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SUMMARY & CONCLUSIONS 

Failure time data of fielded systems are usually obtained 

from the actual users of the systems. Due to various operational 

preferences and/or technical obstacles, a large proportion of 

field data are collected as aggregate data instead of the exact 

failure times of individual units. The challenge of using such 

data is that the obtained information is more concise but less 

precise in comparison to using individual failure times. The 

most significant needs in modeling aggregate failure time data 

are the selection of an appropriate probability distribution and 

the development of a statistical inference procedure capable of 

handling data aggregation. Although some probability 

distributions, such as the Gamma and Inverse Gaussian 

distributions, have well-known closed-form expressions for the 

probability density function for aggregate data, the use of such 

distributions limits the applications in field reliability 

estimation. For reliability practitioners, it would be invaluable 

to use a robust approach to handle aggregate failure time data 

without being limited to a small number of probability 

distributions. This paper studies the application of phase-type 

(PH) distribution as a candidate for modeling aggregate failure 

time data. An expectation-maximization algorithm is developed 

to obtain the maximum likelihood estimates of model 

parameters, and the confidence interval for the reliability 

estimate is also obtained. The simulation and numerical studies 

show that the robust approach is quite powerful because of the 

high capability of PH distribution in mimicking a variety of 

probability distributions. In the area of reliability engineering, 

there is limited work on modeling aggregate data for field 

reliability estimation. The analytical and statistical inference 

methods described in this work provide a robust tool for 

analyzing aggregate failure time data for the first time. 

1 INTRODUCTION 

Failure time data of fielded systems are usually collected 

by actual users. Analyzing such data is very valuable because 

they reflect the impacts of actual environmental conditions on 

the products, which are difficult, if not impossible, to be 

imposed in laboratory [1]. However, this type of data is 

sometimes difficult to analyze due to the special structure of the 

data. In practice, a large number of data of fielded systems are 

not the exact failure times of individual units. Instead, the 

recorded data are usually the cumulative operating hours of 

each system, along with the number of failures of a certain 

component in the system, called aggregate data.  

Figure 1 shows a schematic of an aggregate data set. Since 

this type of data collection mechanism can be accessible for 

many components that are difficult or expensive to collect, 

there is a need to develop statistical methods for practitioners to 

analyze such data for field reliability estimation. Due to the 

structure of aggregate data, for most of the probability 

distributions, it is intractable to find a closed-form expression 

for the distribution of aggregate data. In the literature, only a 

few distributions, such as exponential, Normal, Gamma and 

Inverse Gaussian (IG), have been utilized for the analysis of 

aggregate lifetime data. Indeed, a primary reason for 

practitioners to collect aggregate data is the assumption that the 

underlying failure time distribution is exponential. Coit and 

Dey [2] showed that the exponential distribution assumption is 

often invalid through a hypothesis test. Coit and Jin [1] 

presented a useful method for Gamma distribution for 

reliability analysis using aggregate data. They used a quasi-

Newton method for parameter estimation. In the literature, IG 

distribution is another probability distribution that has been 

applied to aggregate data analysis. Chen and Ye [3] investigated 

aggregate data further to provide confidence intervals for the 

parameters of Gamma and IG distributions. They also 

compared the reliability estimates using Gamma, IG and 

Normal distributions, for which the Normal distribution 

Figure 1. Aggregate data: The number of failures and the 

cumulative operating time of each system are known but 

the actual failure time of each component is unknown. 



assumption did not provide adequate results. Moreover, interval 

estimation has also been studied for Gamma distribution based 

on individual failure times [4], [5], [6].  

In this paper, we propose the use of PH distributions for 

reliability estimation based on aggregate failure time data. In 

practice, the use of PH distributions provides a robust approach 

for reliability estimation when the underlying failure time 

distribution is unknown. For example, Pohl and Dietrich [7] 

presented a multi-level environmental stress screening model 

for multi-component electronic systems using a PH 

distribution. Indeed, PH distributions are quite flexible in 

modeling the probability distributions of a variety of non-

negative random variables. To estimate the parameters of PH 

distribution based on individual data, an Expectation-

Maximization (EM) algorithm has been used. EM is originally 

a parameter estimation method for a statistical model based on 

data with missing values. Asmussen et al.  [8] provided several 

extended formulas of EM algorithm for specific application of 

PH distributions. PH distributions have already been used for 

reliability estimation purposes. Liao and Guo [9], and Liao and 

Karimi [10] have considered ALT data analysis based on PH 

distributions. Riascos-Ochoa et al. [11], and Kharoufeh et al. 

[12] have studied the use of PH distributions in degradation-

based models. In this work, PH distributions are employed, for 

the first time, in reliability estimation as well as confidence 

interval estimation using aggregate failure time data. 

The remainder of this paper is organized as follows. In 

Section 2, PH distribution and the special case applied for our 

numerical study is explained. In Section 3, we present the EM 

algorithm used to estimate the parameters of PH distribution for 

individual lifetime data and extend the formulas to adapt to 

aggregate data. A simulation study as well as an analysis of a 

real data set is presented in Section 4. Conclusions are presented 

in Section 5.   

2 PH DISTRIBUTION 

In this section, we give a short introduction to PH 

distributions and a special case. Consider a continuous-time 

Markov Chain (CTMC) {𝑌(𝑡)}𝑡>0 with finite states {1, 2, …, 

N, N+1}, where state N+1 is the absorbing state and the rest of 

the states are transient states. The infinitesimal generator of 

{𝑌(𝑡)}𝑡>0 is: 

 

 𝑸 = [
𝑺 𝒒
𝟎 0

], (1) 

 

where S is called the transition rate matrix, q = Se  is the 

absorption rate matrix, and [1,1,...,1]'e . The PH distribution 

associated with the CTMC is the probability distribution of time 

from entering the CTMC until absorption. Specifically, the 

probability density function (pdf) of the PH distribution is: 

 

 𝑓(𝑡) = 𝝅𝑒𝑺𝑡𝒒, (2) 

 

where π is the matrix of initial probabilities, which denotes the 

probabilities that the process starts from any of those phases. 

The following is the transition rate matrix of an acyclic PH 

distribution that is appropriate for modeling lifetime data: 

 𝑺

=

[
 
 
 
 
−𝜆1 𝑝12𝜆1 𝑝13𝜆1 ⋯ 𝑝1𝑛𝜆1

0 −𝜆2 𝑝23𝜆2 ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ −𝜆𝑛−1 𝑝(𝑛−1)𝑛𝜆𝑛−1

0 ⋯ ⋯ 0 −𝜆𝑛 ]
 
 
 
 

. 
(3) 

 

An important special case of acyclic PH distribution is the 

Coxian distribution, which is very flexible case of PH 

distribution with a small number of parameters. This 

distribution will be used in this study. The Coxian distribution 

has the following transition rate and absorption rate matrices: 

 

 

𝑺 = [

−(𝜆1 + 𝜇1) 𝜆1 ⋯ 0

0 −(𝜆2 + 𝜇2) 𝜆2 0
⋮ 0 ⋱ ⋮
0 ⋯ 0 −𝜇𝑛

],  

𝒒 = [

𝜇1

𝜇2

⋮
𝜇𝑛

]. 

(4) 

   

Figure 2 shows the CTMC of a three-phase Coxian distribution. 

It can be proved that a variety of PH distributions can be 

converted to an equivalent Coxian distribution making the 

Coxian distribution a robust candidate for failure time data 

analysis. 

Figure 2. CTMC for a three-phase Coxian distribution. 

For aggregate data, suppose that the failure time of each 

component follows a Coxian distribution with transition rate 

matrix S given by Eq. (4). Then the transition rate matrix for the 

sum of m such random variables (i.e., an aggregate data point 

consisting of m component failures) can be expressed as: 

 

 

𝑺𝒏𝒆𝒘 = [

𝑺 𝒒𝝅 ⋯ 𝟎
𝟎 𝑺 𝒒𝝅 𝟎
⋮ 𝟎 ⋱ ⋮
𝟎 ⋯ 𝟎 𝑺

]. (5) 

 

Note that the size of the matrix depends on the number of 

failures (i.e., m) for each aggregate data point.  

3 STATISTICAL INFERENCE 

3.1 Maximum likelihood method 

Asmussen et al.  [8] developed an EM algorithm to estimate 

the parameters of a PH distribution. This method regards the 

number of times the corresponding Markov process starts in 

phase i, the number of jumps from phase i to phase j, and the 

total time spent in phase i as the missing values. These 

quantities are denoted by Bi, Nij and Zi, respectively. The 

 



likelihood function for a data set can be expressed as: 

 

 𝑙((𝝅, 𝑺)|𝝉)

= ∏ 𝜋(𝑖)𝐵𝑖

𝑛

𝑖=1

∏ 𝑒𝑍𝑖(𝑖,𝑖)

𝑛

𝑖=1

∏∏ 𝑆(𝑖, 𝑗)𝑁𝑖𝑗

𝑛+1

𝑗=1

𝑛

𝑖=1

. 
(6) 

 

The EM algorithm consists of two main steps. The 

expectation step, where the missing variables are estimated 

based on the current assumed parameter values, and the 

maximization step, where the parameters of the distribution are 

updated based on the current estimates of the missing values, 

are performed iteratively until the convergence criterion is met.  

Technically, the expectation step formulas for a data set 

consisting of exact failure times of individual units are: 

 

 

𝐸(𝝅,𝑺),𝜏[𝐵𝑖] =
1

𝑀
∑

𝝅(𝑖)𝒃(𝝅,𝑺),𝒕𝒌
(𝑖)

𝝅𝒃(𝝅,𝑺),𝒕𝒌

𝑀

𝑘=1

 (7) 

 

 

𝐸(𝝅,𝑺),𝜏[𝑍𝑖] =
1

𝑀
∑

𝑮(𝝅,𝑺),𝒕𝒌
(𝑖, 𝑖)

𝝅𝒃(𝝅,𝑺),𝒕𝒌

𝑀

𝑘=1

 (8) 

 

 

𝐸(𝝅,𝑺),𝜏[𝑁𝑖𝑗] =
1

𝑀
∑

𝑮(𝝅,𝑺),𝒕𝒌
(𝑖, 𝑗)𝑺(𝑖, 𝑗)

𝝅𝒃(𝝅,𝑺),𝒕𝒌

𝑀

𝑘=1

 (9) 

 

 

𝐸(𝝅,𝑺),𝜏[𝑁𝑖𝑛+1] =
1

𝑀
∑

𝒈(𝝅,𝑺),𝒕𝒌
(𝑖)𝒒(𝑖)

𝝅𝒃(𝝅,𝑺),𝒕𝒌

𝑀

𝑘=1

 (10) 

 

where M is the number of data points, n is the number of phases 

of the PH distribution, mk is the number of failures for data 

point k, and the other EM statistics are defined as: 

 

 𝒈(𝝅,𝑺),𝑡 = 𝝅𝑒𝑺𝑡 , 𝒃(𝝅,𝑺),𝑡 = 𝑒𝑺𝑡𝒒,

𝑮(𝝅,𝑺),𝑡 = ∫ (𝒈(𝝅,𝑺),𝑡−𝑢)𝑇(𝒃(𝝅,𝑺),𝑢)𝑇𝑑𝑢
𝑡

0

. 
(11) 

 

Note that the regular EM algorithm for PH distribution is 

developed based on data points that follow the same probability 

distribution. Nonetheless, considering a similar PH distribution 

for the lifetime of individual components, aggregate data points 

have PH distributions with different numbers of phases (i.e., 

convolution of different numbers of non-negative random 

variables). To handle aggregate failure time data, the formulas 

in the expectation step need to be modified for complying with 

the structure of each aggregate data point. As the formulas of 

the previous EM algorithm cannot accept these differences, new 

formulas should be developed for the expectation step. Based 

on the pattern that can be seen in the transition rate matrix (see 

Eq. (5)) for aggregate data, the trends in other statistics of EM 

algorithm are also discoverable, leading us to the idea of 

decomposing all the related matrices to their submatrices, each 

referring to one hidden component. As a result, the following 

updated formulas for the expectation step are developed: 

 

 𝐸(𝝅,𝑺),𝜏[𝐵𝑖]

=
1

𝑀
∑ ∑

𝝅(𝑘)(𝑖 + 𝑙𝑛)𝒃(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌
(𝑖 + 𝑙𝑛)

𝝅(𝑘)𝒃(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌

𝑚𝑘

𝑙=0

𝑝

𝑘=1

 
(12) 

 

 𝐸(𝝅,𝑺),𝜏[𝑍𝑖]

=
1

𝑀
∑ ∑

𝑮(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌
(𝑖 + 𝑙𝑛, 𝑖 + 𝑙𝑛)

𝝅(𝑘)𝒃(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌

𝑚𝑘

𝑙=0

𝑝

𝑘=1

 
(13) 

 

𝐸(𝝅,𝑺),𝜏[𝑁𝑖𝑗]

=
1

𝑀
∑ ∑

𝑮(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌
(𝑖 + 𝑙𝑛, 𝑖 + 𝑙𝑛)𝑺(𝑘)(𝑖 + 𝑙𝑛, 𝑖 + 𝑙𝑛)

𝝅(𝑘)𝒃(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌

𝑚𝑘

𝑙=0

𝑝

𝑘=1

 

                                                                                            (14)  

 𝐸(𝝅,𝑺),𝜏[𝑁𝑖𝑛+1]

=
1

𝑀
∑ ∑

𝒈(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌
(𝑖 + 𝑙𝑛)𝒅(𝑘)(𝑖 + 𝑙𝑛)

𝝅(𝑘)𝒃(𝝅(𝒌),𝑺(𝒌)),𝒕𝒌

𝑚𝑘

𝑙=0

𝑝

𝑘=1

 
(15) 

 

where p is the number of data points, and 𝒅(𝑘) is a different 

version of absorption rate matrix for data point k. Considering 

the absorption rate of each individual component as 𝑑𝑖 =
∑ 𝒒(𝑖)𝝅(𝑗)𝑛

𝑗=1  leads to: 

 

 𝒅(𝑘) = [𝑑1
(𝑘)

, … , 𝑑𝑁
(𝑘)

, … , 𝑑1
(𝑘)

, … , 𝑑𝑁
(𝑘)

]1×𝑛𝑚𝑘
. (16) 

 

For the maximization step, the related formulas remain 

unchanged as long as the matrices for the corresponding 

aggregate data point are used: 

 

 
𝜋̂(𝑖) = 𝐸(𝝅,𝑺),𝝉[𝐵𝑖], 𝑺̂(𝑖, 𝑗) =

𝐸(𝝅,𝑺),𝝉[𝑁𝑖𝑗]

𝐸(𝝅,𝑺),𝝉[𝑍𝑖]
,  

𝒒̂(𝑖) =
𝐸(𝝅,𝑺),𝝉[𝑁𝑖𝑛+1]

𝐸(𝝅,𝑺),𝝉[𝑍𝑖]
,  

𝑺̂(𝑖, 𝑖) = −(𝒒̂(𝑖) + ∑ 𝑺̂(𝑖, 𝑗)

𝑛

𝑖≠𝑗

). 

(17) 

 

3.2 ML confidence interval estimation 

Bladt et al. [13] came up with interval estimation for PH 

distributions using Fisher information matrix with an EM 

algorithm and a Newton-Raphson method. Their Newton-

Raphson method is extended for aggregate data in this paper. 

To calculate the contribution of each data point to the second 

derivative of likelihood function, the pdf should be determined 

based on the number of failures of each data point, as stated 

previously. Moreover, the derivative of the transition rate 

matrix with respect to each element has the same pattern for one 

data point but is different for different data points. 

In this paper, the confidence intervals are calculated using 

Wald’s method. Specifically, Wald’s statistic is defined as: 

 

 𝑊 = (𝜽̂ − 𝜽)
′
[𝚺̂𝜽̂]

−1(𝜽̂ − 𝜽), (18) 



where 𝚺̂𝜽̂ is the estimated variance-covariance matrix, 𝑊~𝜒𝜐
2 

and 𝜈 is the number of parameters. Note that 𝑊 ≤ 𝜒𝜈
2 𝑠hows 

the confidence region as an ellipsoid for the model parameters. 

4 NUMERICAL STUDY 

4.1 Simulation study 

This section illustrates the flexibility of the PH distribution in 

analyzing aggregate data with an arbitrary underlying 

distribution. To do this, a set of 6 aggregate data points and a 

set of 12 aggregate data points are generated from the Gamma 

distribution Γ(2.5,3.5) for a total of 36 and 56 component 

failures, respectively.  

Figure 3 shows how well a three-phase Coxian distribution 

is capable of estimating the underlying distribution with 6 data 

points. Figure 4 shows that as the number of data points 

increases, the difference between true distribution (i.e., the 

Gamma distribution) and the estimated distribution (Coxian in 

this example) can be hardly recognized. 

4.2 Real world example 

We performed our proposed method on a real data set of 

aircraft indicator lights (see Table 1) from the Reliability 

Information Analysis Center (RIAC), formerly known as 

Reliability Analysis Center (RAC). Previously, researchers [1] 

[3] have considered the same set of data in their studies. For our 

numerical study, a Coxian distribution is used. Note that our 

model is capable of dealing with general PH distributions, 

however, to reduce the computational time of our algorithm, a 

Coxian is selected. Here, our estimated component failure time 

distribution is depicted and compared with the three 

distributions studied by others. Figure 5 illustrates the estimated 

cumulative distribution functions (CDF) of the PH distribution 

against the Gamma, IG and Normal distributions obtained in 

[3]. 

 

System 

number 

Number of 

failures 

Cumulative operating 

hours 

1 2 51000 

2 9 194900 

3 8 45300 

4 8 112400 

5 6 104000 

6 5 44800 

Table 1. Aggregate failure data of aircraft indicator lights  

As seen in Figure 5, the estimated CDF of the PH distribution 

is close to Gamma and IG alternatives. Both of these 

distributions have been recognized proper for dealing with 

aggregate data. However, the results from the Normal 

distribution has a high coefficient of variation [3]. Based on 

these results, the PH distribution can be introduced as a more 

flexible alternative for estimating the failure distributions based 

on aggregate data. 

Moreover, using the same data set and the Newton-Raphson 

method and the fisher information, individual and simultaneous 

confidence regions of the model parameters are estimated. A 

three-phase Coxian distribution has 5 unknown parameters, for 

which the variance-covariance matrix can be calculated by 

taking the inverse of the Fisher information matrix as: 

Figure 5. Gamma, IG, Normal and three-phase Coxian 

distributions estimated failure CDF's for the data in Table 1. 

Figure 3. A three-phase Coxian distribution CDF estimated 

from the data generated from a Γ(2.5,3.5); 6 aggregate data 

points for a total of 36 failures. 

Figure 4. A three-phase Coxian distribution CDF 

estimated from the data generated from a Γ(2.5,3.5); 12 

aggregate data points for a total of 56 failures. 



𝚺̂𝜽̂

=

[
 
 
 
 

0.00018 −0.00022 0.003515 −0.00848 0.000154
−0.00022 0.000203 −0.00443 0.010321 −0.00023
0.003515 −0.00443 0.120267 −0.2326 −0.01246
−0.00848 0.010321 −0.2326 0.517358 −0.01074
0.000154 −0.00023 −0.01246 −0.01074 0.035756]

 
 
 
 

, 

(19) 

 

where 𝜽 = (𝜇1, 𝜆1, 𝜇2, 𝜆2, 𝜇3). Individual confidence intervals 

(C.I.’s) are estimated using Wald’s statistic considering other 

parameters as known and constant (see Table 2). In addition, 

simultaneous confidence regions are demonstrated for 𝜇′𝑠, in 

Figure 6 and 𝜆′𝑠, in Figure 7. 

 

Parameter ML Estimate 90% MLE C.I. 

𝜇1 0.0702 (0,4.783) 

𝜇2 0.0431 (0,0.225) 

𝜇3 0.0823 (0,0.417) 

𝜆1 0.0121 (0, 4.456) 

𝜆2 0.0392 (0,0.127) 

Table 2. MLEs of three-phase Coxian distribution 

parameters and confidence intervals based on the data 

from Table 1. 

 

Based on the estimated model parameters and their 

variance-covariance matrix, the variance of the estimated CDF 

of failure time can be calculated using the delta method as: 

  

𝑉𝑎𝑟̂(𝐹(𝒕; 𝜽)) = [
𝜕𝐹

𝜕𝜇1

, … ,
𝜕𝐹

𝜕𝜆2

] 𝚺̂𝜽̂ [
𝜕𝐹

𝜕𝜇1

, … ,
𝜕𝐹

𝜕𝜆2

]
𝑇

. (20) 

Figure 8 shows the 90% C.I. for the CDF.  

The computation was performed in Matlab 2017b on a 

desktop computer with Core™ i5-6300HQ CPU and 8 GB 

RAM. Fifty-seven seconds were used for parameter estimation 

and twenty-two seconds were spent on the estimation of the 

variance-covariance matrix of model parameters. 

5 CONCLUSIONS 

Collecting reliability data from fielded systems may result in 

aggregate lifetime data. Analyzing aggregate data relies on the 

special characteristics in the distribution as well as statistical 

inference method. Because of these complexities, only a few 

distributions, such as exponential, Gamma and IG, have been 

introduced for aggregate data analysis. To augment the 

applications of aggregate data, in this work, a PH distribution is 

studied for the first time to analyze aggregate lifetime data. An 

important characteristic of the PH distribution is its high 

flexibility for fitting data with an arbitrary underlying 

distribution by controlling the number of phases. For parameter 

estimation, since the existing EM algorithm cannot be directly 

applied for aggregate data, new EM formulas are developed in 

this paper for aggregate data analysis. In addition to point 

estimation of model parameters, ML-based confidence intervals 

are obtained with the assistance of the Fisher information 

matrix. In our simulation study, aggregate data was generated 

from a Gamma distribution, and the PH distribution was able to 

estimate the underlying distribution meticulously. Moreover, 

performing our method on a set of aggregate reliability data 

from RIAC also depicted the strength of PH distribution in 

comparison to other alternatives previously studied. 
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