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Abstract—The idle computing resources of parked vehicles
could be utilized to improve performance by assisting task
executions in mobile edge computing (MEC) systems. As a result,
the owner of a vehicle could be compensated, resulting in a win-
win situation. A dynamic pricing strategy is proposed to minimize
the average cost of the MEC system under the constraints on
Quality of Service (QoS) by adjusting the price constantly based
on the current system state. To do so, a cost minimization
problem is solved to obtain the optimal dynamic pricing strategy
efficiently. Finally, the optimization results are validated with
extensive simulations.

Index Terms—Mobile edge computing, dynamic pricing strat-
egy, autonomous vehicle, Markov chain.

I. INTRODUCTION

In future smart city, vehicles equipped with power capability
in communication, computing, and storage, e.g., autonomous
vehicles, could be viewed as important networking resources
to handle the explosively growing wireless data traffic [1].
To ensure powerful performance, an expensive communication
and computing unit must be installed in these vehicles. Nowa-
days, existing computing solutions for level 4 autonomous
driving often cost tens of thousands of dollars [2]. However,
the current utilization rate of vehicles is not very high, e.g.,
2016 average driving time per day in US is only 50.6 minutes
according to the survey of AAA Foundation for Traffic Safety.
Thus, these computing units will be left idle most of time. To
make full use of these idle computing resources, we could
incentivize owners of these vehicles to allow their vehicles to
be used for processing computing tasks..

MEC is a promising paradigm to enable mobile devices to
enjoy resourceful computing power with lower latency [3] and
dynamic allocation of the computing resources in the MEC
is an interesting research issue to be addressed in the future
[4]. Tt could be a potential scenario in future smart cities
where the vehicles with computing units could be utilized as
temporary servers of an MEC system, particularly when the
computing resources owned by the MEC system itself is not
sufficiently enough to guarantee QoS. A reasonable solution is
to allow computing units of parked vehicles, e.g., autonomous
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Fig. 1. A vehicle-assisted MEC system.

vehicles, be leased to the MEC system to execute computing
tasks and exchange data with the MEC system through the
vehicle-to-infrastructure (V2I) communication, as shown in
Fig. 1. This will be a win-win situation where not only the
MEC system could achieve better performance but also the
owners of these vehicles could gain economic benefits from the
operator of the MEC system, especially when these vehicles
are not energy-hungry, e.g., electric vehicles equipped with
large battery packs.

However, the arrival of computing tasks and locations of
vehicles, i.e., entries to and exits from the coverage range
of the MEC system, are greatly stochastic and uncertain,
which are hard to predict and control accurately. Thus, the
performance of a fixed price strategy is often very poor since it
does not take the real-time dynamic change into consideration,
e.g., the number of tasks in execution and the number of
parked vehicles in the coverage range of the MEC system.
Dynamic pricing strategy could provide a more attractive
approach by adjusting the price constantly, which has attracted
great attention in both academia and industries. In [5], by
implementing dynamic parking pricing strategy, travel delay of
cruising and the generic congestion can be effectively curtailed
in urban networks. Moreover, time-varying pricing strategies
are widely used in electricity use, which charge more for
energy use on peak to reduce peak demand [6]. Similarly,
we could raise price to attract more parked vehicles when the
servers are not sufficient to support computation tasks, and
vice versa. Thus, there exists a tradeoff between the average
cost, i.e., the average reward paid by the MEC system, and
QoS of the MEC system.

In this paper, a dynamic pricing strategy is proposed to
minimize the average cost with the constraints on QoS based
on probabilistic scheduling approach. Each task is assumed
in outage state and will be dropped if it cannot be served
when it arrives at or has to be dropped before its execution
is completed, and the packet loss rate is considered as the
performance metric. The system could be modeled by a two-
dimensional Markov chain whose state is determined by the
system state, i.e., the number of tasks in execution and the
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number of parked vehicles in the MEC system. Our objective
is to find the optimal pricing strategy and, based on this
objective, the optimization problem can be converted into
a linear programming so that the optimal dynamic pricing
strategy can be obtained efficiently.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an MEC system that
consists of an AP node (integrated with ny MEC servers)
and a parking lot where at most Ny vehicles equipped with
computing units could park. Assume that the parked vehicles
could be unitized as the temporary MEC servers. To simplify
the analysis, we assume that each vehicle has the identical
computing capability [7] with an MEC server.

Time is divided into time slots. Let N[t] and M t] denote the
number of parked vehicles and computing tasks be executing
in the MEC system at the beginning of the ¢-th time slot.
Let a,[t] and d,[t] denote the number of vehicles arriving and
departing in the ¢-th time slot. Likewise, a,[t] and d,[t] denote
the number of tasks arriving and departing in the ¢-th time slot.
Then the dynamic system state can be expressed as

N[t +1] = (min {N[t] + ay[t] — dy[t], No}) ™,

Mt + 1] = (min {N[t + 1] 4+ ng, M[t] + au[t] — du[t]}) T,
6]
where the superscript "+’ denotes nonnegative, i.e., a™ =
max{a, 0}. When the available servers cannot support all tasks
in the system, the packet loss occurs. The number of tasks
dropped at the beginning of the ¢-th time slot is given by

[[t] = max {0, M[t] — N[t] — no}. 2)

We model task arrivals and departures as Bernoulli Process
[8] and [9]. A new computing task arrives at the MEC system
at the beginning of the ¢-th time slot with arrival rate A\, i.e.,

{ Pr{au[t] = 1} = Au,

Pr{a,[t] =0} =1 — A,. ©)

At the end of each time slot, each task could be completed and
departs from the system with departure rate u,,. The departure
of each task is independent with each other. Thus, we have

Pr{du[t] = d} = C(m,d)pl(1 — py)™ 4 V0 < d < m, (4)

where m = M|[t] > 0 and C(m, d) is the binomial coefficient.
Otherwise, if M[t] = 0, we have Pr{d,[t] = 0} = 1.
Likewise, the distribution of a[t] and d,[t] are dependent on
the arrival rate A [¢] and departure rate u.[t] of the parked
vehicles, which is given by

{ Pria,[t] = 1} = \J[t],

Pr{a[t] = 0} = 1 — AJt], ®)

and

Pr{d,[t] = d} = C(n,d)p, [t]*(1 — p,[t])" "4, VO < d < n,
(6)
where n = NJt] > 0, and \,[t] and p.[t] are dependent on the
price c[t] at the current time slot. The price c|[t] is defined as the
payment obtained by each vehicle in ¢-th time slot. Consider

2

that K price standards are available, whose set is denoted by
C ={c1,c2,...,cx} and ¢; < ¢; for any ¢ < j. Let Ay and
pr denote the arrival rate and departure rate of vehicle with
a given price standard cg, i.e., \y[t] = Ax and puy[t] = px
when c[t] = cg. It is reasonable to assume that higher price
will attract vehicle to arrive and park with a higher probability
and for a longer time. Thus, we have A\; < A; and p; < p;
for any ¢; < c;j.

III. DYNAMIC PRICING STRATEGY

According to Eq. (1), the system state M [t+1] and N[t+1]
in the next time slot only depend on the current state M [¢] and
N|t], and not on the state at the previous slots. Therefore, the
system state can be formulated as a two-dimensional Markov
chain with M[t] and N[t]. We denote the state (m,n) as the
system state M[t] = m and N[t] = n.

At the beginning of each time slot, the state of the Markov
chain could make transition to other states. For the ease of
understanding, an instance with transition diagram of one state
(1,1) is given in Fig. 2. To keep the figure legible, we denote
(ault], dult], av[t], dy[t]) as (a1,dq,as,ds) for each link. The
state (1, 1) cannot make transition to the states in the next time
slot that do not have a link with it, e.g., (3,2). Since packet
drop occurs when M|t] > N[t] + ng, the MEC system will
have to drop one packet when state (1,1) transfers to state
(2,0) , which is illustrated in Fig. 2.
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Fig. 2. Transition diagram of state (1,1) with No = 3 and ng = 1.

Dynamic pricing strategy is to adjust price at the beginning
of each time slot, which is determined by the probability ffml
of choosing price ¢ given state (m,n), i.e.,

k :Pr{c[t]ZCk‘M[t]:m7N[ﬂ:n}' @)

m,n

The normalization condition always holds for each 0 < m <
N+ngpand 0 <n <N,

K
S fkha=1 (8)
k=1

Let an’n denote the average number of packets dropped in
the current time slot at state (m,n) with price standard c,
which is given by

RE, . =E{[t)]M[t] =m,N[t] = n,clt] = cx}. (9

Denote g, »(Am, An) as the transition probability from the
state (m,n) to state (m + Am,n + An) in the Markov
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chain. ann and @, n(Am,An) could be obtained ac-
cording to Eqs. (1-4) in the Section II and details are
omitted due to space limit. Based on this, the transi-
tion matrix of the Markov chain H could be obtained.

Denote the steady-state distribution of this Markov chain

by T = {7-[-0,07 7(-0,1; L) 77TO,N07 L) 77Tn+n0,n L) 7TN0+77,0,N0}
which satisfies
177 =1,
(10)
Hm =m.

In the ¢-th time-slot, when system state (M[t], N[t]) =
(m,n), the cost and expectation of packets dropped are given
by ncy and RE, . With probability k- - Thus, the average
cost and average expectation of tasks dropped are given by

No n+no K
ava Z Z chkﬂ—m nfmn (11)
n=0 m=0 k=1
and Ng n+ng K
Bos=Y_ > Y RE Tmnfk . (12)

n=0 m=0 k=1
Furthermore, the expectation of number of the tasks arriving
in the ¢-th time-slot is the arrival rate \,. Thus, the packet loss
rate, which is the probability that a computing task is dropped
before it is completed, is given by
_ Elos
=

Plava (1 3)

IV. OPTIMAL COST-QOS TRADEOFF

In typical systems, the QoS of users should be guarantee
firstly, i.e., the packet loss rate P2/* cannot exceed the toler-
ance P, Furthermore, it is necessary to reduce the cost of
the MEC system, i.e., average cost Cly,, as much as possible.

Thus, we have the following optimization problem:

No n+ng K
m}cn Z Z chkwmynfff%n (14.a)
o Frmn n=0 m=0 k=1
No n+no K
k pth
s.t ™ Z SN RE Tmafl, <P (14b)
n=0 m=0 k=1
17w =1 (14.0)
Hr=n (14.d)
K
S fha=1 VYmn (14.¢)
k=1
k>0 VYm,n,k (14.f)
T >0 Vm,n, (14.g)

where constraints (14.b) and (14.c-d) denote the constraints
on QoS tolerance and the steady-state condition, respectively.

The objective function and constraints in optimization (14)
are linear combinations of {mp, . ¥ .}, {fE .}, or {mpmn}.
By recalling the normalization condition of {f% .} in Eq. (8),
Tm,n can also be expressed as

K
§ k
n — Wm,nfm,n =
k=1

5)

K
k

E Ym,n-

k=1

By substituting Eq. (15) into problem (14), the steady-state
condition can be expressed as constraint (16.c) and a matrix
equation Qy = 0 with y¥, . = {mpn.fF ,} as variables,
where the constant matrix is denoted by Q and can be derived
from H. In this way, the optimization (14) is converted into a
linear programming which is summarized as follow:

Ny n+ng K
min Y YD ncky, (16.2)
™ fn n=0 m=0 k=1
No n+ng K
st )\ Z Z ZRm nym n = 1t02 (16b)
Y n=0 m=0 k=1
No n+ng K
SN S k=1 (16.c)
n=0 m=0 k=1
Qy=0 (16.d)
yﬁ’z,n >0 VYm,n,k (16.e)

This problem can be solved efficiently in polynomial time
using interior-point method [10]. After the optimal solution
ym’n* of the linear programming (16) is obtained, the corre-
sponding steady-state distribution can be represented as

K
_E Eo*
- ym,n :
k=1

To obtain the cost-optimal strategy, we can derive fﬁml*
from y%, ", which is given below.

Case 1 When 7*

amn

# 0, the optimal strategy is given by

m,n

k* ym,n
= . 18
m,n * n ( )

Case 2 When 7%, ,, = 0, which means that the state (m,n)
is a transient state. Then, a simple strategy can be used, i.e.,

« 1
k
= . 19
o =7 (19)
The time complexity of deriving f,’f%n* from y,knn* is also

polynomial. In conclusion, the cost-optimal dynamic pricing
strategy could be obtained in polynomial time. Based on this
result, the optimal cost-QoS tradeoff can be achieved.

Remark 1 Our proposed approach could be extended and
applied to a more generalized scenario where the priority
of tasks and vehicles with different computing capability are
considered. By modeling each type of task and vehicle into a
queue, the system could be formulated into a Markov chain
with more dimensions. Then, the cost-optimal dynamic pricing
strategy could be obtained using the proposed approach.

V. NUMERICAL RESULTS

In this section, we validate our theoretical results via sim-
ulation studies, and explain the outcomes in a more compre-
hensive way. Throughout this section, we set ng =3, K =7,

u = 0.2, and other parameters are summarized in Table I. By
solving the optimization problem (16), the optimal dynamic
pricing strategy can be obtained.
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TABLE I
PARAMETERS USED FOR SIMULATION
k|1 2 3 4 5 6 7
cp | O 2 4 8 16 32
A | 0102 03 | 04 05 06 | 0.7
pe |1} 031025 ] 02 015 | 0.1 | 0.05
120 The proposed dynamic pricing strategy
Fixed pricing strategy
100 g -+ Simulation results of the proposed strategy
1| | — O - strategy based on Lyapunov optimization
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Fig. 3. Optimal cost-QoS tradeoffs between different strategies.

Fig. 3 compares the numerical results between the proposed
dynamic pricing strategy, one another dynamic pricing strategy
based on Lyapunov optimization, and fixed pricing strategy
with Ny = 4 and A, = 0.8. The basic idea of the Lyapunov
optimization [11] is to minimize its Lyapunov drift-plus-
penalty function, whose objective is to stabilize the virtual
queue Nt] + ng — M[t] while optimizing the average cost.

In Fig. 3, simulation results of the proposed dynamic pricing
strategy are given by Monte-Carlo simulation, which match
perfectly well with the optimization results. It can be seen
that with the decrease of packet loss rate constraint P,
i.e., higher QoS requirement, the required cost rises in all
strategies. Additionally, when the cost is large enough, the
packet loss rate in all strategies will decrease to a minimum,
which verifies the performance improvement by utilizing the
computing units of parked vehicles as temporary MEC servers.
Moreover, for any Pfo}g, the average cost in the fixed pricing
strategy is always higher than that in the proposed dynamic
pricing strategies. The average cost of the strategy based on
Lyapunov optimization is also higher since it does not take
the distribution of arrival and departure of the task and vehicle
into consideration. Thus, the performance improvement of the
proposed dynamic pricing strategy has been verified.

Fig. 4 presents the optimal cost versus the size of the
parking lot with different task arrival rates A,.The packet
loss rate constraint Plff; is set to 0.15. As expected, the cost
decreases when the size of parking lot Ny increases and then
approaches to different asymptotes, where the line with higher
Au exhibits higher average cost. For a given Ny, the system
with higher A, requires higher cost. Therefore, for a busy
MEC system with higher A, a larger parking lot is required
or otherwise higher cost has to be incurred.

VI. CONCLUSION

In this paper, we have investigated a dynamic pricing
strategy for vehicle assisted MEC systems. By adjusting the
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—&8— Arrival rate is 0.9
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Fig. 4. Optimal cost versus parking lost size N.

price dynamically to control the arrival and departure rates
of vehicles, the cost of the MEC system will be minimized
under a given constraint on QoS, which is evaluated by
the packet drop rate. The system is modeled as a two-
dimensional Markov chain. Then the average cost and QoS
could be obtained by analyzing the steady-state distribution
of Markov chain. Based on these, the optimization problem
is formulated and solved. Moreover, the cost-optimal dynamic
pricing strategy could be obtained to minimize the cost of the
MEC system and achieve optimal cost-QoS tradeoff, which
has a significant performance improvement compared with
the fixed pricing strategy. Finally, our theoretical results is
validated by comprehensive simulations.
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