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A method is presented for predicting the space group of a structure given a

calculated or measured atomic pair distribution function (PDF) from that

structure. The method utilizes machine learning models trained on more than

100 000 PDFs calculated from structures in the 45 most heavily represented

space groups. In particular, a convolutional neural network (CNN) model is

presented which yields a promising result in that it correctly identifies the space

group among the top-6 estimates 91.9% of the time. The CNN model also

successfully identifies space groups for 12 out of 15 experimental PDFs.

Interesting aspects of the failed estimates are discussed, which indicate that the

CNN is failing in similar ways as conventional indexing algorithms applied to

conventional powder diffraction data. This preliminary success of the CNN

model shows the possibility of model-independent assessment of PDF data on a

wide class of materials.

1. Introduction

Crystallography is used to determine crystal structures from

diffraction patterns (Giacovazzo, 1999), including patterns

from powdered samples (Pecharsky & Zavalij, 2005). The

analysis of single-crystal diffraction is the most direct

approach for solving crystal structures. However, powder

diffraction becomes the best option when single crystals with

desirable size and quality are not available.

A crystallographic structure solution makes heavy use of

symmetry information to succeed. The first step is to deter-

mine the unit cell and space group of the underlying structure.

Information about this is contained in the positions (and

characteristic absences) of Bragg peaks in the diffraction

pattern. This process of determining the unit cell and space

group of the structure is known as ‘indexing’ the pattern

(Giacovazzo, 1999). Indexing is inherently challenging for

powder diffraction due to the loss of explicit directional

information in the pattern, which is the result of projecting the

data from three dimensions into a one-dimensional pattern

(de Wolff, 1957; Mighell & Santoro, 1975). However, there are

a number of different algorithms available that work well in

different situations (Visser, 1969; Coelho, 2003; Boultif &

Louër, 2004; Altomare, Campi et al., 2009). Once the unit-cell

information is determined, an investigation on systematic

absences of diffraction peaks is carried out to identify the

space group. Various methods for determining space-group

information, based on either statistical or brute-force searches,

have been used (Neumann, 2003; Markvardsen et al., 2008;

Altomare, Camalli et al., 2009; Coelho, 2017).
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The problem is even more difficult when the structural

correlations only extend on nanometre length scales as crys-

tallography breaks down (Billinge & Levin, 2007). In this case

progress can be made using atomic pair distribution function

(PDF) methods for structure refinements (Proffen et al., 2005;

Egami & Billinge, 2012; Choi et al., 2014; Zobel et al., 2015;

Keen & Goodwin, 2015). PDFs may also be used for studying

structures of bulk materials.

There has been some success in using the PDF for structure

solution (Juhás et al., 2006, 2010; Billinge et al., 2018; Cliffe et

al., 2010). However, a major challenge for PDF structure

solution is that, unlike the powder diffraction case, a peak in

the PDF simply indicates a characteristic distance existing in

the structure but gives no overall information about the

underlying unit cell (Egami & Billinge, 2012). Therefore, the

symmetry information cannot be inferred by the traditional

indexing protocols that are predicated on the crystallography.

Being able to determine the symmetry information based on

the PDF will lead to more possibilities of solving structures

from a wider class of materials.

Recently, machine learning (ML) has emerged as a

powerful tool in different fields, such as in image classification

(Krizhevsky et al., 2012) and speech recognition (Hinton et al.,

2012). Moreover, ML models even outperform a human in

cases such as image classifications (He et al., 2015) and the

game of Go (Silver et al., 2017). ML provides a platform for

exploring the predictive relationship between the input and

output of a problem, given a considerable amount of data is

supplied for an ML model to ‘learn’. We know that the

symmetry information is present in the powder diffraction

pattern, and that the PDF is simply a Fourier transform of that

pattern. We therefore reason that the symmetry information

survives in the PDF though we do not know explicitly how it is

encoded. We can qualitatively deduce that a higher-symmetry

structure, such as cubic, will produce a lower density of PDF

peaks than a lower-symmetry structure such as tetragonal.

However, to date, there has not been a theory for identifying

the space group directly, given the PDF. Here we attempt to

see whether an ML algorithm can be trained to recognize the

space group of the underlying structure, given a PDF as input.

We note a recent paper that describes an attempt to determine

the space group from a powder diffraction pattern (Park et al.,

2017). In this case a promising accuracy of 81% was obtained

in determining the space group from simulated data, but the

convolutional neural network model they used was not able to

determine the space group from experimental data selected in

their work.

To prepare data for training an ML model, we compute

PDFs from 45 space groups, totaling 101 802 structures,

deposited in the Inorganic Crystal Structure Database (ICSD)

(Belsky et al., 2002). The space groups chosen were the most

heavily represented, accounting for more than 80% of known

inorganic compounds (Urusov & Nadezhina, 2009).

The first ML model we tried was logistic regression (LR),

which is a rather simple ML model. Although quite successful,

we explored a more sophisticated ML model, a convolutional

neural network (CNN). The CNN model outperforms the LR

model by 15%, reaching an accuracy of 91.9% for obtaining

the correct space group in the top-6 predicted results on the

testing set. In particular, the CNN showed a significant

improvement over LR in classifying challenging cases such as

structures with lower symmetry.

The CNN model is also tested on experimental PDFs where

the underlying structures are known but the data are subject

to experimental noise and collected under various instru-

mental conditions. High accuracy in determining space groups

from experimental PDFs was also demonstrated.

2. The PDF method

The experimental PDF, denoted GðrÞ, is the truncated Fourier

transform of the total scattering structure function, FðQÞ ¼

Q½SðQÞ � 1� (Farrow & Billinge, 2009),

GðrÞ ¼
2

�

ZQmax

Qmin

FðQÞ sinðQrÞ dQ; ð1Þ

where Q is the magnitude of the scattering momentum. The

structure function, SðQÞ, is extracted from the Bragg and

diffuse components of the powder diffraction intensity. For

elastic scattering, Q ¼ 4� sinð�Þ=�, where � is the scattering

wavelength and 2� is the scattering angle. In practice, values of
Qmin and Qmax are determined by the experimental setup and

Qmax is often reduced below the experimental maximum to

eliminate noisy data from the PDF since the signal-to-noise

ratio becomes unfavorable in the high-Q region. The value of

Qmax is also known to be a dominant factor for the termination

ripples introduced in the truncated Fourier transform

(Peterson et al., 2003).

The PDF gives the scaled probability of finding two atoms

in a material at distance r apart and is related to the density of

atom pairs in the material (Egami & Billinge, 2012). For a

macroscopic scatterer, GðrÞ can be calculated from a known

structure model according to

GðrÞ ¼ 4�r½�ðrÞ � �0�; ð2Þ

�ðrÞ ¼
1

4�r2N

X
i

X
j6¼i

bibj

hbi2
�ðr� rijÞ: ð3Þ

Here, �0 is the atomic number density of the material and �ðrÞ
is the atomic pair density, which is the mean weighted density

of neighbor atoms at distance r from an atom at the origin. The

sums in �ðrÞ run over all atoms in the sample, bi is the scat-

tering factor of atom i, hbi is the average scattering factor, and

rij is the distance between atoms i and j.

3. Machine learning experiments

ML is centered around the idea of exploring the predictive but

oftentimes implicit relationship between inputs and outputs of

a problem. By feeding a considerable amount of input and

output pairs (training set) to a learning algorithm, we hope to

arrive at a prediction model which is a good approximation to
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the underlying relationship between the inputs and outputs. If

the exact form of the output is available, either discrete or

continuous, before the training step, the problem is categor-

ized as ‘supervised learning’ in the context of ML. The space-

group determination problem discussed in this paper also falls

into the supervised learning category. In the language of ML,

the inputs are often denoted as ‘features’ of the data and the

outputs are usually called the ‘labels’. Both inputs and outputs

could be a scalar or a vector. After learning, the prediction

model is then tested against a set of input and output pairs

which have not been seen by the training algorithm (the so-

called testing set) in order to independently validate the

performance of the prediction model.

In the context of the space-group determination problem,

the input that we want to interrogate is PDF data. We can

select any feature or features from the data, for example the

feature we choose could be the PDF itself. The label is the

space group of the structure that gave rise to the PDF. The

database we will use to train our model is a pool of known

structures. In particular, we choose all the known structures

from the 45 most heavily represented space groups in the

ICSD, which accounts for 80% of known inorganic compounds

(Urusov & Nadezhina, 2009). These were further pruned to

remove duplicate entries (same composition and same struc-

ture). The space groups considered and the number of unique

structures in each space group are reproduced in Table 1.

We then computed the PDF from each of 101 802 structures.

The parameters capturing finite Q range and instrumental

conditions are reproduced in Table 2. Those parameters are

chosen such that they are close to the values that are practi-

cally attainable at most synchrotron facilities. With the rgrid
and r range reported in Table 2, each computed PDF is a

209� 1 vector. Depending on the atom types in the

compounds, the amplitude of the PDF may vary drastically,

which is inherently problematic for most ML algorithms

(James et al., 2013). To avoid this problem, we determine a

normalized PDF, X, defined according to

X ¼
GðrÞ �minðGÞ

maxðGÞ �minðGÞ
; ð4Þ

where minðGÞ and maxðGÞ mean taking the minimum and

maximum value of the target PDF function, GðrÞ, respectively.

Since minðGÞ is always a negative number for the reduced

PDF, GðrÞ, that we compute from the structure models, this

definition results in the value of X always ranging between 0

and 1. An example of X from Li18Ta6O24 (space group P2=c) is
shown in Fig. 1(a).

For our learning experiments, we randomly select 80% of

the data entries from each space group as the training set

and reserve the remaining 20% of data entries as the testing

set.

All learning experiments were carried out on one or

multiple computation nodes of the Habanero shared high-

performance cluster (HPC) at Columbia University. Each

computation node consists of 24 cores of CPUs (Intel Xeon

Processor E5-2650 v4), 128 GB memory and two GPUs

(Nvidia K80 GPUs).
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Table 1
Space group and corresponding number of entries considered in this
study.

Space group (No.) No. of entries

P1 (2) 4615
P21 (4) 581
Cc (9) 489
P21=m (11) 1247
C2=m (12) 3529
P2=c (13) 442
P21=c (14) 7392
C2=c (15) 3704
P212121 (19) 701
Pna21 (33) 743
Cmc21 (36) 525
Pmmm (47) 646
Pbam (55) 745
Pnnm (58) 477
Pbcn (60) 478
Pbca (61) 853
Pnma (62) 6930
Cmcm (63) 2249
Cmca (64) 575
Cmmm (65) 513
Immm (71) 754
I4=m (87) 569
I41=a (88) 397
I42d (122) 373
P4=mmm (123) 1729
P4=nmm (129) 1376
P42=mnm (136) 870
I4=mmm (139) 4028
I4=mcm (140) 1026
I41=amd (141) 700
R3 (148) 1186
R3m (160) 482
P3m1 (164) 1005
R3m (166) 2810
R3c (167) 1390
P63=m (176) 1289
P63mc (186) 849
P6=mmm (191) 3232
P63=mmc (194) 3971
Pa3 (205) 447
F43m (216) 2893
Pm3m (221) 2933
Fm3m (225) 4860
Fd3m (227) 4382
Ia3d (230) 455
Total 101 802

Table 2
Parameters used to calculate PDFs from atomic structures.

ADP stands for isotropic atomic displacement parameter. All parameters
follow the same definitions as in Farrow et al. (2007).

Parameter Value

rmin (Å) 1.5
rmax (Å) 30.0
Qmin (Å

�1) 0.5
Qmax (Å

�1) 23.0
rgrid (Å) �/Qmax

ADP (Å2) 0.008
Qdamp (Å

�1) 0.04
Qbroad (Å

�1) 0.01



3.1. Space-group determination based on logistic regression
(LR) model

We start our learning experiment with a rather simple

model, LR. In the setup of the LR model the probability of a

given feature being classified as a particular space group is

parametrized by a ‘logistic function’ (Hastie et al., 2009).

Forty-five space groups are considered in our study; therefore

there are the same number of logistic functions, each with a set

of parameters left to be determined. Since the space-group

label is known for each data entry in the training set, the

learning algorithm is then used to find an optimized set of

parameters for each of the 45 logistic functions such that the

overall probability of determining the correct space group on

all training data is maximized. As a common practice, we also

include ‘regularization’ (Hastie et al., 2009) to reduce over-

fitting in the trained model. The regularization scheme chosen

in our implementation is ‘elastic net’ which is known for

encouraging sparse selections on strongly correlated variables

(Zou & Hastie, 2005). Two hyperparameters � and � are

introduced under the context of our regularization scheme.

The explicit definition of these two parameters is presented in

Appendix A. Our LR model is implemented through scikit-

learn (Pedregosa et al., 2011). The optimum �;� for our LR

model is determined by cross-validation (Hastie et al., 2009) in

the training stage.

The best LR model with X as the input yields an accuracy of

20% at ð�;�Þ ¼ ð10�5; 0:75Þ. This result is better than a

random guess from 45 space groups (2%) but is still far from

satisfactory. We reason that the symmetry information

depends not on the absolute value of the PDF peak positions,

which depend on specifics of the chemistry, but on their

relative positions. This information may be more apparent in

an autocorrelation of the PDF with itself, which is a quadratic

feature in ML language. Our quadratic feature, X2, is defined

as

X2
¼ fXiXj ji; j ¼ 1; 2; . . . d; j> ig ð5Þ

where d is the dimension of X and X2 is a vector of dimension

f½dðd� 1Þ�=2g � 1. An example of the quadratic feature from

Li18Ta6O24 (space group P2=c) is shown in Fig. 1(b).

The best LR model with X2 as the input yields an accuracy

of 44.5% at ð�;�Þ ¼ ð10�5; 1:0Þ. This is much better than for

the linear feature, but still quite low. However, the goal of the

space-group determination problem is to find the right space

group, not necessarily to have it returned in the top position in

a rank-ordered list of suggestions. We therefore define alter-

native accuracy (A6) that allows the correct space group to

appear at any position in the top-6 space groups returned by

the model. The values of Ai (i = 1; 2; . . . 6) and their first

discrete differences �Ai = Ai � Ai�1 (i = 2; 3; . . . ; 6) of our
best LR model are shown in Fig. 2. We observed a more than

10% improvement in the alternative accuracy after consid-

ering top-2 predictions from the LR model (�A2) and the

improvement (�Ai) diminishes monotonically when more

predictions are considered, as expected. A top-6 estimate

yields a good accuracy (77%) and this is still a small enough

number of space groups that could be tested manually in any

structure determination.
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Figure 1
Example of (a) normalized PDF X and (b) its quadratic form X2 of
compound Li18Ta6O24 (space group P2/c).

Figure 2
Accuracy in determining space group when top-i predictions are
considered (Ai). The inset shows the first discrete differences (�Ai =
Ai � Ai�1) when i predictions are considered. Blue represents the result
of the logistic regression model with X2 and red is the result from the
convolutional neural network model.



The ratio of correctly classified structures versus space-

group number is shown Fig. 3(a).

The space-group numbering follows standard convention

(Hahn, 2002). Higher space-group number means a more

symmetric structure and we find, in general, the LR model

yields a decent performance in predicting space groups from

structures with high symmetry but it performs poorly on

classifying low-symmetry structures.

3.2. Space-group determination based on the convolutional
neural network (CNN)

The result from the linear ML model (LR) is promising,

prompting us to move to a more sophisticated deep learning

model. Deep learning models (LeCun et al., 2015; Goodfellow

et al., 2016) have been successfully applied to various fields,

ranging from computer vision (He et al., 2016; Krizhevsky et

al., 2012; Radford et al., 2015), natural language processing

(Bahdanau et al., 2014; Sutskever et al., 2014; Kim, 2014) to

material science (Ramprasad et al., 2017; Ziletti et al., 2018). In

particular, we sought to use a CNN (Lecun et al., 1998).

The performance of a CNN depends on the overall archi-

tecture as well as the choice of hyperparameters such as the

size of kernels, the number of channels at each convolutional

layer, the pooling size and the dimension of the fully

connected (FC) layer (Goodfellow et al., 2016). However there

is no well-established protocol for selecting these parameters,

which is a largely trial-and-error effort for any given problem.

We build our CNN by tuning hyperparameters and validating

the performance on the testing data, which is just 20% of the

total data.

The resulting CNN built for the space-group determination

problem is illustrated in Fig. 4.

The input PDF is a one-dimensional signal sequence of

dimension 209� 1� 1. We first apply a convolution layer of

256 channels with kernel size 32� 1 to extract the first set of

feature maps (Lecun et al., 1998) of dimension 209� 1� 256.

It has been shown that applying a nonlinear activation func-

tion to each output improves not only the ability of a model to

learn complex decision rules but also the numerical stability

during the optimization step (LeCun et al., 2015). We chose

rectified linear unit (ReLU) (Dahl et al., 2013) as our activa-

tion function for the network. After the first convolution layer,

we apply a 64-channel kernel of size 32� 1 to the first feature

map and generate the second set of feature maps of dimension

209� 1� 64. Similar to the first convolution layer, the second

feature map is also activated by ReLU. This is followed by a

max-pooling layer (Jarrett et al., 2009) of size 2, which is

applied to reduce overfitting. After the subsampling process in

the max-pooling layer, the output is of size 104� 1� 64 and it

is then flattened to a size of 6556� 1 before two fully

connected layers of size 128 and 45 are applied. The first FC

layer is used to further reduce the dimensionality of output

from the max-pooling layer and it is activated with ReLU. The

second FC layer is activated with the softmax function

(Goodfellow et al., 2016) to output the probability of the input

PDF being one of the 45 space groups considered in our study.

Categorical cross entropy loss (Bishop, 2006) is used for

training our model. It is apparent from Table 1 that the

number of data entries in each space group are not evenly

distributed, varying from 373 (I42d) to 7392 (P21=c) per space
group. We would like to avoid the possibility of obtaining a

neural network that is biased towards space groups with

abundant data entries. To mitigate the effect of the unbalanced

data set, loss from each training sample is multiplied by a class

weight (King & Zeng, 2001) which is the inverse of the ratio

between the number of data entries from the same space-

group label in the training sample and the size of the entire

training set. We then use adaptive moment estimation (Adam)

(Kingma & Ba, 2014) as the stochastic optimization method to

train our model with a mini-batch size of 64. During the

training step, we follow the same protocol outlined in the work

of He et al. (2016) to perform the weight initialization (He et

al., 2015) and batch normalization (Ioffe & Szegedy, 2015). A

dropout strategy (Srivastava et al., 2014) is also applied in the

pooling layer to reduce overfitting in our neural network. The

parameters in the CNN model are iteratively updated through

the stochastic gradient descent method (Adam).
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Figure 3
The ratio of correctly classified structures versus space-group number
from (a) the logistic regression model (LR) with quadratic feature X2 and
(b) the convolutional neural network (CNN) model. Marker size reflects
the relative frequency of the space group in the training set. Markers are
color coded with corresponding crystal systems [triclinic (dark blue),
monoclinic (orange), orthorhombic (green), tetragonal (blue), trigonal
(gray), hexagonal (yellow) and cubic (dark red)].



Learning rate is a parameter that affects how drastically the

parameters are updated at each iteration. A small learning

rate is preferable when the parameters are close to some set of

optimal values and vice versa. Therefore, an appropriate

schedule of learning rate is crucial for training a model. Our

training starts with a learning rate of 0.1, and the value is

reduced by a factor of 10 at epochs 81 and 122. With the

learning rate schedule described, the optimization loss against

the testing set, along with the prediction accuracy on the

training and testing sets, are plotted with respect to the

number of epochs in Fig. 5. Our training is terminated after

164 epochs when the training accuracy, testing accuracy and

optimization loss all plateau, meaning no significant

improvement to the model would be gained with further

updates to the parameters.

Our CNN model is implemented with Keras (Chollet et al.,

2015) and trained on a single Nvidia Tesla K80 GPU.

Under the architecture and training protocol discussed

above, our best CNN model yields an accuracy of 70.0% from

top-1 prediction and 91.9% from top-6 predictions, which

outperforms the LR model by 15%. Similarly, from Fig. 2, we

observe a more than 10% improvement in the alternative

accuracy after considering top-2 predictions (�A2) in the

CNN model and the improvement (�Ai) decreases mono-

tonically, even on a more drastic trend than the case of the LR

model, when more predictions are considered.

4. Results and discussion

4.1. Space-group determination on calculated PDFs

The main result of the work is that, for the CNN model and

defining success that the correct space group is found in the

top-6 choices, we achieve a greater than 90% success rate (the

correct space group is returned in the top position 70% of the

time) when just the normalized PDF is given to the ML model.

This success rate is much greater than random guessing and

suggests that this approach may be a practically useful way of

getting space-group information from PDFs. Below we

explore in greater detail the performance of the CNN,

including analyzing how it fails when it gets the answer wrong.

In general, it is fair to expect an ML model to achieve a

higher accuracy on a space group with abundant training
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Figure 4
Schematic of our convolutional neural network (CNN) architecture.

Figure 5
Accuracy of the CNN model on the training set (blue), the testing set
(red) and the optimization loss against the testing set (green) with respect
to number of epochs during the training step.



samples. However, from Fig. 3, it is clear that the LR model

even fails to identify well-represented space groups across all

space-group numbers. On the other hand, a positive correla-

tion between the size of the training data and the classification

ratio is observed in the CNN model. Furthermore, except for

space group Ia3d, which is the most symmetric space group,

the classification ratios on the rarely seen groups are lower

than the well-represented groups in our CNN model.

However, the main result is that the CNN performs signifi-

cantly better than the LR model for all space groups, espe-

cially on structures with lower symmetry. There is an overall

trend towards increase in the prediction ability as the

symmetry increases, and there are outliers, but there seems to

be a trend that the CNN model is better at predicting space

groups for more highly populated space groups.

The confusion matrix (Stehman, 1997) is a common tool to

assess the performance of an ML model. The confusion

matrix, M, is an N-by-N matrix, where N is the number of

labels in the data set. The rows of M identify the true label

(correct answer) and the columns of M mean the label

predicted by the model. The numbers in the matrix are the

proportion of results in each category. For example, the
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Figure 6
The confusion matrix of our CNN model. The row labels indicate the correct space group and the column labels the space group returned by the model.
An ideal model would result in a confusion matrix with all diagonal values being 1 and all off-diagonal values being zero. The numbers in parentheses are
the space-group number.



diagonal elements indicate the proportion of outcomes where

the correct label was predicted in each case, and the matrix

element in the Fd3m row and the F43m column (value 0.05) is

the proportion of PDFs from an Fd3m space-group structure

that were incorrectly classified as being in space group F43m.

For an ideal prediction model, the diagonal elements of the

confusion matrix should be 1.0 and all off-diagonal elements

would be zero. The confusion matrix from our CNN model is

shown Fig. 6.

We observe ‘teardrop’ patterns in the columns of P1, P21=c
and Pnma, meaning the CNN model tends to incorrectly

assign a wide range of space groups into these groups. On the

surface, this behavior is worrying but the confusions actually

correspond to the real group–subgroup relation which has

been known and tabulated in the literature (Ascher et al.,

1969; Boyle & Lawrenson, 1972; Hahn, 2002). For the case of

P1, the major confusion groups (P21=c, C2=c and P2=c) are in
fact minimal non-isomorphic supergroups of P1. Moreover,

P212121 shares the same subgroup (P21) with P21=c and Pbca

is a supergroup of P212121 while Pbcn is a supergroup of

P21=c. Similar reasoning can be applied to the case of P21=c
and Pnma as well. The statistical model appears to be picking

up some real underlying mathematical relationships.

We also investigate the cases with low classification accu-

racy (low value in diagonal elements) from the CNN model.

P21 is the group with the lowest accuracy (27%) among all

labels. The similar group–subgroup reasoning holds for this

case as well. P21=c (32% error rate) is, again, a supergroup of

P21 and C2=c (10% error rate) is a supergroup of P21=c. The
same reasoning holds for other confusion cases and we will not

explicitly go through it here, but this suggests that these

closely group/subgroup-related space groups should also be

considered whenever the CNN model returns another one in

the series. It is possible to train a different CNN model which

focuses on disambiguating space groups that are closely

related by the group/subgroup relationship. However, we did

not implement this kind of hierarchical model in our study.

4.2. Space-group determination on experimental PDFs

The CNN model is used to determine the space group of 15

experimental PDFs and the results are reported in Table 3. For

each experimental PDF, structures are known from previous

studies which are also referenced in the table. Both crystalline

(C) and nanocrystalline (NC) samples with a wide range of

structural symmetries are covered in this set of experimental

PDFs. It is worth noting that the sizes of the NC samples

chosen are roughly equal to or larger than 10 nm, at which

size, in our measurements, the PDF signal from the NC

material falls off roughly at the same rate as that from crys-

talline PDFs in the training set. Every experimental PDF is

subject to experimental noise and collected under various

instrumental conditions that result in aberrations to the PDF

that are not identical to parameter values used to generate our

training set (Table 2). It is therefore expected that the CNN

classifier will work less well than on the testing set. From Table

3, it is clear that the CNN model yields an overall satisfactory

result in determining space groups from experimental data

with the space group from 12 out of 15 test cases properly

identified in the top-6 predictions.

Here we comment on the performance of the CNN. In the

cases of IrTe2 at 10 K, the material has been reported in the

literature in both C2=m and P1 space groups (Matsumoto et

al., 1999; Toriyama et al., 2014), and it is not clear which is

correct. The CNN returned both space groups in the top-6.

Furthermore, for data from the same sample at room

temperature, the CNN model identifies not only the correct

space group (P3m1), but also the space groups that the

structure will occupy below the low-temperature symmetry-

lowering transition (C2=m, P1). For the case of BaTiO3
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Table 3
Top-6 space-group predictions from the CNN model on experimental PDFs.

Entries in bold are the most probable space group from existing literature listed in the References column. More than one prediction are highlighted when these
space groups are regarded as highly similar in the literature. Details about these cases are discussed in the text. The Note column specifies if the PDF is from a
crystalline (C) or nanocrystalline (NC) sample. The experimental data were collected under various instrumental conditions which are not identical to the training
set and experimental data were measured at room temperature, unless otherwise specified.

Sample 1st 2nd 3rd 4th 5th 6th References Note

Ni Fm3m Pm3m Fd3m F43m P4=mmm P63=mmc Owen & Yates (1936) C
Fe3O4 Fd3m I41=amd R3m Fm3m F43m P63=mmc Fleet (1981) C
CeO2 Fm3m Fd3m Pm3m F43m Pa3 P4=mmm Yashima & Kobayashi (2004) C
Sr2IrO4† Fm3m P6=mmm P63=mmc Pm3m Fd3m R3m Huang et al. (1994), Shimura et al. (1995) C
CuIr2S4 Fd3m Fm3m F43m R3m Pm3m R3m Furubayashi et al. (1994) C
CdSe† P21=c P1 C2=c Pnma Pna21 P212121 Masadeh et al. (2007) C
IrTe2 C2=m P3m1 P21=c P1 P21=m C2=c Matsumoto et al. (1999), Yu et al. (2018) C
IrTe2@10 K C2=m P63=mmc P6=mmm P4=mmm P1 P21=c Matsumoto et al. (1999), Toriyama et al. (2014) C
Ti4O7 P1 C2=c P21=c C2=m Pnnm P42=mnm Marezio & Dernier (1971) C
MAPbI3@130 K P1 P21=c C2=c P212121 Pnma Pna21 Swainson et al. (2003) C
MoSe2 P63=mmc R3m R3m P63mc P4=mmm Fd3m James & Lavik (1963) C
TiO2 (anatase) I41=amd C2=m P21=m C2=c P1 P21=c Horn et al. (1972) NC
TiO2 (rutile) P42=mnm C2=m P21=c P1 P21=m Pnma Baur & Khan (1971) NC
Si† P63mc I42d R3m C2=c P1 Pbca Rohani et al. (2019) NC
BaTiO3 R3m P4=mmm C2=m P63=mmc Pnma Cmcm Kwei et al. (1993), Page et al. (2010) NC

† Indicates where the CNN model fails to predict the correct space group.



nanoparticles, the CNN model identifies two space groups that

are considered in the literature to yield rather equivalent

explanatory power (R3m, P4=mmm) (Kwei et al., 1993; Page et

al., 2010). It is encouraging that the CNN appears to be getting

the physics right in these cases.

Investigating the failing cases from the CNN model (entries

with a dagger in Table 3) also reveals insights into the decision

rules learned by the model. Sr2IrO4 was firstly identified as a

perovskite structure with space group I4=mmm (Randall et al.,

1957), but later work pointed out that a lower-symmetry group

I41=acd is more appropriate due to correlated rotations of

the corner-shared IrO6 octahedra about the c axis (Huang et

al., 1994; Shimura et al., 1995). There is a long-wavelength

modulation of the rotations along the c axis resulting in a

supercell with a five-times expansion along that direction (a =

5.496, c = 25.793 Å). The PDF will not be sensitive to such a

long-wavelength superlattice modulation which may explain

why the model does not identify a space group close to the

I41=acd space group, reflecting additional symmetry breaking

due to the supermodulation. It is not completely clear what

the space group would be for the rotated octahedra without

the supermodulation, so we are not sure if this space group is

among the top-6 that the model found.

Somewhat surprisingly the CNN fails to find the right space

group for wurtzite CdSe, which is a very simple structure, but

rather finds space groups with low symmetries. One possible

reason is that we know there is a high degree of stacking

faulting in the bulk CdSe sample that was measured. This was

best modeled as a phase mixture of wurtzite (space group

P63mc) and zinc-blende (space group F43m) (Masadeh et al.,

2007). The prediction of low-symmetry groups might reflect

the fact the underlying structure cannot be described with a

single space group.

5. Conclusion

We demonstrate an application of machine learning (ML) to

determine the space group directly from an atomic pair

distribution function (PDF). We also present a convolutional

neural network (CNN) model which yields a promising

accuracy (91.9%) from the top-6 predictions when it is eval-

uated against the testing data. Interestingly, the trained CNN

model appears to capture decision rules that agree with the

mathematical (group–subgroup) relationships between space

groups. The trained CNN model is tested against 15 experi-

mental PDFs, including crystalline and nanocrystalline

samples. Space groups from 12 of these experimental data sets

were successfully found in the top-6 predictions by the CNN

model. This shows great promise for preliminary, model-

independent assessment of PDF data from well-ordered

crystalline or nanocrystalline materials.

APPENDIX A
Logistic regression and elastic net regularizations

Consider a data set with a total M structures and K distinct

space-group labels. Each structure has a space group and we

denote the space group of the mth structure as km where

km 2 f1; 2; . . .Kg, our complete set of space groups. In the

setup of the LR model, the probability of a feature xm of

dimension d, which is a computable from the mth structure,

belonging to a specific space group km is parametrized as

Prðkmjxm; �
kmÞ ¼

exp �km
0 þ

Pd
i¼1 �

km
i xm;i

� �

1þ exp �km
0 þ

Pd
i¼1 �

km
i xm;i

� � ; ð6Þ

where �km ¼ f�km
0 ; �km

1 ; . . . ; �km
d g is a set of parameters to be

determined. The index km runs from 1 to 45 which corresponds

to the total number of space groups considered in our study.

Since the space group k and feature x are both known for the

training data, the learning algorithm is then used to find an

optimized set of � ¼ f�km : km ¼ 1; 2; . . . ;Kg which maxi-

mizes the overall probability of determining the correct space

group Prðkmjxm; �
kmÞ on all M training data.

For each of theM structures, there will be a binary result for

classification: either the space-group label is correctly classi-

fied or not. This process can be regarded as M independent

Bernoulli trials. The probability function for a single Bernoulli

trial is expressed as

f ðkmjxm; b
km Þ ¼ Prðkmjxm; b

kmÞ
� �	m
1� Prðkmjxm; b

km Þ
� �1�	m ; ð7Þ

where 	 is an indicator. 	m ¼ 1 if the space-group label km is

correctly predicted and 	m ¼ 0 if the prediction is wrong.

Since each classification is independent, the joint probability

function for M classifications on the space-group label,

fMðKjx; bÞ, is written as

fMðKjx; bÞ ¼
YM
m¼1

f ðkmjxm; b
km Þ; ð8Þ

where K ¼ fkmg and x ¼ fxmg. Furthermore, since both the

label and features are known in the training set, equation (8) is

just a function of �,

Lð�Þ ¼ fMðKjx; bÞ: ð9Þ

Logarithm is a monotonic transformation. Taking the loga-

rithm of equation (9) does not change the original behavior of

the function and it improves the numerical stability as the

product of probabilities is turned into the sum of the logarithm

of probabilities and extreme values from the product can still

be computed numerically. We therefore arrive at the ‘log-

likelihood’ function:

lð�Þ ¼ log½Lð�Þ�: ð10Þ

It is common to include ‘regularization’ (Hastie et al., 2009) for

reducing overfitting in the model. The regularization scheme

chosen in our implementation is ‘elastic net’ which is known

for encouraging sparse selections on strongly correlated

variables (Zou & Hastie, 2005). The explicit definitions of the

log-likelihood function with elastic regularization are written

as

ltð�Þ ¼ lð�Þ þ � �k�k1 þ ð1��Þk�j22
� �

; ð11Þ
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where k�k and k�k22 stand for the L1 and L2 norm (Horn, 2012),

respectively. Two hyperparameters � and � are introduced

under this regularization scheme. � is a hyperparameter that

determines the overall ‘strength’ of the regularization and �
governs the relative ratio between L1 and L2 regularization

(Zou & Hastie, 2005). Describing the detailed steps in opti-

mizing equation (11) is beyond the scope of this paper, but

they are available in most of the standard ML reviews (Hastie

et al., 2009; Bishop, 2006).

APPENDIX B
Robustness of the CNN model

The classification accuracies from CNN models with different

sets of hyperparameters, such as number of filters, kernel size

and pooling size, are reproduced in Table 4. The classification

accuracy only varies modestly across different sets of hyper-

parameters and this implies the robustness of our CNN

architecture. We determined the desired architecture of our

CNN model based on the classification accuracy on the testing

set and the learning curves (loss, training accuracy and testing

accuracy) reported in Fig. 5.
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Table 4
Accuracies of the CNN model with different sets of hyperparameters.

The last row specifies the optimum set of hyperparameters for our final CNN
model.

No.
filters

Kernel
size

No.
hidden
units

No.
ensembles

Top-1
accuracy
(%)

Top-6
accuracy
(%)

128, 32 24 128 2 64.1 90.7
256, 64 24 128 2 68.6 91.6
64, 64 24 128 2 67.4 91.1
128, 64 32 128 2 69.0 91.7
128, 64 16 128 2 66.6 91.3
128, 64 24 256 2 69.2 91.6
128, 64 24 64 2 66.4 91.2
128, 64 24 128 1 65.7 91.1
128, 64 24 128 3 68.2 91.6
256, 64 32 128 3 70.0 91.9
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