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Glycemic Control of People With Type 1
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Abstract—The objective of the paper is to develop an
open loop insulin infusion profile, which is capable of
controlling the blood glucose level of people with Type 1
diabetes in the presence of broad uncertainties such as
inter-patient variability and unknown meal quantity. For il-
lustrative purposes, the Bergman model in conjunction with
a gut-dynamics model is chosen to represent the human
glucose-insulin dynamics. A recently developed sampling
based uncertainty quantification approach is used to de-
termine the statistics (mean and variance) of the evolving
states in the model. These statistics are utilized to define
chance constraints in an optimization framework. The so-
lution obtained shows that under the assumptions made
on the distribution of the model parameters, all possible
glucose trajectories over time satisfy the desired glycemic
control goals. The solution is also validated on the FDA
approved Type 1 Diabetes Metabolic Simulator suggesting
that the proposed algorithm is highly suitable for human
subjects.

Index Terms—Type 1 diabetes, chance constraints, un-
certainty quantification, sequential cone programming.

I. INTRODUCTION

P EOPLE suffering from Type 1 Diabetes lose their ability
to synthesize natural insulin from their pancreas. Admin-

istration of exogenous insulin forms the only method of treat-
ment today for their survival. This is done either manually with
the help of subcutaneous injections of insulin before meals or
by using an insulin pump. Calculation of the insulin dosages
requires patients to be particularly cognizant of their own glu-
cose levels, diet and daily activity levels. Even then, the risk of
hyperglycemia and hypoglycemia is never absent. This puts se-
vere limitations on the quality of life of the patient considering
Type 1 diabetes is a chronic disease which requires daily moni-
toring over the patient’s lifetime.

To alleviate the burden of self treatment and make the pro-
cedure safer, the biomedical engineering community has made
significant progress towards building a device that can mimic the
behaviour of a natural pancreas, called the Artificial Pancreas
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(AP) [1]. An AP comprises of a control algorithm which deter-
mines the required insulin to regulate blood glucose level vari-
ations caused by: meals, exercise, hormonal fluctuation, stress,
etc. Specifically, the objective of the algorithm is to determine
the insulin dosage needed to maintain the glucose level within
normal limits over all time. This prescribed output of the algo-
rithm is then fed to the insulin pump for infusion. The AP also
integrates Continuous Glucose Monitoring (CGM) technology,
which can serve as an input to the algorithm.

Several researchers have made contributions towards devel-
oping control algorithms for the AP over the past decade (See
[2]–[4] and references therein). Lunze et al. [5] review the state
of the art in controller design for people with type 1 diabetes.
They tabulate a spectrum of control algorithms ranging from
traditional PID controllers to adaptive MPC controllers. They
conclude their paper by listing some of the outstanding prob-
lems that need to be resolved before an artificial pancreas can
be widely deployed. In the development of most algorithms,
the human glucose insulin dynamics are represented by a dy-
namic mathematical model. However, a major challenge in this
framework remains accounting for the variability that exists in
the true human glucose insulin dynamics between patients and
even within a patient. The variability stems from the fact that
the human body reacts differently depending on the time of day,
the type and quantity of meals, current blood glucose levels and
even levels of stress.

To account for this inter- and intra-patient variability, it is
often assumed that the mathematical model is plagued with
uncertain parameters. Principles of robust control theory, un-
certainty quantification and stochastic systems can then be used
to estimate parameter ranges as well as develop control algo-
rithms for the stochastic mathematical model (For reference see
[6]–[9]).

This paper presents a probabilistic problem formulation for
the design of optimal controllers for people with Type 1 dia-
betes in the presence of model and meal uncertainties. The clas-
sical Bergman model is used to illustrate the proposed control
formulation [10]. Since the traditional exponentially decaying
models for glucose appearance in the Bergman model seem
to depart from the glucose appearance rates from the FDA ap-
proved T1DMS simulator [11], a gut-dynamic model is included
resulting in a sixth order model. A chance constraint, which only
requires information of the mean and variance of the distribu-
tion of the blood-glucose is used to impose an acceptable risk
level. We assume five uncertain parameters in the model, un-
certainty in the meal size and uncertainty in the plasma glucose
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at the time of insulin bolusing. Since, we only require informa-
tion about the mean and variance of the evolving blood-glucose,
the recently developed Conjugate Unscented Transform (CUT)
approach [12] is used to estimate the blood-glucose statistics.
A sequential cone programming problem is then solved to de-
termine the optimal insulin infusion profile to track an ideal
glucose trajectory for the nominal meal.

This document is structured as follows. Section I introduces
the problem statement and presents some background in the
field. Section II delineates the system dynamics as well as ar-
ticulates the environment used for the simulations. Section III
provides a brief overview of the Conjugate Unscented Trans-
form (CUT) and how it can be used to determine statistics
of stochastic variables. This is followed by Section IV where
the concept of chance constraints are introduced. Then, in
Section V, the method to determine the statistics of blood glu-
cose using CUT is explained. Section VI combines results from
the previous two sections to present the implementation of the
chance constraints on blood glucose distribution. The sequential
cone programming algorithm is outlined in Section VII where
the final results are presented. Section VIII then presents the val-
idation of the resulting control profile on the T1DMS software.
The paper concludes with closing remarks in Section IX.

II. MODEL AND SIMULATION ENVIRONMENT

A. Dynamic Model

The mathematical model chosen in this work to represent the
glucose-insulin dynamics in the human body is the Bergman’s
Minimal model [10]. It is defined by the dynamic equations:

Ġ(t) = −(X(t) + p1)G(t) + p1Gb + Rag (t)/Vg (1)

Ẋ(t) = −p2X(t) + p3 (I(t) − Ib) (2)

İ(t) =

⎧⎪⎪⎨
⎪⎪⎩
−p4I(t) + γ(G(t) − h)(t − tm ) for t ≥ tm and

G(t) ≥ h

−p4I(t) otherwise
(3)

where p1 (min−1), p2 (min−1), p3 (min−2 · L/mU), p4
(min−1), γ (min−2 · mU · dL/mg · L) and h (mg/dL) are
model parameters. p1 is used to characterize the effective glu-
cose disappearance at basal insulin levels, while p2 along with
p3 represents the capacity of insulin to increase glucose disap-
pearance and hinder more glucose production. The states G(t)
(mg/dL), X(t) (min−1) and I(t) (mU/L) represent the blood
(plasma) glucose concentration, (effective) insulin in the remote
compartment and the plasma insulin concentration respectively.
Gb and Ib represent certain basal values of the states G(t) and
I(t). The term γ(G(t) − h)(t − tm ) in equation (3) mimics the
action of the human pancreas, tm (which has been assumed to
be 30 min for all simulations) is time of meal consumption and
Vg (dL) is the distribution volume of glucose.

The additional term Rag (t) (mg) (also referred to as the Rate
of appearance of glucose in plasma) is introduced in the model
to replicate a meal intake disturbance. Rag (t) is evaluated using

a human gut dynamics model adopted from the works of Dalla
Man et al. in [13]. The model is given by the equations:

q̇sto1(t) = −k21qsto1(t) + Dδ(t − tm ) (4)

q̇sto2(t) = −kemptqsto2(t) + k21qsto1(t) (5)

q̇gut(t) = −kabsqgut(t) + kemptqsto2(t) (6)

Rag (t) = fkabsqgut(t) (7)

qsto = qsto1 + qsto2 (8)

kempt(qsto) = kmin + 0.5(kmax − kmin)(tanh [α(qsto − bD)]

− tanh[β(qsto − cD)] + 2) (9)

α =
5

2D(1 − b)
(10)

β =
5

2Dc
; (11)

where qsto1 (mg) and qsto2 (mg) are the amounts of glucose
in solid and liquid phases respectively present in the stomach at
any time. qgut (mg) is the amount of glucose in the intestines,
δ(.) is the Dirac delta function and D (mg) is the amount of
glucose consumed during the meal in milligrams. k21 (min−1)
is a constant which governs the rate of food movement from
the first stomach state to the second. kempt (min−1) represents
the rate at which the food is drained from the second stomach
state to the gut state. It is bounded by maximum and minimum
values kmax and kmin respectively. kabs (min−1) is the rate
at which the carbohydrates are absorbed into the body from
the gut. α and β are parameters which determine the transition
of kempt between its extremities. Finally, b, c and f are other
dimensionless parameters of the model.

A schematic illustrative diagram of the Bergman model as
well as the gut dynamics model can be found in [10] and [13]
respectively. Details regarding the physiological parameters of
these models can also be found in the said references.

One of the objectives of the control problem is to make the
glucose concentration in people with Type 1 diabetes track the
glucose concentration of a normal person over time after a meal.
The variation of glucose concentration for a normal person is
referred to as the target glucose trajectory. This target trajectory
is generated by simulating the Bergman model using parameter
values fit to a normal person and a meal size of 37.5 grams of
carbohydrates. Since these parameters vary among people, a set
of values are chosen, for illustrative purposes, from literature
[14], [15]; where the Bergman model and the gut dynamics
were actually fit to real data (taken from a normal subject(s)).
These values are listed in Table I. The initial conditions for the
trajectory was selected as:

G(0) = Gb ; X(0) = 0; and I(0) = Ib .

It should be noted that during practical implementation, the
parameters and initial conditions are not binding and can be
altered depending on the target trajectory desired for a patient.
It is entirely plausible that separate target trajectories may be
required for patients with varying degrees of severity of the
disease. In fact, the target trajectory need not be obtained from
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TABLE I
PARAMETER VALUES FOR A NORMAL SUBJECT

a model simulation and could be prescribed by the respective
physician. However, in this work as mentioned previously, for
illustration, the target trajectory is obtained from a simulation.

The natural pancreas term (γ(G(t) − h)(t − tm )) is removed
from the model for people with Type 1 diabetes and is substituted
by an artificial insulin input term U ′(t) similar to Lynch and
Bequette in [16]. This alters equation (3) to

İ(t) = −p4I(t) + U ′(t). (12)

The diabetic model (comprised of equations (1), (2) and (12))
is now an unstable system in the absence of any insulin control
causing the glucose concentration to grow unchecked (which is
reasonable to assume: for a person with Type 1 diabetes with no
insulin). To stabilize the glucose concentration in such patients,
in reality, a basal insulin dosage is given. This concept can be
modeled by assuming the control to be of the form

U ′(t) = U(t) + p4Ib (13)

where the term p4Ib mimics the basal dosage. With this modifi-
cation, the diabetic model can be summarized as:

Ġ(t) = −(X(t) + p1)G(t) + p1Gb + Rag (t)/Vg (14)

Ẋ(t) = −p2X(t) + p3(I(t) − Ib) (15)

İ(t) = −p4(I(t) − Ib) + U(t). (16)

Equations (14) through (16) now represent a stable system where
the glucose concentration is driven to the desired basal level
(Gb ). The objective is to determine an insulin trajectory (U(t))
that can be administered intravenously (IV) to successfully track
the target trajectory to accommodate consumption of meals.

B. Model Uncertainties

This subsection is used to outline the uncertainties that have
been assumed in the mathematical model to account for pa-
tient variability. It also presents the values for the non-uncertain
parameters.

In this work, G(0), p1 , p2 , p3 , kmax and kmin are assumed
to be uncertain. k21 is equal to kmax and is therefore also un-
certain [13]. The non-uncertain Bergman parameter p4 is taken
from literature [16] where the value was identified by fitting
the Bergman model to the outputs obtained from the Sorensen
diabetic model. The other non-uncertain parameters for people
with diabetes (kabs , b, c, f , Vg Gb and Ib ) were obtained from the
FDA approved Type 1 Diabetes Metabolic Simulator (T1DMS)

TABLE II
PARAMETER VALUES FOR A SUBJECT WITH TYPE 1 DIABETES

software (corresponding to an average adult). The parameters
have been tabulated in Table II.

G(0) is the glucose concentration in plasma when the simula-
tion starts (i.e., at t = 0 min). Since, the glucose concentration at
that instant is unlikely to be exactly the basal value (Gb ), G(0) is
assumed to be uniformly distributed about Gb with a 30% varia-
tion on either side of it. Therefore, G0 ∈ U [83.43, 154.9415] is
used to characterize the uniformly distributed uncertain initial
value of glucose.

To account for inter-patient variability p1 , p2 , p3 , kmin and
kmax are also assumed to have uniform distributions with a 30%
variation about their nominal values. The nominal values (for
people with Type 1 diabetes) are taken from literature [16] and
T1DMS average adult data set (Table II). The variation ranges
of the uncertain parameters are quoted in parenthesis along with
their nominal values.

The final uncertainty has been assumed in the meal size con-
sumed by a patient (i.e., the parameter D in equation (4)). Ac-
cording to the 2010 Dietary Guidelines [17] published by the
U. S. Department of Agriculture, Health and Human Services,
the daily carbohydrate (CHO) intake goal for all ages should
be 130 gm. Depending on the individual and time of day, meal
sizes can vary. Light and heavy meals vary in their CHO counts
significantly. The values can vary between 15 gm for a snack to
60 gm for lunch if CHOs from all foods at a meal are added up. A
breakdown of the CHO content of recommended foods for peo-
ple with diabetes can be found in article [18] from the American
Diabetes Association. Based on the daily total and mealtime
CHO recommendations, D is conservatively assumed to have a
uniform distribution given by D ∈ U [15000, 60000] mg.

All the aforementioned uncertainties are time invariant and
their impact on the evolution of the blood glucose is of inter-
est in the analysis of any controller. Monte Carlo simulations
can be used to estimate the evolution of the probability density
function of the blood-glucose. However, it is well recognized
that this is computationally expensive and will not be suitable
for real-time estimation of the time evolution of the statistics of
the blood-glucose. A technique such as polynomial chaos [19]
presents a powerful approach for the estimation of the statistics,
but also suffer from the curse of dimensionality as the number
of uncertain variables increase. A powerful deterministic sam-
pling based approach was proposed by Julier and Uhlman [20],
called the Unscented Transform (UT). UT permits using 2p + 1
number of samples (sigma points) for p dimensional uncertain
inputs to estimate the mean and covariance of the output. One
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shortcoming of the UT is that as the number of uncertain vari-
able grows, the weights assigned to the sigma points can become
negative and the location of the sigma points can lie outside the
support of the uncertain variable. For example, if a variable is
uniformly distributed, the sigma points could potentially fall
outside the support of the uncertain variable. This motivates the
use of a more sophisticated method to calculate statistics of ran-
dom variables. The next section outlines a recently developed
sampling scheme that addresses the aforementioned issues.

III. CONJUGATE UNSCENTED TRANSFORM

The Conjugate Unscented Transform (CUT) for multivariate
uniform distributions introduced in [12] is a technique used to
calculate statistics of uniform random variables which undergo
nonlinear transformations. It belongs to a wide class of tech-
niques commonly referred to as sigma-point based estimators.
In these methods, a set of points (a.k.a. the sigma points) are
selected from the uncertain space (whose statistics are known)
such that the mean and the covariance of all the points match
with the known statistics. Each of these points are then made
to go through the non-linear transformation to yield another set
of points in the transformed space. The statistics of the trans-
formed space is now evaluated from the transformed points by
weighing them appropriately.

The CUT defines a way to determine the position (xi) and the
associated weights (wi) of these sigma points. If the non-linear
transformation is defined as yi = f(xi), then the statistics (mean
and covariance) of the transformed space (y) is determined by

y =
N∑

i=1

wiyi and (17)

Py =
N∑

i=1

wi(yi − y)(yi − y)T (18)

respectively where N is the total number of sigma points, y and
Py are the mean and the covariance of the transformed variable.

For the diabetes problem considered in this work, CUT is
used to depict the variation in the glucose concentration due to
the assumed uncertainties. The number of uncertainties is 7 (i.e.,
x = [p1 , p2 , p3 , G(0), D, kmax , kmin ]T ). It should be noted that
since k21 is equal to kmax , the dimensionality of the uncertain-
ties remains seven. Since, the variable of interest is the glucose
concentration, the output y is G(t) and the non-linear function f
is the numerical simulation of the diabetic model (equations (14)
through (16)). After assuming that the uncertain variables are
independent, N = 686 sigma points (x(i)) and weights (w(i))
are generated using the CUT-4 algorithm [12]. For each of these
sigma points, the diabetic model is simulated and the glucose
trajectories over time are recorded. The statistics of the glucose
concentration (at each time instant) is then evaluated by weigh-
ing all the trajectories appropriately (as presented in equations
(17) and (18)). Fig. 1 shows a 3-sigma bounded variation of the
glucose concentration, calculated from the 686 trajectories via
CUT.

It is recommended that plasma glucose concentration never
falls below a lower bound Glb (hypoglycemia) at any time.

Fig. 1. Glucose variation with only basal Insulin infusion, i.e., U (t) = 0.

According to a joint consensus statement from the ADA and the
Endocrine Society regarding hypoglycemia and diabetes [21],
the threshold for hypoglycemia (Glb ) should be 70 mg

dL . In addi-
tion, after two hours (120 min) of a meal, it is recommended
by the American Diabetes Association [22] that the plasma glu-
cose concentration be below 180 mg

dL . These constraints have
been shown (in red) in Fig. 1 as well. The objective now is to
figure out a way to incorporate these constraints into the control
problem. One way to do it would be to pose hard inequality
constraints on the blood glucose at the necessary time instants.
However, a downside to this approach is that the hypoglycemic
as well as the hyperglycemic constraints are treated with equal
severity where in reality it is accepted that the hyperglycemic
constraint is a comparatively softer constraint (as compared to
the hypoglycemic one) in the short term. Moreover, assuming
hard constraints may also fail to give a feasible control solution
where significant variability in glucose trajectories have been
assumed. As a result, these two issues motivate a probabilistic
approach towards the glycemic constraints. The next section in-
troduces the concept of chance constraints which is used later to
impose probabilistic constraints on blood glucose uncertainty.

IV. CHANCE CONSTRAINTS

Calafiore and El Ghaoui in [23] provide an approach to rewrite
linear probabilistic inequalities as deterministic inequalities. In
their work, they prove that if a and b are random variables with
known means and variances, then the constraint:

Prob
{
aT x + b ≤ 0

} ≥ 1 − ε (19)

is conservatively approximated by the convex constraint√
1 − ε

ε

{
var
[
aT x + b

]}1/2
+ E

[
aT x + b

] ≤ 0 (20)

where ε (∈ (0, 1)) represents the risk level i.e., the probability
with which the constraint is permitted to be violated. It should
be noted that the constraint is conservative since it subsumes
all distributions with the same mean and variance. Therefore,
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Fig. 2. Pdfs obtained from CUT and MC sampling at times: t =
0, 99 and 174 min. (Pdfs have been scaled for illustration).

if only the first two moments of the random variables (a, b) are
known, equation (20) allows one to enforce equation (19) no
matter what the true distribution of (a, b) is. However, since this
constraint is robust to all distributions, it yields conservative
solutions.

One alternative would be to assume a Gaussian distribution as
the probability distribution function (pdf) of G(t) and enforce a
chance constraint specific to a Gaussian distribution. However,
from Fig. 2 which illustrate the pdf of G(t) one can conclude
that it is non-Gaussian at all times.

In Fig. 2, Gaussian pdfs are generated using the mean and
variance obtained from CUT at 3 distinct time instants (shown
in red). These pdfs are then compared to the pdfs generated from
10000 MC sample trajectories (shown in blue). It is evident that
although the two sets of pdfs have the same first two moments,
they are all different. Hence, the robust chance constraint (equa-
tion (20)) is chosen for implementation.

The idea here is to first: use CUT to obtain accurate measures
of the mean and the variance of plasma glucose (G(t)) over
time and then: use these measures to enforce hypoglycemic or
hyperglycemic chance constraints.

V. COMPUTATION OF MEAN AND VARIANCE

The formulation of the chance constraints is designed only
for linear constraints (Equation (19)). Such a formulation would
need the mean of G(t) to be a linear function of G(0) and U(t)
as well as the variance of G(t) to be a quadratic function of
G(0) and U(t). This is not the case here as can be seen from the
model equations. Therefore, the first objective of this section is
to present a linear approximation for G(t) which can cater to
the chance constraint needs. The second objective is to derive a
way in which the statistics of blood glucose can be determined
after the control input has been slightly perturbed.

To deal with the issue of non-linearity, the non linear model
is linearized about the trajectories generated from the N sigma
points (also called the nominal trajectories). The mean and the

variance of G(t) are then calculated from these linearized mod-
els by appropriately weighing them. This entire process is elab-
orated in this section.

A. Linearization

Let the non-linear diabetes model be described by the
equation

ż = f(z, U) (21)

where z = [G, X, I, qsto1 , qsto2 , qgut ]T . This system is lin-
earized about the N nominal trajectories z(i) . z(i) are generated

from N sigma points using ż
(i)

= f(z(i) , U), where U (also
referred to as the nominal input) is an initial guess of the con-
trol input U . The error dynamics of the linearized systems is
given by

Δż(i) =
∂f

∂z

∣∣∣∣∣
z=z( i ) ,U =U

Δz(i) +
∂f

∂U

∣∣∣∣∣
z=z( i ) ,U =U

ΔU (22)

where (i) represents the system corresponding to the ith sigma
point and varies from 1 to N . This linear system is now dis-
cretized so that linear algebraic chance constraints on the blood
glucose can be exercised.

B. Discretization

The discretized version of equation (22) assuming a Zero
Order Hold setting can be written as

Δz(i)(k + 1) = A
(i)
k Δz(i)(k) + B

(i)
k ΔU(k) (23)

where k is the kth time step, A
(i)
k and B

(i)
k are state dependent

discretized system matrices for the ith sigma point trajectory.
Equation (23) can be simplified to

Δz(i)(k + 1) =

⎛
⎝ k∏

j=0

A
(i)
j

⎞
⎠Δz(i)(0) + B

(i)
k ΔU(k)

+
k−1∑
j=0

⎛
⎝ k∏

m=j+1

A(i)
m

⎞
⎠B

(i)
j ΔU(j) (24)

where Δz(i)(0) represents the initial perturbation state of each
trajectory and is equal to 0.

For the entire work, the simulation time has been as-
sumed to be Tf = 250 min and the sampling time to be
Ts = 1 min. This makes k vary between 0 and 249. Corre-
spondingly, the number of inputs is 250, i.e., U(0) through
U(249). If the entire control profile is defined by the vector
U = [U(0), U(1), . . . , U(249)]T , the entire blood glucose
profile by G = [G(1), G(2), . . . , G(250)]T ), the perturbation
dynamics can be given by the equation

ΔG(i) = M (i)ΔU (25)
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where M (i) =⎡
⎢⎢⎢⎢⎢⎢⎣

CgluB
(i)
0 . . .

CgluA
(i)
1 B

(i)
0 CgluB

(i)
1

...
...

. . .

Cglu

(∏k
j=1 A

(i)
j

)
B

(i)
0 . . . . . . CgluB

(i)
249

⎤
⎥⎥⎥⎥⎥⎥⎦
(26)

and Cglu = [1, 0, 0, 0, 0, 0]. Thus, equation (25) allows us
to write the blood glucose perturbation along each sigma
point trajectory as a linear function of the input perturbation,
accomplishing the first objective of the section.

Cglu can also be used to write the nominal blood glucose
trajectories as

G
(i)

= Cgluz(i) . (27)

Therefore, the blood glucose profile G due to a ΔU change in
the control input profile U can be finally written as

G = G + ΔG (28)

where G =
∑N

i=1 wiG
(i)

, is the stochastic nominal blood glu-
cose trajectory due to the control input U and ΔG is the stochas-
tic perturbation about G due to a perturbation in the control
input ΔU . The statistics of G can now be easily calculated us-
ing relations similar to (17) and (18) since we have G as well
as sigma-point realizations of ΔG. This completes the second
objective.

However, the statistics of most interest is the mean and the
variance of G because the mean and the variance are the only
two moments necessary for the robust chance constraints. The
next section details the development of the chance constraints
using the said two moments.

VI. CHANCE CONSTRAINTS ON GLUCOSE

As expressed previously, this work seeks to implement chance
constraints on the hypoglycemic and hyperglycemic blood glu-
cose concentration levels. It is desired that the hypoglycemic
constraint is always satisfied, i.e., G(k) ≥ Glb for all k. It is
also desired that the hyperglycemic constraint is satisfied after
two hours of the meal, i.e., G(k) ≤ Gub for k > 150 since meal
time is tm = 30 min. In this section, the derivation of only the
hypoglycemic chance constraint at a particular time instant j is
shown, as the other constraints are almost identical. The objec-
tive of this section is to derive a convex inequality as a function
of ΔU to represent the chance constraints.

The blood glucose concentration at the jth minute is given
by the jth row of equation (28) and is summarized as G(j) =
G(j) + ΔG(j). The goal is to effectively implement the fol-
lowing probabilistic constraint

Prob {−G(j) + Glb ≤ 0} ≥ 1 − ε1 for j = 1, . . . , 250. (29)

Ideally, ε1 should be nearly 0 since we want the hypoglycemic
constraint to be satisfied with near probability 1. However, since
the chance constraints are conservative to begin with, a 20%
violation is allowed, i.e., ε1 = 0.2. Equation (29) is equivalent

to the constraint√
1 − ε1

ε1
{var [−G(j) + Glb ]}1/2 + E [−G(j) + Glb ] ≤ 0

(30)
similar to equation (20). Now,

E[−G(j) + Glb ] = −E[G(j) + ΔG(j)] + Glb

= −
N∑

i=1

w(i)G
(i)

(j)

︸ ︷︷ ︸
E [G(j )]

−
N∑

i=1

w(i)M
(i)
j ΔU

︸ ︷︷ ︸
E [ΔG(j )]

+Glb (31)

where G
(i)

(j) is the jth element of G
(i)

and M
(i)
j is the jth row

of M (i) . Moreover,

var [−G(j) + Glb ] = var[−G(j)] = var
[
G(j) + ΔG(j)

]
(32)

since Glb is a number and not a random variable. Continuing
with the development, we get

var
[
G(j) + ΔG(j)

]
= var

[
G(j)

]
+ var[ΔG(j)]

+ 2cov[G(j),ΔG(j)]. (33)

The variances can be found using the following relations

var[G(j)] =
N∑

i=1

w(i)
(
G

(i)
(j) − E

[
G(j)

])2

︸ ︷︷ ︸
C

and (34)

var[ΔG(j)] =
N∑

i=1

w(i)
(
ΔG(i)(j) − E [ΔG(j)]

)2
. (35)

Equation (35) can be simplified in terms of ΔU as

var[ΔG(j)] =

ΔUT

(
N∑

i=1

(M (i)
j − Mj )w(i)(M (i)

j − Mj )T

)
︸ ︷︷ ︸

A

ΔU . (36)

where Mj =
∑N

i=1 w(i)M
(i)
j . The covariance term in equation

(33) is found using

cov
[
G(j),ΔG(j)

]
=

N∑
i=1

w(i)
(
G

(i)
(j) − E[G(j)]

)(
ΔG(i)(j) − E[ΔG(j)]

)
.

(37)

Once again, equation (37) can be simplified in terms of ΔU as

cov
[
G(j),ΔG(j)

]
=(

N∑
i=1

w(i)
(
G

(i)
(j) − E

[
G(j)

]) (
M

(i)
j − Mj

))
︸ ︷︷ ︸

B

ΔU .

(38)
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Therefore, the variance term in equation (30) can be written as
a quadratic function of the ΔU vector as

var [−G(j) + Glb ] = ΔUT AΔU + 2BΔU + C (39)

where A, B and C are defined through equations (36), (38) and
(34) respectively. Since var[−G(j) + Glb ] ≥ 0, a factorization
can be found of the form

var [−G(j) + Glb ] = (PΔU + Q)T (PΔU + Q) (40)

in which case we get

var [−G(j) + Glb ]
1/2 = ||PΔU + Q||2 . (41)

On substituting equations (41) and (31) in (30), the chance
constraint finally reduces down to the cone constraint√

1 − ε1

ε1
||PΔU + Q||2 − E

[
G(j)

]− E[ΔG(j)] + Glb︸ ︷︷ ︸
H ypoC on(j )

≤ 0.

(42)
Equation (42) represents the hypoglycemic glucose chance con-
straint for the jth time instant or minute. By considering varying
values of j, the hypoglycemic constraint can be imposed for
every minute. A similar inequality can also be derived for the
hyperglycemic constraint√

1 − ε2

ε2
||PΔU + Q||2 + E

[
G(j)

]
+ E[ΔG(j)] − Gub︸ ︷︷ ︸

H yperC on(j )

≤ 0.

(43)
in which case j would vary from 150 to 250. ε2 is used to
denote the risk level for the hyperglycemic constraint and since
it is a much softer constraint, the value was fixed to be 0.3, i.e.,
allowing a 30% violation.

Now that all the components necessary to solve the optimal
control problem have been defined, the next section focuses on
the sequential cone programming algorithm (which uses results
from all the previous sections) to finally solve it.

VII. SEQUENTIAL CONE PROGRAMMING

This section presents the iterative sequential algorithm that
can be used to determine a solution to the optimal control prob-
lem.

The algorithm starts with an initial guess of the entire
IV insulin control profile. This profile is also termed as the
nominal control trajectory and is represented by U = [U(0),
U(1), . . . , U(249)]T . In the problem it is assumed that the
control U results in the stochastic state G and the control
U = U + ΔU results in the stochastic state G = G + ΔG.

Using U as the control input trajectory, N nominal state
trajectories z(i) are determined based on the N sigma points.
The sigma point trajectories now allow the determination of the
mean and the variance of G as weighted sums of the nominal

glucose trajectories (G
(i)

).
This step is followed by linearizing the state space model

about those N nominal state trajectories to obtain N time-
varying continuous linear systems. The N time-varying

continuous linear systems are then discretized to obtain N time-
varying discrete linear systems with system matrices A

(i)
k and

B
(i)
k (as explained in Section V-A and V-B).
These N sets of system matrices are then used to construct

N special matrices (M (i)), which map the control perturbation
profile (ΔU ) to the glucose perturbations (ΔG(i)) about the

N nominal glucose trajectories (G
(i)

). This allows the deter-
mination of the mean and the variance of ΔG as a linear and
a quadratic function of ΔU respectively. At this point in the
development, the following optimization problem is solved:

minimizeΔU ||E[G] − Gtarget ||2
subject to HypoCon(j) � 0 for j = 1, . . . , 250

HyperCon(j) � 0 for j = 150, . . . , 250

U � 0.

The cost function of the problem is designed to minimize the
error norm between the expected value of the glucose trajectory
(E[G]) and the target glucose trajectory (Gtarget) shown in blue
in Fig. 1 so that the control solution drives the mean glucose
of the person with Type 1 diabetes towards a glucose profile
seen in a normal individual. The first two constraints refer to
the hypoglycemic and the hyperglycemic chance constraints
derived in the previous section (summarized by the inequalities
(42) and (43)). The final constraint is to enforce the fact that
insulin can only be added to the bloodstream (and not removed).

The optimization problem is convex since the cost is a 2-norm
error function (where the error function is linearly dependent
on the optimization variable ΔU ), the chance constraints are
cone constraints and the final constraint is a linear inequality.
There are many efficient convex solvers available to solve such
problems. For this work however, the CVX MATLAB toolbox
[24] was used. Once the solution ΔU ∗ is obtained, the control
input solution is updated using the relation: U ∗(1) = U + ΔU ∗.

This step concludes the first iteration with U ∗(1) representing
the control solution determined from the iteration. Since the so-
lution at the end of iteration 1 is obtained as a perturbation about
an initial guess nominal control trajectory U , it depends on the
choice of U . To converge to at least a locally minimal control
solution, the entire process is made iterative where the nominal
trajectory U for the second iteration is made equal to the con-
trol solution from the previous iteration, i.e., U ∗(1) . Therefore,
we get U |iter+1 = U ∗(iter) where iter represents the iteration
number in the algorithm. As the entire control problem is re-
solved by solving convex cone optimizations sequentially at
each iteration, the phrase Sequential Cone Programming (SCP)
is used to justify the process.

Fig. 1 shows the variation of glucose (with the mean G in
black dashed line) when no insulin control is present. We can
see that a large fraction of the grey area (which shows a 3 − σ
glucose variability bound) violates the hyperglycemic glucose
constraint beyond the 150 min mark, thus motivating the need
for an insulin control.

Results from the SCP are now presented. The SCP algorithm
is started with an initial nominal guess for the control. The
nominal guess is chosen based on the pre-meal bolus principle



1780 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 4, JULY 2019

Fig. 3. Control solution U obtained after 9 iterations of the SCP.

Fig. 4. Glucose variation G obtained after 9 iterations of the SCP.

where an insulin bolus is given prior to the consumption of every
meal [25]. Therefore, the initial control guess is assumed to be
U = [40, 0, . . . , 0]T .

It should be pointed out that the optimization assumes a linear
approximation of the true non-linear model. Therefore finding
a control solution for the linearized model which satisfies all
the constraints does not imply that the same control on the
true system would also satisfy those constraints. Hence, the
SCP algorithm is terminated only if it is observed that the con-
trol solution is able to satisfy all the constraints even for the
true non-linear system. In the illustrated case, the true glucose
variation satisfied the desired constraints at the end of the 9th
iteration. The control solution obtained at the end of the 9th
iteration is shown in Fig. 3. Note that t = 0 corresponds to the
time when the insulin infusion starts. The associated glucose
variation (derived from the CUT algorithm) is shown in Fig. 4.
In this figure we see that the glucose variation never violates the
hyperglycemic limits. However, we do observe a consistent frac-
tion of the variation to be violating the hypoglycemic bounds.

This is because an allowance of 20% (i.e., ε1 = 0.2) was made
and the SCP algorithm obtained a solution within those realms.
Since perfect tracking of a normal person’s glycemic behaviour
is impossible, it is also seen that the nominal trajectory tracks
the blue target trajectory as best it can (since the error between
them was minimized).

It should also be mentioned that although the optimization
problem being solved is a convex one, the final solution obtained
need not be globally optimal. This is because the optimization
problem tries to determine a perturbation profile about a pre-
established control trajectory and not estimate the entire control
input. Therefore, the optimization problem posed in this section
only provides the best perturbation profile. Repeatedly solving
this optimization problem (by updating the nominal control in-
put) however, allows us to converge to a reasonable solution. It
must also be mentioned that for an assumed U , a solution might
not be feasible. This does not mean that a control input solution
does not exist, but it just motivates the algorithm to select a
better U .

VIII. VALIDATION OF CONTROL SOLUTION

The solution shown in Fig. 3 is specific to the target trajec-
tory shown in Fig. 4. It should be noted that a different target
trajectory would yield a different solution.

In order to check whether the solution control profile U∗

is reasonable, it is tested on the FDA approved Type 1 Dia-
betes Simulator software [11] developed by the Epsilon Group.
T1DMS was chosen because it is a well established simulator
software for validation and has been extensively used by the
diabetes research community ([26], [27]).

The solution is applied to 10 in silico adult subjects (simi-
lar to article [27]) and their glucose trajectories over time are
monitored. The resulting trajectories have been shown in Fig. 5.
Figs. 5(a), 5(b) and 5(c) correspond to simulations with distinct
meals comprising 25 gm, 37.5 gm and 50 gm CHOs respectively.
Although the control was obtained for up to 250 min mark, the
simulations were executed up to 800 min to test the effects on
the longer term. The insulin input U(t) was zero between the
time t = 250 and t = 800 which corresponds to a constant basal
insulin infusion.

It can be seen that the glucose trajectories of the 10 adults
are always within the allowed percentages of constraint viola-
tion after a meal. For the 25 gm meal case, at any instant in
time, not more than 2 out of 10 (20%) cases ever violate the
hypoglycemia bounds which is exactly the permitted percent-
age violations allowed during the determination of the control
profile. Moreover, the authors would also like to say that, only
one of the trajectories out of the two go severely low and violate
the new definitions of clinical hypoglycemia which is defined
by glucose levels ≤54 mg/dL (see reference [28]). Similarly,
for the 37.5 gm meal case, we observe only a single hypo-
glycemia constraint violation. Finally, for the 50 gm meal case,
only a single hypoglycemia and for the first time a couple of
hyperglycemia violation is observed at an instant in time.

Therefore, the obtained insulin control profile solution is suc-
cessful at maintaining the glucose levels of a variety of adult
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Fig. 5. Results from T1DMS software simulations for 3 distinct meal scenarios (SCP based design).

Fig. 6. Results from T1DMS software simulations for 3 distinct meal scenarios (Nominal model based design).

patients within the stipulated limits and within the risk limit
prescribed in the design.

The open loop solution obtained in this paper can be motivated
to be used in a Model Predictive Control (MPC) framework. The
optimization problem can be solved to obtain an initial control
profile. This solution can be implemented for a first few minutes
(say for example 10 min) until a glucose observation is made.
The optimization problem can be re-solved again after incorpo-
rating the observed glucose observation and the new solution
could be again implemented over the next 10 min window. This
framework of MPC could be exercised by re-solving the algo-
rithm every 10 min to deal with the variability of the human
glucose-insulin physiological dynamics and allow a form of
feedback correction into the algorithm.

Under assumptions of model uncertainties, nominal models
have been used to implement MPC in the literature before.
Bemporad and Morari in [29] make an appropriate distinction in
the robust analysis of MPC algorithms where they talk about two
distinct methods of MPC design. One, which involves an MPC
design on the nominal model without taking into consideration
uncertainty and two, where the design process itself considers
model uncertainties.

Hence, in this paper, for purposes of comparison, a control
solution is derived by using a nominal model (i.e., using param-
eters from Table II) to track the target trajectory. Performance
of this nominal control solution is then tested on the T1DMS
for meal sizes identical to the SCP solution and presented in
Figs. 6(a), 6(b), and 6(c). It should be pointed out that these two

algorithms: the nominal one and the SCP based one correspond
to the distinct design strategies alluded to in [29].

From Fig. 6 we see that although for meal sizes 37.5 gm and
50 gm the nominal model design does well, it does very poorly
for the 25 gm meal size. Four trajectories are seen to be violating
the hypoglycemic bounds with two of them going dangerously
low (i.e., <54 mg/dL). In comparison, the SCP based design
only allows two trajectories to violate the hypoglycemic bound
and performs reasonably well for other meals. Moreover, for
the SCP based design, the allowance of hypoglycemic violation
(which was set at ε1 = 0.2) can be changed to suit the user. The
value can be reduced further if stricter restrictions are needed
for hypoglycemia. This flexibility in the design process is not
available in a nominal model based design: hence providing one
more advantage of the SCP over the nominal model design.

To study the effect of ε1 and ε2 , the optimization problem was
re-solved for some other combination of ε = [ε1 , ε2 ]T values
and the corresponding results have been presented in Fig. 7.
The percentage of time spent inside the acceptable glycemic
region has often been considered a metric of quality for any
control strategy under scrutiny [30]. In this work, however, a
complement of that metric which is defined as the percentage of
time spent outside the acceptable glycemic region is considered
to evaluate the quality of the derived control. Moreover, this
metric is derived for each scenario (i.e., ε1 and ε2 combination)
and comparisons are made to show the influence of ε. Ideally,
lower the time spent outside the euglycemic region, better is the
control algorithm.
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Fig. 7. Percentage of time spent outside euglycemic region for each ε
case.

For each of the ε cases (the ε values for each case is quoted
in Fig. 7), a new control solution was derived. This control was
then used to simulate the glucose dynamics of 10 adult subjects
in T1DMS for meal sizes of 25, 37.5 and 50 gms. This means,
we obtained 3 glucose trajectories for each subject for each ε
case (i.e., a total of 120 trajectories from 4 control solutions; 30
of which are shown in Fig. 5 while the rest have been presented
in Supplementary Materials). The total time spent outside the
euglycemic region for all the meal sizes were then added and
evaluated as a percentage of the total time of simulation for each
subject and each ε (which means we get 40 values for time of
hypo- and hyper- glycemic violations since we have 4 ε cases
and 10 subjects).

Fig. 7 is used to present this data in the form of a bar graph.
Four colors are used to distinguish the four cases studied and
color intensities are used to distinguish between the hypo (darker
intensity)- and hyperglycemic (lighter intensity) excursions. The
bars of different intensities have been stacked on top of each
other to represent the total percentage of time spent outside the
euglycemic region. We see that subjects 1-4 and 10 hardly show
any transgressions. However, valuable insight can be drawn
from subjects 5-9. The first thing to notice is that the first two
bars and the last two bars of each subject are very similar. This
means that the effect of ε2 is not significant. This observation
can be attributed to the fact that the hyperglycemic constraints
during the design process is not active. As can be seen in Fig. 4,
the hyperglycemic bounds are never violated for the Bergman
+ Gut dynamics model. Hence, on relaxing the risk of hyper-
glycemic violation, significant changes to the control solution
does not occur and therefore we obtain similar violations. The
second significant thing to notice is that the last two lightly
colored bars are consistently lower than the first two lightly
colored bars for any subject. This means that ε1 does have an
effect on the control solutions as expected. As the allowance of
hypoglycemic bound violation is increased (from 0.1 to 0.2), the
glucose trajectories tend to get pushed down leading to fewer
hyperglycemic violations. The other obvious result as seen in

subjects 7 and 9 is that, with an increase in ε1 , the magnitude of
the solid bars have increased which is again consistent with our
design process. It says that as more violations of hypoglycemia
are permitted during the design process, more hypoglycemic
violations take place on the actual in-silico subjects.

In closing, one should note that the expected hypo- and hyper-
glycemic violations based on the Bergman/gut dynamic model
need not coincide with the results of the T1DMS in view of the
different levels of complexity of the models. However, it should
be noted that the trends are consistent across the models and
by increasing the sophistication of the model used to design the
controller, one should expect a closer reproduction of results
from the T1DMS simulator.

IX. CONCLUSION

The paper uses a chance constraint framework to pose a robust
optimal control problem in the form of a sequential cone pro-
gramming problem; the solution to which yields a desired open
loop robust control profile. In this article, the model of choice
has been the Bergman Minimal Model and the resulting con-
troller has been tested on the FDA approved T1DMS simulator.
Parametric studies on the impact of the risk tolerance levels for
hypo- and hyperglycemic constraints are also carried out and
the results are consistent across the simulators. However, the
methodology is not limited to this model. Other sophisticated
models can also be used to implement the algorithm for better
performance.

In addition, this paper discussed the development of control
algorithms for an intravenous input. Since most insulin pumps
are dedicated to subcutaneous insulin delivery, the algorithm
shown would be practical only in a monitored ICU (Intensive
Care Unit) environment of a hospital. However, once again the
methodology of the algorithm is not limited and can be eas-
ily adapted to subcutaneous delivery if an appropriate model
for insulin movement from interstices to the bloodstream is
augmented.

Moreover, selecting an appropriate target trajectory is also
imperative since the algorithm is sensitive to it. This is because
different groups of people or patients require different target
trajectories (for example: women with gestational diabetes have
hyperglycemia thresholds of 140 mg/dL) which are more feasi-
ble and relevant to their specific conditions.
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