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ABSTRACT

We advance the study of secure stream-based channels (Fischlin
et al., CRYPTO ’15) by considering the multiplexing of many data
streams over a single channel, an essential feature of real world
protocols such as TLS. Our treatment adopts the definitional per-
spective of Rogaway and Stegers (CSF °09), which offers an elegant
way to reason about what standardizing documents actually pro-
vide: a partial specification of a protocol that admits a collection
of compliant, fully realized implementations. We formalize par-
tially specified channels as the component algorithms of two parties
communicating over a channel. Each algorithm has an oracle that
provides specification details; the algorithms abstract the things that
must be explicitly specified, while the oracle abstracts the things
that need not be. Our security notions, which capture a variety
of privacy and integrity goals, allow the adversary to respond to
these oracle queries; security relative to these notions implies that
the channel withstands attacks in the presence of worst-case (i.e.,
adversarial) realizations of the specification details. We apply this
framework to a formal treatment of the TLS 1.3 record and, in
doing so, show that its security hinges crucially upon details left
unspecified by the standard.
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1 INTRODUCTION

As protocols such as TLS [29], SSH [36], IPSec [22], and QUIC [20]
have evolved, so have the formal tools used to analyze them. Often
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it is the protocol standards themselves, rather than fully realized im-
plementations, that inspire and guide mathematical abstractions of
these protocols, but their complexity makes the task of developing
these abstractions quite challenging and prone to missing subtle
attacks. Much of this complexity stems from the fact that protocols
are only partially specified. The TLS 1.3 standard [30], whose record
layer mechanism is the subject of this paper, contains numerous
“SHOULDs”, “SHOULD NOTs” and “MAYs.” Each of these provides a
guideline, but not a rule (those are “MUSTs” and “MUST NOTs”), for
compliant realizations of the standard. In addition, and like other
protocol standards, TLS 1.3 leaves many implementation details
unspecified. Thus, the standard actually describes a collection of
implementations that share a core set of behaviors.

Standards are not more explicit and prescriptive for good reason.
To be broadly adopted, they need to be flexible in the face of a
variety of deployment concerns, such as backwards compatibility,
interoperability with other protocols, and limitations of existing
infrastructure. They also need to balance performance with secu-
rity and account for competing (and often conflicting) interests
of stakeholders. But this need for flexibility presents an impor-
tant challenge to provable security: namely, deciding which of the
standard’s guidelines and unspecified implementation details are
relevant to security, and so should be captured in the model.

The implications of these modeling choices are often clear only
after an attack is found, leading to what Degabrielle et al. [15] call
the model-attack-remodel cycle. A prominent example is the case of
padding-oracle attacks. The MAC-then-encode-then-encrypt con-
struction, used to provide authenticated encryption in many early
secure channel protocols, is provably secure [27], but only in a
model in which decryption does not surface distinguishable errors.
Yet compliant implementations of these protocols did make visible
the cause of decryption failures (in particular, whether the encoding
was invalid or the MAC was incorrect), leading to plaintext-recovery
attacks [16, 26, 35]. The research community reacted by incorpo-
rating distinguishable errors into updated models [14, 18], but left
more subtle attack vectors unaddressed [3], leading in turn to more
sophisticated models [6, 21]. This reactive evolution of the adver-
sarial model is to be expected. But since standards only partially
specify the protocol, it is hard to anticipate where vulnerabilities
might arise in implementations.

This work explores a definitional viewpoint that may help us
to be more proactive, by making explicit in the security model
which parts of the protocol are fully specified, and which are not.
Concretely, our goal is to establish the security of the TLS 1.3
record layer [29], which (partially) specifies how plaintext and
ciphertext data are formatted, encrypted, and transmitted from
sender to receiver. To this end, we formalize a new primitive that
we call a partially specified channel.
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Modeling the TLS 1.3 record layer. The starting point of our model
is the stream-based channel abstraction, introduced by Fischlin
et al. [18] (hereafter FGMP). The FGMP syntax for stream-based
channels accurately captures the interfaces exposed by real secure-
channel implementations in that it treats the sender- and receiver-
side inputs and outputs as streams of fragments, as opposed to
atomic messages. (It also admits distinguishable error messages.)
We augment their syntax in order to account for multiplexing of
many data streams over the same channel, as this is an essential
feature of many secure channel protocols, including TLS 1.3. And
although this protocol is our focus, we expect our syntax should
be applicable to the authenticated encryption mechanism in other
protocols, such as SSH, IPSec, QUIC, and DTLS [31].

We extend the FGMP notions of privacy and integrity to this
setting. There are two main flavors of privacy: the first, PRIV-S,
is analogous to indistinguishibility under chosen-plaintext attack,
since the adversary only controls the sender’s inputs; in the second,
PRIV-SR, we also allow the adversary to mount chosen-ciphertext
fragment attacks. With each of these, we consider different “de-
grees” of privacy corresponding to various security goals consid-
ered in prior works [17, 18, 27]. For integrity, we formalize two no-
tions: integrity of ciphertext streams (INT-CS) and plaintext streams
(INT-PS). Following FGMP, we show how to achieve PRIV-SR se-
curity from a scheme that is both PRIV-S and INT-CS secure; just
as with FGMP, we will need an additional property called status
simulatability (SIM-STAT). Our notions are applicable to settings
in which reliable transport (e.g., via TCP) is expected, and failure of
the underlying transport mechanism to deliver stream fragments
in order is deemed in attack (as in TLS and SSH).

A number of implementation details that are not specified by
TLS 1.3 are relevant in the adversarial model of FGMP. For example,
there are explicit rules that govern the manner in which plaintext
fragments are buffered and coalesced into atomic plaintext records,
but the specification leaves many design choices up to the imple-
mentation. In order to establish the security of the record layer in
this setting, we first need to determine how to reason about these
missing pieces. To do so, we apply the partially specified protocol
approach of Rogaway and Stegers [33] (RS) to the study of secure
channels. Loosely speaking, a partially specified channel (PSC) con-
sists of named algorithms for the sender and receiver operations
that each take a specification details (SD) oracle. The algorithms
form the cryptographic core of the secure channel, and hence the
part that must be realized precisely; everything that is not explicitly
part of the cryptographic core is handled by the oracle. Crucially,
in our security notions, it is the adversary itself who will service
calls to the SD-oracle. Thus, a proof of security for a particular PSC
implies that all details swept into the SD-oracle are irrelevant with
respect to these definitions; they can be implemented to behave in
an adversarial manner, without concern.

Our results. We found this definitional viewpoint to be a useful
tool for determining which pieces of the record layer specification
are security critical and which are not. In particular, our formal
treatment of the record layer uncovers two subtle and security-
critical matters. First, the degree of privacy the record layer can
provably provide depends intrinsically on the unspecified details

1416

CCS’18, October 15-19, 2018, Toronto, ON, Canada

(Theorem 5.1). The record layer is used to multiplex distinct plain-
text streams over the same channel; thus, each record has a content
type that associates the content to its stream. The content type
is encrypted along with the content, permitting implementations
that, at least in principle, hide both the content and its type. This
is laudable, but the specification admits implementations that leak
the content type entirely. Roughly speaking, this leakage occurs be-
cause the boundaries between records depend on the content types
of each record. In general, we can conclude only that the record
layer ensures privacy of the contents of each of the data streams.
(We make this point precise in Section 5.)

Second, following FGMP, our notion of ciphertext-stream in-
tegrity implies that the receiver only consumes the stream pro-
duced by the sender. Records written to the channel are delimited
by strings called record headers, whose values are specified by the
standard. These bits are not authenticated, and the standard does
not require the receiver to check that their values are correct; thus,
the record layer cannot achieve our strong notion of ciphertext-
stream integrity. But intuitively, the value of these bits should not
impact security. Our framework provides a clean way to reconcile
this intuition with our model: we show that the value of these bits
are indeed irrelevant if and only if they are authenticated (Theo-
rem 5.2).

Our analysis applies to draft 23 [29], which was current at the
time of writing. We shared our findings with the IETF working
group responsible for standardizing TLS 1.3 and the specification
was updated so that the record header is authenticated. This change
appears in the final version of the standard [30].

Roadmap of the paper. The next section motivates our analytical
framework, putting it in context with prior work on secure chan-
nels and partially specified protocols. Section 3 outlines additional
related work on TLS. In Section 4 we formulate our syntax and
adversarial model, and define our notions of privacy (Section 4.2)
and integrity (Section 4.3). Section 5 presents our formal treatment
of the record layer and discusses some limitations of our model with
respect to TLS. We conclude in Section 6 with directions for future
work. This paper is an extended abstract; all proofs of security can
be found in the full version of this paper [28].

2 PSCs IN RELATION TO PRIOR WORK

Our framework weds two existing approaches to analyzing real-
world cryptography. First, we extend secure stream-based channels
to consider multiplexing of plaintext streams over the same channel.
This addresses a problem left open by FGMP [19] and permits,
for the first time, the analysis of TLS in this setting. The second
approach is the partially specified protocol framework of RS, which
we use to reason about the standard itself.

Stream-based secure channels. We summarize important land-
marks in the development of the theory of secure channels. In
2000, Bellare and Namprempre [8] provided foundations for the
study of probabilistic authenticated encryption (AE) schemes used
in SSL/TLS, IPSec and SSH. Shortly thereafter, Rogaway [32] em-
bellished authenticated encryption to take associated data (AEAD),
moving the primitive closer to practice. Yet it was already under-
stood that an AEAD scheme and its attendant notions of privacy
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and integrity do not suffice for building secure channels. In 2002,
Bellare, Kohno, and Namprempre (BKN) [7] formalized stateful AE
in order to account for replay and out-of-order delivery attacks, as
well as to model and analyze SSH. Their model regards ciphertexts
as atomic, but ciphertexts written to the channel may be (and rou-
tinely are) fragmented as they traverse the network, which leaves
these protocols susceptible to attacks [2]. Likewise, the APIs for real
secure channels regard the input plaintext as a stream, meaning
that a single logical plaintext may be presented as a sequence of
fragments, too. It took another ten years for the model to be sig-
nificantly extended, by Boldyreva et al. [13], to address ciphertext
fragmentation and attacks that exploit it. Finally, in 2015 by FGMP
formalized stream-based secure channels that address plaintext
fragmentation, with updates provided in 2016 by Albrecht et al. [1].
As FGMP point out [19], these works help shed formal light on
truncation [34] and cookie-cutter [12] attacks. (However, as we
discuss in Section 5.3.2, their work is somewhat limited with regard
to these.)

Although theory has advanced significantly, it still falls short
of capturing an important feature that real protocols provide: a
means of multiplexing a number of data streams over the same
channel. The TLS 1.3 record layer, for example, handles streams for
three distinct sub-protocols: handshake, alert, and application-data.
Explicitly modeling the multiplexing of these streams is necessary
for a rigorous analysis of TLS, since each of these sub-protocols has
side-effects on the sender and receiver state and, hence, implications
for the security provided by the channel.

Whereas FGMP regard the plaintext stream as a sequence of
message fragments My, Ma, ... , we will consider streams of the
form (M, sc1), (M2, sc2), . . . where sc; denotes the stream context
of its associated message fragment. Intuitively, the stream context
is metadata that allows for differentiation of fragments into logical
streams, each associated to a higher-level application, protocol, etc.
Following prior work, our syntax models a unidirectional channel
between a sender and receiver. We decompose the sender into two
randomized, stateful algorithms: the stream multiplexer (Mux), and
the channel writer (Write). Correspondingly, we decompose the re-
ceiver into the channel reader (Read), and the stream demultiplexer
(Demux). One might think it cleaner to regard the sender and re-
ceiver as atomic processes, rather than decompose them as we have
done. Indeed, this abstraction is adopted in the aforementioned
works. We break with this syntax in order in order to precisely
capture multiplexing of streams, and to separate this functionality
from the cryptographic operations that turn plaintext strings into
ciphertexts. (More on this in Section 4.2.)

Partially specified protocols. In their treatment of the SSH pro-
tocol, BKN introduce a paradigm they call Encode-then-Encrypt-
and-MAC, which cleanly abstracts many of the details of the SSH
specification. In particular, they treat the details of encoding as a
generic transform and give a sufficient condition on this transform
for the security of the overall protocol. Of course, this idea—and
more generally, the Encode-then-Encipher paradigm [9]—is applica-
ble to the problem of analyzing TLS 1.3. But our consideration of
stream-based channels makes our adversary considerably stronger
than that considered by BKN. It stands to reason, then, that there
are details of the protocol and implementation that are relevant
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to the stronger model, but not the weaker one. (In particular, we
must at least account for processing of plaintext- and ciphertext-
stream fragments.) How shall we go about uncovering what these
security-critical matters are?

There are many ways to appraoch this problem. The approach of
RS, which we adopt here, is simply to formalize what a standard is:
a partial specification (the things that are mandated and explicitly
described) plus additional specification details (everything else). RS
apply this approach to authentication protocols, in particular the
Needham-Schroeder-Lowe protocol. We apply it to secure channels.
The component algorithms of a PSC, Mux, Write, Read, and Demux,
formalize the core functionalities of the sender and receiver that
must be fully specified; the rest of the specification details (SD)
are formalized via an oracle given to each of the algorithms. The
functionality of this SD oracle is left unspecified, and in our security
games, queries made to the oracle are serviced by the adversary. This
is clearly a very strong attack model: in addition to influencing the
behavior of the algorithms via their inputs, the adversary is allowed
to participate in portions of their computation. The actual strength
of the model depends on what quantities are exposed to the SD,
and how the SD return values are used within the algorithms. At
one extreme, an empty (or otherwise trivial) SD yields a traditional
kind of attack model; at the other, if secret state (e.g., the key) is
passed to the SD, then no security is possible. In this way, our model
can provide principled guidance to the standard-writing process by
surfacing choices that are relevant to security.

This definitional framework admits another interpretation, one
that is likely of interest in other settings: it lets us reason about
security in the presence of implementation errors. One can view
each algorithm as being partitioned into operations whose imple-
mentation is assumed to be correct, and those that are not. From
this perspective, our attack model captures a kind of worst-case (i.e.,
adversarial) implementation of those operations. This is interesting
because if one proves that a particular PSC construction is secure,
it makes clear which things must be implemented correctly and
deserve the extra scrutiny of formal verification (a la [17]), and
which things do not need such hard guarantees.

3 RELATED WORK

The miTLS project. From the standpoint of scope, the work most
closely related to ours is the recent paper by Delignat-Lavaud et
al. [17] (DLFK+). It provides a formal analysis of the TLS 1.3 record
layer (draft 18) “as is”, but their approach is fundamentally differ-
ent from our own. The paper is the latest from miTLS (mitls.org),
a project whose goal is to formally verify the security of TLS as
is, without omitting any details. The strategy is to implement the
record layer in a programming language that is amenable to formal
analysis (F*), express their security goals as games in the same lan-
guage, and find a formal proof that the scheme’s security (in a sense
they define) reduces to standard computational assumptions (also
expressed in F*). This methodology amounts to a formalization of
code-based game-playing techniques now common in cryptogra-
phy [10]. Our work is technically different from theirs on a couple
fronts. First, our analysis applies to a set of compliant implementa-
tions (corresponding to different realizations of the specification
details), whereas their work applies only to their implementation.
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Our notions are also more flexible: we capture the goal of hiding
the message length as one of many possible privacy goals, whereas
this property is mandatory in their security notion. Second, our
adversarial model is stronger in that it permits fragmentation of the
plaintext and ciphertext streams; neither capability is considered by
DLFK+. We elaborate on this and other points about their setting
in the full version of this paper [28].

We do not mean to diminish the work of DLFK+ in pointing out
these short comings. On the contrary, the value of their contribution
(and of the miTLS project overall) is hard to overstate. They provide
a reference implementation of the record layer in which we have a
high degree of confidence, both in terms of security and, crucially,
correctness. Practitioners are paying attention [29, Section 12.2],
and using this reference will ultimately facilitate the development
of secure production code. As such, we view our work as compli-
mentary to DLFK+. An interesting direction would be to extend
their framework to permit some degree of partial specification.

Other analyses of the record layer. In an analysis of TLS 1.2, a
paper by Paterson, Ristenpart, and Shrimpton [27] put forward a
notion of stateful, length-hiding AE that admits schemes with asso-
ciated padding (to hide the plaintext length) and variable-length
MACs, both features of TLS 1.2. Their formalism necessarily elides
a number of details of the protocol. Badertscher et al. [5] charac-
terized the TLS 1.3 record layer (draft 08) as an augmented secure
channel (ASC), which allows for sending a message with two parts:
the first being private, and both parts being authenticated. Bellare
and Tackmann analyze the multi-user security of the TLS 1.3 record
layer [11]. They shed light on the following problem: if the same
message is encrypted in a number of sessions, then what informa-
tion does this leak about the sessions? A popular TLS endpoint
might serve billions of client a day. Many of these flows are iden-
tical (such as the initial GET); thus, an adversary who observes
these identical flows can try to guess the key used for one of the
clients. Its odds are improved by the sheer number of clients en-
crypting an identical message. This attack vector lead the designers
of TLS 1.3 to “randomize” the IV used for generating the nonce;
Bellare and Tackmann analyze the exact security of this approach
in the multi-user setting.

4 PARTIALLY SPECIFIED CHANNELS

In this section we formalize PSCs and their attendant security no-
tions. We begin with some notation and conventions.

Notation. Let | X| denote the length of a string X € {0, 1}* and let
|X| denote the length of vector X. We denote the i-th bit of string X
by X; or X[i], and the i-th element of vector X by X; or X[i]. Let
{0,1}* = ({0,1}")*. We define X || Y to be the concatenation of
strings X and Y; let cat: {0,1}** — {0, 1}" denote the map X
X1l -+ || Xm, where |X| = m. Let X[i:j] denote the substring
Xill -+ | Xj of X.If i ¢ [1..j] or j ¢ [i..|X]], then define X[i:j] = «.
Let X[i:] = X[i:|X|] and X[:j] = X[1:j]. We write X < Y if X
isaprefix of Y (e, (AT € {0,1}*) X ||T = Y). Let X % Y denote
“remainder” of X after removing the prefix Y, e.g., 1011 % 10 = 11.
(IfY £ X, then define X %Y = ¢.) Let (i), denote an invertible
encoding of integer i > 0 as an n-bit string.
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Algorithms may have access to one or more oracles, written
as superscripts (e.g., A®). The runtime of an algorithm includes
the time required to evaluate its oracle queries. If an algorithm A
is deterministic, then we write y « A(x) to denote executing A
on input of x and assigning its output to y; if A is randomized or
stateful, then we write y «— A(x). If X is a set, then we write
x «— X to denote sampling x randomly from X according to some
distribution; if X is finite and the distribution is unspecified, then
it is uniform. If n € N'\ {0}, thenlet [n] ={x e N: 1 < x < n}.

Pseudocode. Our pseudocode follows the conventions of RS with
a few minor differences. (Refer to [33, Section 2].) our pseudocode
is statically typed. Available types are bool (called boolean in RS,
an element of {0, 1}), int (integer in RS, an element of Z), str
(string in RS, an element of {0, 1}*), and struct (record in RS).
New types may be defined recursively from these: for example,
type struct {str name, int age} person declares a data structure
with two fields, the first a str and the second an int. Variables
may be declared with the word declare, e.g. declare person Alice.
Variables need not be explicitly declared, in which case their type
must be inferable from their initialization (i.e., the first use of the
variable in an assignment statement). There are also associative
arrays that map arbitrary quantities to values of a specific type.
For example, declare str X[ ] declares an associative array X. We
let X[k] and X} denote the value in X associated with k. We will
find it useful to explicitly define the “type” of a procedure (i.e.,
algorithm) by its interface. For instance, the type A(str X, str Y) —
(int i, int j) indicates that A takes as input a pair of strings and
outputs a pair of integers. Multiple variables of the same type
may be compactly declared, e.g., as declare str X, Y, int z rather
than declare str X, str Y, int z. We also use this convention when
defining procedure interfaces, e.g., A(str X, Y) + (int i, j).

If a variable of one type is set to a value of another type, then the
variable takes the value o, read “undefined”. Uninitialized variables
implicitly have the value ¢. The symbol ¢ is interpreted as 0 (i.e.,
false) in a boolean expression, as 0 in an expression involving
integers, and as ¢ in an expression involving strings. We introduce
the distinguished symbol L, read “invalid”, which can be assigned
to any variable regardless of type. Unlike o, its interpretation in
an expression is undefined, except that (X = L) should evaluate
to true just in case variable X was previously set to L. We remark
that L has the usual semantics in cryptographic pseudocode; the
symbol ¢ is useful for specifying protocols compactly.

A value of any type may be assigned to an anonymous variable +,

e.g., * « x, but the value of  is undefined in an expression. We
let (x1,...,%m) denote an invertible encoding of arbitrary values
X1,...,Xm as a string. Decoding is written as (x1,...,xm) «— X

and works like this (slightly deviating from [33, Section 2]): if there
exist x{, .. .x;n, such that X = (x{, .. ,x,'n,>, m’ = m, and each
x/ has the same type as x;, then set x; « x] for each i € [m].
Otherwise, set x; < o for each i € [m].

Finally, it is customary in cryptographic pseudocode to pass
all variables by value; for technical reasons, which will become
apparent later on, we also permit variables to be passed by reference.
Specifically, variables passed to procedures may be embellished
with the keyword var. If the variable appears on the left hand side
of an assignment statement, then this immediately changes the
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Y Y
Sender Receiver
M= Mux X [——Write Read Y —— Demux M
H— C HF—
SC === SC et
o — o ——I

Figure 1: Illustration of our syntax.

value of the variable; when used in an expression, the variable is
treated as its value. A procedure’s interface makes explicit which
inputs must be passed by reference. For example, in a procedure
A(int x, var int y) +— int z, variable x is passed by value, while y
is passed by reference.!

4.1 Syntax

Our syntax is illustrated in Figure 1. Formally, a PSC is a 5-tuple
of randomized algorithms CH = (Init, Mux, Write, Read, Demux).
All but the first expect access to an oracle, which we generically
write as O in the following definitions:

Init() v (str Mu, Wr, Re, De). The initialization algorithm mod-
elskey agreement and initialization of the sender state (Mu, Wr)
and receiver state (Re, De).

Muxo(str M, sc,var str Mu) +— (str X, H, a). The multiplex-
ing algorithm takes as input a plaintext fragment M, stream
context sc, state Mu, and returns a channel fragment X, its
context H, and some auxiliary output a.

Write© (str X, H, a, var str Wr) — (str C, y). On input of a
channel fragment X, context H, and auxiliary information «,
and state Wr, the channel writing algorithm produces a cipher-
text fragment C and status information y.

Read® (str C, var str Re) — (str Y, H, «). On input of a cipher-
text fragment C and state Re, the channel reading algorithm
returns a ciphertext fragment Y, its context H, and auxiliary
output «a.

Demux© (str Y, H, a, var str De) — (str M, sc, v). The demul-
tiplexing algorithm takes a ciphertext fragment Y with channel
context H, auxiliary information «, and state De, and returns a
plaintext fragment M with stream context sc, along with status
information y.

The oracle O provides the specification details and may be invoked
any number of times by the caller during its execution. The SD-
oracle may have its own state and coins; to be clear, the oracle and
its caller do not have joint state, and their coins are independent.
We require that each of these procedures halts, regardless of coin
tosses or SD-oracle responses, in a bounded number of steps that
depends only on the length of its inputs.

Our convention will be that SD-oracle queries are always strings
of the form (caller, instruction, x1, ..., Xm ), where caller and in-
struction may be thought of as strings. When it is necessary to
specify an SD-oracle query, we will endeavor to make them sug-
gestive of the intended semantics under correct operation. (See
I The keyword var as used by RS serves a similar purpose, but is semantically different.

In their setting, a variable embellished with var has copy-in-copy-out semantics, which
means its value is only changed when the procedure goes out of scope.
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Figure 4 for examples.) SD-oracle responses are also always strings,
but we do not define conventions for them.

4.1.1  Status messages and auxiliary outputs. All algorithms may
produce some auxiliary information along with its outputs. This al-
lows Mux and Read to convey state (denoted ) to Write and Demux
(resp.), and allows Write and Demux to surface status information
(denoted y) to applications. (See Figure 1 for an illustration.) Among
other things, this models distinguishable decryption errors [14], an
attack vector that has heavily influenced the development of secure
channels [3, 16, 26, 35]. (FGMP model distinguishable errors, too.)
Our consideration of information leakage via auxiliary output is
inspired by a paper by Barwell, Page, and Stam [6]. Their subtle AE
setting models decryption leakage in a manner general enough to
capture error indistinguishibility [14, 18], as well as other settings
for authenticated encryption [4, 21].

4.1.2  Correctness. Conventionally, one would define a correct-
ness condition as part of the syntax for this new primitive. Following
RS, however, we will not explicitly define correctness of PSCs, as
our aim will be to achieve security even for channels that are not
correct: in particular, when the SD is realized by an adversary. We
elaborate on the consequences of this choice in the full version
of this paper [28], but note that this means we will not be able to
assume correctness in our security proofs.

4.2 Privacy

We recast the privacy notions of FGMP to address the multiplexing
of plaintext streams and expose the specification details. Our PRIV-
SR notion gives the adversary access to a pair of oracles. The Send
oracle allows the adversary to provide the sender with arbitrary
message fragments and stream contexts, where streams are distin-
guished by their context sc. Analogously, the Recv oracle allows
the adversary to deliver arbitrary ciphertext fragments to the re-
ceiver. We define a PRIV-S notion from this game by removing the
Recv oracle. In both notions, whenever a query to Send or Recv
induces an SD-oracle call, that call is serviced by the adversary.

Following prior work [7, 13, 18] we keep track of whether the
channel is in-sync at any given moment during the adversary’s
attack. Loosely, the channel is said to be in-sync if the stream of ci-
phertext “consumed” by the receiver, so far, is a prefix of the stream
of ciphertext output by the sender. In order to avoid trivial distin-
guishing attacks in the PRIV-SR game, it is necessary to suppress
the message fragments output by the receiver while the channel is
in-sync.

4.2.1 Channel synchronization. We say the channel is in-sync as
long as the ciphertext fragments Y output by Read—which models
receiver-side buffering and defragmentation—remains a prefix of
the ciphertext stream transmitted by the sender. In this way, the
sequence of Y’s output by the reader constitute the ciphertext
stream “consumed” by the receiver (i.e., by Demux) so far. This
restricts the behavior of the sender-side code in a way not seen in
FGMP, but the restriction appears to be minor; a natural division
of labor is to have Read buffer the ciphertext stream and output
ciphertexts that are ready to decrypt; the job of Demux, then, is to
decrypt and process the message stream. This cleanly separates the
tasks of “buffering” and “consuming” the ciphertext. The alternative
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priv-sr
CH,¢t, b('A)

declare str S, Env, bool sync
(Mu, Wr, Re, De) «— Init()

Exp Recv(C)

return (M, sc, y)
Send (M, sco, My, sc1)
Ly « leak(¢, My, sco)
L1 « leak(¢, My, sc1)
if Ly # Ly then return (L, 1)
(X, H, ) «— MuxSP (My, scp, var Mu)
(C,y) « WriteSD (X, H, a, var Wr)
S—Ss|c
return (C, y)

SD(I)

leak(¢€, M, sc)
switch ()

(Y, H, &) «— ReadSP(C, var Re)
(M, sc, y) «— DemuxSD(Y, H, a, var De)

sync « 1 if syncand Y < S then
b o« AISend,ReCV(var Env) S—S%Y; M, sc— L
return b’ else sync < 0

O «— Ay(I, var Env); return O

case lensc: return (|M|, sc)
case len: return (|M]|, |sc|)
case none: return ¢

Figure 2: left: game for defining PRIV-SR and PRIV-S security of partially specified channel CH, where A = (A;, A;). Right: the call graph of

the game (who may call whom).

would be to leave the receiver operations atomic, as FGMP have
done; but this choice leads to complex security notions, as it requires
handling synchronicity for a number of different cases (e.g., [19,
Definition 4.1]).

4.2.2  The adversary. Our execution model for security games is
adopted from the RS framework, but we will be a bit more precise
in our formulation. The adversary queries oracles provided by the
security experiment, which in turn may invoke the adversary for
fulfilling SD queries. To ensure that each oracle query completes
before the next query is issued, the adversary may not issue a query
while another query is pending. In effect, the adversary may not
use its oracles for computing its responses to SD queries.

We formalize this idea as follows. An adversary is a pair of
stateful, randomized algorithms with interfaces .A; (var str Env)
bool and Aj(str I, var str Env) — str O. Most games in this paper
begin by declaring a variable Env of type str, which is used to share
state between .A; and Aj. These games also define an oracle SD
that, on input of a string I, executes O «— Ajy(I, var Env) and
returns O. When .4; makes a query to Send or Recv and a PSC
algorithm is invoked, the PSC algorithm is given oracle access
to SD for making SD queries. Algorithm A3 may change the value
of Env as a side effect, allowing it to convey information to Aj;
algorithm .A; may also convey information to Az by modifying the
value of Env.

In the remainder, we will often denote the pair (A;,.42) by A
for convenience. We require that each of these algorithms halt, re-
gardless of coin tosses or oracle responses, in a bounded number of
steps that depends only on the length of their inputs. By convention,
the adversary’s runtime includes the time needed to evaluate its
queries. An adversary is called t-time if both A; and A3 halt in
at most ¢t time steps. We silently extend this execution model and
these conventions to all subsequent security experiments in this

paper.
4.2.3 The PRIV-SR and PRIV-S notions. Refer to the PRIV-SR

experiment defined in Figure 2. For a given PSC CH and challenge
bit b, the experiment compactly encapsulates three different notions
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of privacy, each associated to a permitted leakage parameter £ €
{lensc, len, none}. When ¢ = lensc, only message-stream privacy
is captured; when ¢ = len the notion captures privacy of both the
message streams and their context; finally, £ = none adds length-
hiding to the list.?

Let A = (Aj, Az). The game begins by initializing the adver-
sary state Env, sender state (Mu, Wr), and receiver state (Re, De).
Algorithm A; is then executed with access to two oracles. The
first, Send, takes as input a 4-tuple of strings (Mo, sco, M1, sc1). It
first checks that the values of leak (¢, My, scy) and leak (¢, M1, sc1)
are equal; if not, it returns an indication of invalidity of the query.
It then executes Mux and Write, with SD as the SD oracle, and
returns the output (C,y) to A;j. (Recall that Ay may update Env as
a side effect of the SD queries made by Mux and Write.) String C is
appended to S, which keeps track of the sender ciphertext stream.
The second oracle, Recv, takes as input a ciphertext fragment C
and invokes (Y, H, @) «— ReadSP(C,var Re), then (M, sc, Y) «
DemuxSD(Y, H, a, var De). If the channel is in-sync and Y is a pre-
fix of the sender stream S, then the oracle “consumes” Y from the
stream and suppresses the output of M and sc by setting M, sc «— L.
(This is necessary because (M, sc) corresponds to an input to Send
and might trivially leak b, depending on the permitted leakage ¢.)
Otherwise, the oracle declares the channel to be out-of-sync and
outputs (M, sc, y) without suppressing M and sc. After the adver-
sary interacts with its oracles, it outputs a bit b’, the outcome
of the game. We define the advantage A in attacking CH in the
PRIV-SR(?) sense as

AdVPriv—sr (A) =2 lzr [ Exppriv—sr

CH,C CH,(,b('A) =b]-1,

where the probability is over the coins of the game, A1, Ay, and the
choice of b (implicitly sampled as b «— {0, 1}). In this experiment,
we track the following adversarial resources: the time-complexity #
of the adversary (that is, the maximum runtime of either .4; or Ay),
the number of Send queries g; and the total length in bits of the
inputs of each query 1, and the number of Recv queries g and

>There are other parameters that may be of practical interest. For example, DLFK+
deal with whether the fragment encodes the end-of-stream [17, Definition 8].
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their total bitlength p. We define the maximum advantage of any

priv-sr
cr.e (B au gz s p2)-

A chosen-plaintext (fragment) attack version of PRIV-SR is ob-
tained simply by removing the Recv from the experiment; we refer
to this game as PRIV-S and define the PRIV-S advantage of A in
the same way; as there is no Recv oracle, we drop g2, 2 from the

adversarial resources.

adversary with these resources as Adv

4.3 Integrity

Following FGMP, we consider integrity of both the ciphertext
stream (INT-CS) and the plaintext streams (INT-PS). The first for-
malizes the conservative goal that the channel (i.e., the ciphertext
stream) should remain in-sync, just as discussed in Section 4.2.1.
The second formalizes a weaker property, namely that the plaintext
streams carried by the channel should remain in-sync.

4.3.1 The INT-CS notion. Refer to the INT-CS experiment de-
fined in Figure 3. It begins just as in the PRIV-SR game. The Send
oracle is similar to the PRIV-SR game, except .A;’s queries consist
of pairs (M, sc) instead of a 4-tuple. We keep track of whether the
channel is in-sync in the exact same manner. If ever the out-of-sync
Recv oracle outputs a valid message fragment and context, then
the game sets a flag win < 1; the outcome of the game is the value
of win after A; halts. Define the advantage of A in attacking CH
in the INT-CS sense as Advgl,}t_'[cs(A) = Pr[ExpiCn;_'LCS(A) = 1] ,
where the probability is over the coins of the experiment and of the
adversary. We define the function Advicn?t_'[cs(t, q1,92, }1, j12) as the
maximum advantage of any adversary running in time ¢, making
at most g1 queries to Send and g2 queries to Recv, and the total
bit-length of its queries to Send (resp. Recv) does not exceed yq
(resp. p2) bits.

4.3.2 The INT-PS notion. Integrity of the plaintext streams is
defined via the INT-PS game in Figure 3. This game is a bit different
than the others in that we do not keep track of whether the ci-
phertext stream is in-sync; rather, we are concerned with the input
and output plaintext streams. For each stream context sc € {0, 1}*
queried by the adversary, we keep track of the corresponding in-
put stream Sg.. (That is, Ssc = cat(M), where M is the sequence
of message fragments pertaining to sc asked of Send.) For each
sc # L output by Recv, we keep track of the corresponding output
stream Rg.. (That is, Ry = cat(M), where M is the sequence of valid
message fragments pertaining to sc output by Recv.) The adver-
sary wins if at any point in the game, it holds that Rg. £ Ss¢ for
some sc € {0, 1}*. Define the advantage of A in attacking C?H in the

INT-PS sense as Advicn;__[ps(A) =Pr [ Expicn;__tps(A) =1 ] , where the

probability is over the coins of the experiment and of the adversary.

INT-CS # INT-PS for PSCs. Traditional results for AE schemes
establish an intuitive relationship between integrity of ciphertexts
and plaintexts: that the former is strictly stronger than the latter. See
Bellare and Namprempre [8, Theorem 3.1] in the case of stateless
and randomized AE, and FGMP [19, Appendix C] for stream-based
channels. It is perhaps counter-intuitive, then, that INT-CS does not
imply INT-PS in our setting. The reason for this is that we do not
require that PSCs be operationally correct in the security games;
indeed, the correctness of the scheme is used in a crucial way in
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those proofs. We cannot formalize correctness for PSCs without
restricting the SD-oracle in some way, and doing so would reduce
the generality of our results. Nevertheless, in the full version of this
paper [28], we give a natural definition of correctness for fully spec-
ified channels—like PSCs, but with a fully realized SD-oracle—that
extends FGMP’s correctness condition to the multiplexed setting.
With this definition we show something a bit stronger than usual:
that INT-CS implies INT-PS if and only if the SD-oracle is realized
correctly.

4.4 Receiver-status simulatability and a
generic composition

If a PSC is INT-CS secure, then an efficient attacker can do nothing
but deliver the honestly produced ciphertext stream in the correct
order. Thus it is intuitive that any PSC that is both PRIV-S secure
and INT-CS secure will also be PRIV-SR secure, because, in effect,
the Recv in the PRIV-SR game is useless. This is almost true; the
wrinkle is that the Recv oracle returns status information in addi-
tion to the message fragment and stream context. As in the FGMP
setting, our syntax does not restrict the receiver (in particular, the
demultiplexer) to return just one status message. Moreover, the sta-
tus message may depend on the receiver state (of which a PRIV-S
adversary would be ignorant), or be influenced by the adversarially
controlled SD. In this section, we give a notion of security we call
receiver-status simulatablity (SIM-STAT) and show that it, PRIV-S,
and INT-CS imply PRIV-SR.

4.4.1 The SIM-STAT notion. The notion naturally captures what
the adversary learns from the receiver’s state by observing the sta-
tus messages it outputs. It is inspired by the ideas put forward in the
subtle AF setting [6] and naturally generalizes a notion of FGMP.
The SIM-STAT game (defined in Figure 3) is a simulation-based
game in which the adversary is asked to distinguish the status
information output by the real receiver from those output by a sim-
ulator S. The simulator is given the ciphertext stream S produced
by the sender, as well as the input fragment C, and so it can tell if
the channel is in-sync, but it is not given the receiver state. Infor-
mally, security demands that for every efficient adversary, there is
an efficient simulator such that the adversary cannot distinguish
real status messages from fake ones with non-negligible probability.

The game is associated to adversary A = (A1, A3), a challenge
bit b, and a receiver-status simulator S. On input of C, if b = 1,
then oracle Recv executes the usual receiver code and outputs y;
otherwise, the oracle executes S on input of (C, S), where S is the
sender stream (recorded by Send), and with oracle access to SD
for servicing SD requests. When S halts and outputs a string y, the
oracle outputs y. We define the advantage of A in attacking CH
with simulator S in the SIM-STAT sense as

sim-stat _ sim-stat
AdeH,S (A) = ZI;r[ExpCH’S’b

(A=1]-1.

Define the maximum advantage of any ¢-time adversary with re-
sources (q1, g2, {11, /2) in winning the game instantiated with sim-
ulator S as Advsclz"sgat(t, q1, 92, fi1, i2). We require that S halts,
regardless of its current state, internal coin tosses, and the result of
its SD requests, in a bounded number of time steps. Its runtime also
accounts for the time needed to evaluate its oracle queries; thus, its
runtime depends on the time A takes to compute its SD responses.
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Expic";fs(A)
declare str Env, S, bool sync, win
(Mu, Wr, Re, De) «— Init()
syne « 1; Afe"d’Recv (var Env)
return win

Send (M, sc)
(X, H, a) «— MuxSP (M, sc, var Mu)
(C,y) « WriteSP (X, H, a, var Wr)
Se—s|c
return (C, y)

Recv(C)
(Y, H, a) «— ReadSP (C, var Re)
(M, sc, y) «— DemuxSP (Y, H, a, var De)
if syncand Y < Sthen S «— S%Y
else sync « 0
win «— winV(M # L Asc# 1)
return (M, sc, y)

Expicn;_-tps(A)
declare str Env, S[ ], str R[ ], bool win
(Mu, Wr, Re, De) «— Init()
Afe"d’Recv (var Env)

return win

Send(M, sc)
(X, H, a) «— MuxSP (M, sc, var Mu)
(C, y) «— WriteSP (X, H, a, var Wr)
Ssc ¢ Ssc | M
return (C, y)

Recv(C)
(Y, H, a) «— ReadSP (C, var Re)
(M, sc, y) «— DemuxSP (Y, H, a, var De)
if M # L and sc # L then
RSC — RSC || M
if Rsc £ Ssc then win « 1
return (M, sc, y)

sim-stat

CH,S, b('A)

declare str Env, S

(Mu, Wr, Re, De) «— Init()
b o« A?end,ReCV(var Env)
return b’

Exp

Send(M, sc)
(X, H, a) «— MuxSP (M, sc, var Mu)
(C, y) «— WriteSP (X, H, a, var Wr)
Se—s|c
return (C, y)

Recv(C)
if b =1 then
(Y, H, ) «— ReadSP (C, var Re)
(+, %, y) «— DemuxSP (Y, H, a, var De)
else y «— SSP(C, 5)

return y

SD(I)
O «— Ay(I, var Env); return O

SD(I)

O «— A,(I, var Env); return O

SD(I)
O «— A,(I, var Env); return O

Figure 3: games for defining INT-CS (left), INT-PS (middle), and SIM-STAT (right) security for partially specified channel CH.Let A = (A;, A;).

4.4.2 PRIV-S A INT-CS A SIM-STAT = PRIV-SR.. We prove that
for any ¢, security in the sense of PRIV-S(¢), INT-CS, and SIM-STAT
suffice for PRIV-SR(?).

THEOREM 4.1. Let £ € {lensc, len, none} and let CH be a PSC. For
every t,s,qi,qz, j1, 2 € N and s-time simulator § it holds that

Advgrqi_lv’_:,r(t, r) SAdvgr;_lV:;(t +O(q1 +592) 91, 111)

2Adv IS ) + 2AdvERSE (),

wheret =t + O(q1 + q2) and r = (q1, q2, }i2, H2).

This is analogous to, but much more general than [19, Theorem
4.5]. It also confirms a conjecture of FGMP; see [19, Remark 4.6].
The idea of the proof is to construct a PRIV-S adversary B from
a given PRIV-SR adversary A and simulator S that simulates A’s
Recv queries using S. What we show is that INT-CS and SIM-STAT
(with respect to S) security suffice for this reduction to work and
to obtain the bound. The proof is given in the full version [28].

Remark. We emphasize that, although we have used SIM-STAT
to prove a generic composition result, the notion is not merely a
technical one. The intuition it captures is important: distinguishable
error messages have been exploited repeatedly [3, 16, 26, 35] to
attack AE-powered secure-channel protocols. As a result, there has
been a considerable push in the cryptographic community to make
addressing this subtlety a first class consideration [6, 14, 21].

5 THE TLS 1.3 RECORD LAYER

Our study of partially specified channels owes much to a desire to
analyze the TLS 1.3 record layer, in particular without eliding its
optional features and unspecified details. So, we begin this section
with an overview of some of its salient features, and a discussion of
certain design choices that may have implications when the record
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layer is viewed through the lens of our security notions. This is
followed (in Section 5.2) by a decomposition of the record layer into
its component building blocks. Then we show how to securely com-
pose these into a PSC that nearly formalizes the specification; we
propose a small change to the standard that significantly improves
flexibility of the scheme.

Note about the draft. This analysis pertains to draft 23 [29], cur-
rent at the time of writing. Note that the change to the record
layer we suggest here will be adopted in the final version of the
protocol [30].

5.1 Overview

TLS can be viewed as three client-server protocols executing con-
currently: the handshake protocol handles (re-)initialization of the
channel; the record protocol is used to exchange application data
between the client and the server; and the alert protocol is used to
close the channel. The record layer refers to the mechanism used
to protect flows between client and server in each sub-protocol.
Each of these flows is authenticated and encrypted as soon as the
client and server have exchanged key material. (Usually the only
unprotected messages are the initial client_hello and part of the
server_hello.) Intuitively, each of these flows constitutes a logical
data stream, and the record layer is a means of multiplexing these
streams over a single communications channel (e.g., a TCP connec-
tion). Among the record layer’s many design criteria is the need
to maximize flexibility for implementations. This means, some-
what paradoxically, that the specification does not fully specify
every aspect of the construction. Rather, the record-layer specifica-
tion [29, Section 5] defines some core functionalities that must be
implemented and provides a set of parameters for compliant, fully
realized schemes.
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Content types. Each stream has an associated content type. Avail-
able types are handshake, application data, alert, and change ci-
phersuite spec (CCS); additional content types may be added sub-
ject to certain guidelines [29, Section 11]. If the client or server
receives a message of unknown content type, it must send an un-
expected_message alert to its peer and terminate the connection.
The CCS type is only available for compatibility with systems ac-
customed to processing records for TLS 1.2 and earlier. Usually a
CCS message must be treated as an unexpected message, but under
specific conditions, it must simply be dropped.

Records. Plaintext records encode the content type, the stream
fragment, the length of the fragment (which may not exceed 24
bytes), and an additional field called legacy_record_version, whose
value is fixed by the specification. (It is only present for backwards
compatibility.) All flows, including unprotected ones (the initial
handshake message and CCS messages) are formatted in this man-
ner. The streams of data are transformed into a sequence of records;
stream fragments of the same content type may be coalesced into a
single record, but the record boundaries are subject to the following
rules [29, Section 5.1]:

o Handshake, no interleaving: if two records correspond to a single
handshake message, then they must be adjacent in the sequence
of records.

e Handshake, no spanning a key change: if two records corre-
spond to a single handshake message, then they both must
precede the next key change (defined in Section 5.1). If this
condition is violated, then the second record must be treated
as an unexpected message.

o Handshake and alert, no zero-length messages: only application
data records may have zero length.

o One alert per record: alert messages must not be fragmented
across records, and a record containing an alert message must
contain only that message.

Additional content types must stipulate appropriate rules for record
boundaries.

Records are optionally padded and then protected using an
AEAD scheme [29, Sections 5.2-5.4]. First, the record R is encoded
as a string X = R. fragment || (R.type)s || ({0)s)? for some p € N
such that the length of the ciphertext is less than 2! + 256 bytes.
The padded record X is encrypted with associated data ¢ (the empty
string) and with a nonce N that we will define in a moment. The
protected record is defined as

type struct { int opaque_type, legacy_record_version, length,
str encrypted_record } TLSCiphertext

where opaque_type has a fixed value (23), legacy_record_version
has a fixed value (771, or 0x0303 in hexadecimal), and length is
the length of encrypted_record in bytes. The nonce N is computed
from a sequence number seqn and an initialization vector IV [29,
Section 5.3]; both the key K and IV are derived from a shared secret
[29, Sections 7.1-7.2] using an extract-and-expand key-derivation
scheme [23]. The length of the IV is determined from the permitted
nonce lengths of the AEAD scheme.? The nonce N is computed as

3The scheme must specify limits for valid nonce lengths per RFC 5116 [24]. The
maximum must be at least 8 bytes.
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IV @ (seqn)|rv|, where 0 < seqn < 24 — 1. Note that the client and
server each uses a different key and IV for sending messages to the
other; thus, each constitutes a unidirectional channel.

Usage limits, key changes, and protocol-level side-effects. The spec
mandates that the key be changed prior to the sequence number
reaching its limit of 24 — 1 in order to prevent nonce reuse. It also
recommends that implementations keep track of how many bytes
of plaintext have been encrypted and decrypted with a single key
and to change the key before the “safety limit” of the underlying
AEAD scheme has been reached.

As mentioned above, upon receipt of a message of unknown
type, the receiver should send its peer an unexpected_message
alert message. The alert stream is generally used to notify the
recipient that the peer is tearing down its connection and will no
longer write to the channel. There are closure alerts and error alerts
[29, Section 6]. Both signal the tear down of the writer state, but
they provide different feedback. The unexpected message alert
is an example of the latter. Error alerts are also used to indicate
things like the ciphertext is inauthentic, or the record is malformed.
An example of the former is close_notify, which indicates that the
receiver should not expect any more data from the peer, but that
no error occurred.

The key and IV change during the normal course of the protocol.
An update is always a side effect of the handshake protocol. During
transmission of application data, an update is signaled by a par-
ticular handshake message described in [29, Section 4.6.3], which
informs the receiver that the sender has reinitialized its state and
so must do so as well. The key change re-initializes the state of
the sender and receiver with a fresh key and IV (derived from the
shared secret), and the sequence number is set to 0 [29, Section
5.3]. Therefore, no sender or receiver state (that is, no state that
pertains to the record layer) is held over after re-initialization of
the channel.

5.1.1 Observations about the standard. The standard defines
some core functionalities, but leaves many design choices up to the
implementer; our analysis aims to establish what security the record
layer provides given this level of flexibility. Our approach is shaped
by two questions. First, which fully specified components can be
altered without impacting security? Second, which unspecified or
partially specified components are security critical? We begin with
a couple of observations.

Record boundaries may leak the content type. The content type
of each record is encrypted along with the fragment. The intent,
presumably, is to hide both the content and its type, but the record
boundary rules stipulated by the standard make hiding the type
unachievable in general. Consider the one alert per record rule, for
example. The implementation is allowed to coalesce fragments of
the same type, but a record containing an alert must contain only
that alert. Thus, the length of each record output by the sender
may (depending on the implementation) leak whether the record
pertains to an alert or to application data. Of course, the standard
does permit implementations that hide the content type of each
record, but this is quite different from mandating this property.
The take away is that encrypting the content type does not imply its
indistinguishibility, since the record boundaries depend on it.
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Associated data is unauthenticated. One aspect of the scheme
that is precisely defined is the format of the ciphertext transmitted
on the wire. Each begins with a header composed of opaque_type,
legacy_record_version, and length. The values of the first two fields
are fixed by the spec, and the last field is crucial for correct op-
eration, since it informs the receiver of how many bytes to read
next. What should the receiver do if the header is different than
specified? Changing the length field bits should result in the next
ciphertext either being too short or too long, and so would be
deemed inauthentic with overwhelming probability. If opaque_type
or legacy_record_version is mangled, then it should be safe to pro-
ceed since this does not affect the inputs to decryption. However,
doing so would be deemed an attack in our ciphertext-integrity
setting; changing these bits means the stream is out-of-sync, but
since they are not authenticated (encryption uses ¢ for associated
data), the receiver would successfully decrypt. In fact, checking
the opaque_type and legacy_record_version fields is left optional by
the spec: implementations MAY check these fields are correct and
abort the connection if not [29, Section 5.2]. This presents us with a
dilemma: if we leave this choice up to the specification details, then
there is a trivial INT-CS attack, and so in order to salvage security,
we need to lift this “MAY” to a “MUST”.

This dilemma points to something rather strange about the
record layer’s design: something that ought not be security critical—
in particular, the value of the delimiter bits—is security critical. In-
deed, this observation motivates our partially specified viewpoint.
To formalize the idea that the value of the delimeter bits should not
impact security, we simply let the specification details choose these
bits itself. This is safe as long as the bits are authenticated and do
not depend on sensitive values. We will formalize this idea in our
PSC in Section 5.3.

Remark. An alternative conclusion is that this vulnerability is
only an artifact of our strong adversarial model; mangling the
delimiter bits should not affect the inputs to decryption, and so
does not constitute a “real attack” on privacy or integrity in an
intuitive sense. To this point we offer a warning: this intuition is
correct only if down-stream handling of the plaintext is independent of
the contents of these fields. Since such behavior is beyond the scope
of the TLS standard (and even our security model), these legacy
fields constitute an attack surface for implementations. The risk
is not inconsiderable, as it is difficult to predict how systems will
evolve to make use of TLS, and of these bits in particular. Indeed,
they owe their very existence to the need to maintain compatibility
with older systems.

5.2 The building blocks

In this section we formalize the core components of the record layer;
our aim is to sweep all but these building blocks into the specifica-
tion details. The first primitive, called a stream multiplexer, captures
the non-cryptographic functionality of the underlying channel. It
transforms the data streams into a sequence of channel fragments
(i-e. records) such that for each stream context (i.e. content type),
the output on the receiver side is a prefix of the input on the sender
side. TLS offers a great deal of flexibility with respect to the stream
multiplexer’s operation; the flip side is that design choices here
impact security of the overall construction. (Recall the discussion
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of record boundaries in Section 5.1.1.) Thus, it will be useful to
consider stream multiplexers that are only partially specified. The
remaining primitives are a scheme for authenticated encryption
with associated data and a method of generating nonces. These are
the core cryptographic functionalities and must be implemented
correctly; as such, we will require these to be fully specified.

5.2.1 Stream multiplexers. First, a partially specified stream-
multiplexer is a triple M = (Init, Mux, Demux) defined as follows.

e Init() — (str mx, dx). Generates the initial state of the stream
multiplexer (used by the sender) and demultiplexer (used by
the receiver).

o Mux©(str M, sc, var str mx) — (strX,y). Takes as input a
plaintext fragment M, its stream context sc, and the current
state mx, and returns a channel fragment X and a status mes-
sage y.

e Demux©(str X, var str dx) - (str M, sc,y). Takes a channel
fragment X and the current state dx and returns a plaintext
fragment M, its stream context sc, and the status Y.

The specification details are provided by the oracle O. Our intention
is to capture only non-cryptographic functionalities with stream
multiplexers. (Of course, M may, in principal, use some sort of
cryptographic primitive, or even output encrypted records.) In
order to facilitate a rigorous analysis of how design choices here
impact security of the channel overall, we formulate two security
properties for partially specified multiplexers. Both are defined in
Figure 4.

The mPRIV-S notion. The first captures an adversary’s ability to
discern information about the inputs to Mux given (information
about) its outputs. Like the PRIV-S game (Section 4.2), the mPRIV-S
game is parameterized by the permitted leakage £, one of lensc, len,
or none (see Figure 2), and a challenge bit b. We again formalize the
adversary as a pair of algorithms (A;, Az). The first, Ay, is given
an oracle Mux with the same interface as Send in the PRIV-S
game. The oracle invokes procedure Mux on inputs (Mp, scp) (and
with oracle access to SD for handling SD requests, which in turn
invokes Aj), and the adversary is asked to guess b based on the
outcome of its queries. Where the games differ, however, is in the
information available to the adversary. Rather than return (X, y)
directly, the oracle returns y and only the length of X. This captures
amuch weaker property than usual indistinguishibility: rather than
insisting (X, y) not leak anything beyond L = leak({, M, sc), we
insist only that (|X|, y) not leak anything beyond L. Define the
advantage of A = (Aj,.A2) in attacking M in the mPRIV-S(¢)
sense as

Adv P (A) = z%r[Exp“A‘;’f}f;(A) =b]-1.

mpriv-s

Let Adv
time adversary making at most g queries to Mux with total bit-
length at most p.

(t,q, i) denote the maximum advantage of any ¢-

The SIM-mSTAT notion. The second notion captures simulatabil-
ity of the status message output by Demux. It is associated with a
simulator S and a bit b. After initialization, the adversary is given
access to an oracle Demux. On input of X, if b = 1, then the ora-
cle executes procedure Demux on input X and returns the status
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The sender state.
type struct { str ng, mx } Muxer
type struct { str K } Writer
The receiver state.
type struct { str ng, buf } Reader
type struct {
str K, dx, bool sync
} Demuxer

Init()
declare Muxer Mu, Writer Wr
declare Reader Re, Demuxer De
(Mu.mx, De.dx) «— M.Init()
Mu.ng «— N .Init(); Re.ng «— Mu.ng
Wr.K «— IC; De.K «— Wr.K
De.sync « 1
return (Mu, Wr, Re, De)

EXp mpriv-s ( .A)

e Exp sim-mstat (.A)

M,S, b
Env « ¢; (mx, dx) «— Init()

b «— Allw‘"‘(var Env)

b «— .A?em“" (var Env)

return b’

Mux (M, sco, My, scy)

MuxO(M, sc¢, var Muxer Mu)
(X, @) «= M.Mux® (M, sc, var Mu. mx)
if X = ¢ then return (o, ¢, )
N « N .Next(var Mu.ng)
return (X, N, «)

WriteO(X, N, «, var Writer Wr)

declare str A, y

(A, y) « O((write, create ad, | X|, ar))

if X = o then return (o, y)

Y’ «— AE.Enc(Wr.K, N, A, X)

if Y/ = 1 then
y «— O({write, invalid ptxt))
return (o, y)

return (A | Y, y)

Lo < leak(¢€, My, sco)

Ly « leak(¢€, My, scy)

if Ly # L, then return (L, 1)

(X, y) «= MuxSP (My, scp,, var mx)
return (|X|, y)

Demux(X)

if b = 1then (+, +, y) «— DemuxSP (X, var dx)
else y « SA(IX])
return y

Read®(C, var Reader Re)

declare str «, int ¢, bool drop

Re.buf < Re.buf || C

(¢, drop, a ) «— O({read, len, Re.buf ))
Y < Re.buf]:c]; Re.buf < Re.buf %Y
if Y = o or drop then return (o, o, a)
N «— N .Next(var Re.ng)

return (Y, N, a)

DemuxO(Y, N, a, var Demuxer De)

declare str X, y,int a
(a, y) « O({demux, ad len, Y, a'))
if (Y = ¢oand y # o) or =De.sync
then return (L, 1, y)
else if Y # o then
A—Y[a; Y «Y%A
X « AE.Dec(De.K, N, A, Y’)
if X = 1L then
De.sync < 0
y «— O((demusx, invalid ctxt))
return (L, 1, y)
(M, sc, y) «— M.Demux® (X, var De.dx)
return (M, sc, y)

SD(I)
O «— A,(I, var Env); return O

priv

ae,p(A) Expljc(A)
X,Q«— 0;K «— K

res «— AERC | pos  (; AEne.Dec

return res

Exp

Enc(N, A, M)
if N € X return L
C <—Encg’A(M)
if b = 0 then C « {0, 1}AIMD
Q«— QU{N,A C} X «— XU{N}

Figure 4: top-left: PSC TLS[M, AE, N]

= (Init, Mux, Write, Read, Demux) composed

of partially specified stream multiplexer M, AEAD scheme AE with key space K,
and nonce generator A. Top-right: the mPRIV-S and SIM-mSTAT games associated
with M and adversary A = (A;, A;). Bottom-right: the PRIV and INT games associ-

ated with A€ and AEAD adversary A.

return C

Dec(N, A, C)
M — Decg’A(C)
if M# Land (N, A, C) ¢ Q then res — 1
return M

message; otherwise it executes the simulator S on input |X| and
with access to SD for servicing SD requests. Define the advantage
of A in attacking M in the SIM-mSTAT sense with simulator S as

AdVIE(A) = 2Pr [Exp i 85 (A) = b ] - 1.

Let Advj{fl“'glsm(t, q, 1t) denote the maximum advantage of any ¢-
time adversary making g queries to Demux with total bit-length
at most p.

5.2.2 AEAD schemes. We describe the syntax for authenticated
encryption with associated data as prescribed by the spec [24]. An
AEAD scheme is a triple AE = (Enc, Dec, A). The last element is
a function A : Z — Z which describes the ciphertext length as a
function of the plaintext length; we insist that A is a bijection. Algo-
rithms Enc and Dec are both deterministic and have the following
interfaces:
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e Enc(str K,N,A, M) — str C. Maps a key K, nonce N, associ-
ated data A, and plaintext M to a ciphertext C such thatif C # L,
then |C| = A(|M]) = |M].

e Dec(str K,N,A,C) — str M. Maps K, N, A, and C to M such
that if M # L, then A71(|C|) = [M].

We may denote the execution of Enc on (K, N, A, M) by Encg’A(M).
(Similarly for Dec.) We respectively define the key, nonce, associated-
data, and message space as the sets K, N, A, M C {0, 1}* for which
Enc(K,N,A, M) # L if and only if (K, N, A, M) € KX N x AX M;
correctness requires that Dec(K, K, N, A, Enc(K, N, A, M)) = M for
every such (K, N, A, M). (This condition implies that A€ is both
correct and tidy in the sense of Namprempre, Rogaway, and Shrimp-
ton [25].)

We will use standard notions of indistinguishibility under chosen-
plaintext attack (PRIV) and integrity of ciphertexts (INT) as defined
in Figure 4. As usual, the indistinguishibility game requires that
the adversary not repeat a nonce. The adversary for the PRIV and
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INT games is simply a randomized algorithm A() + bool. that
expects access to one or more oracles. To distinguish it from other
adversaries in this paper, we will refer to it as an AEAD adversary.
Define the PRIV advantage of adversary A in attacking A€ as

AdVPY(A) = zf;r[Exp‘;{Z LA =b] -1
and let Advi{g(t, q, 1) denote the maximum advantage of any ¢-

time adversary making at most g queries with total bit-length p.
Define the INT advantage of adversary A in attacking A€ as

AdvL(A) = Pr| Expl(A) = 1]

and let Adviﬁtg(t, q1,92, 11, f12) be the maximum advantage of any
t-time adversary making at most g1 (resp. g2) queries to Enc (resp.
Dec) with total bit-length at most yq (resp. p2).

5.2.3 Nonce generators. Finally, a nonce generator is a pair of
algorithms A = (Init, Next), the first randomized and the second
deterministic.

o [nit() > str ng. Initializes the state of the generator.

o Next(var str ng) — str N. Computes the next nonce N given
the current state ng and updates the state.

We associate to A/ and an integer ¢t € N a procedure Coll, which
first executes ng «— Init(), then computes N; < Next(var ng)
for each i € [t]. Finally, if for every 1 < i < j < t it holds that
N; # Nj, then the procedure outputs 0; otherwise it outputs 1.
Define collns(t) = Pr[ Colinr(t) =1 ]

5.3 The partially specified record layer

We are now ready to formalize the record layer specification. Refer
to the PSC TLS[ M, AE, N| defined in Figure 4. It differs from
the standard (draft 23) in one small, but security-critical way: the
standard mandates that the AEAD scheme be invoked with ¢ as the
AD, whereas in our scheme, the string A—the record header—is used
as AD. To fully comply with the spec, one would replace A with ¢ on
lines 4:21 and 4:39. However, this leads to a trivial ciphertext stream
integrity attack: suppose the sender outputs Y = A|| Y’. Then the
adversary can deliver A* || Y’ to the receiver for some A* # A where
|A*| = |A|.If Y is consumed by the receiver, then the channel will be
deemed out of sync, but the output of the receiver will be unaffected.
We note that this attack is not an artificat of our security model. The
strength of our model—and hence the possibility of this attack—is
inherited from the stream-based channel setting; if one were to
directly extend FGMP’s syntax and security notions so that they
encompass multiplexing, then the record layer woul have the same
problem.

The procedure Mux invokes M (4:14) in order to compute the
next channel fragment (i.e. record). It is designed to never operate
on 0-length records (4:15); if the first input X to Write is undefined
(i.e., X = ¢), then it outputs a 0-length ciphertext fragment (4:20).
The data on the wire is A|| Y/, where Y’ is the ciphertext and A is
a string chosen by the SD (4:19).

Defragmentation of the ciphertext is performed by Read and
is also left largely up to the SD: first, the ciphertext fragment is
appended to a buffer buf, then the SD is invoked to decide how
much of the buffer to dequeue next. The oracle is given the contents
of the buffer and outputs an integer c. It also sets a flag drop. If
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Y = buf[:c] # o A ~drop holds, then the next nonce is computed
and output along with Y. Otherwise the reader outputs Y = ¢ and
N = ¢. (Note that the drop flag permits the rules for handling CCS
messages; such a message will never be produced by the sender,
but it may be transmitted to the receiver.) Presumably, Y is equal
to A|| Y/, where Y’ is a ciphertext and A is a string chosen by the
SD. On input of Y, the SD is invoked to determine the length of A
(4:34). If Y # o, then string Y’ is decrypted (using A as associated
data) and the resulting channel fragment X (i.e. record) is input to
the stream demultiplexer.

If Demux ever encounters an invalid ciphertext, then thereafter it
never outputs a valid fragment (4:34 and 4:40-42). It uses a flag sync
to track this. If the receiver is in-sync and Y is 0-length, then Demux
may poll the stream demultiplexer to see if a message fragment
is available for outputting. (That is, line 4:43 may be invoked on
X = ¢.) Usage limits are enforced by the SD (4:19 and 4:33).

Our construction captures all protocol-level side effects in the
record layer specification [29] with the exception of any sender
or receiver state carried over after re-initialization of the channel.
Indeed, our security model does not encompass re-initialization,
since the game is defined for an already initialized channel. We
made this choice because the record layer was designed so that no
state is carried across key changes. (See the discussion Section 5.1.)

5.3.1 Security. Let CH = TLS[M, AE,N] be as defined in
Figure 4. Our first step is to show that PRIV of A€ and mPRIV-S
of M imply PRIV-S for CH:

THEOREM 5.1. Let { € {lensc, len,none}. For every t,q,u € N
andt =t + O(q) it holds that

priv

AdVP (b, q. ) <2AdVELy

CH, (£, g, 1) + 2 collnr(g)+

AdvE S (E g, ).

The proof first appeals to the PRIV security of A€ to transition to
a “random” setting in which Send queries are evaluated without
using AE.Enc and instead just generate a random string of the
appropriate length. To get there, we first need to upper bound the
probability that a nonce is repeated. To complete the proof, we
construct an mPRIV-S adversary that simulates a PRIV-S in this
random setting. This is made possible by virtue of the length of
ciphertexts only depending on the length of the plaintext, i.e., the
information provided to the adversary. The full proof, and the proof
for all subsequent theorems, can be found in the full version of this
paper [28].

Next, integrity of the ciphertext stream follows easily from the
ciphertext integrity of AE:

THEOREM 5.2. For everyt,q1,q2, 1, 2 € N it holds that
AdvEES(tr) < AdvEL(t+ O(g1 + q2). 7).
wherer = (q1, 92, 1, f12),

To prove this, it suffices to show that if the game’s sync flag gets
set to 0, then with overwhelming probability, the flag De.sync in
the PSC gets set to 0 as well. Next, a similar argument allows us to
reduce the SIM-STAT security of CH to the SIM-mSTAT security
of M:
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THEOREM 5.3. For everyt,s,q1,qz, i1, 2 € N and every s-time
simulator T, there exists an (t + O(s + ug))-time simulator S such
that that

AdvER S ) < AdVIT PN (E g2, r2) + AdV R (E ),
wheret =t + O(q1 + q2), and r = (q1, q2, J11, }12)-

The proof begins with the same argument used in Theorem 5.2,
which lets us transition into a setting in which Recv queries are
evaluated without invoking AE.Dec. This allows us to construct a
SIM-mSTAT adversary B and a SIM-STAT simulator S, such that
for every SIM-mSTAT simulator 7, we simulate SIM-STAT adver-
sary A in its game with S. Finally, putting together Theorems 4.1,
5.1, 5.2, and 5.3 yields our result for the PRIV-SR security of CH:

COROLLARY 5.4. Foreveryt,s,qi,qz2, fi1, 2 € N and s-time simu-
lator S, it holds that

Advg?_:_;r(t, r) < Adv

mpriv-s
M, L

sim-mstat

(£, q1. p1) + 2AdVEENN (T g, p2) +

4AdVEL (T, r) + 2AdV7y Y (F g1 i) + 2 colly(gr)

wheret = t+0(q1+q2),t = O(q1+qa2(t+s+p2)), 7 = (q1, G2, 111, 12),
and { € {lensc, len, none}.

5.3.2 Limitations of our analysis. The stream multiplexer, M,
is responsible for record fragmentation, encoding (including the
content type), and padding. It is also responsible for the length and
order of records. As discussed in Section 5.1, all of these details mat-
ter for security; as we have just seen, the mPRIV-S and SIM-mSTAT
notions make clear what properties M must possess in order for
the record layer to be secure in the PRIV-SR sense.

We emphasize, however, that PRIV-SR security says nothing
about whether a particular implementation of the record layer is
operationally correct. (For example, whether CH properly handles
streams depends on how M encodes the content type.) All it says
is that whether the record layer is correct is irrelevant for PRIV-
SR security. But in the absence of a proof of correctness, attacks
in the INT-PS sense are possible, including important real-world
attacks such as truncation attacks [34]. In the full version [28],
we describe a sufficient condition for CH under which it achieves
INT-PS security. Loosely, what we show is that if we restrict the
adversary such that its SD-query responses ensure correct operation
of the channel, then security in the INT-CS sense implies INT-PS.
(This reflects a result of FGMP.) Thus, security for CH follows from
the INT security of A via Theorem 5.2. An interesting question is
whether correctness of M, along with INT security of A€, suffices
for INT-PS of CH. We leave this for future work.

The subject of this paper is the mechanism by which data streams
are protected in TLS 1.3. Our model permits the study of the secu-
rity of data transmitted between key changes. (See the discussion
in Section 5.1.) This is valid, since under appropriate assumptions
about the underlying key-derivation function used in TLS, the
record-layer state is effectively independent between key changes.
However, one limitation of our model is that we cannot say any-
thing about the security of the concatenation of data sent across key
changes. In particular, consider the concatenation of the application-
data stream sent in the early-data phase and in the post-handshake
phase. Early data is replayable, since the adversary can send this
data to any number of valid recipients in possession of a pre-shared
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key shared with the client. Our model cannot account for such
replay attacks. This also limits our ability to study truncation at-
tacks [34], since these may involve data sent across key changes.
Finally, we note that since we have analyzed TLS 1.3 in isolation,
our results say nothing about the record layer specifications in
TLS 1.2, 1.1, 1.0, SSL 3, and so on.

6 CONCLUSION

Despite these limitations, the preceding analysis offers good news
about TLS 1.3. We regarded the record layer as a multiplexed,
stream-based channel, a setting which accurately models secure
channels as they are used in practice. We formalized it as a partially
specified channel, allowing us to encapsulate in one scheme (see
Figure 4) the myriad implementations that its standardizing doc-
ument admits. We confirm its privacy and integrity in our strong
adversarial model, but with two important caveats: first, whether
the record layer hides the length, content, or type of input streams
depends crucially on details left unspecified by the standard. Nev-
ertheless, our results—specifically, Theorems 5.1 and 5.3—provide
guidance on how to develop implementations that achieve a tar-
get security goal. Concretely, this goal is a property of the stream
multiplexer used to construct the channel. The second caveat is
that draft 23 of the record layer does not achieve security in the
sense of ciphertext-stream integrity; we suggested a simple change
to the standard so that it provably does (Theorem 5.2), which was
adopted in the final version.

Our partial specification of the record layer is simple and flexible;
our hope is that this paradigm will help shape the standard-writing
process. Thinking formally about what the protocol must get right
and what it may get wrong provides principled guidance in its
development. Although the partially specified protocol framework
is not the only way to reason about how unspecified or under-
specified matters affect security, we found it to be a useful tool
for discovering what these security-critical matters are in the first
place. This paper leaves open a number of directions for future
work. Our notions of security apply to settings in which an out-
of-order packet is regarded as an attack (e.g., TLS and SSH); our
framework can be applied to other notions of security appropriate
for settings in which packet loss is expected (e.g., DTLS and IPSec).
Beyond channels, we hope to see the Rogaway-Stegers framework
applied more broadly. e.g., to the TLS handshake.
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