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A method is presented for predicting the space group of a structure given a
calculated or measured atomic pair distribution function (PDF) from that
structure. The method utilizes machine learning models trained on more than
100 000 PDFs calculated from structures in the 45 most heavily represented
space groups. In particular, a convolutional neural network (CNN) model is
presented which yields a promising result in that it correctly identifies the space
group among the top-6 estimates 91.9% of the time. The CNN model also
successfully identifies space groups for 12 out of 15 experimental PDFs.
Interesting aspects of the failed estimates are discussed, which indicate that the
CNN is failing in similar ways as conventional indexing algorithms applied to
conventional powder diffraction data. This preliminary success of the CNN
model shows the possibility of model-independent assessment of PDF data on a
wide class of materials.

1. Introduction

Crystallography is used to determine crystal structures from
diffraction patterns (Giacovazzo, 1999), including patterns
from powdered samples (Pecharsky & Zavalij, 2005). The
analysis of single-crystal diffraction is the most direct
approach for solving crystal structures. However, powder
diffraction becomes the best option when single crystals with
desirable size and quality are not available.

A crystallographic structure solution makes heavy use of
symmetry information to succeed. The first step is to deter-
mine the unit cell and space group of the underlying structure.
Information about this is contained in the positions (and
characteristic absences) of Bragg peaks in the diffraction
pattern. This process of determining the unit cell and space
group of the structure is known as ‘indexing’ the pattern
(Giacovazzo, 1999). Indexing is inherently challenging for
powder diffraction due to the loss of explicit directional
information in the pattern, which is the result of projecting the
data from three dimensions into a one-dimensional pattern
(de Wolff, 1957; Mighell & Santoro, 1975). However, there are
a number of different algorithms available that work well in
different situations (Visser, 1969; Coelho, 2003; Boultif &
Louér, 2004; Altomare, Campi et al., 2009). Once the unit-cell
information is determined, an investigation on systematic
absences of diffraction peaks is carried out to identify the
space group. Various methods for determining space-group
information, based on either statistical or brute-force searches,
have been used (Neumann, 2003; Markvardsen et al., 2008;
Altomare, Camalli et al., 2009; Coelho, 2017).
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The problem is even more difficult when the structural
correlations only extend on nanometre length scales as crys-
tallography breaks down (Billinge & Levin, 2007). In this case
progress can be made using atomic pair distribution function
(PDF) methods for structure refinements (Proffen et al., 2005;
Egami & Billinge, 2012; Choi et al., 2014; Zobel et al., 2015;
Keen & Goodwin, 2015). PDFs may also be used for studying
structures of bulk materials.

There has been some success in using the PDF for structure
solution (Juhas et al., 2006, 2010; Billinge et al., 2018; Cliffe et
al., 2010). However, a major challenge for PDF structure
solution is that, unlike the powder diffraction case, a peak in
the PDF simply indicates a characteristic distance existing in
the structure but gives no overall information about the
underlying unit cell (Egami & Billinge, 2012). Therefore, the
symmetry information cannot be inferred by the traditional
indexing protocols that are predicated on the crystallography.
Being able to determine the symmetry information based on
the PDF will lead to more possibilities of solving structures
from a wider class of materials.

Recently, machine learning (ML) has emerged as a
powerful tool in different fields, such as in image classification
(Krizhevsky et al., 2012) and speech recognition (Hinton et al.,
2012). Moreover, ML models even outperform a human in
cases such as image classifications (He et al., 2015) and the
game of Go (Silver et al., 2017). ML provides a platform for
exploring the predictive relationship between the input and
output of a problem, given a considerable amount of data is
supplied for an ML model to ‘learn’. We know that the
symmetry information is present in the powder diffraction
pattern, and that the PDF is simply a Fourier transform of that
pattern. We therefore reason that the symmetry information
survives in the PDF though we do not know explicitly how it is
encoded. We can qualitatively deduce that a higher-symmetry
structure, such as cubic, will produce a lower density of PDF
peaks than a lower-symmetry structure such as tetragonal.
However, to date, there has not been a theory for identifying
the space group directly, given the PDF. Here we attempt to
see whether an ML algorithm can be trained to recognize the
space group of the underlying structure, given a PDF as input.
We note a recent paper that describes an attempt to determine
the space group from a powder diffraction pattern (Park et al.,
2017). In this case a promising accuracy of 81% was obtained
in determining the space group from simulated data, but the
convolutional neural network model they used was not able to
determine the space group from experimental data selected in
their work.

To prepare data for training an ML model, we compute
PDFs from 45 space groups, totaling 101 802 structures,
deposited in the Inorganic Crystal Structure Database (ICSD)
(Belsky et al., 2002). The space groups chosen were the most
heavily represented, accounting for more than 80% of known
inorganic compounds (Urusov & Nadezhina, 2009).

The first ML model we tried was logistic regression (LR),
which is a rather simple ML model. Although quite successful,
we explored a more sophisticated ML model, a convolutional
neural network (CNN). The CNN model outperforms the LR

model by 15%, reaching an accuracy of 91.9% for obtaining
the correct space group in the top-6 predicted results on the
testing set. In particular, the CNN showed a significant
improvement over LR in classifying challenging cases such as
structures with lower symmetry.

The CNN model is also tested on experimental PDFs where
the underlying structures are known but the data are subject
to experimental noise and collected under various instru-
mental conditions. High accuracy in determining space groups
from experimental PDFs was also demonstrated.

2. The PDF method

The experimental PDF, denoted G(r), is the truncated Fourier
transform of the total scattering structure function, F(Q) =
O[S(Q) — 1] (Farrow & Billinge, 2009),

Omax
/ F(Q)sin(Qr) dQ. (1)
Omin

G(r)= %

where Q is the magnitude of the scattering momentum. The
structure function, S(Q), is extracted from the Bragg and
diffuse components of the powder diffraction intensity. For
elastic scattering, Q = 4msin(6)/A, where A is the scattering
wavelength and 26 is the scattering angle. In practice, values of
O.in and Q... are determined by the experimental setup and
O 18 Often reduced below the experimental maximum to
eliminate noisy data from the PDF since the signal-to-noise
ratio becomes unfavorable in the high-Q region. The value of
O, 18 also known to be a dominant factor for the termination
ripples introduced in the truncated Fourier transform
(Peterson et al., 2003).

The PDF gives the scaled probability of finding two atoms
in a material at distance r apart and is related to the density of
atom pairs in the material (Egami & Billinge, 2012). For a
macroscopic scatterer, G(r) can be calculated from a known
structure model according to

G() = 4wlp(r) — ), @)
) = g 20 2 b =13 ®)
i

Here, p, is the atomic number density of the material and p(r)
is the atomic pair density, which is the mean weighted density
of neighbor atoms at distance r from an atom at the origin. The
sums in p(r) run over all atoms in the sample, b, is the scat-
tering factor of atom i, (b) is the average scattering factor, and
r; is the distance between atoms / and j.

3. Machine learning experiments

ML is centered around the idea of exploring the predictive but
oftentimes implicit relationship between inputs and outputs of
a problem. By feeding a considerable amount of input and
output pairs (training set) to a learning algorithm, we hope to
arrive at a prediction model which is a good approximation to
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Table 1
Space group and corresponding number of entries considered in this
study.

Space group (No.) No. of entries

P1(2) 4615
P2, (4) 581
Cc (9) 489
P2,/m (11) 1247
C2/m (12) 3529
P2/c (13) 442
P2,/c (14) 7392
C2/c (15) 3704
P2,2,2, (19) 701
Pna2, (33) 743
Cmc2, (36) 525
Pmmm (47) 646
Pbam (55) 745
Pnnm (58) 477
Pbcn (60) 478
Pbca (61) 853
Pnma (62) 6930
Cmcm (63) 2249
Cmca (64) 575
Cmmm (65) 513
Immm (71) 754
14/m (87) 569
I4,/a (88) 397
142d (122) 373
P4/mmm (123) 1729
P4/nmm (129) 1376
P4, /mnm (136) 870
I4/mmm (139) 4028
14/mem (140) 1026
14, /amd (141) 700
R3 (148) 1186
R3m (160) 482
P3ml (164) 1005
R3m (166) 2810
R3¢ (167) 1390
P65/m (176) 1289
P6;mc (186) 849
P6/mmm (191) 3232
P65 /mmc (194) 3971
Pa3 (205) 447
F43m (216) 2893
Pm3m (221) 2933
Fm3m (225) 4860
Fd3m (227) 4382
Ia3d (230) 455
Total 101 802

the underlying relationship between the inputs and outputs. If
the exact form of the output is available, either discrete or
continuous, before the training step, the problem is categor-
ized as ‘supervised learning’ in the context of ML. The space-
group determination problem discussed in this paper also falls
into the supervised learning category. In the language of ML,
the inputs are often denoted as ‘features’ of the data and the
outputs are usually called the ‘labels’. Both inputs and outputs
could be a scalar or a vector. After learning, the prediction
model is then tested against a set of input and output pairs
which have not been seen by the training algorithm (the so-
called testing set) in order to independently validate the
performance of the prediction model.

In the context of the space-group determination problem,
the input that we want to interrogate is PDF data. We can
select any feature or features from the data, for example the

Table 2
Parameters used to calculate PDFs from atomic structures.

ADP stands for isotropic atomic displacement parameter. All parameters
follow the same definitions as in Farrow et al. (2007).

Parameter Value
Fanin (A) 15
Tmax (A) 30.0
Omin (A 05
Omax (A7) 23.0
rgrid (AZ 7T/Qmax
ADP (A?) 0.008
Quamp (A7) 0.04
Obroad (A7) 0.01

feature we choose could be the PDF itself. The label is the
space group of the structure that gave rise to the PDF. The
database we will use to train our model is a pool of known
structures. In particular, we choose all the known structures
from the 45 most heavily represented space groups in the
ICSD, which accounts for 80% of known inorganic compounds
(Urusov & Nadezhina, 2009). These were further pruned to
remove duplicate entries (same composition and same struc-
ture). The space groups considered and the number of unique
structures in each space group are reproduced in Table 1.

We then computed the PDF from each of 101 802 structures.
The parameters capturing finite Q range and instrumental
conditions are reproduced in Table 2. Those parameters are
chosen such that they are close to the values that are practi-
cally attainable at most synchrotron facilities. With the r,;4
and r range reported in Table 2, each computed PDF is a
209 x 1 vector. Depending on the atom types in the
compounds, the amplitude of the PDF may vary drastically,
which is inherently problematic for most ML algorithms
(James et al., 2013). To avoid this problem, we determine a
normalized PDF, X, defined according to

_ G(r) — min(G)
" max(G) — min(G)’

4)

where min(G) and max(G) mean taking the minimum and
maximum value of the target PDF function, G(r), respectively.
Since min(G) is always a negative number for the reduced
PDF, G(r), that we compute from the structure models, this
definition results in the value of X always ranging between 0
and 1. An example of X from Li;sTasO,, (space group P2/c) is
shown in Fig. 1(a).

For our learning experiments, we randomly select 80% of
the data entries from each space group as the training set
and reserve the remaining 20% of data entries as the testing
set.

All learning experiments were carried out on one or
multiple computation nodes of the Habanero shared high-
performance cluster (HPC) at Columbia University. Each
computation node consists of 24 cores of CPUs (Intel Xeon
Processor ES5-2650 v4), 128 GB memory and two GPUs
(Nvidia K80 GPUs).
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3.1. Space-group determination based on logistic regression
(LR) model

We start our learning experiment with a rather simple
model, LR. In the setup of the LR model the probability of a
given feature being classified as a particular space group is
parametrized by a ‘logistic function’ (Hastie et al., 2009).
Forty-five space groups are considered in our study; therefore
there are the same number of logistic functions, each with a set
of parameters left to be determined. Since the space-group
label is known for each data entry in the training set, the
learning algorithm is then used to find an optimized set of
parameters for each of the 45 logistic functions such that the
overall probability of determining the correct space group on
all training data is maximized. As a common practice, we also
include ‘regularization’ (Hastie et al., 2009) to reduce over-
fitting in the trained model. The regularization scheme chosen
in our implementation is ‘elastic net’ which is known for
encouraging sparse selections on strongly correlated variables
(Zou & Hastie, 2005). Two hyperparameters o and A are
introduced under the context of our regularization scheme.
The explicit definition of these two parameters is presented in
Appendix A. Our LR model is implemented through scikit-
learn (Pedregosa et al., 2011). The optimum «, A for our LR
model is determined by cross-validation (Hastie ef al., 2009) in
the training stage.
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Figure 1

Example of (a) normalized PDF X and (b) its quadratic form X of
compound Li;gTagO,, (space group P2/c).

The best LR model with X as the input yields an accuracy of
20% at (o, A) = (1073,0.75). This result is better than a
random guess from 45 space groups (2%) but is still far from
satisfactory. We reason that the symmetry information
depends not on the absolute value of the PDF peak positions,
which depend on specifics of the chemistry, but on their
relative positions. This information may be more apparent in
an autocorrelation of the PDF with itself, which is a quadratic
feature in ML language. Our quadratic feature, X?, is defined
as

X = (XX li,j=1,2,...d,j>1i} 5)

where d is the dimension of X and X? is a vector of dimension
{[d(d — 1)]/2} x 1. An example of the quadratic feature from
Li;gTagO,4 (space group P2/c) is shown in Fig. 1(b).

The best LR model with X? as the input yields an accuracy
of 44.5% at (o, A) = (107>, 1.0). This is much better than for
the linear feature, but still quite low. However, the goal of the
space-group determination problem is to find the right space
group, not necessarily to have it returned in the top position in
a rank-ordered list of suggestions. We therefore define alter-
native accuracy (Ag) that allows the correct space group to
appear at any position in the top-6 space groups returned by
the model. The values of A; (i = 1,2,...6) and their first
discrete differences AA; = A, —A,_, (i =2,3,...,6) of our
best LR model are shown in Fig. 2. We observed a more than
10% improvement in the alternative accuracy after consid-
ering top-2 predictions from the LR model (AA,) and the
improvement (AA;) diminishes monotonically when more
predictions are considered, as expected. A top-6 estimate
yields a good accuracy (77%) and this is still a small enough
number of space groups that could be tested manually in any
structure determination.

1.0

0.9
0.8
< 0.7

0.6

0.5

0.4

1 2 3 4 5 6
Number of predictions (i)

Figure 2

Accuracy in determining space group when top-i predictions are
considered (A;). The inset shows the first discrete differences (AA; =
A; — A;_,) when i predictions are considered. Blue represents the result
of the logistic regression model with X* and red is the result from the
convolutional neural network model.
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Figure 3

The ratio of correctly classified structures versus space-group number
from (a) the logistic regression model (LR) with quadratic feature X? and
(b) the convolutional neural network (CNN) model. Marker size reflects
the relative frequency of the space group in the training set. Markers are
color coded with corresponding crystal systems [triclinic (dark blue),
monoclinic (orange), orthorhombic (green), tetragonal (blue), trigonal
(gray), hexagonal (yellow) and cubic (dark red)].

The ratio of correctly classified structures versus space-
group number is shown Fig. 3(a).

The space-group numbering follows standard convention
(Hahn, 2002). Higher space-group number means a more
symmetric structure and we find, in general, the LR model
yields a decent performance in predicting space groups from
structures with high symmetry but it performs poorly on
classifying low-symmetry structures.

3.2. Space-group determination based on the convolutional
neural network (CNN)

The result from the linear ML model (LR) is promising,
prompting us to move to a more sophisticated deep learning
model. Deep learning models (LeCun et al., 2015; Goodfellow
et al., 2016) have been successfully applied to various fields,
ranging from computer vision (He et al., 2016; Krizhevsky et
al., 2012; Radford et al., 2015), natural language processing
(Bahdanau et al., 2014; Sutskever et al., 2014; Kim, 2014) to
material science (Ramprasad et al., 2017; Ziletti et al., 2018). In
particular, we sought to use a CNN (Lecun et al., 1998).

The performance of a CNN depends on the overall archi-
tecture as well as the choice of hyperparameters such as the
size of kernels, the number of channels at each convolutional
layer, the pooling size and the dimension of the fully
connected (FC) layer (Goodfellow et al., 2016). However there
is no well-established protocol for selecting these parameters,
which is a largely trial-and-error effort for any given problem.
We build our CNN by tuning hyperparameters and validating
the performance on the testing data, which is just 20% of the
total data.

The resulting CNN built for the space-group determination
problem is illustrated in Fig. 4.

The input PDF is a one-dimensional signal sequence of
dimension 209 x 1 x 1. We first apply a convolution layer of
256 channels with kernel size 32 x 1 to extract the first set of
feature maps (Lecun et al., 1998) of dimension 209 x 1 x 256.
It has been shown that applying a nonlinear activation func-
tion to each output improves not only the ability of a model to
learn complex decision rules but also the numerical stability
during the optimization step (LeCun et al., 2015). We chose
rectified linear unit (ReLU) (Dahl et al., 2013) as our activa-
tion function for the network. After the first convolution layer,
we apply a 64-channel kernel of size 32 x 1 to the first feature
map and generate the second set of feature maps of dimension
209 x 1 x 64. Similar to the first convolution layer, the second
feature map is also activated by ReLU. This is followed by a
max-pooling layer (Jarrett et al, 2009) of size 2, which is
applied to reduce overfitting. After the subsampling process in
the max-pooling layer, the output is of size 104 x 1 x 64 and it
is then flattened to a size of 6556 x 1 before two fully
connected layers of size 128 and 45 are applied. The first FC
layer is used to further reduce the dimensionality of output
from the max-pooling layer and it is activated with ReLU. The
second FC layer is activated with the softmax function
(Goodfellow et al., 2016) to output the probability of the input
PDF being one of the 45 space groups considered in our study.

Categorical cross entropy loss (Bishop, 2006) is used for
training our model. It is apparent from Table 1 that the
number of data entries in each space group are not evenly
distributed, varying from 373 (142d) to 7392 (P2, /c) per space
group. We would like to avoid the possibility of obtaining a
neural network that is biased towards space groups with
abundant data entries. To mitigate the effect of the unbalanced
data set, loss from each training sample is multiplied by a class
weight (King & Zeng, 2001) which is the inverse of the ratio
between the number of data entries from the same space-
group label in the training sample and the size of the entire
training set. We then use adaptive moment estimation (Adam)
(Kingma & Ba, 2014) as the stochastic optimization method to
train our model with a mini-batch size of 64. During the
training step, we follow the same protocol outlined in the work
of He et al. (2016) to perform the weight initialization (He et
al., 2015) and batch normalization (Ioffe & Szegedy, 2015). A
dropout strategy (Srivastava et al., 2014) is also applied in the
pooling layer to reduce overfitting in our neural network. The
parameters in the CNN model are iteratively updated through
the stochastic gradient descent method (Adam).
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Figure 4
Schematic of our convolutional neural network (CNN) architecture.
Learning rate is a parameter that affects how drastically the optimization loss all plateau, meaning no significant

parameters are updated at each iteration. A small learning
rate is preferable when the parameters are close to some set of
optimal values and vice versa. Therefore, an appropriate
schedule of learning rate is crucial for training a model. Our
training starts with a learning rate of 0.1, and the value is
reduced by a factor of 10 at epochs 81 and 122. With the
learning rate schedule described, the optimization loss against
the testing set, along with the prediction accuracy on the
training and testing sets, are plotted with respect to the
number of epochs in Fig. 5. Our training is terminated after
164 epochs when the training accuracy, testing accuracy and

12.50
0.8}
12.25
07 B 4 200
>
@ 1175 @
50.6 "8
(9} -
< 11.50
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1.25
0.4} 11.00
" ’ ; . 10.75
0 50 100 150
Number of epochs
Figure 5

Accuracy of the CNN model on the training set (blue), the testing set
(red) and the optimization loss against the testing set (green) with respect
to number of epochs during the training step.

improvement to the model would be gained with further
updates to the parameters.

Our CNN model is implemented with Keras (Chollet et al.,
2015) and trained on a single Nvidia Tesla K80 GPU.

Under the architecture and training protocol discussed
above, our best CNN model yields an accuracy of 70.0% from
top-1 prediction and 91.9% from top-6 predictions, which
outperforms the LR model by 15%. Similarly, from Fig. 2, we
observe a more than 10% improvement in the alternative
accuracy after considering top-2 predictions (AA,) in the
CNN model and the improvement (AA;) decreases mono-
tonically, even on a more drastic trend than the case of the LR
model, when more predictions are considered.

4. Results and discussion
4.1. Space-group determination on calculated PDFs

The main result of the work is that, for the CNN model and
defining success that the correct space group is found in the
top-6 choices, we achieve a greater than 90% success rate (the
correct space group is returned in the top position 70% of the
time) when just the normalized PDF is given to the ML model.
This success rate is much greater than random guessing and
suggests that this approach may be a practically useful way of
getting space-group information from PDFs. Below we
explore in greater detail the performance of the CNN,
including analyzing how it fails when it gets the answer wrong.

In general, it is fair to expect an ML model to achieve a
higher accuracy on a space group with abundant training
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samples. However, from Fig. 3, it is clear that the LR model
even fails to identify well-represented space groups across all
space-group numbers. On the other hand, a positive correla-
tion between the size of the training data and the classification
ratio is observed in the CNN model. Furthermore, except for
space group Ia3d, which is the most symmetric space group,
the classification ratios on the rarely seen groups are lower
than the well-represented groups in our CNN model.
However, the main result is that the CNN performs signifi-
cantly better than the LR model for all space groups, espe-
cially on structures with lower symmetry. There is an overall

trend towards increase in the prediction ability as the
symmetry increases, and there are outliers, but there seems to
be a trend that the CNN model is better at predicting space
groups for more highly populated space groups.

The confusion matrix (Stehman, 1997) is a common tool to
assess the performance of an ML model. The confusion
matrix, M, is an N-by-N matrix, where N is the number of
labels in the data set. The rows of M identify the true label
(correct answer) and the columns of M mean the label
predicted by the model. The numbers in the matrix are the
proportion of results in each category. For example, the

Predicted label

m (47)
imm (129)
P4o/mnm (136)
mc (186)
P6/mmm (191)

m(221)

'mmm (123)

'm(12)
212 (19)
821 (33)

Cmc2; (36)
2/m (176)

13)
/e (14)

C2/c(15)
(160)

m1 (164)
(166)

(148)
3 (205)

a.

Sesgcféefdfdd S7z S R R LR AL

Pl (3] HOAOO 0.000.010.040.000.270.07 0.000.000.000.000.000.000.000.010.010.000.000.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

'

Fd3m (227)

Ia3d (230)

T4/mem (140)
[41/amd (141)
P6s/mmc (194)
F43m (216)
Fm3m (225)

Pm

(55)
nm (58)
n (60)
61)
Pnma (62)
Cmem (63)
Cmca (64)
Cmmm (65)
Immm (71)
I4/m (87)
T4,/a (88)
424 (122)
T4/mmm (139)
R3c (167)

P (2
P2, (4)
Cc(9)
P2i/m (1)

Hi (4) 0.110.270.000.020.01 0.00@0.10 0.010.010.000.000.000.000.000.010.060.01 0.010.000.000.000.000.000.000.00 0.000.02 0.000.000.000.00 0.000.000.000.030.000.00 0.000.01 0.00 0.00 0.01 0.00 0.00
Cc(9) 0.10002@0.01 0.030.010.230.160.010.000.000.000.000.000.000.020.020.01 0.000.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.000.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
lelm ('| 1 ) 90.070.010.00(X:%10.090.000.180.05 0.000.000.00 0.000.00 0.000.000.000.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
C2/m (12) ©.040.000.000.02(1X:#40.000.07 0.05 0.000.000.00 0.000.000.00 0.00 0.00 0.07 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.000.000.01 0.00 0.01 0.03 0.00 0.000.00 0.00 0.000.00 0.00 0.00 0.000.00 0.00

P2/c (13) 9:160.000.000.000.06[:210.21 0.07 0.01 0.000.00 0.00 0.00 0.00 0.01 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.02 0.00 0.000.00 0.00 0.000.00 0.00 0.000.000.00 0.00
P24/c (14) ©:180.010.000.000.02 0.00{140.07 0.000.00 0.00 0.000.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2/c (15) ©:130.000.030.000.030.01 0.19(21:10.00 0.00 0.00 0.000.00 0.00 0.000.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.000.00 0.00 0.00
P24212, (19) 0-:070.000.000.000.05 0.00{= ¥ 0.07\;*10.000.00 0.000.000.000.010.010.090.010.000.000.000.000.000.000.000.000.000.000.000.000.000.00 0.01 0.01 0.00 0.000.00 0.000.01 0.000.000.000.01 0.00 0.01
Pna2, (33) ©:100.000.010.020.030.000.180.03 &01@&01 0.000.010.010.000.000.170.010.000.000.000.000.000.010.000.000.000.010.000.000.00 0.00 0.01 0.00 0.01 0.01 0.02 0.000.01 0.00 0.01 0.01 0.00 0.00 0.00

Cmc2, (36) 90.040.000.000.010.030.000.100.040.01 0.01(tX:¥/0.000.00 0.000.01 0.00 0.11 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.04 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.00
Pmmm (47) ©:000.000.000.010.010.000.000.000.000.000.00[:0.00 0.00 0.000.000.01 0.01 0.000.050.000.000.00 0.000.09 0.00 0.000.02 0.00 0.000.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.000.00 0.000.01 0.000.00 0.00
Pbam (55) €0.020.000.010.010.050.000.040.010.010.000.01 0.00{*&#10.01 0.000.000.08 0.02 0.00 0.00 0.00 0.000.000.000.01 0.01 0.01 0.01 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Pnnm (58) ©.030.020.020.040.120.000.110.040.000.000.000.00 0.00[21¥/0.000.00 0.04.0.01 0.000.000.01 0.000.01 0.00 0.01 0.00 0.03 0.010.00 0.00 0.01 0.00 0.000.00 0.00 0.00 0.01 0.00 0.02.0.00 0.00 0.00 0.01 0.000.00
Pbcn (60) ©:070.000.000.020.050.010.210.050.000.020.010.00 0.00 O,OOMOAOI 0.100.020.000.000.010.000.000.010.000.000.000.010.010.000.000.000.000.00 0.000.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Pbca (61) 9:110.000.000.020.01 QOOM0.0A 0.010.000.000.000.000.00 0.00P li0.04 0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pnma (62) ©:020.000.000.020.030.000.110.020.010.010.000.000.000.00 0.00 0.00{£4{40.02 0.00 0.00 0.000.01 0.00 0.000.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.000.00
Cmem (63) 90.010.000.000.010.060.000.030.020.000.000.010.000.000.000.000.00 0.05(X(30.01 0.00 0.01 0.000.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Cmca (64) ©:030.000.010.000.070.000.080.07 0.010.000.010.000.000.000.010.000.08 0.01{£/0.00 0.00 0.000.000.000.01 0.010.000.05 0.00 0.000.01 0.00 0.00 0.00 0.000.01 0.01 0.00 0.01 0.000.000.00 0.00 0.00 0.00
Cmmm (65) 90.000.000.000.000.050.010.010.000.000.000.000.000.01 0.000.000.000.030.05 0.01 [¢2X310.00 0.00 0.000.000.03 0.01 0.01 0.02 0.01 0.000.00 0.01 0.00 0.03 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.00
Immm (71) ©.000.010.000.000.050.000.010.010.000.000.000.000.010.000.000.000.06 0.04 0.00 0.01(X310.01 0.00 0.01 0.03 0.01 0.00 0.06 0.00 0.00 0.000.00 0.000.01 0.02 0.00 0.000.03 0.01 0.00 0.00 0.01 0.000.000.00
T4/m (87) ©.020.000.000.010.040.000.040.010.010.000.000.000.000.010.000.000.06 0.01 0.000.01 0.01 {0.00 0.00 0.000.00 0.00 0.00 0.000.00 0.000.000.01 0.00 0.000.00 0.00 0.000.01 0.00 0.00 0.01 0.02 0.000.00
T4,/ (88) ©-030.000.000.000.000.000.090.040.000.000.000.000.010.000.000.000.030.020.000.00 0.00 0.00(#X:710.02 0.000.01 0.00 0.02 0.01 0.01 0.02.0.000.00 0.01 0.01 0.000.01 0.01 0.00 0.00 0.000.01 0.000.00 0.02
1424 (122) ©:020.000.000.000.030.000.050.010.000.000.000.000.000.010.000.000.02 0.000.000.00 0.000.00 0.01[4¥130.00 0.00 0.00 0.02.0.00 0.000.00 0.01 0.000.01 0.00 0.01 0.00 0.00 0.01 0.02 0.080.000.02 0.00 0.00

True label

P4/mmm (123) ©.000.000.000.000.000.000.000.000.000.000.000.070.000.000.000.000.000.010.000.02 0.00 0.00 0.00 0.00{t&40.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.01 0.00 0.00 0.04 0.02 0.00 0.00
P4/nmm (129) ©.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.01 0.02 0.000.000.00 0.01 0.00 0.01 0.02{t#:10.00 0.09 0.00 0.000.00 0.00 0.01 0.01 0.00 0.000.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00
Pdy/mnm (‘| 36) 40.000.000.000.000.010.000.020.000.000.000.000.000.000.000.000.000.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00[¢X:130.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
T4/mmm (139) ©.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.010.000.01 0.000.000.000.00 0.000.02 0.02 0.00[R:0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.01 0.01 0.000.00
T4/mcm (140) ©.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.030.01 0.000.00 0.000.020.00 0.000.01 0.00 0.01 0.01JR:10.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.000.01 0.00 0.000.07 0.01 0.00 0.00
T41/amd (141) ©.010.000.000.010.010.000.030.010.000.000.000.000.000.000.000.01 0.010.040.000.000.000.01 0.01 0.000.010.010.01 0.03 0.01{t&440.00 0.00 0.00 0.01 0.000.00 0.00 0.00 0.01 0.000.020.01 0.01 0.03 0.00
R3 (148) ©.030.000.000.000.040.000.040.040.000.000.000.000.000.000.000.000.030.000.000.000.000.01 0.00 0.000.000.00 0.000.00 0.00 0.00{t4}0.00 0.02 0.01 0.03 0.000.000.01 0.01 0.01 0.000.000.01 0.00 0.00

R3m (1 60) 90.000.000.020.000.070.000.020.010.000.000.00 0.000.000.000.010.000.020.01 0.000.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.01 [%10.02 0.10 0.00 0.01 0.02 0.00 0.02 0.00 0.02 0.03 0.04 0.00 0.00
P3m1 (164) ©.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.01 0.000.000.000.000.000.000.000.010.000.000.02 0.00 0.000.00 0.01 ¥X2:10.08 0.00 0.00 0.01 0.00 0.07 0.00 0.000.030.03 0.00 0.00
Rgm (1 66) 90.000.000.000.000.010.000.010.000.000.000.000.000.000.000.000.000.010.01 0.000.000.000.000.000.000.00 0.000.00 0.00 0.00 0.00 0.02 0.02 0.02 (&} 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.02 0.00

R3c (167) ©.010.000.000.000.020.000.030.010.000.000.000.000.000.000.000.000.03 0.01 0.000.000.000.000.00 0.000.000.00 0.000.01 0.00 0.00 0.04 0.00 0.01 0.01 (J:10.00 0.00 0.00 0.01 0.00 0.000.02 0.01 0.00 0.00
P63/m (176) ©:010.000.000.000.000.000.020.010.000.000.000.000.000.000.000.000.040.010.000.000.000.000.00 0.000.000.00 0.000.000.00 0.000.01 0.00 0.00 0.00 0.00S¥:810.00 0.00 0.02 0.00 0.00 0.00 0.00 0.000.00
P63mc (186) ©.000.000.000.000.010.000.010.000.000.000.000.000.000.000.000.000.020.010.000.000.000.000.000.00 0.000.00 0.000.000.00 0.00 0.000.01 0.02 0.03 0.00 0.00SE10.00 0.09 0.00 0.00 0.00 0.000.00 0.00
P6/mmm (191) ©.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.00 0.00 0.000.00 0.000.000.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{tEE40.03 0.00 0.00 0.000.00 0.00 0.00
P63/mmc (194) ©.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.020.010.000.000.000.000.000.000.000.000.000.01 0.00 0.000.000.00 0.020.03 0.00 0.01 0.02 0.03[$%:310.00 0.00 0.00 0.00 0.000.00
Pa3 (205) ©:020.000.000.000.010.000.110.030.010.010.000.000.000.010.000.000.06 0.02 0.000.00 0.000.000.00 0.000.000.00 0.000.00 0.00 0.000.02 0.00 0.00 0.01 0.000.000.00 0.00 0.01 (X140.01 0.01 0.08 0.00 0.00
Fzsm (21 6) 40.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 0.000.000.00 0.000.000.00 0.01 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00[+¥:£10.01 0.10 0.04 0.00
Pm3m (221) ©.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 0.00 0.00 0.00 0.0 0.00 0.00 0.000.00 0.000.000.00 0.000.00 0.01[¢:410.16 0.00 0.00
Fm§m (225) 40.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 0.000.000.000.000.01 0.000.000.00 0.00 0.000.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.12[sX:+}0.00 0.00
Fd3m (227) ©:000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00 0.000.000.00 0.000.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.02(¥kE[0.00

Ia3d (230) ©-000.000.000.000.010.000.030.010.000.000.000.000.000.000.000.000.010.000.000.000.000.01 0.000.000.000.00 0.000.000.00 0.000.00 0.00 0.01 0.000.00 0.000.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 XX}

Figure 6
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The confusion matrix of our CNN model. The row labels indicate the correct space group and the column labels the space group returned by the model.
An ideal model would result in a confusion matrix with all diagonal values being 1 and all off-diagonal values being zero. The numbers in parentheses are

the space-group number.
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Table 3

Top-6 space-group predictions from the CNN model on experimental PDFs.

Entries in bold are the most probable space group from existing literature listed in the References column. More than one prediction are highlighted when these
space groups are regarded as highly similar in the literature. Details about these cases are discussed in the text. The Note column specifies if the PDF is from a
crystalline (C) or nanocrystalline (NC) sample. The experimental data were collected under various instrumental conditions which are not identical to the training
set and experimental data were measured at room temperature, unless otherwise specified.

Sample 1st 2nd 3rd 4th Sth 6th References Note
Ni Fm3m Pm3m Fd3m F43m P4/mmm  P6;/mmc  Owen & Yates (1936) C
Fe;0, Fd3m 14, Jamd R3m Fm3m F43m P6,/mmc Fleet (1981) C
CeO, Fm3m Fd3m Pm3m F43m Pa3 P4/mmm  Yashima & Kobayashi (2004) C
S,IrO,+ Fm3m P6/mmm  P6;/mmc  Pm3m Fd3m R3m Huang et al. (1994), Shimura et al. (1995) C
Culr,S, Fd3m Fm3m Fd3m R3m Pm3m R3m Furubayashi et al. (1994) C
CdSet P2, /c P1 C2/c Pnma Pna2, P2,2,2, Masadeh et al. (2007) C
IrTe, C2/m P3m1 P2,/c Pl P2,/m C2/c Matsumoto et al. (1999), Yu et al. (2018) C
IrTe,@10 K C2/m P6;/mmc  P6/mmm  P4/mmm Pl P2, /c Matsumoto et al. (1999), Toriyama et al. (2014) C
Ti, O Pi C2/c P2, /c C2/m Pnnm P4,/mnm  Marezio & Dernier (1971) C
MAPbL@I30K  PI P2,/c C2/c P2,2,2, Pnma Pna2, Swainson ef al. (2003) C
MoSe, P6;/mmc  R3m R3m P6;mc P4/mmm  Fd3m James & Lavik (1963) C
TiO, (anatase) 14, /amd C2/m P2, /m C2/c P1 P2, /c Horn et al. (1972) NC
TiO, (rutile) P4,/mnm C2/m P2, /c P1 P2,/m Prnma Baur & Khan (1971) NC
Sit P6,mc 192d R3m C2/c P1 Pbca Rohani et al. (2019) NC
BaTiO; R3m P4/mmm C2/m P6;/mmc  Pnma Cmcm Kwei et al. (1993), Page et al. (2010) NC

+ Indicates where the CNN model fails to predict the correct space group.

diagonal elements indicate the proportion of outcomes where
the correct label was predicted in each case, and the matrix
element in the Fd3m row and the F43m column (value 0.05) is
the proportion of PDFs from an Fd3m space-group structure
that were incorrectly classified as being in space group F43m.
For an ideal prediction model, the diagonal elements of the
confusion matrix should be 1.0 and all off-diagonal elements
would be zero. The confusion matrix from our CNN model is
shown Fig. 6.

We observe ‘teardrop’ patterns in the columns of P1, P2, /c
and Pnma, meaning the CNN model tends to incorrectly
assign a wide range of space groups into these groups. On the
surface, this behavior is worrying but the confusions actually
correspond to the real group-subgroup relation which has
been known and tabulated in the literature (Ascher et al.,
1969; Boyle & Lawrenson, 1972; Hahn, 2002). For the case of
P1, the major confusion groups (P2,/c, C2/c and P2/c) are in
fact minimal non-isomorphic supergroups of P1. Moreover,
P2,2,2, shares the same subgroup (P2,) with P2,/c and Pbca
is a supergroup of P2,2,2, while Pbcn is a supergroup of
P2, /c. Similar reasoning can be applied to the case of P2,/c
and Pnma as well. The statistical model appears to be picking
up some real underlying mathematical relationships.

We also investigate the cases with low classification accu-
racy (low value in diagonal elements) from the CNN model.
P2, is the group with the lowest accuracy (27%) among all
labels. The similar group-subgroup reasoning holds for this
case as well. P2,/c (32% error rate) is, again, a supergroup of
P2, and C2/c (10% error rate) is a supergroup of P2, /c. The
same reasoning holds for other confusion cases and we will not
explicitly go through it here, but this suggests that these
closely group/subgroup-related space groups should also be
considered whenever the CNN model returns another one in
the series. It is possible to train a different CNN model which
focuses on disambiguating space groups that are closely

related by the group/subgroup relationship. However, we did
not implement this kind of hierarchical model in our study.

4.2. Space-group determination on experimental PDFs

The CNN model is used to determine the space group of 15
experimental PDFs and the results are reported in Table 3. For
each experimental PDF, structures are known from previous
studies which are also referenced in the table. Both crystalline
(C) and nanocrystalline (NC) samples with a wide range of
structural symmetries are covered in this set of experimental
PDFs. It is worth noting that the sizes of the NC samples
chosen are roughly equal to or larger than 10 nm, at which
size, in our measurements, the PDF signal from the NC
material falls off roughly at the same rate as that from crys-
talline PDFs in the training set. Every experimental PDF is
subject to experimental noise and collected under various
instrumental conditions that result in aberrations to the PDF
that are not identical to parameter values used to generate our
training set (Table 2). It is therefore expected that the CNN
classifier will work less well than on the testing set. From Table
3, it is clear that the CNN model yields an overall satisfactory
result in determining space groups from experimental data
with the space group from 12 out of 15 test cases properly
identified in the top-6 predictions.

Here we comment on the performance of the CNN. In the
cases of IrTe, at 10 K, the material has been reported in the
literature in both C2/m and P1 space groups (Matsumoto et
al., 1999; Toriyama et al., 2014), and it is not clear which is
correct. The CNN returned both space groups in the top-6.
Furthermore, for data from the same sample at room
temperature, the CNN model identifies not only the correct
space group (P3ml), but also the space groups that the
structure will occupy below the low-temperature symmetry-
lowering transition (C2/m, P1). For the case of BaTiO;
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nanoparticles, the CNN model identifies two space groups that
are considered in the literature to yield rather equivalent
explanatory power (R3m, P4/mmm) (Kwei et al., 1993; Page et
al.,2010). It is encouraging that the CNN appears to be getting
the physics right in these cases.

Investigating the failing cases from the CNN model (entries
with a dagger in Table 3) also reveals insights into the decision
rules learned by the model. Sr,IrO,4 was firstly identified as a
perovskite structure with space group /4/mmm (Randall et al.,
1957), but later work pointed out that a lower-symmetry group
I4,/acd is more appropriate due to correlated rotations of
the corner-shared IrO¢ octahedra about the ¢ axis (Huang et
al., 1994; Shimura et al., 1995). There is a long-wavelength
modulation of the rotations along the ¢ axis resulting in a
supercell with a five-times expansion along that direction (a =
5.496, ¢ = 25.793 A) The PDF will not be sensitive to such a
long-wavelength superlattice modulation which may explain
why the model does not identify a space group close to the
14, /acd space group, reflecting additional symmetry breaking
due to the supermodulation. It is not completely clear what
the space group would be for the rotated octahedra without
the supermodulation, so we are not sure if this space group is
among the top-6 that the model found.

Somewhat surprisingly the CNN fails to find the right space
group for wurtzite CdSe, which is a very simple structure, but
rather finds space groups with low symmetries. One possible
reason is that we know there is a high degree of stacking
faulting in the bulk CdSe sample that was measured. This was
best modeled as a phase mixture of wurtzite (space group
P6,mc) and zinc-blende (space group F43m) (Masadeh et al.,
2007). The prediction of low-symmetry groups might reflect
the fact the underlying structure cannot be described with a
single space group.

5. Conclusion

We demonstrate an application of machine learning (ML) to
determine the space group directly from an atomic pair
distribution function (PDF). We also present a convolutional
neural network (CNN) model which yields a promising
accuracy (91.9%) from the top-6 predictions when it is eval-
uated against the testing data. Interestingly, the trained CNN
model appears to capture decision rules that agree with the
mathematical (group-subgroup) relationships between space
groups. The trained CNN model is tested against 15 experi-
mental PDFs, including crystalline and nanocrystalline
samples. Space groups from 12 of these experimental data sets
were successfully found in the top-6 predictions by the CNN
model. This shows great promise for preliminary, model-
independent assessment of PDF data from well-ordered
crystalline or nanocrystalline materials.

APPENDIX A
Logistic regression and elastic net regularizations

Consider a data set with a total M structures and K distinct
space-group labels. Each structure has a space group and we

denote the space group of the mth structure as k,, where
k, €{1,2,...K}, our complete set of space groups. In the
setup of the LR model, the probability of a feature x,, of
dimension d, which is a computable from the mth structure,
belonging to a specific space group k,, is parametrized as

exp </3,(§m + Z;i:l :B:'(mxm,i>
L+ exp (B + Lol A7x,0,)

where ffn = {,3(/;’", If”’, cee ﬂf;”} is a set of parameters to be
determined. The index k,, runs from 1 to 45 which corresponds
to the total number of space groups considered in our study.
Since the space group k and feature x are both known for the
training data, the learning algorithm is then used to find an
optimized set of B = {* :k, =1,2,...,K} which maxi-
mizes the overall probability of determining the correct space
group Pr(k,,|x,,, B) on all M training data.

For each of the M structures, there will be a binary result for
classification: either the space-group label is correctly classi-
fied or not. This process can be regarded as M independent
Bernoulli trials. The probability function for a single Bernoulli
trial is expressed as

Flk %, B*7) = [Prk, 1, )]
[1 = Pr(k,lx,., )] ", )

where y is an indicator. y,, = 1 if the space-group label k,, is
correctly predicted and y,, =0 if the prediction is wrong.
Since each classification is independent, the joint probability
function for M classifications on the space-group label,
fu(K]x, ), is written as

Pr(k,, |x,,, B) = (6)

M
FuIx, B) = [ [ Kyl B, ®)
m=1
where K = {k,,} and x = {x,,}. Furthermore, since both the
label and features are known in the training set, equation (8) is
just a function of S,

L(B) = fu(KIx, B). )

Logarithm is a monotonic transformation. Taking the loga-
rithm of equation (9) does not change the original behavior of
the function and it improves the numerical stability as the
product of probabilities is turned into the sum of the logarithm
of probabilities and extreme values from the product can still
be computed numerically. We therefore arrive at the ‘log-
likelihood’ function:

1(B) = log[L(B)]- (10)

It is common to include ‘regularization’ (Hastie et al., 2009) for
reducing overfitting in the model. The regularization scheme
chosen in our implementation is ‘elastic net’ which is known
for encouraging sparse selections on strongly correlated
variables (Zou & Hastie, 2005). The explicit definitions of the
log-likelihood function with elastic regularization are written
as

L(B) = IB) +a[AllBll, + (1 — MBS (11)
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Table 4
Accuracies of the CNN model with different sets of hyperparameters.

The last row specifies the optimum set of hyperparameters for our final CNN
model.

No. Top-1 Top-6

No. Kernel hidden No. accuracy accuracy
filters size units ensembles (%) (%)
128, 32 24 128 2 64.1 90.7
256, 64 24 128 2 68.6 91.6

64, 64 24 128 2 67.4 91.1
128, 64 32 128 2 69.0 91.7
128, 64 16 128 2 66.6 91.3
128, 64 24 256 2 69.2 91.6
128, 64 24 64 2 66.4 912
128, 64 24 128 1 65.7 91.1
128, 64 24 128 3 68.2 91.6
256, 64 32 128 3 70.0 91.9

where ||-|| and ||-||5 stand for the L1 and L2 norm (Horn, 2012),
respectively. Two hyperparameters o and A are introduced
under this regularization scheme. « is a hyperparameter that
determines the overall ‘strength’ of the regularization and A
governs the relative ratio between L1 and L2 regularization
(Zou & Hastie, 2005). Describing the detailed steps in opti-
mizing equation (11) is beyond the scope of this paper, but
they are available in most of the standard ML reviews (Hastie
et al., 2009; Bishop, 2006).

APPENDIX B
Robustness of the CNN model

The classification accuracies from CNN models with different
sets of hyperparameters, such as number of filters, kernel size
and pooling size, are reproduced in Table 4. The classification
accuracy only varies modestly across different sets of hyper-
parameters and this implies the robustness of our CNN
architecture. We determined the desired architecture of our
CNN model based on the classification accuracy on the testing
set and the learning curves (loss, training accuracy and testing
accuracy) reported in Fig. 5.
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