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Abstract High‐impact poor air quality events, such as Beijing's so‐called “Airpocalypse” in January 2013,
demonstrate that short‐lived poor air quality events can have significant effects on health and economic
vitality. Poor air quality events result from the combination of the emission of pollutants and meteorological
conditions favorable to their accumulation, which include limited scavenging, dispersion, and ventilation.
The unprecedented nature of events such as the 2013 Airpocalypse, in conjunction with our nonstationary
climate, motivate an assessment of whether climate change has altered the meteorological conditions
conducive to poor winter air quality in Beijing. Using three indices designed to quantify the meteorological
conditions that support poor air quality and drawing on the attribution methods of Diffenbaugh et al. (2017,
https://doi.org/10.1073/pnas.1618082114), we assess (i) the contribution of observed trends to the
magnitude of events, (ii) the contribution of observed trends to the probability of events, (iii) the return
interval of events in the observational record, preindustrial model‐simulated climate and historical model‐
simulated climate, (iv) the probability of the observed trend in the preindustrial and historical model‐
simulated climates, and (v) the relative influences of anthropogenic forcing and natural variability on the
observed trend.We find that anthropogenic influence has had a small effect on the probability of the January
2013 event in all three indices but has increased the probability of a long‐term positive trend in two out of
three indices. This work provides a framework for both further understanding the role of climate change in
air quality and expanding the scope of event attribution.

1. Introduction

Beijing has recently suffered a series of poor air quality episodes, including the January 2013 “Airpocalypse,”
so‐called due to the unprecedented observed concentrations of PM2.5 (Beech, 2013; Kaiman, 2013; Zhang
et al., 2013). These episodes have dramatically impacted economic vitality and humanmortality andmorbid-
ity; high particulate matter concentrations have been linked to hundreds of thousands of deaths andmillions
of respiratory tract infections across China between 2010 and 2015 (Li et al., 2016; Yin et al., 2017). Episodes
of poor air quality, or haze, occur when pollutants and their precursors enter the atmosphere from anthro-
pogenic and/or natural sources and the overlying meteorology promotes their accumulation (Dawson et al.,
2007; Jacob &Winner, 2009; Leung & Gustafson, 2005). Researchers have hypothesized that the recent haze
episodes in Beijing have been significantly influenced by stagnant conditions, characterized by a weakening
of the East Asian trough and anomalous southerly winds that advect moisture and pollutants north into
Beijing (Chen & Wang, 2015; Guo et al., 2014). Combined with near‐surface temperature inversions which
also limit vertical ventilation, stagnant meteorology can produce extreme winter air quality even without an
increase in pollutant emissions (Hou & Wu, 2016; Sun et al., 2014; Wang et al., 2014; Zhang et al., 2018;
Zheng et al., 2015). In particular, meteorological extremes tend to co‐occur with extremes in pollutant con-
centrations, in part driven by stagnant synoptic‐scale circulation (Schnell & Prather, 2017). Finally, research-
ers have projected potential increases in these stagnant meteorological conditions due to anthropogenic
climate change, both in China (Cai et al., 2017; Zou et al., 2017) and globally (Dawson et al., 2014; Horton
et al., 2012; Horton et al., 2014; Mickley et al., 2004; Murazaki & Hess, 2006).

Given the attention placed on recent extreme poor air quality events and the projected role of climate
change in worsening the meteorology that shapes these events, it is appropriate to ask if climate change
has played a role in recent occurrences of extreme air quality events in China. For example, Zou et al.
(2017) linked recent declines in Arctic sea ice and increases in Eurasian snow cover to the
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intensification of stagnant wind speeds and near‐surface temperature inversions. Wang et al. (2015)
described a possible mechanism for this link: Reductions in Arctic sea ice produce positive sea‐level pres-
sure anomalies over Asia, which shift the track of regional cyclone activity to the north and produce stag-
nant conditions defined by a stable atmosphere and low cyclonic activity in eastern and northeastern
China. Climate‐change‐driven decreases in Arctic sea ice may intensify this link (Zou et al., 2017).
Other analyses, however, have argued that climate change has had only a negligible impact on air quality
in Beijing (e.g., Shen et al., 2018), increasing the need for further examination of the link between anthro-
pogenic forcing and stagnant meteorology.

In order to further understand the link between observed climate change and recent air quality extremes, we
draw on a set of methods from an area of climate science known as detection and attribution. Detection and
attribution studies aim to identify changes in the historical record (detection) and isolate the causes of those
changes (attribution). Foundational detection and attribution studies aimed to determine the degree to
which anthropogenic forcing contributed to twentieth century global temperature increases (Allen et al.,
2007). These studies used a climate model, or an ensemble of models, to compare the observed climate with
a hypothetical world without anthropogenic greenhouse gas emissions and determine the degree to which
those emissions have contributed to recent trends (Allen et al., 2007; Stott et al., 2000). These studies have
been essential in attributing the majority of twentieth century temperature increases to human influence
rather than natural variations like solar variability or volcanic eruptions (Allen et al., 2007; Hegerl &
Zwiers, 2011; Stott et al., 2000; Stott et al., 2010).

The focus of detection and attribution has expanded to examine extreme events in the historical record, a
subfield known as “extreme event attribution” or “single‐event attribution.” This research has increased
in salience as policymakers and stakeholders desire more specific and quantifiable information on the
relationship between global changes and local extremes, to better inform adaptation decision‐making
(Sippel et al., 2015). Event attribution is also an important component of “loss and damage” calculations
as part of efforts to determine legal liability for the damage climate change has already caused (Allen,
2003; Allen et al., 2007). Much of the framework for extreme event attribution is drawn from the statistics
of epidemiology, where distributions of the relevant variables in different scenarios are compared to deter-
mine how the likelihood of a given event changes between scenarios (Stone & Allen, 2005). This frame-
work is now used in climate change event attribution studies to compare variables in the observational
record and between preindustrial and anthropogenically forced climate model scenarios (e.g., Hegerl,
2015; King, van Oldenborgh, et al., 2015).

At a global level, studies have attributed some component of recent extreme temperature occurrences to
anthropogenic warming, though the exact contribution of anthropogenic influence to each event varies by
methodology (Christidis et al., 2011; Diffenbaugh et al., 2017; Zwiers et al., 2011). Recent event attribution
studies have also examined other local extreme events and found a significant role for anthropogenic
warming, and among others, the flood‐producing precipitation in Louisiana in 2016 (van der Wiel
et al., 2017), extreme precipitation in England in 2000 (Pall et al., 2011), the hot and dry conditions that
produced the 2012–2015 California drought (Diffenbaugh et al., 2015), and the 2003 European heat wave
(Stott et al., 2004). There is now an annual special issue of the Bulletin of the American Meteorological
Society dedicated to single‐event attribution studies regarding the previous year's extreme events (e.g.,
Herring et al., 2017). Recent advances in computing power and attribution methodologies have even
allowed “fast‐track” attribution of extreme events, where events are examined and attributed almost as
soon as they occur, as opposed to months or years afterward (Christidis et al., 2015; Haustein et al.,
2016; Stott et al., 2016).

Single‐event attribution studies were initially focused on first‐order environmental variables such as tem-
perature and precipitation, and many of the reports in the annual Bulletin of the American
Meteorological Society issue still focus on various extreme heat or flooding events. However, the science is
advancing and now includes other, more complex environmental conditions, such as the meteorology con-
ducive to extremely poor air quality events (e.g., Li et al., 2018; Vautard et al., 2017). Our study therefore pro-
vides a useful test case for this expansion of extreme event attribution to more complex, multi‐ingredient
extreme climate events, while also allowing us to answer the fundamental question: How has anthropogenic
climate change influenced recent extreme air quality meteorology in Beijing?
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2. Data and Methods
2.1. Data

We use reanalysis data from the R1 Reanalysis project from the National Center for Environmental
Protection (NCEP) and National Center for Atmospheric Research (NCAR), herein referred to as the
NCEP/NCAR R1 reanalysis, to represent the observational record (Kalnay et al., 1996). This reanalysis data
set has a horizontal resolution of approximately 2.5° × 2.5°. We select data only from 1979 to 2016, which
includes data from the more robust “satellite era,” i.e., the time period in which satellite data has strength-
ened and provided support for other observations (Kistler et al., 2001). All further mentions of “observa-
tions” refer to this reanalysis data.

We use observations of local PM2.5 concentrations from the U.S. embassy in Beijing (SanMartini et al., 2015)
to quantify daily air quality in Beijing from 2009 to 2016, shown in Figure 2.

To simulate preindustrial and historical (late 20th century and early 21st century) climates, we use the
Community Earth System Model (CESM) Large Ensemble (CESM‐LE). CESM‐LE contains a single 1,800‐
year‐long preindustrial control run with 1850 initial conditions and constant forcing, a simulation of the his-
torical forcing from 1920 to 2005, and a simulation of the projected future from 2005 to 2100 using the CMIP5
RCP8.5 emissions scenario (Kay et al., 2015; Taylor et al., 2012). CESM‐LE uses one model (CESM with
CAM5.2) with the exact same parameters, forcings, and boundary conditions but includes 30 different rea-
lizations of the historical and future climates. Each realization, branching from 1850 in the case of the first
realization, and 1920 in the case of the rest, is initialized with slightly different atmospheric conditions, on
the order of 10−14 K differences in air temperature (Kay et al., 2015). To simulate the 1979–2016 period, we
combine the last 27 years of each historical realization with the first 11 years of the corresponding RCP8.5
realization, and henceforth, we refer to this combination as the “historical simulation.” This version of
CESM has a horizontal resolution of approximately 1° × 1°.

Climate model simulations inherently involve three types of uncertainty: model uncertainty, meaning the
uncertainty associated with model construction and its response to forcing, scenario uncertainty, meaning
the uncertainty associated with predicting the future of a given forcing (e.g., greenhouse gas emissions),
and irreducible uncertainty, meaning the uncertainty due to the natural chaos of the climate system,
otherwise known as “internal variability” (Hawkins & Sutton, 2009). Small differences in the initial con-
ditions used to initialize climate model simulations can create cascading and chaotic effects, so using a
spread of realizations from a single model with different initial conditions provides an opportunity to
assess the influence of internal variability on projections of climate change (Deser et al., 2012; Deser
et al., 2014). A single‐model multirealization ensemble such as CESM‐LE has unique benefits for extreme
event detection and attribution. Climate model simulations of extreme events are especially sensitive to
internal variability, since they attempt to represent a rare set of events that occur on small temporal
and spatial scales (Deser et al., 2012; Diffenbaugh et al., 2017; Fischer & Knutti, 2015), and internal varia-
bility dominates the sources of uncertainty in simulations of the historical climate (Hawkins &
Sutton, 2009).

2.2. Air Quality Indices

We use three peer‐reviewed indices to quantify the meteorological conditions that shape air quality in
Beijing (Figure 1). These indices take advantage of an ingredients‐based meteorological approach, which
seeks to identify the fundamental physical components of a phenomenon and combine them to develop a
fuller picture of the causes of that phenomenon (Wetzel & Martin, 2001). Given the short timescales and
small spatial scales involved, event attribution studies tend to be sensitive to the exact methodology used
to quantify an event, so using multiple indices provides a more robust estimate of the influence of anthropo-
genic forcing (Angelil et al., 2017). We use normalized data in all indices, so all data is presented in units of
standard deviations; the normalization process is detailed below for each index. These indices are as follows:

1. Haze Weather Index (HWI). We quantify haze conditions, modifying the approach of Cai et al. (2017), as
the sum of the temperature gradient between 200 hPa over 37.5–45 °N and 122.5–137.5 °E and 850 hPa
over 32.5–45 °N and 112.5–132.5 °E (Figures 1a and 1c), the strength of 850 hPa meridional winds over
30–47.5 °N and 115–130 °E (Figure 1d), and the latitudinal difference in 500 hPa zonal winds between
42.5–52.5 °N, 110–137.5 °E and 27.5–37.5 °N, 110–137.5 °E (Figure 1b). The HWI can be denoted as
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Figure 1. January 2013 composite of temperature and wind speed at multiple atmospheric levels. The Haze Weather Index (HWI) is calculated as the difference
between the temperature anomaly at 850 hPa and 200 hPa over the boxed regions (a, c) plus the difference between the northern zonal wind anomaly and the
southern zonal wind anomaly at 500 hPa over the boxed regions (b) plus the meridional wind speed anomaly at 850 hPa over the boxed region (d). The Winter
Monsoon Index (WMI) is calculated as the meridional wind anomaly at 850 hPa over the boxed region (f). The Pollution Potential Index (PPI) is calculated as the
difference between the temperature anomaly at 850 hPa and 1,000 hPa (e, g) plus net wind speed anomaly at the surface (h) over the boxed regions. Black dot
denotes Beijing. Data for all panels is from NCEP/NCAR R1 reanalysis. All panels show the same domain; latitude and longitude labels are shown in panel a but
removed from the other panels for readability purposes.
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HWI ¼ ΔT þ V þ ΔU

where

ΔT ¼ T850−T200

V ¼ V850

ΔU ¼ U500;N−U500;S

where T refers to temperature (K), V refers to meridional wind (m/s), U refers to zonal wind (m/s), and sub-
scripts denote pressure levels in millibars. A positive temperature gradient ∆T represents a midtroposphere
temperature inversion that prevents the vertical dispersion of pollutants, a positive meridional wind anom-
aly V describes increased southerly flow that transports pollutants and moisture from regions south of
Beijing, and a positive zonal wind gradient ∆U represents weakened northwesterly midtropospheric flow
(Cai et al., 2017). Each quantity in the initial equation (∆T, V, and ∆U) is calculated as a normalized anom-
aly before being combined into the final HWI, and the HWI is then itself normalized. Observational data is
normalized by subtracting the observed mean and dividing by the observed standard deviation, and the pre-
industrial and historical simulations are normalized by subtracting the preindustrial mean and dividing by
the preindustrial standard deviation. Cai et al. (2017) use 250 hPa temperature instead of 200 hPa tempera-
ture, but we use 200 hPa temperature since daily scale data is only available from the CESM Large Ensemble
at 200 hPa and not 250 hPa. Because the temperature anomalies that Cai et al. (2017) identify at 250 hPa also
exist at 200 hPa (see Figure 1 of Cai et al., 2017), this choice is unlikely to substantially alter the meaning of
the HWI.

2. Western Monsoon Index (WMI). We define an index of the East Asian winter monsoon following the
approach of Pei et al. (2018). The weakness of the monsoon is defined as the area‐averaged meridional
wind anomaly at 850 hPa over 105–125 °E and 30–50 °N (Figure 1f). The WMI can be denoted as:

WMI ¼ V 850

where V850 refers to meridional wind (m/s) at 850 mb. Stronger southerly (positive) meridional winds are
associated with increased southerly flow, indicating a weaker monsoon and increased transport of pollutants
and moisture from the regions south of Beijing (Pei et al., 2018). We normalize the observed WMI by sub-
tracting the observed mean and dividing by the observed standard deviation, and we normalize both the pre-
industrial and historical simulations by subtracting the preindustrial mean and dividing by the preindustrial
standard deviation.

3. Pollution Potential Index (PPI). We define “pollution potential” conditions, modifying the approach of
Zou et al. (2017), using a weighted index of near‐surface inversions (air temperature gradient index
(ATGI)) and wind speeds (wind speed index (WSI)). The ATGI is calculated by taking the area‐
averaged (112–122 °E and 30–41 °N) temperature difference between 850 and 1,000 hPa at each grid
point (Figures 1e and 1g) and the WSI is constructed by calculating the area‐averaged (112–122 °E and
30–41 °N) wind speed anomalies at 1,000 hPa (Figure 1h). The PPI is constructed by multiplying each
of the ATGI andWSI by its Pearson correlation coefficient with historical air quality measurements, sum-
ming the two weighted indices, and dividing by the sum of the absolute value of the correlation coeffi-
cients. We use weights of 0.7 for the ATGI and − 0.73 for the WSI, from Zou et al. (2017). The PPI can
be denoted as:

PPI ¼ r1 x ATGIþ r2 x WSIð Þ
r1j jþ r2j jð Þ

where :

ATGI ¼ T850−T1000

WSI ¼ WS1000

r1 ¼ 0:7; r2 ¼ −0:73
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where T refers to temperature (K),WS refers to the wind speed (m/s) calculated from the square root of the
sum of squared meridional and zonal winds, r1 = 0.7, r2 = −0.73, and subscripts denote pressure levels in
millibars. A positive temperature gradient (ATGI) represents a near‐surface temperature anomaly which
prevents the vertical lifting of pollutants and a negative surface wind speed (WSI) represents weak surface
winds that prevent the horizontal ventilation of those pollutants (Zou et al., 2017). The ATGI and WSI are
normalized independently before construction of the PPI and then the PPI itself is normalized. In all cases,
we normalize observed quantities subtracting the observed mean and dividing by the standard deviation,
and we normalize the preindustrial and historical simulations by the preindustrial mean and standard devia-
tion. We calculate the PPI using the weights derived by Zou et al. (2017), but we also recalculated the PPI
without weighting either index (r1 = 1 and r2 = −1) and found similar results. An Anderson‐Darling test
indicates that the CESM‐LE historical simulations of the weighted and unweighted PPI are statistically
indistinguishable, indicating that our results are not sensitive to the choice of weights. For further details
on the Anderson‐Darling test, see section 2.3.

Figure 1 shows the January 2013 composite in each of the relevant variables and indices. January 2013 was
defined by a strong warm anomaly in the lower troposphere and a cold anomaly aloft (Figures 1a and 1c); the
warm anomaly in the lower troposphere created a stable atmosphere which prevented the vertical dispersion
of pollutants. At the surface and 850‐hPa level, southerly wind anomalies (Figures 1d, 1f, and 1h) trans-
ported pollutants and moisture conducive to pollutant formation into Beijing from the regions south of
the city. At the 500‐hPa level, January 2013 was characterized by weakened northwesterly flow and a stron-
ger latitudinal difference in zonal wind between the north and south of Beijing, favorable for pollutant
buildup (Figure 1b). Finally, a temperature inversion was present from 1,000 hPa to 850 hPa over Beijing
(Figures 1e and 1g), which further prevented the vertical dispersion of pollutants.

These indices are not necessarily independent. For example, the HWI and WMI both include an area‐
averaged measure of meridional winds at 850 hPa, and the HWI and PPI both include a measure of tempera-
ture inversions centered at 850 hPa. However, each has benefits for our event attribution methodology. The
HWI is synoptically oriented, incorporating measures of circulation gradients across much of northeast
China, and includes the entire atmospheric column from 850 hPa to 200 hPa. Alternatively, the PPI mea-
sures only near‐surface temperature inversions and surface wind speeds over a smaller domain than the
HWI, allowing a closer look at the local conditions shaping air quality in Beijing. Finally, theWMImeasures
only the strength of the East Asian winter monsoon, which is the dominant synoptic feature in the region
during winter. While the HWI includes a similar measure of midtroposphere meridional winds, it is useful
to also test the East Asian winter monsoon in isolation using the WMI, given previous research demonstrat-
ing its significant individual effect on regional stagnation (e.g., Jia et al., 2015; Pei et al., 2018). Using indices
that group multiple ingredients together (e.g., weak monsoon and near‐surface inversion) is particularly
important for air quality meteorology, as interactions between ingredients create compounding effects that
exceed the sum of individual effects (Dawson et al., 2007; Dawson et al., 2009).

These three indices, however, are not an exhaustive list of metrics used to describe the meteorology that
shapes air quality in China. Yang et al. (2016), for example, proposed the Parameter Linking Air‐quality
to Meteorology, andWang et al. (2016), Wang et al. (2018), and Huang et al. (2018) have proposed alterations
to the Air Stagnation Index used in Wang and Angell (1999) and Horton et al. (2014). In this study, we pre-
sent three indices for which daily reanalysis and climate model data are available, and our detection and
attribution data screening thresholds are met. However, we attempted to apply our attribution methodology
to two other air quality meteorology indices known to influence pollutant accumulation: The Air Stagnation
Index, or ASI (Wang & Angell, 1999), and the Siberian High Position Index, or SHPI (Jia et al., 2015). In both
cases, we could not determine that the preindustrial simulation and detrended observational record were
drawn from the same distribution, so we did not continue with our analysis (see section 2.3). As model phy-
sics and resolution improve and additional models are brought to bear on questions of attribution, future stu-
dies can test more additional, complex, and/or fine‐scaled indicators of stagnant meteorology in Beijing.

We calculate each index using daily data during boreal winter (December–February). To define “the event”
to which our methods will be applied, we take the 5‐day runningmean of each index and treat themaximum
value in January 2013 as the event. We focus on January 2013 both due to the unprecedented concentrations
of pollutants during that month and the well‐developed science that has described the extreme air quality
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meteorology of that month (e.g., Gao et al., 2015; Kajino et al., 2017; Li et al., 2018; Sun et al., 2014; Wang
et al., 2014; Ye et al., 2016; Zou et al., 2017). Such conditions, however, have also been found to support poor
air quality in other months and years (Figure 2). In all following analyses, a p value of less than 0.05 is
required for statistical significance, and all mentions of the “correlation coefficient” refer to the Pearson
correlation coefficient.

2.3. Event Attribution

Following Diffenbaugh et al. (2017), we assess five attribution metrics from each index in order to determine
the influence of anthropogenic forcing on the January 2013 “airpocalypse” in Beijing. We modify the
approach of Diffenbaugh et al. (2017) by adding a fifth metric, drawn from a set of other studies that used
CESM‐LE to compare anthropogenic forcing to internal variability (e.g., Deser et al., 2012; Mankin et al.,
2017), and we include it in this study to more thoroughly examine the role of anthropogenic influence on
extreme air quality. The first twometrics focus solely on trends and events in the observational record (using
NCEP/NCAR R1 reanalysis data), while metrics 3–5 use climate model data (CESM‐LE) to explicitly distin-
guish anthropogenic forcing from natural variability.

1. The contribution of the observed trend to the magnitude of the event (Table 1 herein and Figure 1a from
Diffenbaugh et al. (2017)). We first remove the linear trend from the observed time series, then calculate
the observed event magnitudeminus the detrended event magnitude, divided by the observed event mag-
nitude minus the detrended mean. The resulting value represents the percent of the magnitude of the
event attributable to the observed trend.

2. The contribution of the observed trend to the probability of the event (Figure 3a herein and Figure 1c from
Diffenbaugh et al. (2017)). To generate a sample of return intervals for the given event in both the
observed and detrended timeseries, we fit a Gumbel distribution, a variation of the Generalized
Extreme Value distribution, to a bootstrapped sample of each timeseries 200 times. From each sample,
we determine the return interval of an event in that distribution by taking the inverse of the frequency
of the given event. We then take the ratio of the return intervals in the detrended timeseries to the return
intervals in the observed timeseries; if the median ratio is greater than (less than) one, the return interval
is longer (shorter) in the detrended timeseries and the probability of the event is higher (lower) in the
observed timeseries (Singh, Tsiang, et al., 2014; Swain et al., 2014). We use a moving block bootstrap
to control for autocorrelation and sample uncertainties in the recurrence interval of the relatively short
observational period (Singh, Horton, et al., 2014). Note that return period ratio is a proxy for probability
change; a return period ratio of 2 between the detrended timeseries and original timeseries is equivalent
to determining that the observed trend increased the probability of the event by a factor of 2.

3. The probability of the observed trend in the historical and preindustrial climates (Figure 4 herein and
Figure 1e from Diffenbaugh et al. (2017)). Once each meteorological index has been calculated from its
components, we bias‐correct the preindustrial control realization by shifting its mean to equal the mean
of the detrended observations and to account for systematic model bias. Then, we apply an Anderson‐
Darling test to determine if the interannual variability of the preindustrial simulation and detrended
timeseries are statistically drawn from the same population. If the result of the Anderson‐Darling test
is greater than 0.05, we determine that the simulations and observations are drawn from the same distri-
bution, and we continue the analysis. If the result is less than 0.05, we determine that the simulations do
not accurately represent the observations, and we do not continue. Because comparisons between the
preindustrial and historical simulations do not require direct comparison to the observational record,
we only bias‐correct the preindustrial simulation when performing the Anderson‐Darling test; we do
not bias‐correct the preindustrial and historical simulations when calculating the attribution metrics
themselves. We find similar results if we bias‐correct the individual components of the HWI and PPI
as opposed to bias‐correcting the final indices, though only if the final indices are normalized according
to the process described above. Next, we take the linear trend from each CESM‐LE 38‐year historical rea-
lization (1979–2016) to generate a sample of historical trends, and randomly sample 30 different 38‐year
periods from the entire 1,800‐year‐long preindustrial control to generate a corresponding sample of pre-
industrial trends. If significantly more of the historical trends than the preindustrial trends are in the
direction of the observed trend, we determine that climate change has contributed to the likelihood of
the observed trend (Singh et al., 2016). We evaluate statistical significance using a two‐tailed binomial
test, with the null hypothesis that positive and negative trends should occur only as many times in the
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historical simulation as they do in our random sample from the preindustrial simulation (Singh et al.,
2016). A p value below 0.05 in Figure 4 therefore represents a significantly higher number of positive
trends occurring in the historical simulation than would be expected from the preindustrial
simulation.

4. The probability of the event in the historical and preindustrial climates (Figure 3b herein and Figure 1f
from Diffenbaugh et al. (2017)). We define the sample of return intervals of the event in the preindustrial
climate to be equal to the return intervals in the detrended observed timeseries (Swain et al., 2014, 2018).
We calculate the sample of event magnitudes in the preindustrial simulation that are associated with
each of those return intervals. Then, for each event magnitude derived from the preindustrial simulation,
we determine the return interval of that event magnitude in the historical simulation (Swain et al., 2014,
2018). Finally, we take the ratio of the return intervals between the preindustrial simulation and histor-
ical simulation (Swain et al., 2014, 2018). Similar to metric 2, if the median ratio is greater than (less than)
one, the return interval is longer (shorter) in the preindustrial simulation and the probability of the event
is higher (lower) in the historical simulation.

5. The relative importance of anthropogenic forcing and internal variability to the observed trend (Figure 5).
Following Deser et al. (2014), we first define the anthropogenically forced component of the simulated
historical climate as the ensemble mean of the CESM‐LE historical realization. We then verify that the
trend in this component is in the same direction as the trend in the observed timeseries. If so, we subtract
the ensemble mean from each individual CESM‐LE realization to isolate the component of that realiza-
tion due to internal variability and take the ratio of the trend in the ensemble mean to the trends in the

Figure 2. Timeseries plots of daily winter (December–February) air quality andmeteorological indices from 2010 to 2016.
Air quality data is daily average PM2.5 concentrations from the U.S. embassy in Beijing, China. Indices are calculated from
National Center for Environmental Predictions R1 reanalysis. Correlation coefficients between each index and the other
two indices, along with the PM2.5 timeseries, are depicted in the insets. Pink box depicts January 2013; gray boxes depict
other peak PM2.5 events (December 2010, February 2011, January 2014, and December 2015). HWI = Haze Weather
Index; WMI = Winter Monsoon Index; PPI = Pollution Potential Index.
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internal‐variability‐only components. Following Hawkins and Sutton (2009) and Mankin et al. (2017),
we then quantify the signal‐to‐noise ratio of the historical climate by dividing the magnitude of the
trend in the ensemble mean by the standard deviation in the magnitude of the trends across all
realizations. We determine that anthropogenic forcing exerts a robust influence on the system if the
signal‐to‐noise ratio is greater than or equal to 1 (Hawkins & Sutton, 2009). Signal‐to‐noise ratio
provides a single metric for the entire set of CESM‐LE historical simulations, while the ratio of the
forced trend to internal variability provides a similar metric for each individual realization (Figure 5).

The first twometrics benefit from sole focus on the statistics of the observational record, thus avoidingmodel
bias. However, they assume that a linear fit accurately describes the trend in the observations, and they do
not account for changes in variance or higher‐order statistical moments (Diffenbaugh et al., 2017). In addi-
tion, attributing the magnitude or probability of an event to an observed trend does not equate to attributing
that event to climate change. The presence of a linear trend alone does not necessarily imply anthropogenic
forcing, since trends may still be the result of natural variation (i.e., the difference between Figure 3a, which
shows the effect of the observed trend on the event probability, and Figure 3b, which shows the effect of
anthropogenic forcing on the event probability). Model simulations of the historical and preindustrial cli-
mates (i.e., the third, fourth, and fifth metrics) are therefore necessary to determine the origin of a given
trend and distinguish anthropogenic forcing from underlying variability. The presence of inherent model
bias requires validation that the simulations sufficiently represent the observed variability, making the
Anderson‐Darling test an essential step before continuing with the last three attribution metrics (Mitchell
et al., 2017). The ASI and SHPI were discarded precisely because the Anderson‐Darling test indicated that
the model simulations did not accurately simulate observed variability (ASI p = 5 × 10−6 and
SHPI p = 0.0003).

Analyzing the contribution of the observed trend to both the magnitude and probability of an event is
important, as climate change may have different effects on the magnitude and probability of extreme
events, and the results of attribution studies are sensitive to the exact question asked. Attribution studies
of the 2010 Russian heat wave, for example, reached different conclusions about anthropogenic influ-
ence, with Dole et al. (2011) reporting that the event was primarily caused by natural variability and
Rahmstorf and Coumou (2011) reporting that anthropogenic warming was the most significant contribu-
tor to the event. It is possible to reconcile these results by determining that climate change did not con-
tribute to the magnitude of the event but did contribute to the probability of an event of a certain
magnitude, demonstrating the value of partitioning magnitude and probability into separate attribution
questions (Otto et al., 2012).

Table 1
Attribution Statistics for Each Index

HWI WMI PPI

January 2013 Magnitude (Standard Deviations) 1.53 1.58 1.81
Observed Trend (Standard Deviations/Year) 0.0055 0.004 0.0057

Observed Trend p Value 2.1 × 10−6 1.2 × 10−4 1.6 × 10−9

ΔMag. From Trend (Metric 1) 11.5% 8.4% 10.2%
Median Return Period Ratio (DT/Obs) (Metric 2) 1.17 1.12 1.18

GCM‐Obs A‐D p Value 0.56 0.94 0.051

Hist. Simulation Trend Agreement (Metric 3) 76.7% 56.7% 76.7%
Median Return Period Ratio (PI/HIST; Metric 4) 1.09 1.06 1.05
Signal‐to‐Noise Ratio (Metric 5) 0.772 0.09 0.91
Median Forced/Internal Var. Ratio (Metric 5) 0.56 0.08 0.56

Note. The magnitude of the January 2013 event; the linear trend in the observations over the course of the winter (December–February) months from December
1979 to February 2016; the p value of the observed trend; the change in magnitude due to the observed trend; the median return period ratio between the
detrended observations and original observations; and the p value of the Anderson‐Darling test between the preindustrial simulation and detrended observa-
tions; the median return period ratio between the preindustrial and historical climate; the percent of historical realizations with trends in the same direction
as the observed trend; signal‐to‐noise ratio; and the median ratio of forced component to internal variability in each historical realization (median from distribu-
tions in Figure 5).
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Figure 3. Return period changes for the three meteorological indices. (a) Return period ratios between the preindustrial
and historical simulated climates for the HWI (blue), WMI (green), and PPI (red). (b) Return period ratios between the
detrended observed climate and the original observed climate for the HWI,WMI, and PPI. Vertical dashed lines denote the
median of each distribution. Note the slightly different x axis scales between the subplots. HWI = Haze Weather Index;
WMI = Winter Monsoon Index; PPI = Pollution Potential Index.

Figure 4. Changes in trend probability between the preindustrial (blue) and historical (red) climate for the HWI (a), WMI (b), and PPI (c). Each boxplot represents
the sample of trends drawn from subsets of the preindustrial control and from each of the historical realizations, respectively. Blue line denotes the median pre-
industrial trend, red line denotes themedian historical trend, and black line denotes the observed trend. P value represents the result of a two‐tailed binomial test for
the significance of the number of historical trends above 0, with the null hypothesis being that positive and negative trends are as likely in the historical simulation
as they are in the random sample from the preindustrial simulation. We exclude outliers in all boxplots. HWI = Haze Weather Index; WMI = Winter Monsoon
Index; PPI = Pollution Potential Index.
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3. Results

The HWI, WMI, and PPI all have positive and statistically significant
trends in the observational record (Table 1). In addition, based on
Anderson‐Darling goodness‐of‐fit testing, CESM‐LE simulates all three
indices effectively, suggesting that the model is an adequate tool for repre-
senting the underlying climate variability of each index (Table 1).
However, our results indicate mixed signals amongst the meteorological
indices with regard to the degree of anthropogenic influence (Table 1).
We find that anthropogenic forcing contributed to a small increase in
the probabilities of the January 2013 event in all three indices, but
signal‐to‐noise ratio and the degree of long‐term anthropogenic influence
vary widely among the indices. In all of the following, we report median
values of return period ratio and forced/component internal variability
ratios in the text but show the full distributions of return period ratios in
Figure 3 and forced component/internal variability ratios in Figure 5. The
exact magnitude of the January 2013 event in each index is indicated in
Table 1; the range of these values, from 1.53 standard deviations for the
HWI to 1.81 standard deviations for the PPI, demonstrates the sensitivity
of air quality meteorology analyses to the exact method by which
pollutant‐conducive meteorology is quantified.

3.1. Index Correlations

While the authors that originated each of these indices confirmed that
they correlate with poor air quality events in the Beijing region, we also
verify that there is some relationship between the winter values of each
index and PM2.5 concentration data gathered by the United States

embassy in Beijing (Figure 2). The HWI has a correlation coefficient of 0.58 with PM2.5 concentrations in
winter from 2010 to 2016, while the WMI has a correlation coefficient of 0.52 and the PPI has a correlation
coefficient of 0.37. Due to differences in temporal application or data sources, these values differ from the
correlation coefficients found in the papers in which these indices were originated. We exclude the PM2.5

timeseries prior to 2010 due to missing data, for example, which results in a slightly different value than that
found by Cai et al. (2017) when testing the HWI against observed PM2.5 concentrations. Pei et al. (2018), in
addition, correlated the WMI with daily visibility at individual weather stations as opposed to PM2.5 concen-
trations, and Zou et al. (2017) tested January monthly mean values of the PPI against monthly mean PM10

values over several decades as opposed to daily PM2.5 values from 2010 to 2016.

Given that these correlation coefficients range from 0.37 to 0.58, none of these indices are able to fully
explain the variability associated with PM2.5 concentrations in Beijing. However, each index's correlation
is statistically significant, and there are associations between peak PM2.5 events and peaks in some or all
indices. January 2013 (Figure 2, pink highlighting) is associated with peaks in PM2.5 and all three indices,
as are February 2011 and January 2014. Other peak PM2.5 events, like December 2015, are not associated
with peaks in all indices. The meteorological variables included in these indices do influence air quality over
Beijing but not exclusively; there are likely other meteorological phenomena or nonmeteorological variables
(e.g., emissions changes) that contribute to changes in PM2.5 concentrations. The clear peaks associated with
January 2013 in the PM2.5 data and all three meteorological indices support our choice to use January 2013
as an exemplar “event” for this study.

Note that these indices are also not independent from each other; the HWI and WMI are correlated with a
coefficient of 0.71, likely in large part because theWMImeasures themeridional wind anomaly at 850 hPa in
a very similar manner to the HWI (Figures 1d and 1f). The PPI is correlated with the HWI at a coefficient of
0.39 and the HWI at a coefficient of 0.55, consistent with the way the PPI measures slightly different quan-
tities than the HWI or WMI (Figure 1). Because these indices are not statistically independent, since they
measure many of the same or similar quantities, our results do not represent the full spread of possible
responses of extreme air quality events to anthropogenic forcing.

Figure 5. Distribution of ratios of forced trend (ensemble mean trend) rela-
tive to internal variability (each realization minus ensemble mean trend) for
each set of CESM‐LE historical realizations. Dotted vertical lines correspond
to the medians of each boxplot; PPI (red) and HWI (blue) may be difficult to
distinguish as they lie on top of one another. Ratios of 1 are considered
robust, as 1 represents the level at which the forced component is equal in
magnitude to the internal‐variability‐driven component. Negative ratios are
possible if a realization contains a negative trend. We exclude outliers in all
boxplots. CESM‐LE = Community Earth System Model Large Ensemble.
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3.2. Haze Weather Index

There is a positive trend of 0.0055 standard deviations per year between 1979 and 2016 in the HWI, which
measures midtropospheric temperature inversions, anomalous southerlies conducive to regional pollutant
transport, and weak northwesterlies that allow pollutant accumulation in Beijing. This positive trend is sta-
tistically significant (p = 2.1 × 10−6) and contributed 11.5% of the magnitude of the January 2013 event. The
observed trend also increased the probability of the occurrence of the January 2013 event by a factor of
almost 1.2 (Figure 3a). In contrast, using the historical and preindustrial simulations from CESM‐LE, we
find that anthropogenic forcing only increased the probability of the occurrence of the January 2013 event
in the HWI by a factor of 1.09 (Figure 3b). While there is a significant trend in the observational record that
has contributed to the likelihood of the January 2013 HWI, we can only attribute some of that contribution
to anthropogenic forcing. The divergence between the contributions of the observed trend and the historical
forcing suggests that the occurrence of the extreme January 2013 value in the HWI was driven more by nat-
ural variability than anthropogenic forcing.

The 76.7% of the trends in the CESM‐LE historical realizations are positive, the same direction as the
observed trend (Figure 4a). With a p value of 8.5 × 10−4, we determine that there are significantly more posi-
tive trends in the historical simulation than in the random sample of the preindustrial simulation
(Figure 4a). Anthropogenic forcing has therefore had a discernible effect on the likelihood of a decadal‐scale
increase in the HWI. However, natural variability has had a larger effect within the CESM‐LE framework.
The signal‐to‐noise ratio in the CESM‐LE historical realizations is 0.772, below the critical value of 1, indi-
cating that natural variability outweighed the effect of anthropogenic forcing on historical change in the
HWI. Additionally, we calculate the median ratio of the forced component to internal variability in each
CESM‐LE realization to be 0.56 (Figure 5), which also demonstrates the greater role of natural variability
than anthropogenic forcing in controlling HWI variability within each CESM‐LE realization.

3.3. Winter Monsoon Index

The WMI, which represents southerly wind anomalies conducive to pollutant maintenance in Beijing, has a
positive trend of 0.004 standard deviations per year in reanalysis data from 1979 to 2016. This trend is statis-
tically significant (p = 1.2 × 10−4) and contributed 8.4% of the magnitude of the January 2013 event in the
WMI. This trend also increased the probability of the event's occurrence by a factor of 1.12 (Figure 3a).
From the historical and preindustrial simulations, we find that anthropogenic forcing increased the likeli-
hood of the January 2013 event by only a factor of 1.06 (Figure 3b). In addition, almost 20% of the
preindustrial/historical return period ratios in Figure 3b are less than 1; a simple bootstrap was enough to
alter the sign of the effect of anthropogenic forcing, demonstrating the relatively small effect of that forcing
on extreme southerly wind anomalies. In a similar fashion to the HWI, the observed trend had a meaningful
effect on the magnitude and probability of the January 2013 event in the WMI, but we can attribute very lit-
tle, if any, of that effect to anthropogenic forcing.

While 56.7% of the historical realizations contain a positive trend, which matches the observed trend
(Figure 4b), this set of trends is not statistically distinguishable from a random sample of trends from the pre-
industrial simulation (p= 0.61). Therefore, we cannot conclude that anthropogenic forcing had any effect on
the likelihood of a long‐term increase in the WMI (and thus a long‐term weakening of the East Asian winter
monsoon) between 1979 and 2016. In addition, we calculate a signal‐to‐noise ratio of 0.09 and a forced
component/internal variability ratio of 0.08 (Figure 5), indicating that in both the overall CESM‐LE ensem-
ble and in every individual realization, the influence of natural variability onWMI change was more than 10
times as large as the influence of anthropogenic forcing.

3.4. Pollution Potential Index

The PPI, measuring near‐surface temperature inversions and weak surface winds, has a statistically signifi-
cant positive trend of 0.0057 standard deviations per year in the observational record (p = 1.6 × 10−9). This
positive trend contributed 10.2% of the magnitude of the January 2013 event and increased the probability of
an event of that magnitude by around 1.2 times (Figure 3a). From the historical and preindustrial simula-
tions, we find that anthropogenic forcing made the January 2013 event in the PPI about 1.05 times as likely.
Consistent with the other two indices, we find that anthropogenic forcing slightly increased the risk of the
January 2013 PPI, though not as much as the other two indices (Figure 3b). As in the case of the WMI,
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almost 25% of the return period ratios for the PPI in Figure 3b are less than one, meaning that statistical noise
was enough to mask the influence of anthropogenic forcing in driving extreme temperature anomalies and
weak surface winds.

We find that 76.7% of historical realizations of the PPI contain a positive trend (Figure 4c), consistent with
the observed trend and statistically distinguishable from the random preindustrial sample (p = 0.001). We
therefore conclude that anthropogenic forcing had a significant effect on decadal‐scale increases in the
PPI, independent of its influence on individual events like the January 2013 event. We also calculate a
signal‐to‐noise ratio of 0.91, indicating that anthropogenic forcing had almost as large of an effect as natural
variability in shaping PPI change in the CESM‐LE historical realizations. The median ratio of the forced
component to internal variability was 0.56, but 26.7% of CESM‐LE historical realizations had a ratio above
1, indicating that some realizations contained a discernibly greater effect from anthropogenic forcing rela-
tive to internal variability on historical change in the PPI (Figure 5).

Note that the Anderson‐Darling p value for the PPI is 0.051, which is above our threshold of 0.05 but still
significantly less than that of the other two indices, meaning that CESM‐LE less effectively represents the
underlying variability of the PPI than that of the HWI or WMI. This is consistent with the finding of Zou
et al. (2017) that CESM may underestimate historical changes in the PPI. While we consider CESM‐LE's
representation of important meteorological features sufficient for this analysis, care should be taken in
future research to explore the factors influencing model representation of observed meteorology.

4. Discussion

We evaluated the effect of historical forcing on the probability and magnitude of Beijing's January 2013 air-
pocalypse in multiple indices of air quality meteorology. Anthropogenic forcing had a small effect on the
probability of the January 2013 event in the HWI (return period ratio of 1.09), WMI (return period ratio of
1.06), and PPI (return period ratio of 1.05), an effect that was largely outweighed by natural variation. In
the WMI, anthropogenic forcing had a small or insignificant effect on the probabilities of both the
January 2013 event and the long‐term positive trend. However, in both the HWI and PPI, there is some
divergence between the degree of anthropogenic influence on the observed trend and on the January 2013
event; anthropogenic forcing had a significant effect on the probability of the observed trend in both but a
small effect on the probability of the January 2013 event. This divergence can be understood as the distinc-
tion between the effect of anthropogenic forcing on the full distribution of a variable versus its effect on
extreme events at the tails of that distribution. A strong relationship between anthropogenic forcing and
interdecadal change in the HWI and PPI is separate from a strong relationship between anthropogenic for-
cing and extremes in those indices, and our results demonstrate the importance of attributionmethodologies
which explicitly distinguish between those relationships.

The divergence in results between the three indices may be partially due to the different mechanisms by
which climate change affects each of their constituent variables. These physical mechanisms are the subject
of ongoing research. Cai et al. (2017), when developing the HWI, attributed potential future increases in
HWI values to a combination of lower‐troposphere warming and near‐surface temperature inversions creat-
ing a more stable atmosphere, faster warming on land than the ocean creating a weakened East Asian winter
monsoon and reduced northwesterly winds, and a long‐term shallowing of the East Asian trough associated
with weaker circulation in northeast China. In developing the PPI, Zou et al. (2017) attributed its long‐term
increase to decreasing Arctic sea ice and increasing Eurasian snow cover, which produce anticyclonic
anomalies in the Arctic and northeast Asia and enhance the stagnant conditions over Beijing. They also
found that CESM may underestimate the recent decreases in Arctic sea ice and increases in Eurasian snow,
meaning our results may underestimate the influence of climate change on the PPI distribution and its
extremes (Zou et al., 2017). While we cannot conclude that anthropogenic warming has affected historical
change in theWMI, Pei et al. (2018) hypothesized that positive SST anomalies in the northwest Pacific create
anomalously high‐pressure systems off the eastern coast of China, which produce anomalous southerly
winds and weaken the East Asian winter monsoon.

Note, as before, that these three indices are not statistically independent, so our results do not span the full
range of uncertainty associated with anthropogenic influence on extreme air quality events in Beijing. In
addition, these indices are not perfectly correlated with the physical concentration of pollutants (Figure 2),
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meaning that our attribution methodology can only assess anthropogenic influence on the meteorological
indices themselves not air quality as such. Further research is necessary to explicitly link anthropogenic
influence to the physical concentration of pollutants. In addition, our analysis cannot disentangle the direct
effects of meteorology from pollutant‐meteorology feedbacks, such the role of black carbon in depressing the
planetary boundary layer (Ding et al., 2016), the weakening effect of black carbon on the East Asian winter
monsoon (Lou et al., 2019), or role that dust plays in suppressing wind speeds (Yang et al., 2017). However,
given the complex relationships between anthropogenic and biogenic emissions of pollutants, atmospheric
chemistry, and meteorology, it is reasonable to focus our analysis on direct meteorological influences to
reduce the uncertainty associated with connecting all of these factors to human influence.

Our results diverge from those of Li et al. (2018), who attributed 40% of the probability of the January 2013
event in the HWI to anthropogenic forcing. A divergence in results is expected, as they define the January
2013 event according to the synoptic conditions that produce high‐HWI values instead of the HWI timeseries
itself. Li et al. (2018) explicitly distinguish between these high‐HWI days and the background synoptic con-
ditions that promote these extreme days, so our results and theirs are not directly comparable. In addition,
our use of the CESM‐LE single‐model multirealization ensemble is subject to inherent model biases, as is Li
et al.’s use of the MIROC5model. For example, CESM is known to have a lower historical climate sensitivity
than much of the CMIP5 ensemble, a factor that highlights the need for large initial‐condition perturbation
ensemble development from multiple modelling groups.

In all three indices, the contribution of the observed trend to the likelihood of the event was larger than the
model‐simulated contribution of anthropogenic forcing to that likelihood. This divergence demonstrates the
importance of partitioning attribution methods into metrics that draw solely from the observed record and
methods that use climate model simulations that represent the historical and preindustrial climates. While
anthropogenic warming may be a component of the observed trend, it may only be a small component rela-
tive to natural variability. The short timescale of the observational record means it is not possible to rule out
natural interannual or interdecadal variability as a significant contributor to observed trends.

By definition, detection and attribution investigations of past events restrict their analysis to the historical
record. However, several investigators have found that certain meteorological conditions that support extre-
mely poor air quality are likely to increase in frequency and/or magnitude in a high‐emission future.
Differences in extreme air quality meteorology between the historical record and model projections raise
the question of “time of emergence,” or the period when an anthropogenic signal begins to distinguish itself
from underlying climate variability (e.g., King, Donat, et al., 2015; Tan et al., 2018). Similar to detection and
attribution investigations, time of emergence studies are beginning to be applied to more complex environ-
mental variables. The expanse of both extreme event attribution and time of emergence to novel environ-
mental conditions therefore promises to advance a more complete understanding of the changing
influence of climate change in the past, present, and future.
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