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Encapsulated microbubbles (EMBs) are associated with a wide variety of important medical appli-

cations, including sonography, drug delivery, and sonoporation. The nonspherical oscillations, or

shape modes, of EMBs strongly affect their stability and acoustic signature, and thus are an impor-

tant factor to consider in the design and utilization of EMBs. Under acoustic forcing, EMBs often

translate with significant velocity, which can excite shape modes, yet few studies have addressed

the effect of translation on the shape stability of EMBs. In this work, the shape stability of an EMB

subject to translation is investigated through development of an axisymmetric model for the case of

small deformations. The potential flow in the bulk volume of the external flow is modeled using an

asymptotic analysis. Viscous effects within the thin boundary layer at the interface are included,

owing to the no-slip boundary condition, using Prosperetti’s theory [Q. Appl. Math. 34, 339

(1977)]. In-plane stress and bending moment due to the encapsulation are incorporated into the

model through the dynamic boundary condition at the interface. The evolution equations for radial

oscillation, translation, and shape oscillation of an EMB are derived, which can be reduced to

model an uncoated gas bubble by neglecting the encapsulation properties. These equations are

solved numerically to analyze the shape mode stability of an EMB and a gas bubble subject to an

acoustic, traveling plane wave. The findings demonstrate the counterintuitive result that translation

has a more destabilizing effect on an EMB than on a gas bubble. The no-slip condition at the encap-

sulating membrane is the main factor responsible for mediating this interfacial instability due to

translation.VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5058403

[CCC] Pages: 2189–2200

I. INTRODUCTION

Encapsulated microbubbles (EMBs) are finding wide-

spread use in biomedicine and are attracting increasing atten-

tion from the scientific community. Ultrasound contrast

agents (UCAs) were developed for enhancing contrast in

ultrasound imaging and represent one of the most successful

applications of EMBs. In addition to diagnostic purposes,

the application of EMBs is expanding to include therapies

such as drug delivery, gene therapy, and tissue ablation,

among others.1–3 For both diagnostic and therapeutic appli-

cations, the EMB interacts with an applied ultrasound

field, which drives the volume (radial) mode and can excite

nonspherical shape oscillations as well. Shape oscillations

strongly influence the stability of the membrane and, there-

fore, impact the overall efficacy of EMBs. For example, in

sonography, UCA stability is important to maintain in

order to maximize residence time. Furthermore, stable shape

oscillations help generate subharmonic, harmonic, and ultra-

harmonic frequency components that enhance the acoustic

signature of UCAs and improve image contrast.4,5 In

therapeutic applications, unstable shape oscillation can pro-

mote rupturing of the EMB coating, which can affect the

localized release of therapeutic agents within the circulatory

system.

In addition to volume and shape oscillation, the ultra-

sound field can incite translation of the EMB directly via the

primary Bjerknes force and indirectly due to the secondary

Bjerknes force, e.g., due to the presence of nearby tissue sur-

faces and/or bubbles.6,7 Translation of an EMB is coupled to

both the radial and shape dynamics, as is well documented

for uncoated gas bubbles.8–18 A number of theoretical,

numerical, and experimental studies have investigated the

radial and shape dynamics of EMBs,19–27 but the role of

translation has received less attention. However, microbub-

bles subject to ultrasonic forcing can translate at relatively

large velocities, which can be an important mechanism for

the effective use of EMBs in biomedicine, e.g., for sonopora-

tion.28,29 Thus, a complete understanding of the dynamics of

EMBs under acoustic forcing must include the effect of

translation, which motivates the present work.

The coupling of shape oscillation and translation of

uncoated gas bubbles in a standing wave, known as the

“dancing bubble problem,” was observed experimentally by

Strasberg and Benjamin30 and Crum and Eller.31 A similara)Electronic mail: q.x.wang@bham.ac.uk
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phenomenon has been observed in gas bubbles for the case

of traveling acoustic waves by Dayton et al.7 Theoretical

studies of the shape oscillation of gas bubbles have been

conducted by several researchers and have provided insight

into the coupling among the radial oscillation, shape modes,

and translation.10,12,14–18,32–37 The translation of EMBs

subject to an ultrasound wave has also been studied without

considering their shape deformations.38

In this theoretical study, the dynamics and shape stabil-

ity of both uncoated and EMBs subject to an acoustic, travel-

ing plane wave are studied through consideration of the

coupling of radial oscillation, translation, and shape modes.

It is assumed that the external flow is potential in the bulk

volume except for a thin viscous boundary layer near the

EMB–liquid interface. The potential flow is modeled using

an asymptotic analysis. Viscous effects within the thin

boundary layer at the interface are approximated using

Prosperetti’s theory.39 To consider the influence of the shell

on the EMB dynamics, the in-plane stress and bending

moment of the encapsulation are incorporated into the

dynamic boundary condition at the interface. The amplitudes

of the shape modes are assumed small with respect to the

radius of the volume mode, which permits the use of perturba-

tion methods to derive evolution equations governing

the radial (volume) oscillation, translation, and shape oscilla-

tions of an EMB. This model is readily reduced to an uncoated

gas bubble by neglecting the encapsulation properties (e.g.,

shell stiffness and viscosity). The governing equations are

solved numerically in order to analyze the shape dynamics and

stability of a gas bubble and an EMB subject to an acoustic,

traveling plane wave over a range of frequencies and ampli-

tudes with clinical relevance. While translation is shown to

reduce stability in both cases, it has a much stronger destabiliz-

ing effect on EMBs compared to uncoated gas bubbles. We

find that the no-slip condition at the EMB interface is the main

factor responsible for this reduction in stability.

In Sec. II, we develop the theoretical model for the

dynamics of an EMB that includes radial and shape mode

oscillations, along with translation. The results of numerical

analyses for both uncoated gas bubbles and EMBs are

presented in Sec. III, and physical insights based on these

results are discussed. Last, a summary of the main findings

and conclusions of this work is given in Sec. IV.

II. PROBLEM FORMULATION

In this section, we derive the mathematical formula-

tion for the dynamics of an encapsulated bubble translat-

ing subject to a traveling acoustic wave. We consider the

axisymmetric deformation of the bubble and establish a

local coordinate system (x,y,z,t) with the origin at the bub-

ble geometric center upon a ground fixed coordinate sys-

tem (X,Y,Z,T), as illustrated in Fig. 1. The symmetry axis

Oz is parallel to the translational direction of the bubble

centroid (see Fig. 1). The transformation between the local

coordinates (x,y,z,t) and the ground fixed coordinates

(X,Y,Z,T) is

t¼ T; x¼ X; y¼ Y; z¼ Z� Zbc tð Þ;

@

@T
¼

@

@t
� _Zbc tð Þ

@

@z
;

@

@x
;
@

@y
;
@

@z

� �

¼
@

@X
;
@

@Y
;
@

@Z

� �

;

(1)

where Zbc is the z-coordinate of the bubble center in the

ground fixed system.

The encapsulated bubble is subject to an acoustic wave.

The traveling plane wave with frequency xd applies an

acoustic pressure, pac, in the ground fixed system,

pac ¼ ep0 sin
xd

cl
Z � xdt

� �

; (2)

where p0 is the ambient pressure, e is the dimensionless

amplitude of the wave, and cl is the speed of sound in the liq-

uid. The flow velocity, vac, induced by the acoustic pressure

obeys the linear Euler equation,

q
@vac
@t

ez ¼ �rpac; (3)

where q is the liquid density. Substituting Eq. (2) into Eq.

(3) and integrating in time yields the induced flow velocity

vac ¼
ep0

qcl
sin

xd

cl
Z � xdt

� �

: (4)

Since the bubble size is much smaller than the wavelength of

the acoustic wave (R � cl/xd, where R is bubble radius), the

velocity due to the acoustic wave at the bubble surface, va, is

approximately

FIG. 1. (Color online) The configura-

tion and coordinate system for a trans-

lating encapsulated bubble subject to a

traveling acoustic wave.
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va ¼
ep0

qcl
sin

xd

cl
Zbc � xdt

� �

: (5)

The velocity, u, and the pressure, p, of the liquid flow field

are governed by the incompressible Navier-Stokes equations

r � u ¼ 0; (6)

q
@u

@t
þ q u� _Zbcez
� �

� ru ¼ �rpþ llr � ruþruTð Þ;

(7)

where ll is the liquid viscosity. We neglect the flow field

within the bubble due to the negligible density and viscosity

of the interior gas as compared to the external liquid.

We assume that the bubble is approximately spherical,

and translates while undergoing appreciable radial oscilla-

tions and small amplitude shape oscillations. The shape per-

turbation to a spherical bubble can be expanded in terms of

spherical harmonics. With the restriction to axisymmetric

deformation, the spherical harmonics reduce to the Legendre

polynomials, as the azimuthal mode is constant. The position

of a material point on the membrane is expressed in terms of

the radial, r, and tangential, H, directions as follows:

rðh; tÞ ¼ RðtÞ þ
X

1

k¼2

akðtÞPkðcos hÞ; (8)

H h; tð Þ ¼ hþ
1

R tð Þ

X

1

k¼1

bk tð ÞP1
k cos hð Þ; (9)

where R is the radius of the unperturbed spherical mode, and

ak and bk are the shape distortion amplitudes in the radial

and tangential directions, respectively. We assume ak,bk
�R. The series of the Legendre polynomials, Pkðcos hÞ,
represent the perturbations of the membrane in the radial

direction with shape mode amplitudes ak. The summation in

Eq. (8) is from k¼ 2, since k¼ 1 is associated with the trans-

lation of the bubble, which is treated separately through the

translational velocity. The series of the associated Legendre

polynomials, P1
kðcos hÞ ¼ dPkðcos hÞ=dh, represent shape

perturbations in the tangential direction with amplitudes bk,

in which b1 denotes the displacements of material points

along the bubble interface with its shape keeping spherical.

We assume the viscous effects are confined to a thin, liq-

uid boundary layer adjacent to the membrane, and solve for

the velocity and pressure by decomposing them into the poten-

tial (irrotational) part and the viscous (rotational) correction

u ¼ up þ uv; (10)

p ¼ pp þ pv; (11)

where the subscripts p and v refer to the potential and vis-

cous parts, respectively.

The velocity potential satisfies Laplace’s equation,

owing to the incompressibility condition (6). The flow field

induced by the acoustic pressure is superimposed on that

induced by the bubble dynamics, thus, the velocity potential

can be expressed as

u ¼ varP1 cos hð Þ þ
X

1

k¼0

qk

rkþ1
Pk cos hð Þ; (12)

where qk are the coefficients to be determined by the kine-

matic boundary condition,

@S

@t
þ ru� _Zbcez
� �

� rS ¼ 0; (13)

where ru is the liquid velocity due to the potential part of

the flow, and S is the surface function

Sðr; h; tÞ � r � RðtÞ �
X

1

k¼2

akðtÞPkðcos hÞ ¼ 0: (14)

Making use of the orthogonality of the Legendre poly-

nomials, we obtain the coefficients qk for each mode as fol-

lows (see the Appendix for details):

q0 ¼ � _RR2; (15)

q1 ¼ �
R3

2
vr þ

3

10
R2vra2; (16)

qk¼�
Rkþ2

kþ1
_akþ

2 _R

R
ak

� �

þ
3k

2
Rkþ1vr

akþ1

2kþ3
�

ak�1

2k�1

� �

;

(17)

where vr ¼ _Zbc � va is the relative velocity. The velocity of

the potential part is obtained subsequently from up ¼ ru,

which leads to

up ¼
@u

@r
er þ

1

r

@u

@h
eh: (18)

The pressure of the potential flow is obtained by the

Bernoulli equation

pp ¼ p0 þ pac � q
@u

@t
þ
1

2
jruj2 � _Zbcez � ru

� �

: (19)

Equation (19) is obtained based on the weakly compressible

theory.40 In the theory, the flow in the outer region, far away

from the bubble with the scale of the wavelength of the

acoustic wave, is shown to satisfy the linear wave equation

to second order in terms of the Mach number. The flow in

the inner region is shown to satisfy Laplace’s equation to

second order. The far-field conditions of the inner region are

ð@uac=@tÞjr!1 ¼ �ðpac=qÞ and p1 ¼ p0 þ ep0 sin ðxdtÞ,
which are used to derive Eq. (19).

Due to the no-slip condition at the interface of an encap-

sulated bubble, vorticity is generated due to the tangential

motion of the interface and diffuses into the flow field,

which, in turn, modifies the shear stress of the surrounding

liquid. Therefore, viscous effects in the liquid cannot be

neglected. In addition to the potential solution, we consider

weak viscous effects and solve the viscous correction by fol-

lowing Prosperetti’s theory.39 The viscous correction is

obtained by decomposing vorticity into poloidal, Qk(r,t), and

toroidal, Tk(r,t), fields
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r� uv ¼
X

1

k¼1

r�r� ðQkðr; tÞPkðcos hÞerÞ½

þr � Tkðr; tÞPkðcos hÞer�: (20)

Only the toroidal field Tk(r,t) is relevant since we consider

an axisymmetric model, which is governed by the following

equation:39

q
@Tk
@t

þq
@

@r
_R R=rð Þ2Tk

h i

�ll
@2Tk

@r2
þ llk kþ 1ð Þ

Tk

r2
¼ 0:

(21)

The viscous part of the velocity can be expressed in terms of

the toroidal field as follows:

uv ¼
X

1

k¼1

TkPk �
@U

@r

 !

er �
1

r

@U

@h
eh; (22)

where

U ¼
X

1

k¼1

k þ 1

2k þ 1
Pk �

ð1

R

s�kTk s; tð Þds

��

þ

ðr

R

s�kTk s; tð Þds

�

rk þ
k

2k þ 1

� �R2kþ1

ð1

R

s�kTk s; tð Þds

�

þ

ðr

R

skþ1Tk s; tð Þds

�

r� kþ1ð Þ

�

; (23)

where s is the integration variable. The viscous correction to

the pressure is evaluated at the bubble interface as

pvjr¼R ¼
X

1

k¼1

k llTkðR; tÞ=Rþ qð _R=RÞ

�

�

ð1

R

ðR=sÞ3 � 1

h i

ðR=sÞkTkðs; tÞds

	

Pkðcos hÞ:

(24)

The partial differential equation (21) will be solved numeri-

cally based on the boundary conditions given below.

The flow velocity u satisfies the stress balance at the

bubble interface,

n � �pIþ 2llðruþruTÞ

 �

þ pgn� ðcr � nÞn ¼ F;

(25)

where I is the unit tensor, n is the outward unit normal vector

of the interface S, c is the surface tension, and F is the mem-

brane stress. The stress balance [Eq. (25)] includes the pres-

sures due to the gas and the liquid, the viscous stress on the

liquid side, and the membrane stress (for EMBs only) or sur-

face tension (for gas bubble only). Note that when a bubble

is coated by a membrane, the surface tension is effectively

negligible, replaced by the membrane stress.1 Therefore, we

set c¼ 0 for EMB cases and F¼ 0 for gas bubble cases. The

liquid pressure p is given by Eq. (11), which includes the

potential part [Eq. (19)] and viscous correction [Eq. (24)].

Due to the encapsulation, mass transport to and from the

bubble is neglected, along with the presence of vapor.

Therefore, the internal bubble pressure, pg, is due to only a

noncondensible gas, which is assumed to be spatially uni-

form and undergoes an adiabatic process according to the

polytropic relation,

pg ¼ pg0
V0

V

� �C

; (26)

where V is the bubble volume at the current time, the sub-

script 0 indicates the initial value, and C is the ratio of spe-

cific heats of the bubble gas. The membrane stress, F, is

given by the surface divergence of the elastic stress tensor41

F ¼ �ðP � rÞ � ðsþ qnÞ; (27)

where P¼ I� nn is the tangential projection operator, s is

the in-plane stress, and q is the transverse shear stress, which

is expressed in terms of bending moment m as, q

¼ ½ðP � rÞ �m� � P. We model the membrane as a viscoelas-

tic material, employing the neo-Hookean law42 for the in-

plane stress, a linear law for the membrane viscosity, and the

Love law43 for the bending moments. The expression for the

membrane stress is based on Liu et al.24 The surface tension,

c, is included here so that our model can be applied to gas

bubbles by setting the membrane stress F in Eq. (25) to zero.

For encapsulated bubbles, the surface tension is set to zero.

Substituting the derived velocity and pressure into the

dynamic boundary condition [Eq. (25)] and using the orthog-

onality of the Legendre polynomials, we obtain the dynamic

equations for the bubble interface, of which the zeroth-order

equation (k¼ 0) governs the radial oscillation,

R €R þ
3

2
_R
2
þ

1

q
p0 þ pac � pg0

R0

R

� �3C

þ
2c

R
þ 4ll

_R

R

" #

�
v2r
4
þ
v2a
2
þ vavr ¼ �

1

q

2Gs R6 � R6
0

� �

R7
þ 4ls

_R

R2

� �

;

(28)

where Gs is the elastic modulus and ls is the membrane vis-

cosity. Equation (28) is an extended Rayleigh-Plesset equa-

tion for a translating EMB. The term in square brackets on

the right-hand side is associated with the membrane elastic-

ity and viscosity, and the last three terms on the left-hand

side are associated with the bubble translation and the flow

velocity due to the acoustic wave. Equation (28) reduces to

the Rayleigh-Plesset equation if the elasticity and viscosity

of the membrane and the translation velocity are omitted.

The first-order mode (k¼ 1) of the dynamic boundary

condition governs the translational motion, written in the

form of the inertia of the added mass and forces

d

dt

1

2
qVvr

� �

¼ FB þ Fh þ Fl þ Fm; (29)

where
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FB ¼qV _va;

Fh ¼qV
9 _a2

10R
vrþa2

6 _R

5R2
vrþ

7

10R
_vrþ

2

5R
_va

 !" #

;

Fl ¼�12pllRvrþ8pllR

ð1

R

T1 s; tð Þ

s
ds

�qV
_R

R2

ð1

R

R

s

� �3

�1

" #

R

s

� �

T1 s; tð Þds;

Fm ¼V 18Gs

R6
0

R9
b1þ3 1þ tð ÞGb

b1

R5
�
6ls
R4

_Rb1�R _b1
� �

� �

;

(30)

where V ¼ ð4=3ÞpR3, Gb is the bending modulus, and t is

the Poisson ratio. The force FB is related to the gradient of

pressure, which provides the primary Bjerknes force. Fh is

the effect of the second-order shape mode on translation. Fl

is the viscous effect, including the quasisteady drag and his-

tory force related to the unsteady diffusion of vorticity.44 Fm

is the membrane stress.

The dynamic equation for the higher-order modes

(k� 2) of shape oscillation is

M€ak þ D _ak þWak þ Gkþ1 þ Gk�1 ¼ T þ Fmk; (31)

where

M ¼
R

k þ 1
;

D ¼
3 _R

k þ 1
þ
2 k þ 2ð Þll

qR
;

W ¼ �
k � 1

k þ 1
€R þ

k þ 2ð Þ k � 1ð Þc

qR2
þ
4 k � 1ð Þll _R

qR2
�

9 2k4 þ 3k3 þ k2 þ k � 1ð Þ

2 2k � 1ð Þ 2k þ 1ð Þ 2k þ 3ð Þ

v2r
R

" #

;

Gkþ1 ¼ � _akþ1vr
3 2k þ 1ð Þ

2 2k þ 3ð Þ
� akþ1

3 k þ 1ð Þvr _R

2k þ 3ð ÞR
þ

5k þ 2

2 2k þ 3ð Þ
_vr þ

k þ 1

2k þ 3
_va þ

3 k þ 1ð Þ k2 þ 2k þ 6ð Þ

2k þ 3

llvr

qR2

" #

;

Gk�1 ¼

3

4
v2r ; for k ¼ 2

3

2
_ak�1vr þ ak�1

k

2 2k � 1ð Þ
_vr � 2 _vað Þ �

3 1� kð Þ

2k � 1
vr

_R

R
þ k k þ 4ð Þ

ll
qR2

 !" #

; for k � 3

8

>

>

>

>

<

>

>

>

>

:

T ¼ �k
ll
q

Tk R; tð Þ

R
þ 2k k þ 1ð Þ

ll
q
Rk�2

ð1

R

s�kTk s; tð Þds� k
_R

R

ð1

R

R

s

� �3

� 1

" #

R

s

� �k

Tk s; tð Þds;

Fmk ¼
Gs

qR8
2 R6 � 7R6

0

� �

ak þ 6k k þ 1ð ÞR6
0bk


 �

�
Gb

qR4
k k þ 1ð Þ k2 þ k � 1þ tð Þ ak � bkð Þ

 �

�
2ls
qR3

�4ak _R þ 2R _ak þ k k þ 1ð Þ _Rbk � R _bk
� �
 �

: (32)

Due to the nature of the Legendre polynomials, the effects of

adjacent shape modes akþ1 and ak–1 are included in terms

Gkþ1 and Gk�1, respectively. The terms T and Fmk contain

terms related to the toroidal field and membrane, respec-

tively. Equation (31) is the equation for shape oscillation of

a translating EMB. It reduces to the equation for the shape

oscillation of gas bubbles given by Prosperetti39 if the stress

of the membrane and translational velocity are omitted.

The dynamic boundary condition [Eq. (25)] applied in

the tangential direction provides the balance between the

shear stress and the membrane tangential stress

2ll
3vr

2R
�
9a2vr

10R2
�
T1 R; tð Þ

2R
�R�1

ð1

R

s�1T1 s; tð Þds

� �

¼ 6Gs

R6
0

R8
b1þ 1þ tð Þ

Gb

R4
b1þ

2ls
R3

R _b1� _Rb1
� �

; (33)

for k¼ 1, and,

2ll
k þ 2

k þ 1

_ak

R
�
k � 1

k þ 1

_Rak

R2
þ
3k k þ 2ð Þ

2

vr

R2

ak�1

2k � 1

�

"

�
akþ1

2k þ 3

�

� Rk�2

ð1

R

s�kTk s; tð Þds�
Tk R; tð Þ

2R

�

¼
Gs

R8




R6 � 7R6
0

� �

ak þ 3k k þ 1ð ÞR6
0 þ k � 1ð Þ

�

� k þ 2ð ÞR6Þbk
�

�
Gb

R4
k2 þ k � 1þ tð Þ ak � bkð Þ

þ
2ls
R3

2ak _R � R _ak þ k2 þ k � 1ð Þ R _bk � _Rbk
� �
 �

;

(34)

for k� 2. For a gas bubble, the free slip interface yields a

shear-free condition, for which the right-hand sides of Eqs.

(33) and (34) are zero.

The no-slip condition implies the continuity of tangen-

tial velocity, uh � _Zbcez � eh ¼ rð@H=@tÞ, leading to
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�
3

2
vr þ

3a2

10R
vr þ

ð1

R

s�1T1 s; tð Þds ¼ _b1 �
_R

R
b1; (35)

for k ¼ 1, and,

�
1

kþ 1
_ak þ

2ak _R

R

� �

�
3kvr

2R

ak�1

2k� 1
�

akþ1

2kþ 3

� �

þRk�1

ð1

R

s�kTk s; tð Þds¼ _bk �
_R

R
bk; (36)

for k� 2.

Equations (28), (29), (31), and (35) or (36) are solved

numerically for the unknown functions R(t), vr(t), ak(t), and

bk(t) by using the fourth-order Runge-Kutta method. The

toroidal field Tk(r,t) is updated at every time step by solving

Eq. (21) using the second-order finite difference method,24

with the boundary condition Tk(R,t) at the surface of an

EMB obtained from (33) or (34) and the far field condition

Tk !0 at infinity. The integrals in Eqs. (30) and (32)–(36)

are calculated numerically by using the composite trapezoi-

dal rule. For simulations of gas bubbles, bk is set identically

to zero and Eqs. (35) and (36) need not be solved.

III. NUMERICAL ANALYSES

In this section, we simulate the response of an EMB with

R0¼ 10lm, Gs¼ 0.5N m�1, Gb¼ 1� 10�13 N m, ls¼ 1

� 10�8kg s�1, and t¼ 0.5, which are within the intermediate

range of property values for EMBs used in medical applica-

tions.45 The external fluid is assumed to be water with density

q¼ 1000 kg m�3 and viscosity ll¼ 1� 10�3kg (m s)�1. For

comparison, the cases for a gas bubble have surface tension set

to c¼ 0.0729N m�1. Under these parameters, the natural fre-

quencies of radial mode, x0, and shape modes, xk (k¼ 2–4),

for the EMB and the gas bubble are calculated according to

Liu and Wang46 and Lamb47 and shown in Table I.

The minimum acoustic pressure amplitude inducing

shape instability is introduced as the instability threshold,

ethr. Figure 2 displays the instability threshold versus fre-

quency up to 1 MHz. Here we prescribe an initial distur-

bance to the shape modes ak(t¼ 0)/R0¼ 10�4 for k� 2 and

regard the interface shape unstable if jakj/R0> 0.5. Note that

for the cases with translation, the stability diagram in Fig. 2

is obtained by solving the whole coupled system of equa-

tions, including the radial dynamic equation (28), the transla-

tion equation (29), and the shape oscillation equations (31)

and (35) or (36). For the cases without translation, we fix the

z-coordinate of the bubble center at the origin (i.e., set

Zbc¼ 0 and _Zbc¼ 0), set the flow velocity, va, induced by the

acoustic pressure to zero, and do not solve the equations

related to the translational mode [Eqs. (29), (33), and (35)];

thus, the relative velocity, vr, remains zero. This process is

equivalent to driving a bubble with a standing acoustic wave

(assuming the wavelength is much larger than the radius), i.e.,

the bubble is driven only radially and the primary Bjerknes

force is absent. In the absence of translation, the encapsulated

bubble is more stable than the gas bubble at all frequencies

sampled, i.e., the amplitude threshold, ethr, is higher for the

EMB. The local minima of the lines with solid black circle

(for EMB) and red square (for gas bubble) are attributed to the

parametric instability, which occurs when xd 	 x0 or 2xk/xd

	 n, where n is a natural number. This shape instability (with-

out translation) arises due to the structure of Mathieu’s equa-

tion embedded in our model, which was discussed in Refs. 24

and 46. When translation is allowed, the amplitude threshold

tends to decrease across all frequencies considered, i.e., the

EMBs/bubbles become less stable when they are undergoing

translation. We discuss the effects of translation on the shape

stability of a gas bubble and an EMB separately.

A. Effects of translation on gas bubble

Figure 2 shows that the decrease in amplitude threshold

due to translation is much less appreciable for the gas bubble

compared to the EMB. By setting the membrane parameters

Gs, Gb, and ls to be zero and the surface tension to

c¼ 0.0729N m�1, the mathematical model in Sec. II is suit-

able for the gas bubble. Therefore, Fmk in Eq. (32) is zero. If

we temporarily neglect the effects of coupling between the

adjacent shape modes, Eq. (31) can be rewritten as

M€ak þ D _ak þWak þ Gk�1 ¼ T; (37)

where Gk�1 ¼ ð3=4Þv2r for k¼ 2 and Gk�1¼ 0 for k� 3.

Other coefficients M, D, W, and T are the same as shown in

Eq. (32). Similarly, the right-hand side of Eq. (34) is zero,

providing the shear-free condition

TABLE I. Natural frequencies of the radial mode, x0, and shape modes, xk

(k¼ 2, 3, and 4), where R0¼ 10lm, q¼ 1000 kg m�3, and ll¼ 1� 10�3kg

(m s)�1, and Gs¼ 0.5 N m�1, Gb¼ 1� 10�13 N m, ls¼ 1� 10�8kg s�1,

and t¼ 0.5 for an EMB, and c¼ 0.0729N m�1 for a gas bubble.

x0 /2p (MHz) x2 /2p (MHz) x3 /2p (MHz) x4 /2p (MHz)

EMB 0.51 0.25 0.32 0.38

Gas bubble 0.34 0.15 0.27 0.41

FIG. 2. (Color online) Threshold of acoustic pressure amplitude, ethr, for

inducing shape instability versus driving frequency, xd. The remaining

parameters are the same as in Table I.
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2ll
k þ 2

k þ 1

_ak

R
�
k � 1

k þ 1

_Rak

R2

"

�Rk�2

ð1

R

s�kTk s; tð Þds�
Tk R; tð Þ

2R

�

¼ 0: (38)

The no-slip condition [Eqs. (35) and (36)] is not applied

for the gas bubble. Except for the translational velocity terms,

Eqs. (37) and (38) are the same as the equations obtained by

Prosperetti39 for a stationary gas bubble. The effect of transla-

tion is in W, the coefficient of ak, for all shape modes, and in

Gk–1 for the second-order shape mode. The relative velocity, vr,

for the cases with xd/2p¼ 0.1 and 1MHz are shown as repre-

sentative examples in Fig. 3. From Fig. 3, it is clear that the

magnitude of vr is of the order O(10�1) m/s. For these cases,

the ratio of the effect of translation to surface tension is very

small. This can be illustrated by comparing the terms related to

these effects that are included in W. Because W is the coeffi-

cient of ak, these terms are likely to be closely related to the

natural frequency and, thus, parametric instability. The ratio of

these two terms is determined to satisfy the inequality

9 2k4þ3k3þk2þk�1ð Þ

2 2k�1ð Þ 2kþ1ð Þ 2kþ3ð Þ

v2r
R

 !
,

kþ2ð Þ k�1ð Þc

qR2

 !

<0:01:

(39)

Therefore, the effect of translation on the natural frequency

of shape modes is much smaller than the effect of surface

tension. Hence, translation plays little effect on the surface

stability of a gas bubble for the parameters investigated here.

Nevertheless, we find that the amplitude of the shape modes

can increase under translation, as shown in Fig. 4 for

xd/2p¼ 0.1 and 1MHz with the acoustic amplitude slightly

smaller than the amplitude threshold. The translation enhan-

ces the shape mode amplitudes on the interface of a gas bub-

ble; however, the amplitudes remain small (relative to the

initial radius) and, thus, the effect on overall shape stability

is not obvious in Fig. 2.

B. Effects of translation on EMB

When the EMB translates due to the primary Bjerknes force

imposed by a traveling acoustic plane wave, the amplitude

thresholds decrease, as shown in Fig. 2 (the line with blue

circles). Consider the case of xd/2p¼ 0.5MHz with acoustic

intensity e¼ 0.5. The EMB without translation is stable, as

shown in Fig. 5(a), and the initial disturbances to the shape

modes damp out with time. By comparison, the second-order

shape mode is unstable when the EMB translates due to the

acoustic wave [Fig. 5(b)]. The related velocities, including the

absolute, relative, and acoustic velocities, are shown in Fig. 5(c).

The interface of an EMB is no-slip, which is different

from the free-slip interface of a gas bubble. Therefore, the

displacements of material points on the EMB surface in the

tangential direction must be considered. The amplitude of

tangential displacement is denoted as bk in Eq. (9). If we

neglect the coupling with adjacent modes, neglect the inte-

gral
Ð1
R
½ðR=sÞ3 � 1�ðR=sÞkTkðs; tÞds,which is much smaller

than other integral in Eq. (32) due to the thin boundary layer

assumption,24 and eliminate the other integral
Ð1
R

s�kTkðs; tÞds in Eq. (32) by substituting the no-slip condi-

tion [Eq. (36)], then Eq. (31) can be rewritten as

€ak þ _ak
3 _R

R
þ
4 kþ 1ð Þll

qR2
þ
4 kþ 1ð Þls

qR3

" #

þ _bk �2k kþ 1ð Þ2
ll
qR2

� 2k kþ 1ð Þ2
ls
qR3

� �

þ ak � k� 1ð Þ
€R

R
þ
4 kþ 1ð Þll _R

qR3

"

�
8 kþ 1ð Þls

qR4
_R þ

2 kþ 1ð ÞGs

qR9
7R6

0 � R6
� �

þ
Gb

qR5
k kþ 1ð Þ2 k2 þ k� 1þ tð Þ �

9 kþ 1ð Þ 2k4 þ 3k3 þ k2 þ k� 1ð Þ

2 2k� 1ð Þ 2kþ 1ð Þ 2kþ 3ð Þ

v2r
R2

3

5

þ bk �6k kþ 1ð Þ2
GsR

6
0

qR9
� k kþ 1ð Þ2 k2 þ k� 1þ tð Þ

Gb

qR5
þ 2k kþ 1ð Þ2

ll _R

qR3
þ 2k kþ 1ð Þ2

ls _R

qR4

" #

¼ �k kþ 1ð Þ
ll
q

Tk R; tð Þ

R2
:

(40)

FIG. 3. (Color online) Time evolution of the velocity of bubble translation, _Zbc, flow velocity due to the acoustic wave, va, and relative velocity,

vr ¼ _Zbc � va, for gas bubbles with (a) xd/2p¼ 0.1MHz; (b) xd/2p¼ 1MHz. The remaining parameters are the same as in Table I.
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Equation (40) is written in the form of a second-order

oscillator equation for ak. If we neglect the temporal change

in the radius, i.e., by letting _R ¼ 0, the coefficients of _ak and
_bk in Eq. (40) are strictly positive and negative, respectively.

The negative coefficient associated with _bk implies this term

plays a role of negative damping, which is destabilizing. The

coefficient of bk is also negative due to the terms associated

with Gs and Gb. This suggests that the tangential

FIG. 4. (Color online) Time evolution of the shape modes for gas bubbles: (a) xd/2p¼ 0.1MHz, e¼ 0.6 without translation; (b) xd/2p¼ 0.1MHz, e¼ 0.6 with

translation; (c) xd/2p¼ 1MHz, e¼ 1.7 without translation; (d) xd/2p¼ 1MHz, e¼ 1.7 with translation. The remaining parameters are the same as in Table I.

FIG. 5. (Color online) Time evolution of the shape modes for an EMB with xd/2p¼ 0.5MHz, e¼ 0.5 without (a) and with (b) translation, and (c) the transla-

tional velocities related to (b). The remaining parameters are the same as in Table I.
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displacements of the shell act as a destabilizing (or negative)

elastic force on the radial shape mode oscillations, ak.

To demonstrate the destabilizing effect of shear stress

on the EMB, we remove the no-slip condition [Eqs. (35) and

(36)] and neglect tangential displacements of the shell by

setting bk¼ 0, but still allow translation. While this is not

physical, it illustrates that the amplitude thresholds for the

surface instability increase under translation when the no-

slip condition is neglected, as shown by the green line in

Fig. 2. This effect demonstrates that the tangential move-

ment of the material points on the shell (as denoted by bk)

destabilize the interface of the EMB when it translates.

Next, we investigate the stress distribution for the

encapsulated bubble. The shapes of the EMB at a2/

R0¼60.2 and the relevant stress distributions are shown in

Fig. 6. The EMB presents an oblate shape (the thick line in

Fig. 6) for a2/R0¼�0.2 relative to the translational direc-

tion, which is also the symmetry axis, and a prolate shape

for a2/R0¼ 0.2. The thin lines in Fig. 6 sketch the normal

and tangential stresses. For normal stress (left column in Fig.

6), the inward and outward lines show the direction of stress.

For tangential stress (right column in Fig. 6), the inward

lines represent compression and the outward lines represent

tension. For an EMB, the interfacial stress can be compres-

sion as well as tension. While the latter tends to reduce the

amplitude of the shape modes, the former can cause buck-

ling, which indicates that the membrane stress does not

always stabilize the interface. This nature of interfacial stress

in an EMB differs from that of a gas bubble, for which the

interfacial stress is always tension, i.e., surface tension,

which tends to recover the shape of a bubble to that of a

sphere.

In Eq. (40), which is an oscillator equation, we can

regard the term �kðk þ 1Þðll=qÞ½TkðR; tÞ=R
2� as a driving

term. Due to the negative sign in front of this term, if the

values of Tk(R,t) and _ak are both positive (or negative), it

means the driving caused by viscosity (�kðk þ 1Þðll=qÞ
½TkðR; tÞ=R

2�) is in an opposite direction to the shape mode

velocity ( _ak), which indicates that viscosity plays a role of

damping. In Fig. 7, we plot the time evolution of the velocity

of the second-order shape mode, _a2ðtÞ, and the relevant

toroidal field, T2(R,t). Whether the bubble translates due to

the traveling plane wave, or at a constant, prescribed transla-

tional velocity (without radial oscillation and applied acous-

tic pressure), the variations of _a2ðtÞ and T2(R,t) are always

in-phase (i.e., of the same sign) for the gas bubble. In con-

trast, the oscillations of _a2ðtÞ and T2(R,t) are out-of-phase for

the EMB. This implies that viscosity may destabilize the

interface of an EMB while stabilizing a gas bubble. This dif-

ference in behavior for the EMB results from the no-slip

boundary condition at the interface. In this case, vorticity

generated at the EMB surface requires a finite amount of

time to diffuse into the exterior liquid, resulting in a phase

lag between the oscillation of the shape mode velocity and

the toroidal field.

Next, we consider the effect of higher liquid viscosity,

which provides some insight into how translation might

affect the shape stability of EMBs in blood. While blood is

non-Newtonian and its viscosity varies with the rate of shear,

at body temperature, the viscosity of blood is normally about

3–4 times that of water. We therefore investigate the stability

of an EMB in a liquid with ll¼ 3� 10�3kg (m s)�1 and

5� 10�3kg (m s)�1, as shown in Fig. 8. The density of blood

(
1060 kg/m3) is very near to that of water, therefore, we

keep all remaining properties the same as in Table I. The

data for liquid viscosity ll¼ 1� 10�3kg (m s)�1 are repro-

duced from Fig. 2. In the absence of translation, the results

show that the threshold of pressure amplitude, ethr, for induc-

ing shape instability increases directly with the viscosity of

the liquid. Therefore, viscosity plays a significant role in

FIG. 6. Shape and stress of an EMB at

a2/R0¼60.2. The thick lines represent

the bubble shape and thin lines show

the distribution of stress. The axis of

symmetry is shown by the horizontal

line through the center of the bubble,

which is also the direction of transla-

tion. For normal stress (left column),

the inward and outward lines show the

direction of stress away from the bub-

ble interface. For tangential stress

(right column), the inward lines repre-

sent compression and the outward lines

represent tension. The remaining

parameters are the same as in Table I.
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stabilizing the EMB shape modes if the translational motion

is absent. However, if the EMB translates due to the applied

acoustic forcing, the shape stability reduces significantly,

and the pressure amplitude threshold is nearly the same for

the three different liquid viscosities. These results suggest

that, while a higher liquid viscosity can inhibit shape insta-

bility when the bubble is stationary, it has minimal effect on

shape stability during translation. Furthermore, translation

causes a greater reduction in shape stability as the liquid vis-

cosity is increased. This supports the above analysis that the

destabilizing effect of translation on an EMB is mediated by

the interfacial viscous stress resulting from the no-slip

boundary condition.

We further investigate the EMB with various elastic

moduli: Gs¼ 0.3, 0.5, and 0.7N m�1. Similar stability phe-

nomena are revealed in Fig. 9, which shows that the

FIG. 7. (Color online) Time evolution of _a2ðtÞ and T2(R,t) for (a) a gas bubble translating under an acoustic wave with xd/2p¼ 1MHz and e¼ 1.7; (b) an

EMB translating under an acoustic wave with xd/2p¼ 1MHz and e¼ 0.7; (c) a gas bubble with a constant translational velocity, vr¼ 0.01m s�1; (d) an EMB

with a constant translational velocity, vr¼ 0.01m s�1. The remaining parameters are the same as in Table I.

FIG. 8. (Color online) Threshold of acoustic pressure amplitude, ethr, for

inducing shape instability of an EMB versus driving frequency, xd, with

ll¼ 1� 10�3kg (m�s)�1, 3� 10�3kg (m s)�1 and 5� 10�3kg (m s)�1, with

and without translation. The remaining parameters are the same as in Table I.

FIG. 9. (Color online) Threshold of acoustic pressure amplitude, ethr, for

inducing shape instability of an EMB versus driving frequency, xd, with

Gs¼ 0.3N m�1, Gs¼ 0.5N m�1, and Gs¼ 0.7N m�1, with and without

translation. The remaining parameters are the same as in Table I.
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instability threshold for the EMBs undergoing translation is

smaller than when translation is absent. Especially for higher

driving frequencies, the EMBs without translation are highly

stable, i.e., the thresholds are much larger than those with

translation.

IV. CONCLUSIONS

A theoretical study is carried out for the nonspherical

shape modes of EMBs and gas bubbles translating subject to

a traveling acoustic plane wave. An approximate model is

developed that considers the interactions among the external

liquid flow, nonspherical deformation of the membrane, and

the expansion/compression of the internal gas. The potential

flow in the bulk volume of the external flow is modeled

using an asymptotic analysis. Viscous effects within the thin

boundary layer at the liquid-membrane interface are

included using Prosperetti’s theory.39 In-plane stress and the

bending moment of EMBs are incorporated into the dynamic

boundary condition at the interface. The evolution equations

for the volume mode, translation, and shape modes of an

EMB are thus derived.

The results show that translation only slightly destabil-

izes the interface of an uncoated gas bubble. This phenome-

non is not obvious as the destabilizing effect of translation is

much smaller than the stabilizing effect of surface tension in

the cases considered. By comparison, translation has a much

greater destabilizing effect on an EMB. This effect is attrib-

uted to the interfacial viscous stress owing to the no-slip con-

dition at the EMB–liquid interface, as compared to the zero

stress condition that results from the free-slip condition at

the gas–bubble interface. In particular, the no-slip boundary

condition incites shape instability of the EMB through the

tangential motion of the material points at the interface and

the compression stress in the shell. Furthermore, while

higher liquid viscosity enhances shape stability when an

EMB is stationary, it appears to have little effect on stability

under translation.
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APPENDIX: DERIVATION OF THE COEFFICIENTS qk

IN EQS. (15)–(17)

The coefficients qk are determined by the kinematic

boundary condition Eq. (13), which is rewritten as

@S

@t
þ ru� _Zbcez
� �

� rS ¼ 0; (13)

where the surface function S is defined in Eq. (14). The first

term of Eq. (13) is written explicitly as

@S

@t
¼ � _R �

X

1

k¼2

_akPk cos hð Þ: (A1)

The second term of Eq. (13) is written as

ru �rS¼
@u

@r

@S

@r
þ
1

r

@u

@h

1

r

@S

@h
¼
@u

@r
�
1

r

@u

@h

X

1

k¼2

ak

r
P1
k coshð Þ:

(A2)

Substituting the form of velocity potential [Eq. (12)], Eq.

(A2) becomes

ru �rS¼�
q0

r2
þ va�2

q1

r3

� �

P1�
X

1

k¼2

kþ1ð Þ

�
qk

rkþ2
Pk�

X

1

k¼2

vaþ
q1

r3

� �

ak

r
P1
1P

1
k : (A3)

If we expand Eq. (A3) in a Taylor series about r ¼ R

þ
P1

k¼2 akPkðcos hÞ with ak/R � 1, then we get

ru � rS ¼ �
q0

R2
þ va � 2

q1

R3

� �

P1 þ
6q1

R4

X

1

k¼2

akP1Pk

þ
X

1

k¼2

2q0

R3
ak � k þ 1ð Þ

qk

Rkþ2

� �

Pk

�
X

1

k¼2

va þ
q1

R3

� �

ak

R
P1
1P

1
k : (A4)

Next, we introduce the following relations of the Legendre

polynomials,

X

1

k¼2

akP1Pk ¼
X

1

k¼2

kþ1

2kþ3
akþ1þ

k

2k�1
ak�1

� �

Pk; (A5)

and

X

1

k¼2

akP
1
1P

1
k ¼

X

1

k¼2

k þ 1ð Þ k þ 2ð Þ

2k þ 3
akþ1

�

�
k k � 1ð Þ

2k � 1
ak�1

�

Pk: (A6)

After applying Eqs. (A5) and (A6), Eq. (A4) reduces to

ru � rS¼�
q0

R2
þ va � 2

q1

R3
þ
12q1

5R4
a2

�

�
6

5
va þ

q1

R3

� �

a2

R

�

P1 þ
X

1

k¼2

2q0

R3
ak � kþ 1ð Þ

�

�
qk

Rkþ2
þ
6q1

R4

kþ 1

2kþ 3
akþ1 þ

k

2k� 1
ak�1

� �

�
va

R
þ

q1

R4

� �

kþ 1ð Þ kþ 2ð Þ

2kþ 3
akþ1

�

�
k k� 1ð Þ

2k� 1
ak�1

��

Pk: (A7)

Similary, we derive the third term of Eq. (13) as
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_Zbcez �rS¼ _ZbcP1�
X

1

k¼2

ak

r
_ZbcP

1
1P

1
k

¼ _Zbc�
6

5

a2

R
_Zbc

� �

P1�
X

1

k¼2

_Zbc

�
kþ1ð Þ kþ2ð Þ

2kþ3

akþ1

R
�
k k�1ð Þ

2k�1

ak�1

R

� �

Pk:

(A8)

Substituting Eqs. (A1), (A7), and (A8) into Eq. (13) and uti-

lizing the orthogonality of the Legendre polynomials, we

obtain the expressions for qk shown in Eqs. (15)–(17).
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