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Unmanned aerial vehicles (UAVs) are making increasingly long flights today with signifi-
cantly longer mission times. This requires the UAVs to have long endurance as well as
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1 Introduction

Unmanned aerial vehicles (UAVs) are increasingly being inte-
grated into more and more areas of application. For example,
Horcher and Visser in their article [1] motivate the need for
UAVs in natural resource management, monitoring forestry, and
agriculture where UAVs can serve as ideal vehicles to provide
low cost observations with high temporal rates. In another article,
Adams and Friedland [2] survey the role of UAVs in emergency
response, emergency management, and postdisaster assessment.
In many of these applications and others, UAVs are required to
stay in the air longer or cover more distance to complete assigned
duties. This requires the UAVs to have long endurances and long
ranges. Therefore, there is a need to optimize these two perform-
ance criteria. Generally, aircraft trajectories are steady-state tra-
jectories due to the constraint of human comfort as there is a limit
to the amount of acceleration and jerk that is considered comforta-
ble for humans. Even though the human factor is not present in a
UAV, the steady-state trajectory is still used. Many researchers
have already shown that the steady-state optimal solutions (to
maximize endurance or range) for aircraft flight can be nonopti-
mal [3-5] and seeking periodic solutions could benefit
performance.

Motivation to look for periodic solutions can be dominantly
found in nature. Several processes like the orbital motion of plan-
ets, the rhythm of the beating heart, or even the flight of some
migratory birds are known to be periodic [6]. Gleiss et al. [7] even
conjecture that there is an evolutionary convergence in locomo-
tion pattern in aerial and marine animals which is characterized
by a periodic interspersed active propulsion and coasting phases
for optimal locomotion.

Nature has also shown that periodic locomotion is more optimal
than steady-state in terms of energetics. For instance, the
albatross, which covers about 100,000 miles annually in flight,
exhibits periodicity while taking into account the wind shear [8].
The zebra finch is another bird that presents periodic locomotion.
Periodic locomotion is not just limited to birds: mammals such as
the dolphin and the elephant seal also move in similar patterns.
Numerous other animals that present intermittent locomotion as
opposed to steady motion can be found in article [9] by Paoletti
and Mahadevan. Moreover, articles [6,10,11] have also found that
periodic motion is more efficient than pure steady motion. Since
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optimal control problem is formulated to study UAV trajectory planning. The concept of
differential flatness is used to reformulate the optimal control problem as a nonlinear
programing problem where the flat outputs are parameterized using Fourier series. The
I1 test is also used to verify the existence of a periodic solution which outperforms the
steady-state motion. An example of an Aerosonde UAV is used to illustrate the improve-
ment in endurance and range costs of the periodic control solutions relative to the equi-
librium flight. [DOI: 10.1115/1.4043114]

higher efficiencies in energy consumption of UAVs in flight can
potentially increase endurance and range, seeking periodic control
trajectories for aircraft path planning finds strong motivation.

Optimal periodic solutions to improve performance have been
found in various processes such as drug delivery [12], vehicle
cruise control [13], methane production from micro-algae [14],
and harvesting [15,16] to name a few. Various researchers have
tackled the problem of optimal trajectory generation for aircrafts
as well. For example, pioneering fuel optimal trajectories related
work can be found in Refs. [17-21]. Several among them have
also recognized the benefit of periodic control in improving fuel
optimal performance. For example, Speyer [4] and Dewell and
Speyer [19] showed the nonoptimality of the steady-state flight
and the improvement in optimal periodic flight in a hypersonic
aircraft using the energy model. In recent years, Harada and
Bollino [20] and Chen and Speyer [22] have worked on the fuel
optimal periodic solutions for UAVs.

In this work, the concept of differential flatness is exploited to
solve an optimal control problem to determine the desired peri-
odic trajectories of the control inputs. Differentially flat systems
are the ones where a set of outputs can be identified, which equal
the number of inputs, such that all the system states and inputs
can be algebraically represented in terms of the flat outputs and
their derivatives. Differential flatness, first introduced by Fliess
et al. [23], has been extensively used in trajectory planning of
UAVs [24-26]. It has been coupled with the linear quadratic regu-
lator-based controller to give optimal paths [27], used to control
multiple UAVs [28], and even applied to obstacle avoidance tra-
jectory generation [29-31]. It has also been used in planar vertical
takeoff and landing vehicles [32], in trucks and trailers [33,34],
wheeled mobile robots [35], oscillation damping [36], control of
fuel-cells [37] as well as periodic drug delivery [12]. In fact, a
noncomprehensive catalog of mechanical systems which are dif-
ferentially flat can be found in the article by Murray et al. [38].
This paper adds to the pool of knowledge by employing the con-
cept of differential flatness to determine endurance and range opti-
mal UAYV periodic trajectories.

The paper is structured in the following way. Section 2 presents
the dynamic model of the UAV used and the assumptions on
which the formulation is based. Section 3 gives an overview of
the concept of differential flatness. Section 4 summarizes the I1
test. Section 5 shows the formulation of the optimization problem
for both the steady-state solution and the periodic control solution.
Section 6 presents the results of the IT test and the optimal control
problem illustrated on the Aerosonde UAV. Finally, Sec. 7 pro-
vides concluding remarks.
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2 Unmanned Aerial Vehicles Model

A point-mass aircraft model is used to represent UAV dynam-
ics. The model captures the dynamic effects encountered in civil
aviation [39] and is widely accepted in the community. The
model, however, makes the following assumptions:

e The bank angle (¢) and the angle of attack (o) can be
changed instantaneously (i.e., the UAV actuator dynamics
are relatively much faster).

e The lift and drag of the UAV changes instantaneously with
respect to the angle of attack (o).

e The mass of the UAV remains constant while seeking solu-
tions to optimization problems, as the change in fuel weight
in the period of interest is small relative to the gross weight
of the UAV.

The differential equations governing the dynamics of the UAV
(can be found in Ref. [40]) and are given by

X =Vcosycosy (D

y = Vcosysiny 2)

z=Vsiny 3)
.8
P fv(ncosqb —cos?y) @
. nsin
y=nong )
cos Yy
. T—-D
V=———gsiny (6)
m

where x, y, and z are the position of the aircraft center of gravity
in the earth reference frame, y is the flight-path angle, y is the
heading angle as illustrated in Fig. 1, V is the aircraft speed, g is
the acceleration due to gravity, and m is the mass of the aircraft. T
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Fig. 1 Description of the aircraft states, inputs, coordinates,
and forces
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is the thrust, ¢ is the bank angle, 7 is the load factor, and D is the
drag. The load factor (n) is given by

n=-—
mg

and L= %pS(CLO + Cra)V? (7
where L is the lift, p is the density of air, S is the planform area of
the UAV wing, « is the angle of attack, and C;, and C;, are the
aerodynamic coefficients of lift. The expression for lift can be
found in Ref. [41].
The expression for drag (D) is also taken from the literature
[41] and is given by
1 (Cro + Cwa)z) )
b= 2 ps (CDO + meAR v ®
where e is the Oswald efficiency factor, AR is the wing aspect
ratio, and Cpg is the constant parasitic drag. Wing stall is not
taken into consideration while modeling the aerodynamic forces
on the aircraft. Consequently, a limit is placed on the angle of
attack to ensure accuracy of the model. It is assumed that the posi-
tion coordinates of the UAV are available for measurement.
Hence, the inputs and outputs of the model can be conveniently
grouped as

U=[¢,o T and Y =[xy, 2 ©9)

respectively.

3 Differential Flatness

A system is said to be differentially flat if its states and inputs
can be expressed as functions of its outputs (also known as flat
outputs) and its derivatives. For a system that meets these condi-
tions, the state and control variables can be expressed as algebraic
functions of the flat outputs, while the flat outputs can be parame-
trized using basis functions in time. This allows us to seek solu-
tions to constrained optimal control problems by solving a
nonlinear optimization problem where the objective is to deter-
mine the coefficients of these basis functions under certain con-
straints. These constraints can be derived after mapping the state
and the control constraints to the coefficient space. To illustrate
this, consider the dynamic system

x =f(x,u) with y=h(x) (10)
where x € R" is the state vector, u € R" is the input vector, and y
is the output vector of interest. It should be pointed out that one of
the conditions for a system to be differentially flat is that the num-
ber of the outputs should be equal to the number of inputs (there-
fore, we have y € R™). Under this condition, the system given by
Eq. (10) is differentially flat if a flat-output vector z € R™ can be
identified of the form
1D

z=n(x,u,u,i,...

where

x=x(z,2,%,....
12)
{ u=u(zz2,%,...
and () refers to the ath derivative of (.). The components of the
flat outputs should also be differentially independent [42]. It
should also be noted that the flat output z need not be the output of
interest y. It is possible that the flat outputs do not have any physi-
cal meaning or significance. The flat output now allows one to
plan optimal trajectories with boundaries and dynamic constraints
in flat output space, which can then later be mapped back to the
state space and the input space.
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The UAV model (Egs. (1)-(6)) is differentially flat [31], with x,
¥, and z serving as the flat outputs, permitting the states and inputs
to be written as a function of the flat-outputs (Y) and their deriva-
tives as follows:

V= /22 432 + 27 (13)
L[z
y = arcsin| - (14)
1= arcsin( B ) (15)
Vcosy
¢ = arctan (M) (16)
gcosy+Vy

2m . Cuo
o= Y+ Vi) — 17
” (pSV2 cos d)CLa) (gcosy +V3) Cry a7
T =D+mV + mgsiny (18)

The flatness of the point-mass model can now be exploited to
determine periodic optimal control trajectories by solving a non-
linear programing problem in the flat output space (by determin-
ing the coefficients of the basis functions used to parameterize the
flat outputs).

4 The II Test

Before we look for better periodic solutions to an optimal con-
trol problem, there is a need to investigate if an optimal periodic
solution exists which is better than the optimal steady-state solu-
tion. This investigation is done by conducting a test popularly
known as the I test. When a periodically varying input provides a
better cost than the steady-state solution, the optimal periodic con-
trol problem is said to be proper, and if small periodic perturba-
tions of the input around the steady-state solution leads to
improvements in performance, then it is said to be locally proper.
The II test is a frequency domain criterion that determines local
properness (first introduced in Ref. [43] and revisited in Ref.
[44]). The test is valuable in situations where the first-order condi-
tions for optimality prove deficient in giving information. More
work on the IT test can also be found in the articles [45-47]. To
construct the IT test, the first step is to determine the steady-state
solution of the optimal control problem of interest. Then, the sys-
tem equations are linearized about the steady-state solution and
the expressions for the partial derivatives of the Hamiltonian are
obtained. For example, given a dynamic system (Eq. (10)), a cost
function to be minimized

1 T
minJ = fj g(y)dt >0 (19)
TJo
over the inputs, an optimal period 7 and an output function
y=v(x,u) (20)

the Hamiltonian is defined as

H(x,u,y, b p) = g(y) + 2f (x,u) + o (v(x,u) - y)

where 4 € R" and u € R™ are Lagrange multipliers. The transfer
function of the system linearized at the optimal steady-state solu-
tion is given by the equation

G(s) = (s —f) " 1)

where f, and f, are the partial derivatives of the system equation
with respect to the states and the inputs, respectively. The bar
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denotes that the partial derivative is evaluated at the steady-state
solution. For the IT test, a self-adjoint matrix I1(w) is obtained
using the expression

M(w) = G (—jo)H G (jo) + H,,G(jow)
+ G (—jo)H o + Hu (22)
where G’ is the transpose of G, and H ., H,,, H,,, and H,, are
second-order partial derivatives of the Hamiltonian evaluated at
the steady-state solutions. The II test determines whether small
sinusoidal perturbations of the input u# around the optimal steady
solutions improves performance. Performance improvements are
possible if the self-adjoint matrix I1(w) is found to have negative
eigenvalue for any frequency range in the domain: @ > 0. The Il
test will be used to verify the existence of a periodic solution
which outperforms the steady-state motion for the UAV problem.

5 Problem Formulation

In this work, two cost functions are considered which reflect
how far a UAV can fly (range) and how long it can stay up (endur-
ance) in the air. This section presents a derivation of these costs, a
list of the imposed constraints, and a comprehensive formulation
of the optimization problem that needs to be solved to optimize
endurance and range.

5.1 Cost Function Formulation. According to Ref. [48],
endurance can be defined as the total time that an aircraft stays in
the air on a tank of fuel. To improve performance of an aircraft, it
is often desirable to maximize the endurance of the aircraft. To
maximize the endurance, the average rate of fuel consumption per
unit time should be minimized.

A major factor influencing fuel consumption is the thrust spe-
cific fuel consumption (TSFC) [48]. The TSFC is a characteristic
of the power-plant. It is a measure of the fuel efficiency of an
engine design with respect to thrust output and is mathematically
represented as the fuel consumed per unit of thrust generated per
unit time.

Let the TSFC be represented by ¢. The mass of fuel consumed
over an incremental time dr is then given by

dm = oTdt (23)
where T is the thrust. Integrating Eq. (23) with respect to time
gives the mass of fuel used in a given time period T—Ty. There-
fore, the mass of fuel consumed (M)) is

Ty
My = J oT dt (24)

To

This means that the average fuel consumption per unit time (i.e.,
the final cost function henceforth referred to as the endurance cost
function) is given by

M; 1 Ty
J=—1 = J oT dt
time Ty —Tp T,

(25)

The second objective of interest is the range of the aircraft.
Range can be defined as the total distance moved by an aircraft on
a tank of fuel. To maximize the range, the time average rate of
fuel consumption per unit distance should be minimized. To
derive the range equation, we note that

dR dR
V=—=dt=—
dt 1%

where R is the range. Therefore, Eq. (23) can be rewritten as
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T
dm =22 dr (26)
%

Then, the time average fuel consumption per unit range is
given as

T
1 Jdm 1 [’O‘T @7

—dt = —dt
Ty —To ) dR T =Ty )g, V
Equation (27) only captures the average fuel consumption per unit
distance along the direction the aircraft travels. However, a more
appropriate cost function would be to determine the average fuel
consumption per unit displacement along a particular direction of
interest (could be the direction in which the aircraft was supposed
to travel). In this work, the x-axis direction is chosen to be that
direction for illustration. Hence, the speed of the aircraft V is sub-
stituted by the velocity in the x-direction making the final cost
function (henceforth referred to as the range cost function) be

1 T T
J= J i
Tf —To To

}ﬁ
Vcos(y)cos(x)

(28)

5.2 Optimal Steady-State Flight. For the optimal steady-
state solutions, the cost functions given in Egs. (25) and (28) are
written in their steady-state form. This leads to the following opti-
mization problems for endurance and range cost functions:

Endurance

in loT 29
“«¢T7!};2¢17V[O—} (29)
Range
min L (30)
0,127,V |V cos(y)cos(y)
subject to

It should be noted that in all the optimization problems posed in
this section, (x = 0) is not considered to be a constraint. This is
because the steady-state flight objective is to fly without losing
altitude in the x-direction. The other constraints are imposed to
ensure flight in a constant configuration.

5.3 Optimal Periodic Flight and Trajectory Parametrization
Based on Flatness. For the optimal periodic solutions, the cost
functions given in Egs. (25) and (28) are rewritten here to pose
two optimization problems (Pg) and (Py), respectively, as

Endurance (Pg)

1
min [oT]ar 31
0. 1.(T;~To) Ty — To JTO
Range (Pg)
1 (7 T
min J 7 dt (32)
0dT(T=To) Ty — To Jg, | V cos(y)cos(y)

subject to
Periodic constraints

¥(To) = y(Ty)

2(To) = 2(Ty)
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V(To) = V(Ty)

2(To) = y(Ty)
1(To) = x(Ty)

Physical constraints on altitude, velocity, thrust, angle of attack,
and displacement are also imposed

2000 >z >0
V>0

140>T >0

The constraint on the angle of attack («) is imposed to maintain
the validity of the UAV model which requires a small angle of
attack.

This optimization problem is solved by making use of the dif-
ferential flatness of the UAV model and parametrizing the flat out-
puts by a linear combination of basis functions in time casting it
into a nonlinear optimization problem. Since, we seek a periodic
solution to the problem, the natural choice of basis functions are
elements of the Fourier series. Typically, the highest necessary
derivative of the flat outputs is expressed as an unbiased Fourier
expansion (see Ref. [12]). Therefore, in this case, the flat outputs
are written as

>IT:
M=

[@2i—1 sin(iwt) + ay; cos(iwt)] (33)
=1
N
j = Z[bz,-,l sin(ier) + by; cos(iwr)] (34)
=1
N
5= Z[QH sin(iwt) + ca; cos(iwt)] (35)

i=1

where w = (2n/Ty — Ty) The highest order derivative of the flat
output is parametrized and lower order derivatives are obtained by
successive integration. The periodicity constraint on the states “y”
and “z” will allow only the constants of integration on the second
integral to be nonzero, while all constants of integration for the x
state can be nonzero. This is done to avoid polynomial terms in
time in the states y and z. The coefficients are then determined by
discretizing the time domain, imposing all the physical constraints
at each distinct instant in time, imposing the periodicity con-
straints and finally solving the nonlinear optimization problem.
The nonlinear optimization problem eventually results in solving
for 6 N+ 5 variables (6 N Fourier coefficients, four constants of
integration, and the period T with T, = 0).

6 Results

The effectiveness of the proposed method is shown using simu-
lation. The parameters used in the simulation are the Aerosonde
UAYV parameters from Beard and McLain [41]. These parameters
are given in Table 1.

6.1 Optimal Steady-State Flight. For the steady profile, the
cost, the values of the states, and input for the optimal solution
obtained from the optimizer are given in Table 2.
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Table 1 Values of parameters used in simulation

Parameters Value
Air density (p) 1.2682kg/m*
Planform area (S) 0.55 m?
Coefficient of parasitic drag (C ) 0.03
Coefficient of lift at zero o (Cyp) 0.28
Coefficient of o induced lift (Cy,) 3.45
Mass (m) 13.5kg
Gravitational acceleration (g) 9.81 m/s’
Oswald efficiency factor (e) 0.9

AR 15.2445

Table 2 Values of optimal steady-state solution

States Inputs
Function Cost z oy g Vv T o ¢
Endurance 0.08657 0 0 0 20.7485 7.2144 0.1745 0
Range 0.004026 0 0 0 24.0499 8.0688 0.1091 0

6.2 II Test. To construct the II test, the system equations
given by Egs. (1)-(6) are linearized about the steady-state
solutions. The expressions for the partial derivatives of the
Hamiltonian and the linearized equations are then obtained. The
equations for X and y are not considered as considering them to be
steady implies that the aircraft is motionless. Since V is consid-
ered steady, it implies that X and y are constant but not both zero.

The Hamiltonian for the system is given by

H=J+f

where f'is the system dynamics vector (i.e., a vector comprising
the right-hand side of Eqs. (3)—(6)), J is the integrand of any of
the cost functions given in Egs. (25) and (28), and 4 is the costate
of the steady-state solution. To test local properness using the IT
test, the self-adjoint matrix II(w) is derived using Eq. (22).

According to Wolfe and Speyer [49], if the self-adjoint matrix
II(w) is partially negative for some w > 0, then the optimal peri-
odic control problem is locally proper. This can be checked by
observing the minimum eigenvalue of the self-adjoint matrix. If a
@ >0 can be found such that the minimum eigenvalue is negative,
it can be asserted that the system is locally proper.

The results from the Il test for endurance and range are
illustrated subsequently. For the endurance cost function, the
Hamiltonian is given by

H=oT+1f (36)
After deriving the II(w) matrix and observing the corresponding
eigen values of the matrix, it can be seen that the minimum
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Fig. 3 Effect of the N-count on the endurance cost

eigenvalue falls below zero for a finite range of w (presented in
Fig. 2(a)). Hence, it is inferred that a periodic solution will pro-
duce a better performance than a static optimum.

For the range cost function, the Hamiltonian is given by

ol
H=—+1
VJr S

(37
Once again, the minimum eigenvalue of the corresponding I1(w)
matrix is observed (presented in Fig. 2(b)) to fall below 0 for val-
ues of @ > 0: motivating the need to look for a periodic solution
with a better cost value.

6.3 Optimal Periodic Flight. This subsection presents the
results of the optimization problems Py and Pg. The effect of
increasing the complexity of the parametrization on the optimal
control design is studied and is presented in Sec. 6.3.1. Analysis
on the final solution profiles obtained is investigated subsequently
in Secs. 6.3.2 and 6.3.3.

6.3.1 Convergence Analysis. Pr and Py are solved with vary-
ing number of Fourier terms in the parametrization to examine the
effect of N on the cost. From the definitions in Eqgs. (33)—(35), the
number of terms in the Fourier function is given by 2 N. The value
of N is varied between 1 and 20 and the effect on both cost func-
tions is examined.

The plot for the evolution of the endurance cost as a function of
N is shown in Fig. 3. All values of N yielded a better cost than the
steady-state. Although it might appear that for N = 1, the steady-
state cost and the periodic cost are the same: they are in fact mar-
ginally different. Jy — | =0.08632 which is a 0.29% improvement
over the steady-state cost. Figure 3 also shows that the cost value
saturates as the number of Fourier terms increases. The magnitude
of differential improvement in the cost keeps dropping with
increasing values of N. This can be attributed to the fact that, at
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Fig. 2 (a) Minimum eigenvalue of Il(jw) for endurance and (b) minimum eigenvalue of Il(jw)

for range
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low values of N, there are not enough degrees-of-freedom in the
parametrization while solving Pg to capture the global optimal
solution. However, this fact is remedied as more and more Fourier
terms are included. As a result, we see the cost converging.

Figures 4(a)-4(c) present the control profiles (in normalized
time) for a few selected N values. Considering all trajectories are
periodic and are indifferent to shifts in time, the peaks of the
thrust for all the N plots have been aligned for ease of comparison.
It should be noted that all the other plots have been shifted appro-
priately corresponding to their shifts in thrust. The blue dotted
lines represent the corresponding steady-state values and have
been included for reference. It is interesting to note that in
Fig. 4(a), as the number of Fourier terms is increased, the thrust
profiles approach a scenario where the thrust is active for a single
brief interval of time and is then inactive for the rest of the maneu-
ver. In Fig. 4(b), a similar pattern is observed for the angle of
attack («). o remains at its maximum allowable limit throughout
the maneuver when the thrust is inactive while it sharply drops in
magnitude before restoring itself at its previous maximum during
the thrusting phase.

071003-6 / Vol. 141, JULY 2019

Figures 5(a)-5(c) present the potential energy, kinetic energy,
and the total energy profiles for the maneuver, respectively. It
should be noted that the mean of the altitude is the zero potential
energy reference, which is why the potential and total energy
charts display negative values. In all of these plots, it can be seen
that as the number of Fourier terms increases, the profile tends
toward a particular shape with less oscillations. Moreover, on
careful observation, one can learn that the total energy keeps drop-
ping at all times except when the thrust is active where it rapidly
increases. Intuitively, this makes sense: the UAV continuously
loses energy while it overcomes drag and this lost energy is then
pumped back into the system when the thrust is active.

Similar figures and patterns can also be observed when optimiz-
ing for range. Figure 6 shows the convergence of the range cost
with increasing values of N.

Figures 7(a)-7(c) show the plots of the control profiles obtained
after solving Pg. Once again, the plots have been shifted and time
normalized for ease of visual comparison. Figures 8(a)-8(c) pres-
ent the energy profiles for the maneuvers. Similar to endurance, it
can be seen in these plots that as the number of Fourier terms is
increased the profiles tend to converge to a particular shape: the
thrust approaches a distinct active and an inactive region, and the
energy correspondingly is pumped up and gradually drained in
those regions, respectively. The angle of attack («) (Fig. 7(b)),
however, has a more involved trajectory compared to the P case.
A distinctive double trough is observed during the thrusting phase
followed by another gentler valley in the inactive phase.

6.3.2  Endurance. To analyze the optimal solution for endur-
ance, the result with 40 Fourier terms (N=20) was chosen.
Figures 9(a)-9(c) present plots of the control input profiles, while
Figs. 10(a)-10(c) present a subset of the state trajectories corre-
sponding to the periodic solution. Figure 11 shows the trajectory
of the optimal periodic flight: the starting point of the maneuver is
demarcated by the circle on the left, while the end point is marked
by the circle on the right.

The thrust profile illustrated in Fig. 9(a) demonstrates a distinct
active propulsion phase amidst the coasting of the UAV. This
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Fig. 10 State trajectories after solving Pg for N = 20: (a) velocity, (b) heading angle (y), and (c) flight path angle (y)

active phase is shaded in gray in Figs. 9 and 10. The spatial trajec-
tory is also plotted differently to distinguish the active and the
inactive phase in Fig. 11. The dotted line represents the coasting
phase, while the solid line represents the active phase. During the
active phase, the UAV accumulates potential energy as shown by
the increase in the altitude of the UAV in Fig. 11. During the
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coasting portion of the periodic control, Fig. 10(a) shows that the
velocity of the UAV is essentially constant. The only increase in
the velocity is during the active propulsion phase which also cor-
responds to an increase in kinetic energy. It can also be seen from
Fig. 9(b) that the increase in velocity is accompanied by a reduc-
tion in the angle of attack. Examining the equation of both lift and
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drag, it is evident that the reduction in drag corresponding to low-
ering the angle of attack is more significant compared to the loss
of lift due to the square term of o in the drag equation.

Figure 12 shows the plot of kinetic energy versus the potential
energy. The dashed line represents the thrust inactive region,
while the solid line represents the thrust active region. A color
gradient also indicates the value of the thrust. Lines of constant
total energy are plotted in the background for reference. From the
plot, it can be seen that for the part of the trajectory where the
thrust is not active the kinetic energy remains constant while
potential energy changes. The strategy is, thus, to use the thrust to
add kinetic energy to the system as it can be seen that the kinetic
energy changes only when the thrust is active.

The optimal cost resulting from this trajectory is 0.05583 kg/s
with a period of 309.2170s: corresponding to a percentage
improvement of 35.51% over the steady-state solution. This
shows that with periodic control, a better performance can be
obtained for the endurance of an unmanned aerial vehicle.

6.3.3 Range. The optimal solution using 40 Fourier terms
(N =20) was chosen. Figures 13(a)-13(c) show the control profile
for the periodic solution, while Figs. 14(a)—14(c) show the plot of
the state evolution of the periodic solution. The shaded region
indicates the time period where thrust was active. Figure 15 shows
the trajectory of the optimal periodic flight, and once again, the
start and end points are demarcated by the circles on the right and
left, respectively. The dotted part of the trajectory indicates the
coasting phase, while the solid part represents the active phase.
From the thrust profile illustrated in Fig. 13(«a), a distinct active
propulsion phase where the thrust is active can be seen, while the
UAV is coasting at every other time. Examining Figs. 13(b) and
14(a), it can be seen that the increase in velocity is accompanied
by a reduction in the angle of attack. This is a consequence of the
lift been linear in «, while drag is quadratic in o. The reduction in
drag corresponding to lowering the angle of attack is more signifi-
cant compared to the loss of lift. In a portion of the nonactive

Fig. 12 Plot of endurance kinetic energy versus potential ,,,qc the UAV gained velocity by rapidly losing altitude hence
energy converting potential energy into kinetic energy. During the active
phase, the UAV gained kinetic energy and this kinetic energy is
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converted back to potential energy by increasing the altitude as
shown in Fig. 15. Therefore, for range, there is a cyclic conversion
between kinetic energy and potential energy where a rapid drop in
altitude is used to gain velocity; hence, kinetic energy and the
velocity gain are used to increase altitude thereby converting the
kinetic energy to potential energy. The energy losses due to drag
are compensated for by thrust in the active phase.

Figure 16 shows the plot of kinetic energy versus the potential
energy. The dashed line shows the region where the thrust is inac-
tive, while the color gradient indicates the value of the thrust.
Lines of constant total energy are also indicated in the plot. From
the plot, it can be seen that during the phase where the thrust is
inactive part of the potential energy is converted into kinetic
energy with some energy lost due to the effect of drag. Hence in
this, both height reduction and thrust are used as mechanisms to
increase velocity.

The optimal cost corresponding to the optimal range trajectory
is 0.001935kg/m with a period of 46.0305s. This shows a per-
centage improvement of 51.95% over the steady-state solution.
This shows that with the periodic control, a better performance
can be obtained for the range of an unmanned aerial vehicle.

7 Conclusion

In this work, three-dimensional optimal periodic solutions to
enhance the endurance and range of the UAV were determined.
The optimal trajectory generation was accomplished by exploiting
the differential flatness of the system. The effect of the number of
terms in the Fourier function was also considered and it was dis-
covered that as the number of terms in the Fourier function
increased, the cost converged.

The IT test was also carried out to examine whether periodic
inputs can improve the performance of the UAV. The result
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showed that for both the considered cost functions, improvements
are possible by giving periodic inputs which was shown in the
simulation section to be true.

From the cost functions examined, it can be seen that optimal
periodic endurance solution had an improvement of 35.51% with
N =20, while range had an improvement of 51.95% with N = 20.
This improvement can be attributed to the steady-state solution
involving constant usage of thrust as opposed to the periods of
peaks and rests in the periodic solution. It should be noted that
other locally optimal periodic solutions may exist and may be
reached depending on the initial guess for coefficient of the Fou-
rier functions as the optimization is very sensitive to initial
conditions.
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