A Robust Approach for Estimating Field Reliability Using Aggregate
Failure Time Data

Samira Karimi, PhD Student, University of Arkansas
Haitao Liao, PhD, University of Arkansas
Ed Pohl, PhD, University of Arkansas

Key Words: Aggregate Data, Confidence Interval, Coxian Distribution, EM Algorithm, Fisher Information, Phase-type

Distributions

SUMMARY & CONCLUSIONS

Failure time data of fielded systems are usually obtained
from the actual users of the systems. Due to various operational
preferences and/or technical obstacles, a large proportion of
field data are collected as aggregate data instead of the exact
failure times of individual units. The challenge of using such
data is that the obtained information is more concise but less
precise in comparison to using individual failure times. The
most significant needs in modeling aggregate failure time data
are the selection of an appropriate probability distribution and
the development of a statistical inference procedure capable of
handling data aggregation. Although some probability
distributions, such as the Gamma and Inverse Gaussian
distributions, have well-known closed-form expressions for the
probability density function for aggregate data, the use of such
distributions limits the applications in field reliability
estimation. For reliability practitioners, it would be invaluable
to use a robust approach to handle aggregate failure time data
without being limited to a small number of probability
distributions. This paper studies the application of phase-type
(PH) distribution as a candidate for modeling aggregate failure
time data. An expectation-maximization algorithm is developed
to obtain the maximum likelihood estimates of model
parameters, and the confidence interval for the reliability
estimate is also obtained. The simulation and numerical studies
show that the robust approach is quite powerful because of the
high capability of PH distribution in mimicking a variety of
probability distributions. In the area of reliability engineering,
there is limited work on modeling aggregate data for field
reliability estimation. The analytical and statistical inference
methods described in this work provide a robust tool for
analyzing aggregate failure time data for the first time.

1 INTRODUCTION

Failure time data of fielded systems are usually collected
by actual users. Analyzing such data is very valuable because
they reflect the impacts of actual environmental conditions on
the products, which are difficult, if not impossible, to be
imposed in laboratory [1]. However, this type of data is
sometimes difficult to analyze due to the special structure of the
data. In practice, a large number of data of fielded systems are

not the exact failure times of individual units. Instead, the
recorded data are usually the cumulative operating hours of
each system, along with the number of failures of a certain
component in the system, called aggregate data.
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Figure 1. Aggregate data: The number of failures and the
cumulative operating time of each system are known but
the actual failure time of each component is unknown.

Figure 1 shows a schematic of an aggregate data set. Since
this type of data collection mechanism can be accessible for
many components that are difficult or expensive to collect,
there is a need to develop statistical methods for practitioners to
analyze such data for field reliability estimation. Due to the
structure of aggregate data, for most of the probability
distributions, it is intractable to find a closed-form expression
for the distribution of aggregate data. In the literature, only a
few distributions, such as exponential, Normal, Gamma and
Inverse Gaussian (IG), have been utilized for the analysis of
aggregate lifetime data. Indeed, a primary reason for
practitioners to collect aggregate data is the assumption that the
underlying failure time distribution is exponential. Coit and
Dey [2] showed that the exponential distribution assumption is
often invalid through a hypothesis test. Coit and Jin [1]
presented a useful method for Gamma distribution for
reliability analysis using aggregate data. They used a quasi-
Newton method for parameter estimation. In the literature, IG
distribution is another probability distribution that has been
applied to aggregate data analysis. Chen and Ye [3] investigated
aggregate data further to provide confidence intervals for the
parameters of Gamma and IG distributions. They also
compared the reliability estimates using Gamma, IG and
Normal distributions, for which the Normal distribution



assumption did not provide adequate results. Moreover, interval
estimation has also been studied for Gamma distribution based
on individual failure times [4], [5], [6].

In this paper, we propose the use of PH distributions for
reliability estimation based on aggregate failure time data. In
practice, the use of PH distributions provides a robust approach
for reliability estimation when the underlying failure time
distribution is unknown. For example, Pohl and Dietrich [7]
presented a multi-level environmental stress screening model
for multi-component electronic systems using a PH
distribution. Indeed, PH distributions are quite flexible in
modeling the probability distributions of a variety of non-
negative random variables. To estimate the parameters of PH
distribution based on individual data, an Expectation-
Maximization (EM) algorithm has been used. EM is originally
a parameter estimation method for a statistical model based on
data with missing values. Asmussen et al. [8] provided several
extended formulas of EM algorithm for specific application of
PH distributions. PH distributions have already been used for
reliability estimation purposes. Liao and Guo [9], and Liao and
Karimi [10] have considered ALT data analysis based on PH
distributions. Riascos-Ochoa et al. [11], and Kharoufeh et al.
[12] have studied the use of PH distributions in degradation-
based models. In this work, PH distributions are employed, for
the first time, in reliability estimation as well as confidence
interval estimation using aggregate failure time data.

The remainder of this paper is organized as follows. In
Section 2, PH distribution and the special case applied for our
numerical study is explained. In Section 3, we present the EM
algorithm used to estimate the parameters of PH distribution for
individual lifetime data and extend the formulas to adapt to
aggregate data. A simulation study as well as an analysis of a
real data set is presented in Section 4. Conclusions are presented
in Section 5.

2 PH DISTRIBUTION

In this section, we give a short introduction to PH
distributions and a special case. Consider a continuous-time
Markov Chain (CTMC) {Y (t)};>o with finite states {1, 2, ...,
N, N+1}, where state N+1 is the absorbing state and the rest of
the states are transient states. The infinitesimal generator of

{Y O}eso is:

o=[y gl

where § is called the transition rate matrix, ¢ =—Se is the
absorption rate matrix, and e =[1,1,...,1]'. The PH distribution
associated with the CTMC is the probability distribution of time
from entering the CTMC until absorption. Specifically, the
probability density function (pdf) of the PH distribution is:
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where 7 is the matrix of initial probabilities, which denotes the
probabilities that the process starts from any of those phases.
The following is the transition rate matrix of an acyclic PH

distribution that is appropriate for modeling lifetime data:
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An important special case of acyclic PH distribution is the
Coxian distribution, which is very flexible case of PH
distribution with a small number of parameters. This
distribution will be used in this study. The Coxian distribution
has the following transition rate and absorption rate matrices:
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Figure 2 shows the CTMC of a three-phase Coxian distribution.
It can be proved that a variety of PH distributions can be
converted to an equivalent Coxian distribution making the
Coxian distribution a robust candidate for failure time data
analysis.
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Figure 2. CTMC for a three-phase Coxian distribution.

For aggregate data, suppose that the failure time of each
component follows a Coxian distribution with transition rate
matrix § given by Eq. (4). Then the transition rate matrix for the
sum of m such random variables (i.e., an aggregate data point
consisting of m component failures) can be expressed as:
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Note that the size of the matrix depends on the number of
failures (i.e., m) for each aggregate data point.

3 STATISTICAL INFERENCE
3.1 Maximum likelihood method

Asmussen et al. [8] developed an EM algorithm to estimate
the parameters of a PH distribution. This method regards the
number of times the corresponding Markov process starts in
phase i, the number of jumps from phase i to phase j, and the
total time spent in phase i as the missing values. These
quantities are denoted by Bi, Njj and Z;, respectively. The



likelihood function for a data set can be expressed as:
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The EM algorithm consists of two main steps. The

expectation step, where the missing variables are estimated
based on the current assumed parameter values, and the
maximization step, where the parameters of the distribution are
updated based on the current estimates of the missing values,
are performed iteratively until the convergence criterion is met.
Technically, the expectation step formulas for a data set
consisting of exact failure times of individual units are:

M . .
1 " t(Db ), (D)

EeselB) = Mkz . ™

Busel2 Mz e ®

Fasil) =y S DND

EoneNora] = 55 ) "’(’;3,(7(‘”(” (10)
=} LAYE

where M is the number of data points, n is the number of phases
of the PH distribution, my is the number of failures for data
point k, and the other EM statistics are defined as:
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Note that the regular EM algorithm for PH distribution is
developed based on data points that follow the same probability
distribution. Nonetheless, considering a similar PH distribution
for the lifetime of individual components, aggregate data points
have PH distributions with different numbers of phases (i.e.,
convolution of different numbers of non-negative random
variables). To handle aggregate failure time data, the formulas
in the expectation step need to be modified for complying with
the structure of each aggregate data point. As the formulas of
the previous EM algorithm cannot accept these differences, new
formulas should be developed for the expectation step. Based
on the pattern that can be seen in the transition rate matrix (see
Eq. (5)) for aggregate data, the trends in other statistics of EM
algorithm are also discoverable, leading us to the idea of
decomposing all the related matrices to their submatrices, each
referring to one hidden component. As a result, the following
updated formulas for the expectation step are developed:
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where p is the number of data points, and d® is a different
version of absorption rate matrix for data point k. Considering
the absorption rate of each individual component as d; =

21 q()m()) leads to:
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For the maximization step, the related formulas remain
unchanged as long as the matrices for the corresponding

aggregate data point are used:
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3.2 ML confidence interval estimation

Bladt et al. [13] came up with interval estimation for PH
distributions using Fisher information matrix with an EM
algorithm and a Newton-Raphson method. Their Newton-
Raphson method is extended for aggregate data in this paper.
To calculate the contribution of each data point to the second
derivative of likelihood function, the pdf should be determined
based on the number of failures of each data point, as stated
previously. Moreover, the derivative of the transition rate
matrix with respect to each element has the same pattern for one
data point but is different for different data points.

In this paper, the confidence intervals are calculated using
Wald’s method. Specifically, Wald’s statistic is defined as:
Y(8-0),

W= (0-6)[%]" (18)



where Zj is the estimated variance-covariance matrix, W ~y2
and v is the number of parameters. Note that W < y2 shows
the confidence region as an ellipsoid for the model parameters.

4 NUMERICAL STUDY
4.1 Simulation study

This section illustrates the flexibility of the PH distribution in
analyzing aggregate data with an arbitrary underlying
distribution. To do this, a set of 6 aggregate data points and a
set of 12 aggregate data points are generated from the Gamma
distribution I'(2.5,3.5) for a total of 36 and 56 component
failures, respectively.
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Figure 3. A three-phase Coxian distribution CDF estimated
from the data generated from a I(2.5,3.5); 6 aggregate data
points for a total of 36 failures.
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Figure 4. A three-phase Coxian distribution CDF
estimated from the data generated from a I'(2.5,3.5); 12
aggregate data points for a total of 56 failures.

Figure 3 shows how well a three-phase Coxian distribution
is capable of estimating the underlying distribution with 6 data
points. Figure 4 shows that as the number of data points
increases, the difference between true distribution (i.e., the
Gamma distribution) and the estimated distribution (Coxian in
this example) can be hardly recognized.

4.2 Real world example

We performed our proposed method on a real data set of
aircraft indicator lights (see Table 1) from the Reliability
Information Analysis Center (RIAC), formerly known as
Reliability Analysis Center (RAC). Previously, researchers [1]
[3] have considered the same set of data in their studies. For our
numerical study, a Coxian distribution is used. Note that our
model is capable of dealing with general PH distributions,
however, to reduce the computational time of our algorithm, a
Coxian is selected. Here, our estimated component failure time
distribution is depicted and compared with the three
distributions studied by others. Figure 5 illustrates the estimated
cumulative distribution functions (CDF) of the PH distribution
against the Gamma, IG and Normal distributions obtained in

[3].

System Number of Cumulative operating
number failures hours

1 2 51000

2 9 194900

3 8 45300

4 8 112400

5 6 104000

6 5 44800

Table 1. Aggregate failure data of aircraft indicator lights
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Figure 5. Gamma, IG, Normal and three-phase Coxian
distributions estimated failure CDF's for the data in Table 1.

As seen in Figure 5, the estimated CDF of the PH distribution
is close to Gamma and IG alternatives. Both of these
distributions have been recognized proper for dealing with
aggregate data. However, the results from the Normal
distribution has a high coefficient of variation [3]. Based on
these results, the PH distribution can be introduced as a more
flexible alternative for estimating the failure distributions based
on aggregate data.

Moreover, using the same data set and the Newton-Raphson
method and the fisher information, individual and simultaneous
confidence regions of the model parameters are estimated. A
three-phase Coxian distribution has 5 unknown parameters, for
which the variance-covariance matrix can be calculated by
taking the inverse of the Fisher information matrix as:
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i 0.00018 —0.00022 0.003515 -—0.00848 0.000154
—0.00022 0.000203 -—0.00443 0.010321 -0.00023

=10.003515 -—0.00443 0.120267 —0.2326 —0.01246},
—0.00848 0.010321 —0.2326 0.517358 —0.01074
0.000154 -—0.00023 -0.01246 -—0.01074 0.03575(619)

where 0 = (uq, A4, Uy, A2, U3). Individual confidence intervals
(C.I.’s) are estimated using Wald’s statistic considering other
parameters as known and constant (see Table 2). In addition,
simultaneous confidence regions are demonstrated for y's, in
Figure 6 and A's, in Figure 7.

Parameter ML Estimate 90% MLE C.I.
1y 0.0702 (0,4.783)
Uy 0.0431 (0,0.225)
Us 0.0823 (0,0.417)
Ay 0.0121 (0, 4.456)
Ay 0.0392 (0,0.127)

Table 2. MLEs of three-phase Coxian distribution
parameters and confidence intervals based on the data
from Table 1.

Based on the estimated model parameters and their
variance-covariance matrix, the variance of the estimated CDF
of failure time can be calculated using the delta method as:

oF oF ] 5 [aF oF
o an) e o,
Figure 8 shows the 90% C.I. for the CDF.

Var(F(e;0)) = | ] (20)

The computation was performed in Matlab 2017b on a
desktop computer with Core™ i5-6300HQ CPU and 8 GB
RAM. Fifty-seven seconds were used for parameter estimation
and twenty-two seconds were spent on the estimation of the
variance-covariance matrix of model parameters.

5 CONCLUSIONS

Collecting reliability data from fielded systems may result in
aggregate lifetime data. Analyzing aggregate data relies on the
special characteristics in the distribution as well as statistical
inference method. Because of these complexities, only a few
distributions, such as exponential, Gamma and IG, have been
introduced for aggregate data analysis. To augment the
applications of aggregate data, in this work, a PH distribution is
studied for the first time to analyze aggregate lifetime data. An
important characteristic of the PH distribution is its high
flexibility for fitting data with an arbitrary underlying
distribution by controlling the number of phases. For parameter
estimation, since the existing EM algorithm cannot be directly
applied for aggregate data, new EM formulas are developed in
this paper for aggregate data analysis. In addition to point
estimation of model parameters, ML-based confidence intervals
are obtained with the assistance of the Fisher information
matrix. In our simulation study, aggregate data was generated
from a Gamma distribution, and the PH distribution was able to
estimate the underlying distribution meticulously. Moreover,

performing our method on a set of aggregate reliability data
from RIAC also depicted the strength of PH distribution in
comparison to other alternatives previously studied.

Figure 6. Wald’s simultaneous confidence regions for u of
a three-phase Coxian in the form of eq. (4).
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Figure 7. Wald’s simultaneous confidence regions for 1
of a three-phase Coxian in the form of eq. (4).
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Figure 8. 90% confidence interval for the failure CDF.
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