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Encapsulated microbubbles (EMBs) are associated with a wide variety of important medical appli-
cations, including sonography, drug delivery, and sonoporation. The nonspherical oscillations, or
shape modes, of EMBs strongly affect their stability and acoustic signature, and thus are an impor-
tant factor to consider in the design and utilization of EMBs. Under acoustic forcing, EMBs often
translate with significant velocity, which can excite shape modes, yet few studies have addressed
the effect of translation on the shape stability of EMBs. In this work, the shape stability of an EMB
subject to translation is investigated through development of an axisymmetric model for the case of
small deformations. The potential flow in the bulk volume of the external flow is modeled using an
asymptotic analysis. Viscous effects within the thin boundary layer at the interface are included,
owing to the no-slip boundary condition, using Prosperetti’s theory [Q. Appl. Math. 34, 339
(1977)]. In-plane stress and bending moment due to the encapsulation are incorporated into the
model through the dynamic boundary condition at the interface. The evolution equations for radial
oscillation, translation, and shape oscillation of an EMB are derived, which can be reduced to
model an uncoated gas bubble by neglecting the encapsulation properties. These equations are
solved numerically to analyze the shape mode stability of an EMB and a gas bubble subject to an
acoustic, traveling plane wave. The findings demonstrate the counterintuitive result that translation
has a more destabilizing effect on an EMB than on a gas bubble. The no-slip condition at the encap-
sulating membrane is the main factor responsible for mediating this interfacial instability due to

translation. © 2018 Acoustical Society of America. https://doi.org/10.1121/1.5058403
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I. INTRODUCTION

Encapsulated microbubbles (EMBs) are finding wide-
spread use in biomedicine and are attracting increasing atten-
tion from the scientific community. Ultrasound contrast
agents (UCAs) were developed for enhancing contrast in
ultrasound imaging and represent one of the most successful
applications of EMBs. In addition to diagnostic purposes,
the application of EMBs is expanding to include therapies
such as drug delivery, gene therapy, and tissue ablation,
among others.'™ For both diagnostic and therapeutic appli-
cations, the EMB interacts with an applied ultrasound
field, which drives the volume (radial) mode and can excite
nonspherical shape oscillations as well. Shape oscillations
strongly influence the stability of the membrane and, there-
fore, impact the overall efficacy of EMBs. For example, in
sonography, UCA stability is important to maintain in
order to maximize residence time. Furthermore, stable shape
oscillations help generate subharmonic, harmonic, and ultra-
harmonic frequency components that enhance the acoustic
signature of UCAs and improve image contrast.*> In
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therapeutic applications, unstable shape oscillation can pro-
mote rupturing of the EMB coating, which can affect the
localized release of therapeutic agents within the circulatory
system.

In addition to volume and shape oscillation, the ultra-
sound field can incite translation of the EMB directly via the
primary Bjerknes force and indirectly due to the secondary
Bjerknes force, e.g., due to the presence of nearby tissue sur-
faces and/or bubbles.®” Translation of an EMB is coupled to
both the radial and shape dynamics, as is well documented
for uncoated gas bubbles.*'® A number of theoretical,
numerical, and experimental studies have investigated the
radial and shape dynamics of EMBs,'”" but the role of
translation has received less attention. However, microbub-
bles subject to ultrasonic forcing can translate at relatively
large velocities, which can be an important mechanism for
the effective use of EMBs in biomedicine, e.g., for sonopora-
tion.”®2° Thus, a complete understanding of the dynamics of
EMBs under acoustic forcing must include the effect of
translation, which motivates the present work.

The coupling of shape oscillation and translation of
uncoated gas bubbles in a standing wave, known as the
“dancing bubble problem,” was observed experimentally by
Strasberg and Benjamin®® and Crum and Eller.>' A similar
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phenomenon has been observed in gas bubbles for the case
of traveling acoustic waves by Dayton er al.” Theoretical
studies of the shape oscillation of gas bubbles have been
conducted by several researchers and have provided insight
into the coupling among the radial oscillation, shape modes,
and translation.'®'*'*183237 The translation of EMBs
subject to an ultrasound wave has also been studied without
considering their shape deformations.*®

In this theoretical study, the dynamics and shape stabil-
ity of both uncoated and EMBs subject to an acoustic, travel-
ing plane wave are studied through consideration of the
coupling of radial oscillation, translation, and shape modes.
It is assumed that the external flow is potential in the bulk
volume except for a thin viscous boundary layer near the
EMB-liquid interface. The potential flow is modeled using
an asymptotic analysis. Viscous effects within the thin
boundary layer at the interface are approximated using
Prosperetti’s theory.” To consider the influence of the shell
on the EMB dynamics, the in-plane stress and bending
moment of the encapsulation are incorporated into the
dynamic boundary condition at the interface. The amplitudes
of the shape modes are assumed small with respect to the
radius of the volume mode, which permits the use of perturba-
tion methods to derive evolution equations governing
the radial (volume) oscillation, translation, and shape oscilla-
tions of an EMB. This model is readily reduced to an uncoated
gas bubble by neglecting the encapsulation properties (e.g.,
shell stiffness and viscosity). The governing equations are
solved numerically in order to analyze the shape dynamics and
stability of a gas bubble and an EMB subject to an acoustic,
traveling plane wave over a range of frequencies and ampli-
tudes with clinical relevance. While translation is shown to
reduce stability in both cases, it has a much stronger destabiliz-
ing effect on EMBs compared to uncoated gas bubbles. We
find that the no-slip condition at the EMB interface is the main
factor responsible for this reduction in stability.

In Sec. II, we develop the theoretical model for the
dynamics of an EMB that includes radial and shape mode
oscillations, along with translation. The results of numerical
analyses for both uncoated gas bubbles and EMBs are
presented in Sec. III, and physical insights based on these
results are discussed. Last, a summary of the main findings
and conclusions of this work is given in Sec. IV.

Il. PROBLEM FORMULATION

In this section, we derive the mathematical formula-
tion for the dynamics of an encapsulated bubble translat-
ing subject to a traveling acoustic wave. We consider the
axisymmetric deformation of the bubble and establish a
local coordinate system (x,y,z,¢) with the origin at the bub-
ble geometric center upon a ground fixed coordinate sys-
tem (X,Y,Z,T), as illustrated in Fig. 1. The symmetry axis
Oz is parallel to the translational direction of the bubble
centroid (see Fig. 1). The transformation between the local
coordinates (x,y,z,f) and the ground fixed coordinates
X,Y,Z,T)is

t=T, x=X, y=Y, z=7Z—Zu(1),

20wl (220)- (2.2 )
or  or ™V 9z \ox'ay'0z)  \ox'ov’'oz)’
(1)

where Z. is the z-coordinate of the bubble center in the
ground fixed system.

The encapsulated bubble is subject to an acoustic wave.
The traveling plane wave with frequency w, applies an
acoustic pressure, p,., in the ground fixed system,

Pac = €po sin <%Z - wdt>7 2
C

where p is the ambient pressure, ¢ is the dimensionless
amplitude of the wave, and ¢, is the speed of sound in the lig-
uid. The flow velocity, v,., induced by the acoustic pressure
obeys the linear Euler equation,

8Vac
ot

pP—F-€ = —Vpa, 3)
where p is the liquid density. Substituting Eq. (2) into Eq.
(3) and integrating in time yields the induced flow velocity

vee = Posin( 227 — oot ). “)
149 C

Since the bubble size is much smaller than the wavelength of
the acoustic wave (R < ¢;/w,, where R is bubble radius), the
velocity due to the acoustic wave at the bubble surface, v,,, is
approximately

deformed
. bubble X
acoustic wave ,\‘
4> .
liquid

¥ membrane

FIG. 1. (Color online) The configura-
tion and coordinate system for a trans-
lating encapsulated bubble subject to a
- traveling acoustic wave.
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& ),
vy = Pin (—"zbc _ wdt> . (5)
pCy Cy

The velocity, u, and the pressure, p, of the liquid flow field
are governed by the incompressible Navier-Stokes equations

V.u=0, 6)

ou
P +p(u Zyce: ) Vu=-Vp+ V- (Vu+vVu'),
(N

where y; is the liquid viscosity. We neglect the flow field
within the bubble due to the negligible density and viscosity
of the interior gas as compared to the external liquid.

We assume that the bubble is approximately spherical,
and translates while undergoing appreciable radial oscilla-
tions and small amplitude shape oscillations. The shape per-
turbation to a spherical bubble can be expanded in terms of
spherical harmonics. With the restriction to axisymmetric
deformation, the spherical harmonics reduce to the Legendre
polynomials, as the azimuthal mode is constant. The position
of a material point on the membrane is expressed in terms of
the radial, r, and tangential, ®, directions as follows:

r(0,t) = R(t) + i a(t)Pi(cos 0), 3)
=2

0(0,1) zt Z 1)P}(cos 0), )

k=1

where R is the radius of the unperturbed spherical mode, and
a; and b, are the shape distortion amplitudes in the radial
and tangential directions, respectively. We assume ay,b;
< R. The series of the Legendre polynomials, Pi(cos 0),
represent the perturbations of the membrane in the radial
direction with shape mode amplitudes a;. The summation in
Eq. (8) is from k =2, since k=1 is associated with the trans-
lation of the bubble, which is treated separately through the
translational velocity. The series of the associated Legendre
polynomials, P}(cos 0) = dPi(cos 0)/d0, represent shape
perturbations in the tangential direction with amplitudes by,
in which b, denotes the displacements of material points
along the bubble interface with its shape keeping spherical.
We assume the viscous effects are confined to a thin, lig-
uid boundary layer adjacent to the membrane, and solve for
the velocity and pressure by decomposing them into the poten-
tial (irrotational) part and the viscous (rotational) correction

u=u,+u, (10)
p=pp+D (I

where the subscripts p and v refer to the potential and vis-
cous parts, respectively.

The velocity potential satisfies Laplace’s equation,
owing to the incompressibility condition (6). The flow field
induced by the acoustic pressure is superimposed on that
induced by the bubble dynamics, thus, the velocity potential
can be expressed as
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¢ = v rPy(cos 0) +Z k+1 (cos 0), (12)

where ¢, are the coefficients to be determined by the kine-
matic boundary condition,

oS

+ (Vo — Ze.) - VS =0, (13)
8t

where Vo is the liquid velocity due to the potential part of
the flow, and S is the surface function

S(r,0,t) =r —R(t) — iak(t)Pk(cos 0)=0. (14)
k=2

Making use of the orthogonality of the Legendre poly-
nomials, we obtain the coefficients g, for each mode as fol-
lows (see the Appendix for details):

qo = —RR?, (15)
S 3
= r R ra, 1
q1 > —V, +— 10 V,da (16)
Rk+2 ( 2R ) 3k Apiq a1
—__ |, = 7Rk+1 . +1
BT\ UTRY) T V<2k+3 2%k—1)°
(17)

where v, = Zbc — v, is the relative velocity. The velocity of
the potential part is obtained subsequently from u, = Vo,
which leads to

8(/) 1 aq)

a0 (18)

u, =
The pressure of the potential flow is obtained by the
Bernoulli equation

a .
pp = Po +pac - 8t |V(P| Zbcez . V(p . (19)

Equation (19) is obtained based on the weakly compressible
theory.*” In the theory, the flow in the outer region, far away
from the bubble with the scale of the wavelength of the
acoustic wave, is shown to satisfy the linear wave equation
to second order in terms of the Mach number. The flow in
the inner region is shown to satisfy Laplace’s equation to
second order. The far-field conditions of the inner region are
(a(pac/at)lrﬂoo = _(pac/p) and DPoo = Po + €Po sin (wdt)’
which are used to derive Eq. (19).

Due to the no-slip condition at the interface of an encap-
sulated bubble, vorticity is generated due to the tangential
motion of the interface and diffuses into the flow field,
which, in turn, modifies the shear stress of the surrounding
liquid. Therefore, viscous effects in the liquid cannot be
neglected. In addition to the potential solution, we consider
weak viscous effects and solve the viscous correction by fol-
lowing Prosperetti’s theory.”> The viscous correction is
obtained by decomposing vorticity into poloidal, Q(r.t), and
toroidal, T (r,t), fields
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o0

V xu, = Z[V X V X (Qr(r,t)Pr(cos O)e,)

=1
+ V X T (r,t)Pr(cos O)e,]. (20)

Only the toroidal field Ty(r,?) is relevant since we consider
an axisymmetric model, which is governed by the following
equation:

O°T, T,
X (k4 1)r—§= 0.

o
2

o O,
’OE—H)E[R(R/’) Tk} —

The viscous part of the velocity can be expressed in terms of
the toroidal field as follows:

o oD 10D
L= TePr— — e, — =~ ey, 22
: (; e 8r>e r 90 @2)
where
O = Pl — T 1)d.
22k 41 k{( L $ Tk(s: )ds

2 -

k
—k k
Ti(s, t)d P
+ Rs k(s,1) s)r +2k—|—1

o0
X (—RZI‘HJ s_ka(s,t)ds
R

+J skHTk(s,t)ds)r_(k“)} , (23)
R

where s is the integration variable. The viscous correction to
the pressure is evaluated at the bubble interface as

P = SR R + (R

k=1
x f [(R/5) — 1] (R/5)"Tu(s. t)ds}Pk(cos 0).
(24)

The partial differential equation (21) will be solved numeri-
cally based on the boundary conditions given below.

The flow velocity u satisfies the stress balance at the
bubble interface,

n-[—pl+2u(Vu+vVu')| +pn— (yV-n)n =F,
(25)

where I is the unit tensor, n is the outward unit normal vector
of the interface S, vy is the surface tension, and F is the mem-
brane stress. The stress balance [Eq. (25)] includes the pres-
sures due to the gas and the liquid, the viscous stress on the
liquid side, and the membrane stress (for EMBs only) or sur-
face tension (for gas bubble only). Note that when a bubble
is coated by a membrane, the surface tension is effectively
negligible, replaced by the membrane stress.' Therefore, we
set y =0 for EMB cases and F =0 for gas bubble cases. The
liquid pressure p is given by Eq. (11), which includes the
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potential part [Eq. (19)] and viscous correction [Eq. (24)].
Due to the encapsulation, mass transport to and from the
bubble is neglected, along with the presence of vapor.
Therefore, the internal bubble pressure, p,, is due to only a
noncondensible gas, which is assumed to be spatially uni-
form and undergoes an adiabatic process according to the
polytropic relation,

.
Vi
Pe = Peo (VO) : (26)

where V is the bubble volume at the current time, the sub-
script O indicates the initial value, and T is the ratio of spe-
cific heats of the bubble gas. The membrane stress, F, is
given by the surface divergence of the elastic stress tensor*'

F=—(P-V)(t+qn), @7

where P=1—nn is the tangential projection operator, T is
the in-plane stress, and q is the transverse shear stress, which
is expressed in terms of bending moment m as, (
= [(P-V)-m]-P. We model the membrane as a viscoelas-
tic material, employing the neo-Hookean law** for the in-
plane stress, a linear law for the membrane viscosity, and the
Love law™® for the bending moments. The expression for the
membrane stress is based on Liu e al.>* The surface tension,
v, is included here so that our model can be applied to gas
bubbles by setting the membrane stress F in Eq. (25) to zero.
For encapsulated bubbles, the surface tension is set to zero.

Substituting the derived velocity and pressure into the
dynamic boundary condition [Eq. (25)] and using the orthog-
onality of the Legendre polynomials, we obtain the dynamic
equations for the bubble interface, of which the zeroth-order
equation (k = 0) governs the radial oscillation,

RE+2R+ L |po v O Y
) 0 P0o T Pac — Pg0 R R HIR
V22 1{2GS(R6R8) R]

gy, = | Y Ay
4+2+vv p R + 'u‘Rz

(28)

where G; is the elastic modulus and g is the membrane vis-
cosity. Equation (28) is an extended Rayleigh-Plesset equa-
tion for a translating EMB. The term in square brackets on
the right-hand side is associated with the membrane elastic-
ity and viscosity, and the last three terms on the left-hand
side are associated with the bubble translation and the flow
velocity due to the acoustic wave. Equation (28) reduces to
the Rayleigh-Plesset equation if the elasticity and viscosity
of the membrane and the translation velocity are omitted.

The first-order mode (k= 1) of the dynamic boundary
condition governs the translational motion, written in the
form of the inertia of the added mass and forces

d (1
dt<2PVVr> =Fp+Fp+F,+Fn, (29)
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FB:.DV‘}LH
9v+a 6Rv+7\>+2\>
10R " "“*\sR27"T10R T TSR 4 |

T (s,1)
F,=—12muRv, + 8mu,R Tds

Fy=pV

where V = (4/3)7R3, G, is the bending modulus, and v is
the Poisson ratio. The force Fp is related to the gradient of
pressure, which provides the primary Bjerknes force. F, is
the effect of the second-order shape mode on translation. F,
is the viscous effect, including the quasisteady drag and his-
tory force related to the unsteady diffusion of vorticity.** F,,
is the membrane stress.

s oo 3
v R2 Joc (15) L (5) Ti(5,1)ds, The dynamic .equ.atio.n for the higher-order modes
R s s (k >2) of shape oscillation is
by 6 . . . B
Fn=V [mcsR—gb1 +3(1+ u)GbR—l5 R‘ff (Rb, — Rbl)} , My + Day + Wag + Gesr + Gy =T+ For, - (31
(30)  where
M— R
ket
3R 2(k+2
D— n (k + )H/7
k+1 PR
W | k- 1R.+(k+2)(k— l)y+4(k— DR 92k +3k° + K+ k—1)v2
ol k1 pR? pR? 22k —1)(2k+1)2k +3) R |’
G 3(2k+1) ., 3(k+1)vR  Sk+2 ookl 3(k + 1) (K2 + 2k + 6) v,
R0k +3) M k+3)R T 202k+3) " 2k+3 ¢ 2k +3 PR2|’
3,
7V fork =2
Gy =
3 . . 3(1—k) R I
5 r (V= 2v,) — N=+klk+4)— ]|, for k>3
3 W1 F it |5y (9 = 200) 2/<—1V<R+ k+4) or
1 T(R, 1) 1 o R (*|(RY’ R\*
k d 2k(k ’RHJ -t td—k—J (—) —1 <—) Ti(s, 1)d
R + (+)p RS k(S,)S RR s P k(sa)sa
For = G [2(R® — 7R§)ax + 6k(k + 1)RSb] — Sy [k(k + 1) + &k — 14 v)(ax — by)]
pRE pR*
P Bs [ZaauR + 2Ray + k(k + 1) (Rby — Rby)]. (32)
Due to the nature of the Legendre polynomials, the effects of k+2ar  k— 11@ n 3k(k+2) ve [ @y
adjacent shape modes a;,; and @,_; are included in terms "k+1R k+1R? 2 2k — 1
Gy.1 and Gy_y, respectively. The terms T and F,; contain o T
) i1 k-2 —k (R, 1)
terms related to the toroidal field and membrane, respec- — %3 —R s Ti(s,t)ds — R
tively. Equation (31) is the equation for shape oscillation of G R
a translating EMB. It reduces to the equation for the shape = R—; [(R® —7RS)ar + (3k(k + )RS + (k — 1)

oscillation of gas bubbles given by Prosperetti*” if the stress
of the membrane and translational velocity are omitted.

The dynamic boundary condition [Eq. (25)] applied in
the tangential direction provides the balance between the
shear stress and the membrane tangential stress

3v, 9ayv, Ti(R,1) 71JOO -1
2| —L LV R T (s,t)d
MIoR T ToR2 T 2R 5 Tisnds
=6G, Ob § )G by + 2K K (Rby —Rby) 33
= 1 (L0) 2z bi +—5 (Rby —Rby ), (33)
for k=1, and,
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G
X (k +2)R®)by] — R—f

2u,
R3

(k2+k7 1 +D)(ak7bk)

- Rbk)] )
(34)

+ 5 2R — Ray + (1 + k — 1) (Rb,

for k> 2. For a gas bubble, the free slip interface yields a
shear-free condition, for which the right-hand sides of Eqgs.
(33) and (34) are zero.

The no-slip condition implies the continuity of tangen-
tial velocity, uy — Zp.e. - ¢g = (0O /0t), leading to

Liuetal. 2193



3 3a, < - R
— v+ —=, s Ti(s,t)ds = by ——=by, 35
2V+10RV+JR9 1(s,t)ds = by R (35)
fork =1, and,
1 ( . ZakR> 3kV,~ (27| A1
JE ak+7 - —
k+1 R 2R \2k—1 2k+3
+R’HJ 55Ty (s,0)ds = by —— by, (36)
R R
for k> 2.

Equations (28), (29), (31), and (35) or (36) are solved
numerically for the unknown functions R(?), v,(t), a,(f), and
bi(f) by using the fourth-order Runge-Kutta method. The
toroidal field T)(r,¢) is updated at every time step by solving
Eq. (21) using the second-order finite difference method,**
with the boundary condition T(R,f) at the surface of an
EMB obtained from (33) or (34) and the far field condition
T, —0 at infinity. The integrals in Eqgs. (30) and (32)—(36)
are calculated numerically by using the composite trapezoi-
dal rule. For simulations of gas bubbles, b; is set identically
to zero and Egs. (35) and (36) need not be solved.

lll. NUMERICAL ANALYSES

In this section, we simulate the response of an EMB with
Ro=10um, G;=05N m™', G,=1x10"" N m, u,=1
X 1078kg sfl, and v = 0.5, which are within the intermediate
range of property values for EMBs used in medical applica-
tions.*> The external fluid is assumed to be water with density
p=1000kg m > and viscosity ;=1 x 10 kg (m s)"". For
comparison, the cases for a gas bubble have surface tension set
to y=0.0729 N m~ . Under these parameters, the natural fre-
quencies of radial mode, wg, and shape modes, w; (k=2-4),
for the EMB and the gas bubble are calculated according to
Liu and Wang*® and Lamb*” and shown in Table 1.

The minimum acoustic pressure amplitude inducing
shape instability is introduced as the instability threshold,
emr- Figure 2 displays the instability threshold versus fre-
quency up to 1 MHz. Here we prescribe an initial distur-
bance to the shape modes a;(t =0)/Ry= 10~* for k>2 and
regard the interface shape unstable if |a;|/Ro > 0.5. Note that
for the cases with translation, the stability diagram in Fig. 2
is obtained by solving the whole coupled system of equa-
tions, including the radial dynamic equation (28), the transla-
tion equation (29), and the shape oscillation equations (31)
and (35) or (36). For the cases without translation, we fix the
z-coordinate of the bubble center at the origin (i.e., set
Zo. =0 and Zy. = 0), set the flow velocity, v, induced by the
acoustic pressure to zero, and do not solve the equations
related to the translational mode [Eqgs. (29), (33), and (35)];

TABLE I. Natural frequencies of the radial mode, ), and shape modes, w;
(k=2, 3, and 4), where Ro=10 um, p=1000kg m >, and g, =1 x 10 kg
ms) ' and G;=05Nm ', G,=1x10 " Nm, u,=1x10 *kg s,
and v =0.5 for an EMB, and y =0.0729 N m~! fora gas bubble.

wo /21 (MHz) @, 2r (MHz) @5 /2 (MHz) w4 /27 (MHz)

EMB 0.51 0.25 0.32 0.38
Gas bubble 0.34 0.15 0.27 0.41
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e+ EMB without translation
351 -0 EMB with translation
| |£1- gas bubble without translation
--A-- gas bubble with translation
3 | |-+ EMB with translation and free-slip
25—
& 20
L.5F
1 |
0.5r
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

wq/2m (MHz)

FIG. 2. (Color online) Threshold of acoustic pressure amplitude, &y,, for
inducing shape instability versus driving frequency, @, The remaining
parameters are the same as in Table I.

thus, the relative velocity, v,, remains zero. This process is
equivalent to driving a bubble with a standing acoustic wave
(assuming the wavelength is much larger than the radius), i.e.,
the bubble is driven only radially and the primary Bjerknes
force is absent. In the absence of translation, the encapsulated
bubble is more stable than the gas bubble at all frequencies
sampled, i.e., the amplitude threshold, &g,, is higher for the
EMB. The local minima of the lines with solid black circle
(for EMB) and red square (for gas bubble) are attributed to the
parametric instability, which occurs when o, = @q or 2mw;/w,
~ n, where 7 is a natural number. This shape instability (with-
out translation) arises due to the structure of Mathieu’s equa-
tion embedded in our model, which was discussed in Refs. 24
and 46. When translation is allowed, the amplitude threshold
tends to decrease across all frequencies considered, i.e., the
EMBs/bubbles become less stable when they are undergoing
translation. We discuss the effects of translation on the shape
stability of a gas bubble and an EMB separately.

A. Effects of translation on gas bubble

Figure 2 shows that the decrease in amplitude threshold
due to translation is much less appreciable for the gas bubble
compared to the EMB. By setting the membrane parameters
G, Gy, and g to be zero and the surface tension to
»=0.0729N m~ !, the mathematical model in Sec. II is suit-
able for the gas bubble. Therefore, F,, in Eq. (32) is zero. If
we temporarily neglect the effects of coupling between the
adjacent shape modes, Eq. (31) can be rewritten as

Mda, +Day +Wa, + Gy, =T, 37

where Gy = (3/4)v? for k=2 and G, =0 for k>3.
Other coefficients M, D, W, and T are the same as shown in
Eq. (32). Similarly, the right-hand side of Eq. (34) is zero,
providing the shear-free condition

Liu et al.



k+2a, k—1Ra
FIKFIR k+1 R
o [~ Ti(R,t
—RHJ s*ka(s,z)ds—M =0. (38)

The no-slip condition [Egs. (35) and (36)] is not applied
for the gas bubble. Except for the translational velocity terms,
Egs. (37) and (38) are the same as the equations obtained by
Prosperetti®® for a stationary gas bubble. The effect of transla-
tion is in W, the coefficient of @, for all shape modes, and in
G for the second-order shape mode. The relative velocity, v,,
for the cases with w,/2n=0.1 and 1 MHz are shown as repre-
sentative examples in Fig. 3. From Fig. 3, it is clear that the
magnitude of v, is of the order O(10~ ") my/s. For these cases,
the ratio of the effect of translation to surface tension is very
small. This can be illustrated by comparing the terms related to
these effects that are included in W. Because W is the coeffi-
cient of gy, these terms are likely to be closely related to the
natural frequency and, thus, parametric instability. The ratio of
these two terms is determined to satisfy the inequality

v (k+2)(k—1)y
2) (e

(39)

9(2k* 43,3 +k>+k—1)
2(2k—1)(2k+1)(2k+3)

Therefore, the effect of translation on the natural frequency
of shape modes is much smaller than the effect of surface
tension. Hence, translation plays little effect on the surface
stability of a gas bubble for the parameters investigated here.
Nevertheless, we find that the amplitude of the shape modes

can increase under translation, as shown in Fig. 4 for
w42n=0.1 and 1 MHz with the acoustic amplitude slightly
smaller than the amplitude threshold. The translation enhan-
ces the shape mode amplitudes on the interface of a gas bub-
ble; however, the amplitudes remain small (relative to the
initial radius) and, thus, the effect on overall shape stability
is not obvious in Fig. 2.

B. Effects of translation on EMB

When the EMB translates due to the primary Bjerknes force
imposed by a traveling acoustic plane wave, the amplitude
thresholds decrease, as shown in Fig. 2 (the line with blue
circles). Consider the case of w,/2n=0.5 MHz with acoustic
intensity ¢=0.5. The EMB without translation is stable, as
shown in Fig. 5(a), and the initial disturbances to the shape
modes damp out with time. By comparison, the second-order
shape mode is unstable when the EMB translates due to the
acoustic wave [Fig. 5(b)]. The related velocities, including the
absolute, relative, and acoustic velocities, are shown in Fig. 5(c).

The interface of an EMB is no-slip, which is different
from the free-slip interface of a gas bubble. Therefore, the
displacements of material points on the EMB surface in the
tangential direction must be considered. The amplitude of
tangential displacement is denoted as b, in Eq. (9). If we
neglect the coupling with adjacent modes, neglect the inte-
gral [°[(R/s)’ — 1](R/s)"Tk(s,t)ds,which is much smaller
than other integral in Eq. (32) due to the thin boundary layer
assumption,” and  eliminate the other integral
Ji s ¥Ti(s, t)ds in Eq. (32) by substituting the no-slip condi-
tion [Eq. (36)], then Eq. (31) can be rewritten as

3R Ak Dy 4k + g, 2y 2l R 4(k+1)wR
bi|—2k(k — 2k(k s =k —1)=+ 220
g+ i |+ R Ly R + k[ (k + )pR (k+1) pR3:|+ak ( )R+ R
Bk Dpy 5 2(k+1)Gy 6 Gy 5 9k + 1) (2k* + 3% + k> +k—1)+?
SR RS ke + 1)K +k—1 — _
R Ry (RS — R)+ skl + F e +k=1+0) 20k—1)(2k+ 1)(2k+3) R
GRS G R Tv(R, ¢
+ by |—6k(k+1)° Sgo—k(k+1)2(k2+k—1+u)—”5+2k(k+1)2“’ 4 2k(k+ 12 B2 — k(e 1) E ‘(2 23
PR PR pR* p R
(40)
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FIG. 3. (Color online) Time evolution of the velocity of bubble translation, Zbes

(b)

flow velocity due to the acoustic wave, v,, and relative velocity,

Ve = Zpe — Vg, for gas bubbles with (a) w,/21 = 0.1 MHz; (b) w,/2n = 1 MHz. The remaining parameters are the same as in Table L.
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FIG. 4. (Color online) Time evolution of the shape modes for gas bubbles: (a) w,/2n = 0.1 MHz, ¢ = 0.6 without translation; (b) w,/2n = 0.1 MHz, ¢ = 0.6 with
translation; (c¢) w,/2n =1 MHz, ¢ = 1.7 without translation; (d) ®,/2n = 1 MHz, ¢ = 1.7 with translation. The remaining parameters are the same as in Table I.

Equation (40) is written in the form of a second-order
oscillator equation for a,. If we neglect the temporal change
in the radius, i.e., by letting R = 0, the coefficients of ay and
by in Eq. (40) are strictly positive and negative, respectively.

0 5 10 15 20

The negative coefficient associated with b, implies this term
plays a role of negative damping, which is destabilizing. The
coefficient of by is also negative due to the terms associated

with G, and G,. This suggests that the tangential

2
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FIG. 5. (Color online) Time evolution of the shape modes for an EMB with w,/2n =0.5 MHz, ¢ =0.5 without (a) and with (b) translation, and (c) the transla-
tional velocities related to (b). The remaining parameters are the same as in Table 1.
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displacements of the shell act as a destabilizing (or negative)
elastic force on the radial shape mode oscillations, ;.

To demonstrate the destabilizing effect of shear stress
on the EMB, we remove the no-slip condition [Egs. (35) and
(36)] and neglect tangential displacements of the shell by
setting b, =0, but still allow translation. While this is not
physical, it illustrates that the amplitude thresholds for the
surface instability increase under translation when the no-
slip condition is neglected, as shown by the green line in
Fig. 2. This effect demonstrates that the tangential move-
ment of the material points on the shell (as denoted by by)
destabilize the interface of the EMB when it translates.

Next, we investigate the stress distribution for the
encapsulated bubble. The shapes of the EMB at ay/
Ro= *=0.2 and the relevant stress distributions are shown in
Fig. 6. The EMB presents an oblate shape (the thick line in
Fig. 6) for a,/Ro= —0.2 relative to the translational direc-
tion, which is also the symmetry axis, and a prolate shape
for a,/Ry=0.2. The thin lines in Fig. 6 sketch the normal
and tangential stresses. For normal stress (left column in Fig.
6), the inward and outward lines show the direction of stress.
For tangential stress (right column in Fig. 6), the inward
lines represent compression and the outward lines represent
tension. For an EMB, the interfacial stress can be compres-
sion as well as tension. While the latter tends to reduce the
amplitude of the shape modes, the former can cause buck-
ling, which indicates that the membrane stress does not
always stabilize the interface. This nature of interfacial stress
in an EMB differs from that of a gas bubble, for which the
interfacial stress is always tension, i.e., surface tension,
which tends to recover the shape of a bubble to that of a
sphere.

In Eq. (40), which is an oscillator equation, we can
regard the term —k(k 4+ 1)(p,/p)[Ti(R,t)/R?] as a driving
term. Due to the negative sign in front of this term, if the

MAX (F,)=0.1 Pa
MIN (F,)=-0.2 Pa

values of Ty(R,f) and a; are both positive (or negative), it
means the driving caused by viscosity (—k(k+ 1)(1;/p)
[Tv(R,t)/R?)) is in an opposite direction to the shape mode
velocity (ay), which indicates that viscosity plays a role of
damping. In Fig. 7, we plot the time evolution of the velocity
of the second-order shape mode, d;(f), and the relevant
toroidal field, T>(R,f). Whether the bubble translates due to
the traveling plane wave, or at a constant, prescribed transla-
tional velocity (without radial oscillation and applied acous-
tic pressure), the variations of @, (f) and To(R,f) are always
in-phase (i.e., of the same sign) for the gas bubble. In con-
trast, the oscillations of d, () and T,(R,t) are out-of-phase for
the EMB. This implies that viscosity may destabilize the
interface of an EMB while stabilizing a gas bubble. This dif-
ference in behavior for the EMB results from the no-slip
boundary condition at the interface. In this case, vorticity
generated at the EMB surface requires a finite amount of
time to diffuse into the exterior liquid, resulting in a phase
lag between the oscillation of the shape mode velocity and
the toroidal field.

Next, we consider the effect of higher liquid viscosity,
which provides some insight into how translation might
affect the shape stability of EMBs in blood. While blood is
non-Newtonian and its viscosity varies with the rate of shear,
at body temperature, the viscosity of blood is normally about
3—4 times that of water. We therefore investigate the stability
of an EMB in a liquid with g;=3 x 10 kg (m s)"' and
5% 10kg (m s)~', as shown in Fig. 8. The density of blood
(~1060 kg/m3) is very near to that of water, therefore, we
keep all remaining properties the same as in Table I. The
data for liquid viscosity y;=1 x 10 kg (m s)~' are repro-
duced from Fig. 2. In the absence of translation, the results
show that the threshold of pressure amplitude, &g, for induc-
ing shape instability increases directly with the viscosity of
the liquid. Therefore, viscosity plays a significant role in

MAX (AF, )=1.05%10"Pa
MIN (AF, )=-1.05%10"Pa

FIG. 6. Shape and stress of an EMB at
a>/Ro==0.2. The thick lines represent

MAX (F,)=0.2 Pa
MIN (F,)=-0.1 Pa

MAX (AF, )=1.05%10"Pa
MIN (AF, )=-1.05%10"Pa

the bubble shape and thin lines show
the distribution of stress. The axis of
symmetry is shown by the horizontal
line through the center of the bubble,
which is also the direction of transla-
tion. For normal stress (left column),
the inward and outward lines show the
direction of stress away from the bub-
ble interface. For tangential stress
(right column), the inward lines repre-
sent compression and the outward lines
represent tension. The remaining
parameters are the same as in Table 1.
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FIG. 7. (Color online) Time evolution of d,(7) and T»(R.t) for (a) a gas bubble translating under an acoustic wave with w,/2n=1MHz and ¢=1.7; (b) an
EMB translating under an acoustic wave with w,/27=1MHz and ¢ =0.7; (c) a gas bubble with a constant translational velocity, v,=0.01 m s~ ' (d) an EMB

with a constant translational velocity, v,=0.01m s~

stabilizing the EMB shape modes if the translational motion
is absent. However, if the EMB translates due to the applied
acoustic forcing, the shape stability reduces significantly,
and the pressure amplitude threshold is nearly the same for
the three different liquid viscosities. These results suggest
that, while a higher liquid viscosity can inhibit shape insta-
bility when the bubble is stationary, it has minimal effect on
shape stability during translation. Furthermore, translation

10 T T T
@y =103 kg(m~s)’1 without translation
9 |—@—m = 1073 kg(m-s) ™ with translation — i)
B iy = 3 x 107° kg(m-s) ! without translation g
8 |—A—py =3 x 1072 kg(m-s) ! with translation 1
e gy = 5 x 107 kg(m-s)~! without translation|
71 |—m—p =5x 1073 kg(m-s) ! with translation 1
6 L
g s
E 5
4t
3 L
2 [
1 [
0 5 1
0 0.2 0.4 0.6 0.8 1

wa/2m (MHz)

FIG. 8. (Color online) Threshold of acoustic pressure amplitude, &g,, for
inducing shape instability of an EMB versus driving frequency, ., with
w=1x10"kg (m-s) "', 3x 10 *kg (ms) " and 5 x 10 *kg (m s)"", with
and without translation. The remaining parameters are the same as in Table 1.
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! The remaining parameters are the same as in Table 1.

causes a greater reduction in shape stability as the liquid vis-
cosity is increased. This supports the above analysis that the
destabilizing effect of translation on an EMB is mediated by
the interfacial viscous stress resulting from the no-slip
boundary condition.

We further investigate the EMB with various elastic
moduli: G;,=0.3, 0.5, and 0.7N m~'. Similar stability phe-
nomena are revealed in Fig. 9, which shows that the

5 : : : :
@Gy = 0.3 N-m~! without translation
4.5+ |-G, = 0.3 N-m~! with translation
<A Gy = 0.5 N-m ™! without translation
4 |—-A—G, =0.5 N-m ! with translation
B Gy = 0.7 N-m ™! without translation
3.5F |-G, =0.7 N-m™~! with translation
3 =
2 L
& 2.5
2 k=
1.5+
1 b
05r
0 Il L
0 0.2 0.4 0.6 0.8 1

wq /27 (MHz)

FIG. 9. (Color online) Threshold of acoustic pressure amplitude, &g, for
inducing shape instability of an EMB versus driving frequency, w,, with
G,=03Nm !, G,=05N m !, and G,=0.7N m !, with and without
translation. The remaining parameters are the same as in Table 1.
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instability threshold for the EMBs undergoing translation is
smaller than when translation is absent. Especially for higher
driving frequencies, the EMBs without translation are highly
stable, i.e., the thresholds are much larger than those with
translation.

IV. CONCLUSIONS

A theoretical study is carried out for the nonspherical
shape modes of EMBs and gas bubbles translating subject to
a traveling acoustic plane wave. An approximate model is
developed that considers the interactions among the external
liquid flow, nonspherical deformation of the membrane, and
the expansion/compression of the internal gas. The potential
flow in the bulk volume of the external flow is modeled
using an asymptotic analysis. Viscous effects within the thin
boundary layer at the liquid-membrane interface are
included using Prosperetti’s theory.*® In-plane stress and the
bending moment of EMBs are incorporated into the dynamic
boundary condition at the interface. The evolution equations
for the volume mode, translation, and shape modes of an
EMB are thus derived.

The results show that translation only slightly destabil-
izes the interface of an uncoated gas bubble. This phenome-
non is not obvious as the destabilizing effect of translation is
much smaller than the stabilizing effect of surface tension in
the cases considered. By comparison, translation has a much
greater destabilizing effect on an EMB. This effect is attrib-
uted to the interfacial viscous stress owing to the no-slip con-
dition at the EMB-liquid interface, as compared to the zero
stress condition that results from the free-slip condition at
the gas—bubble interface. In particular, the no-slip boundary
condition incites shape instability of the EMB through the
tangential motion of the material points at the interface and
the compression stress in the shell. Furthermore, while
higher liquid viscosity enhances shape stability when an
EMB is stationary, it appears to have little effect on stability
under translation.
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APPENDIX: DERIVATION OF THE COEFFICIENTS gy
IN EQS. (15)~(17)

The coefficients ¢, are determined by the kinematic
boundary condition Eq. (13), which is rewritten as

% + (Vo — Ze.) - VS =0, (13)

where the surface function S is defined in Eq. (14). The first
term of Eq. (13) is written explicitly as

oS SN
5= -R — kZ:akPk(cos 0). (A1)
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The second term of Eq. (13) is written as

0p0S

V- VS= or or

109108 09 109
ro0rdl  or 1892 Pilc

(A2)

Substituting the form of velocity potential [Eq. (12)], Eq.
(A2) becomes

q0 qi .
Vo -VS= a2 (va 2r3>P1 —Z(kJr 1)

k=2

X LP=Y <va +ZI> Lpipl. (A3)

k=2

If we expand Eq. (A3) in a Taylor series about r =R
+ 300, arPr(cos 0) with a;/R < 1, then we get

)P1+ ZakPlPk

q0
qu-VSz—ﬁ—i—(

a
-y <va n Z;) E"P{P,ﬁ. (A4)

Next, we introduce the following relations of the Legendre
polynomials,

s X k+1 k
aP 1Py = ( k1 + - 1>Pk7 (AS)

and

ZakP P = Z<(k+ )(k+_2)ak+1

£\ 2k 13

k(k—1
—%ak_l)Pk. (A6)

After applying Eqs. (A5) and (A6), Eq. (A4) reduces to

Vo VS = —ﬁ+

6 q1\ a2 - [290
—g(Va—FF)E]P]‘F; ﬁak—(k‘i‘l)

a  6q1 [ k+1 k
rRe2 TR \Dp g3t T

(Ve ((k+l)(k+2)a
R R* 2k+3

k(k—1
- ék— l)ak1>:|Pk- (A7)

—2*4-7 ar

124,
R3  5R*

Similary, we derive the third term of Eq. (13) as
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o0
. . ak .
Zbee, VS =Zp.Pi — § 7szP}P;,
k=2
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= (Zbc _gﬁsz>Pl - ;Zbc

((k+1)(k+2)ak+1_k(k—l)ak_l)P
2%k+3 R 2%-1 R )"

(A8)

Substituting Egs. (A1), (A7), and (A8) into Eq. (13) and uti-
lizing the orthogonality of the Legendre polynomials, we
obtain the expressions for ¢, shown in Egs. (15)-(17).
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