacy, and (ii) no two servers in C ever participate
in the same query, regardless of which block the client is re-
questing nor the outcomes of any coin tosses the client makes.
The next theorem formalizes this intuition.

Theorem 15. Let C ⊆ [1. . `] be a coalition. A one-extra-word
instance is C-private if and only if, for each server j ∈ C ,
1. the construction is {j}-private (cf. Theorem 3), and

2. for all A ∈ φ−1(j) and i ∈ [1. .r ], φ
(
Eq(i; A)

)
∩C = {j}.

Proof (sketch). Let n =
∑

j ∈C |φ−1(j)|. The first condition guar-
antees that no client can ever request two or more distinct
Frobenius products from a single coalition member (as part of
the same query), while the second condition extends the first
to ensure that no client will ever request two or more distinct
Frobenius products from two ormore different coalitionmem-
bers. It follows that there are precisely n + 1 possible “joint
views” that can arise for coalition C in each query: namely,
the client can request any one of the n Frobenius products
that coalitions’ members hold, or it can request nothing at all
from any of the coalition members.

By Lemma 1, the first n events each happen with proba-
bility 1/(s + 1)r−1, regardless of which block the client seeks.
Moreover, because these n+1 events are pairwise disjoint and
mutually exhaustive, it follows that the remaining (“nothing
requested”) event occurs with probability 1−n/(s + 1)r−1. As
all probabilities are independent of the block being fetched,
this establishes what we set out to prove. �

Theorem 15 and the remarks following Theorem 14 sug-
gest that the privacy guarantees of the one-extra-bit con-
struction may, in fact, be much stronger than Corollary 4
and Theorem 14 suggest; the reality, however, is rather nu-
anced.

Privacy of the “one-extra-bit” construction, revisited: We
first note that if A1,A2 ∈ M(r,s) are distinct matrices such that
A1 ∈ Eq(i; A2) for some i ∈ [1. .r ], then the construction can-
not be

{
φ(A1),φ(A2)

}
-private; indeed, letting I denote the ran-

dom variable that describes the index of the block the client
seeks, and letting F1 and F2 respectively denote the events that
the client requests A1 and A2 as part of its query, it follows
from Lemma 1 that

Pr
[
F1 ∩ F2

|︁|︁ I = i] = 1/(s + 1)r−1,

whereas it follows from Part (ii) of Observation 1 that
Pr

[
F1 ∩ F2

|︁|︁ I ≠ i] = 0.
Hence, there exist many doubleton coalitions with respect to
which privacy cannot be guaranteed. (Indeed, each j ∈ [1. . `]
belongs to rs distinct doubleton coalitions C with respect to
which the construction is not C-private.) Thus, Theorem 14
gives the strongest “threshold” notion of privacy one can hope
for.

What’s more, the one-extra-bit mapping φ, as defined in
Equation (2), results in a protocol with the peculiar property
that simply knowing that any given pair of servers holding a
pair of i-equivalent Frobenius products is (or is not) involved
in a query (without necessarily knowing what query strings
those servers receive) is sufficient for a passive observer—such
as the querier’s Internet service provider—to compromise the
querier’s privacy! We are unaware of any other PIR proto-
col whose privacy falls to such traffic analysis attacks when
the observer may be limited to seeing only encrypted query
strings. This surprising and troubling property is due to the
following observation and its corollary.

Observation 8. Let φ be as defined in Equation (2). If B1 ∈
Eq(i; A1) and B2 ∈ Eq(i; A2), then φ(A1) = φ(A2) if and only if
φ(B1) = φ(B2).

Recalling that we definedPA ∈ F(s+1)×(s+1) as the permutation
matrix such that Row1(A ·PA ) = e⃗1, an equivalent formulation
of Observation 8 is:

B ∈ Eq(i; A) iff B ·PB ∈ Eq(i; A ·PA ).
That is, if some Frobenius product in bucket j1 has an i-

equivalent partner in bucket j2, then (i) every Frobenius prod-
uct in j1 has an i-equivalent partner in j2, and (ii) no Frobenius
product in j1 has a i∗-equivalent partner in j2 for any i∗ ≠ i

(see Part (ii) of Observation 1).

Corollary 5. Let I denote the random variable that describes
the index of the block the client seeks, and let F1 and F2 de-
note the events that a client requests a Frobenius product from
bucket j1 and from j2, respectively. Then, we have that either
(i) Pr

[
F1 ∩ F2

]
= 0, or (ii) there exists i ∈ [1. .r ], such that

Pr
[
I = i

|︁|︁ F1 ∩ F2] = 1 (5.1)
and

Pr
[
I = i

|︁|︁ F1 ∩ F̄2] = 0. (5.2)

Colloquially, Equation (5.1) says that knowing any pair of
servers involved in a given query is sufficient to uniquely
determine the index of the block sought. Moreover, Equa-
tion (5.2) says that if B ∈ Eq(i; A), then knowing that φ(A)
is involved in a query, while φ(B ) is not, is sufficient to de-
duce that the request is not for block i .
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