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An adjoint sensitivity-based approach to determine the gradient and Hessian of cost func-
tions for system identification of dynamical systems is presented. The motivation is the
development of a computationally efficient approach relative to the direct differentiation
(DD) technique and which overcomes the challenges of the step-size selection in finite
difference (FD) approaches. An optimization framework is used to determine the parame-
ters of a dynamical system which minimizes a summation of a scalar cost function eval-
uated at the discrete measurement instants. The discrete time measurements result in
discontinuities in the Lagrange multipliers. Two approaches labeled as the Adjoint and
the Hybrid are developed for the calculation of the gradient and Hessian for gradient-
based optimization algorithms. The proposed approach is illustrated on the Lorenz 63
model where part of the initial conditions and model parameters are estimated using syn-
thetic data. Examples of identifying model parameters of light curves of type 1a superno-

vae and a two-tank dynamic model using publicly available data are also included.
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1 Introduction

In data assimilation and system identification of dynamic sys-
tems (among other fields), it is often required to solve optimiza-
tion problems where cost functions are functions of the state
variables at specific time instants. When gradient-based optimiza-
tion techniques are used to solve these problems, gradients of the
cost with respect to the optimization variables are needed. How-
ever, the first-order methods may sometimes perform poorly espe-
cially if the condition number of the Hessian (the second
derivative of the cost function with respect to the decision varia-
bles) is large [1], the system is highly nonlinear or there is a strong
interaction between parameters of the model [2]. In these cases,
for faster convergence, Hessians of the cost with respect to the
optimization variables are desired. In applications, when Hessians
are readily available, the Newton method is chosen as it provides
excellent local quadratic convergence [3]. In other scenarios,
Trust-region algorithms are used where Hessians are usually used
to approximate the cost by local quadratic functions [4]. Several
other methods (like the Davidon-Fletcher-Powell (DFP), Broyden-
Fletcher-Goldfarb-Shanno (BFGS), and other quasi-Newton meth-
ods) approximate the Hessian (when computing them becomes
numerically intractable) as part of the optimization algorithm.

However, for dynamic systems, calculating the Hessian of a
cost function which is state dependent is computationally very
expensive since it requires solving matrix and tensor differential
equations. As a result, methods to efficiently evaluate these deriv-
atives become paramount. Numerous researchers have addressed
the issue of determining gradients and Hessians of the cost using
adjoint-based techniques for several different class of problems.
For example, Refs. [5] and [6] studied efficient adjoint sensitiv-
ities for systems defined by differential algebraic equations, Sen-
gupta et al. in Ref. [7] informally derived the adjoint gradient
equations (for a system defined by the first-order ordinary differ-
ential equations) and compared its performance to finite difference
(FD) and direct differentiation (DD). Raffard et al. [8,9] proposed
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an adjoint-based approach to determine the gradients of a cost
function for parameter identification of protein regulatory net-
works and planar cell polarity signaling, respectively. The Hes-
sian, however, was approximated by the finite difference of the
gradients in both of these papers. Suwartadi et al. [10] investi-
gated adjoint-based gradients for optimization problems with state
constraints as well as a summation cost. Raffard and Tomlin [1]
proposed the second-order adjoint-based algorithms to deal with
partial differential equations in optimization problems and illus-
trated it on a problem of air traffic flow. Extensive literature
([2,11,12] and references therein) is also present to determine
Hessian-vector products cheaply using adjoint-based methods.
Several other papers (for example, Refs. [13—15]) studied the use
of adjoint-based algorithms for optimal control or sensitivity anal-
ysis where the cost metric is an integral function.

This paper focuses on determining adjoint-based second-order
derivatives of cost functions which are summations of a state and/
or measurement dependent scalar function, reflecting the avail-
ability of measurements at discrete time instants. This results in
discontinuities in the time evolution of the Lagrange multipliers,
necessitating additional boundary conditions on the co-states at
the discrete time instants. Two separate algorithms (the adjoint
and the hybrid methods) are explored in this framework inspired
by the literature review presented previously. The proposed algo-
rithms develop novel expressions for Hessians which do not affect
codes necessary for integrations. Hence, any existing numerical
integrators can be used to implement them, thereby employing a
“differentiate then discretize” strategy (a strategy similar to Ref.
[2]) as opposed to “discretize then differentiate.” As a result, the
algorithms can be used on stiff as well as nonstiff systems as long
as appropriate numerical integrators are employed. The efficiency
of the adjoint-based approaches is compared to the existing
approaches of FD and DD to illustrate the computational benefits.

The paper has been structured as follows: Section 2 formally
defines the problem statement and the necessary notation required
throughout the document. Section 3 presents the methods of finite
difference and illustrates the effect of perturbation values on the
derivative errors. Section 4 reviews the existing method of direct
differentiation. Sections 5 and 6 present the adjoint and the hybrid
method, respectively, emphasizing the novel way to evaluate
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Hessians. Finally, the document ends with three examples of sys-
tem identification problems including a chaotic dynamic system,
light curve of type 1la supernovae, and a two-tank model in Sec. 8
along with concluding remarks in Sec. 9.

2 Problem Statement

Dynamic models considered in this work are of the form

x =f(x,p,t) with xo =x(to) M
where x € R" is the state vector of the system, x(fo) is the initial
condition of the states, and p € R” is the parameter vector on
which the system model depends.

Consider a generic scalar cost function of the form

T(x0,p) = Y g(y(1), x(1:), p) )
i=0

where g(y(#;),x(#;),p) represents the value of a scalar function
g(y,x(t),p) (C* continuous in x and p) at the ith time-step (#;). In
the context of a system identification problem (where the initial
conditions and the parameters of the system are being estimated),
g(y(#;),x(#;), p) could be the squared residual between the model
output and the observation y(;) of the true plant.

For simplicity, in all subsequent equations, J(xy, p) is written as
J. Similarly, g(y(t;), x(#;),p) and f(x,p, ) have also been simpli-
fied to just g; and f, respectively.

From an optimization point of view, it is required to find a p
and an xo which minimizes J. The objective of this work is to
facilitate the use of all derivative-based optimization techniques
to solve the problem by developing efficient ways to determine
the gradients and Hessians of the cost function with respect to the
optimization variables (i.e., p and x,). If the optimization varia-

bles are grouped as ¢ = [p", x3]" where p=[py, ---,p,]" and
xo = [xo1, ...7x0,,]T, then the goal is to evaluate
e
dp,
dr 2 T
dJ dp, &7 dp®  dpd
. dpy and L2 g szo 3)
dq daj dg? d-J d-J
—~ —— —~ —
(p+n)x1 dxop (p+n)x(p+n) dxydp dx%
daJ
_d)C()n_

where we define the second derivative of any scalar function ((-))
with respect to any two vectors (a € R", b € R”) by

() ()

’ daldbl daldb,,
O . )
dadb : i :

nxp () ()

da,db; da,db,

It should be noted that, since x is a function of xy and p, J can be
expressed as J(q).

In this work, comparison of the adjoint and the hybrid method
to other existing approaches has been realized on the basis of the
number of scalar integrations required in each algorithm. As more
integrations require a higher computational effort, this number

(referred to as Nﬁmeﬂmd) in the document) has been used to provide

an indirect comparison of computational efficiency of each

method. N™™% is derived in terms of two variables, namely, the
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number of states (1) and the number of parameters (p) in the
model equation (Eq. (1)).

Realizing that no two integrations are the same, for example, in
a variable step-size integrator, the local error for every step is a
function of the form of the differential equation, the comparison
of the number of integrations while not being ideal is a reasonable
metric for comparison of computational cost. The number of itera-
tions to convergence might be a metric, but it might not reason-
ably reflect the computational cost per iteration. Efficiency refers
to the time required to reach the optimum and is a reflection of
computational efficiency. Effectiveness refers to the ability of the
algorithm to converge to the optimal solution. Effectiveness does
not reflect computational cost which is why we will refer to both
efficiency and effectiveness in comparing various algorithms in
the numerical examples section of the paper.

3 Finite Difference

The central idea in FD to calculate the gradients is to observe
the fractional change in cost when each optimization variable is
sequentially perturbed. The gradient can be calculated using either
the forward, backward, or central difference approaches. The for-
ward difference formula is given by

dar T (g) — T (9)
d—qi(ll) = 5a; 5
where
J(iql)(q):'](qh ~--7f1ii5‘]: '-~7qn+p) (6)

will be considered to illustrate the challenges of using finite differ-
ence approaches to estimate gradients. A derivation of the
forward-difference formula is now presented. The derivation starts
from a Taylor series expansion of the cost function. Although, the
derivation is shown only for a system with one parameter, it can
be generalized to a system with multiple parameters.

The cost function can be written as

dJ
J(q+5q):J(q)+d—q(q)5q+-~ @
dJ J(q+dq) —J
=Yg _Jato I ®
q dq

where the ellipsis represents the higher-order terms (HOTs). If the
HOTs are ignored in Eq. (8), it leads to Eq. (5). Similar
perturbation-based strategies can also be developed to determine
Hessians.

It should be noted that FD only provides an approximation and
is greatly dependent on the perturbation size dg;. For the purpose
of error analysis, consider the following equations:

Al J(g+0q) = J(q) L&)
— S — num (0¢) — 5~ (9)0g — - - 9
a0 () 5 +enum (9q) 2 dg? (9)0q ©)
True FD HOT
and
1d%J
TotalFDError = |eym — EquZ(q)éq - (10)

€num 18 the term introduced to denote all numerical errors (like
round off or numerical integration errors). TotalFDError rep-
resents the total error in the derivative that is unaccounted for
while calculating the gradient using the forward difference
approach (which is the sum of the numerical errors and truncation
error).
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To illustrate the impact of the magnitude of perturbation on the
FD error, consider the scalar dynamical system

X = —ax’? (11)
This equation can be solved in closed-form
o
f)=—" 12
x(7) 1+ xoar 12)

where xo = x(0) is the initial condition of the state x(). Let the
cost function be

N
1
T=> g(x(t:),a) where g(x(t),a) =—  (13)
=0 x(1)
This leads to
|
J= Z? (1 4 2xoat; + x2a*?) = 109.585 (14)
i=0 "0

for the parameter values, initial conditions and final time given by
a=1,xg=2 and ty_j00 = 1. Let the uniform time interval be
0.01, i.e., ty; —t; = 0.01. For illustration of FD behavior on
derivatives, sensitivities of the cost only with respect to the
parameter p are presented. The analytical gradient and the Hessian
are, therefore, given by

al _ EN 2 (xot; +x2ar?) = 118.17 and
- i o) — :
dp i—0 X%

&Pl Y

i > 2 =67.67

=0

15)

respectively.

The plot of the variation of the total FD error and its compo-
nents (calculated using the analytical expressions in Eq. (15)) in
Fig. 1 for the example problem allows for a number of interesting
observations. Three different cases with varying integration toler-
ances were considered here. It is seen that the numerical error
(enum) keeps decreasing initially with increasing perturbation val-
ues before saturating. The levels of saturation are seen to be
dependent on their respective integration tolerances. Furthermore,
the error term originating from ignoring the HOT in the Taylor
series begins dominating the total FD error beyond a certain point
on the 0p axis, and thus, causes the TotalFDerror to increase.

|Error]
=
-

—, . Tot 109

a1
= = = Tolal FD Error, Tok 10

10-5 - Tot 107 \ ]

= = =Total FD Error, Tot 107 ! 5
1010 &, Tot 10710 dp* =2.7238 « 10 1

hat

= = =Total FD Error, Tok 10°"°

1012 + —
10712 1010 108 10® 1074 102
Perturbation Step Size (dp)
Fig.1 Forward difference error analysis for the gradient of J
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Hence, in summary, the total error from forward difference dur-
ing gradient computation first decreases with increasing perturba-
tion value due to decreasing numerical errors and then increases
due to the increasing influence of the HOT in the Taylor series
expansion. This motivates the appropriate selection of Jdp such
that the TotalFDerror is at the minima. In the current exam-
ple, the case with a tolerance of 107'" in Fig. I has minima at
Op* = 2.7238 x 1073, However, in a generic problem, it is infea-
sible to know what the optimal value of dp is. Note that although
we have used the forward difference to illustrate the impact of dp
on the error in estimated gradient, we will use the central differ-
ence approach to estimate the gradient and Hessian for the numer-
ical examples in view of its improved accuracy.

4 Direct Differentiation

As the name suggests, direct differentiation directly takes the
derivative of the cost function J with respect to the optimization
variables (g) (a similar development can be found in Ref. [2]).
The method is rather straightforward and is expounded on in Secs.
4.1 and 4.3.

4.1 Gradient. The cost function of interest is

N
o) =) g (16)
i=0
After defining the following notation:
@ da,, % aan
da dby " db oa oby T 0b
db (xm) = | i s 5 g T s
~ @ da, b Jay da,
db, " db,| " |ob, T b,
T
90) _[o0) . 90)
Oa da; " Oay
nx1
a7
where a = [ay,...,a,]", b= [by,...,b,]", and (-) is a scalar quan-
tity, the derivative of the cost function is
al |3 (% N @%)
dr dp —\op dpix);
—= = (18)
dq | dI L (dx Og
dxg ; Tma :

(+); represents (-) evaluated at time ;. Except the sensitivity of the
states to the parameters and initial conditions (i.e., (dx/dp) and
(dx/dxy)), all other terms are known since the analytical form of
¢ is known. (dx/dp) and (dx/dx,) can be found from the deriva-
tives of the dynamic model equation (Eq. (1)) with respect to p
and xy, respectively. These equations are

a| [deor o
i
dx _ d1.7 dpOx  Op (19)
dg | di |7 | dr iy

dx dxg Ox

Integrating Eq. (19) allows one to determine (dx/dp) and
(dx/dxo) over time. Once they are known in time, they can be
substituted in Eq. (18) to evaluate the desired gradient. It should
be noted that Eq. (19) is a matrix differential equation which
needs (p + n) x n simultaneous scalar integrations.
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4.2 Tensor-Matrix Operators. Before the derivation of the
Hessian via DD is presented, three operators are defined which
operate on the second-order tensors (or three-dimensional (3D)
matrices) and two-dimensional (2D) matrices. These operators
can then be used to express the Hessian in a concise manner.

4.2.1 Operator 1.1f T is a 3D matrix of dimensions
(a x b x ¢)and M is a 2D matrix of dimension (¢ X d), then

(T™M) 0= > TijaMu (20)
k=1

where T-M € R@*4_Operator 1 is developed to write the fol-
lowing derivative concisely:

A
L raw) w = (A0 1)
S\ e T R
bx1 X

422 Operator 2.1f T is a 3D matrix of dimensions
(b x ¢ x d) and M is a 2D matrix of dimension (a X b), then

b
(1) =D TiaMiy 22
=1

j=

where ¥~T € R“*¥_Qperator 2 is developed to write the fol-
lowing derivative concisely:

A
y dc M Ale)\ = we d(:) (23)
~ \’b’ bxd -

423 Operator 3.1f T is a 3D matrix of dimensions
(a X b x ¢) and M is a 2D matrix of dimension (b X d), then

b
(T— M), = Z TijxMj; (24)

Jj=1

where T — M € R Operator 3 is developed to write the
following derivative concisely:

d dA d
7 a (AeD) :#* i @5
~~ axc \'\f" ~~

dx1 T bxd

Operators 1-3 have been used to represent tensor—matrix products
henceforth.

4.3 Hessian. Similar to the method used to find the gradient,
the Hessian of the cost function via DD can be evaluated by
directly differentiating the gradient (dJ/dq) with respect to the ¢
vector.

Therefore, on differentiating Eq. (18), we get

o1
&2 dp*  dpdx,
R (26)
dg? 2

dxodp  dx}
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where

Jg
by NPy Pedi ax e asigad
dp> 4z \0p*> Opdxdp ~ dpOxdp dpdx*dp ~ dp?

(27)

Jg
d*J N[ dx g dxT  dPxT
Iy (4 dsdys X d 28
dx} ; <dxo Ox2 dx Jrdx(% ian (28)

d*x

dxodp

dr Pyar'

A
R it A +
dxodp 4= \dxoOxOp = dxo Ox*dp

dx) o)

The known quantities ((8%g/0x?),(0%g/0x0p), (0*g/Opox),
and (0?g/0p*)) can be defined in a manner similar to Eq. (4).

The unknown quantities in Eqs. (27)—(29) are the tensors
(dPx/dp*), (d*x/dxodp), and (d*x/dx3). These quantities need to
be calculated dynamically from a tensor differential equation
derived from differentiating equation (19) with respect to p and
xo. On doing so, we get three independent equations

&Px 82f+ 0 dx" (e o*f
dp*  0p?> \opox dp Ox0p
o (30)
n (d_xﬂ 82]") dxT +afzx_‘m
| 5 = i
ox? dp dp?
d*x _ (& o f
dxodp 0x0p
<dﬁﬁ 82f> dxT d*x —% d a1
o 2 at
+ Ox? - dp Jrdxodp an 1)
o
d’x e, O de™| d*x ™
- = (Ild’fo —é) — — +—2 (32)
dxg Ox dxg dxj

where the tensors can be defined via the notation in Fig. 2.

Since Eqgs. (30)—(32) are tensor differential equations of
(d®x/dp?), (d*x/dxydp), and (d*x/dx}), they need (pn), (pn®),
and (n%) scalar integrations to compute, respectively. Once,
(d®x/dp?), (d*x/dxodp), and (d?x/dx})are known over time, they
can be substituted in Eq. (26) to evaluate the Hessian.

5 Adjoint Method

The direct differentiation provides a fairly straightforward
method to obtaining the gradients and the Hessians. However, in
DD, while calculating the gradient ((d//dq)), the first step was to
determine the sensitivity of the states ((dx/dq)). Similarly, while
calculating the Hessian ((d*J/dq?)), the second derivative of the
states to the variables (d*x/dq?) was needed. Determination of
(dx/dq) and (d*x/dq?) requires the solution to a matrix and a ten-
sor differential equation, respectively; both of which are relatively
expensive.

To avoid those expensive calculations, an alternative method of
computing gradients and Hessians can be devised called the
adjoint method [16]. It provides an efficient way to determine gra-
dients without having to calculate the sensitivity of the states
((dx/dq)) and a way to determine Hessians without computing
the expensive (d’x/dq?), thereby improving the computational
efficiency.
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d%a, d?a, a%a, a%a,

dbyde; dbgdc, db0e; | dbgoc,
d?ay d3a, a%a, a%a,
dbyde, ' dbde, i abac, Obdc,
dza 146y 18Cq aza 10¢, 10Cq
= . : d? = . ¢ 9%a
dbdc : P o :; dbdc : P Bnoc
_ b pPCq
(pxgxn) (pxqxn) )
d2a d2a, 2%a, d%ay
db,dc; dbydc, ab, ¢, ab,dc,
(a) (b)

Fig. 2 Visualization of the second derivative tensors where acR" beRP, and ceRY:
(a) (d2aldbdc) and (b) (0*aldbdc)

5.1 Gradient. The derivation starts with an augmented cost function of interest (L) (of the form of a Lagrangian) as
!+]
Z&+Z<J (& —f(x,p,1)) Adr) (33)

where 4 € R" is a new set of introduced variables (also called the co-states and are analogous to Lagrange multipliers). 4 is assumed to
be a discontinuous variable being nondifferentiable at time points ¢; (i.e., the value of 4 jumps at the edges of the intervals). This is why
the total integral over time has been broken into N integrals over N time intervals. When the state equations are satisfied, the second
summation term in L; (Eq. (33)) becomes 0, making L; = J. In that case, (dL,/dq) = (dJ/dq) also holds true. Since, the states (x) are
always determined by solving the state equation, the gradient of the cost function (dJ/dq) is always equal to the gradient of the aug-
mented cost function (dL,/dq). Using this property, the gradient of the augmented cost is ultimately evaluated.

An expression for the gradient can be determined by differentiating Eq. (33) with respect to g to get dL, /dp = [dL, /dp", dL, /dx,"]".
The development of only (dL, /dp) is presented here since deriving (dL;/dx) is almost identical.

An expression for (dL; /dp) is obtained from L; as

a’Ll dx ag a2\ J w (dx  dxof of
— =Y -+ +D> || === Adt
l.z: (dp Ox 0Op); + ; ¢+ \dp dp ox Op (34)
Now, using the properties of integration by parts on the term (dx /dp), we get
" dx dx ] J’E-n (dx )
ld = |—4 — — A |dt (35)

With the substitution of Eq. (35), Eq. (34) simplifies to

dL1 ul =L rax dx (0g> dx
-5 (5 5:) [ - (). |- 5,
+ J dt| + J <——l>dt
l=()<er ) ;( t,.Jr 8P
(36)

It should be noted that (dx/dp) and (Jg/Ox) are continuous functions, i.e., (dx/dp), = (dx/dp),. = (dx/dp),. and (0g/0x); =
(0g/0x); = (0g/0x);...

Equation (36) is still dependent on (dx/dp). However, the whole purpose of the Adjoint method was to avoid calculating (dx/dp).
To make this possible, all the terms that are associated with (dx/dp) need to be eliminated (shown in gray in Eq. (36)). The first step is
to solve the co-state differential equation

of

—i-Z21=0 37
o (37)
Once Eq. (37) is solved and 4 is known over time, Eq. (36) simplifies to
dLy I~ (0g = rax (Gg) dx <8g> dx (8g>
=2 o 2 ), o) | ax)y | \ap) | \ox) A

i=0
Equation (37) needs to be solved separately over each time interval (since 4 is discontinuous at the edges of the intervals). A set of
boundary conditions for each of those intervals is also necessary. A smart selection of these boundary conditions can be used to elimi-
nate some of the other terms containing (dx/dp) in Eq. (38). Assuming Ay- = —(9g/0x)y, Eq. (37) can be solved by integrating it
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backward in time from #y- to fy_;+. This eliminates the need for the term (dx/dp), from Eq. (38) since it now multiplies 0. The next
step is to evaluate 4 in the time intervals between #;,1- and #;+. This is again done by solving Eq. (37) by integrating it back in the
respective time intervals. However, this time, the boundary conditions 4, ;- for each interval are calculated by solving the algebraic
equation

(@) + l’-, — li*’ = 0 (39)
Ox i

where 4;+ is known: as it is the terminal 4 from the solution of Eq. (37) in the previous time interval. Such selection of boundary condi-
tions removes the need for evaluating (dx/dp);.

Therefore, in summary, 4 needs to be solved separately over each time interval (using Eq. (37)). At the end of each integration, the
boundary value of 4 for the next integration (or time interval) is determined (using Eq. (39)).

Solving Eq. (39) causes the second term in Eq. (38) to be 0 and simplifies it to

S0+ (&)@, ]S (L))

Moreover, since the initial value of the states is independent of the parameters, (dx/dp), = 0. Therefore, the second term in Eq. (40)

vanishes and Eq. (40) simplifies to
dl dL; &
—=——= | + J ( )dt (41)
dp dp ; ( ) Z( )

Equation (37) is also called the adjoint equation (and hence the name adjoint method). Equation (41) represents the final equation that
needs to be evaluated to calculate the gradient.
Similarly, a gradient equation for the initial conditions can also be obtained. It can be shown that

di - dL ag)
= () — 42
dxy  dxg ( 0 b0 “2)

where the co-states 4 are solved in an identical fashion.

5.2 Hessian. A critical drawback of the direct differentiation method for calculating the Hessian was the need to calculate
(d*x/dp?), (dzx/ dxodp), and (d’x/dx3). To solve for them over time, one needs to solve three tensor differential equations involving
(p?n + n’p + n’) scalar integrations, which can get computationally expensive very quickly if the number of parameters and states are
large. The adjoint method once again allows us to bypass those integrations and evaluate the Hessian in an alternative manner, thus
improving the computational efficiency.

Once again, only the development of (¢7/dp?) is presented since the other parts of the Hessian ((d%7/dx3) and (d>J /dxodp)) can be
derived in the same way. Similar to the derivation of the gradient, first an augmented cost function (L,) is written (in the form of a

Lagrangian) as
dL, N=1 /e (i+1) ( . af )
L,=— E _
2 dp + 2 (L n(x —f)dt + J,* A p (43)

1

where n € R”" and y € R?*" are Lagrangian multipliers.

With a similar argument as the one used for L;, when the state and the co-state equations are satisfied, the integral terms in Eq. (43)
become 0 making L, = (dL;/dp) = (dJ /dp). In that case, (dL,/dp) = (d*J /dp*) also holds true. Since, the states x are always deter-
mined by solving the state equation, and the co-states 4 are also always determined using the co-state dynamic equation: the Hessian of
the cost function (d%J/dp?) is always equal to the first derivative of the augmented cost function (dL,/dp). Using this property, the
derivative of the augmented cost L, is ultimately evaluated.

Now, substituting (dL, /dp) from Eq. (38), we get

@)@+ .«
+Z O ( )dt n [:H 0 —f)dr + J:” y (4’1 f g;) dt> (44)

To evaluate (dL,/dp), Eq. (44) is differentiated with respect to p to yield

+

w-$(3) 56
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o (Zey Feaet) S [ (a0 Tt oy,
dp 4 \Op* Opoxdp L= Oopdp Opdox dp  Op?

%) +hi- it |

- T T T ;. T i ;T 2 ey 2 T N-1 2 *[(Ox
[ (L g [ e oy i) | S (e
dp op Ox dp o dp " Ox dp 8x8p Ox dp | \dp ;
T T H[(Z_fr)()’}“ffr]
(P axgat iy (o a\] (@
dpOxdp  dp Ox* dp . dp) \dp;- dp; dp? 0

—{(2) 4y
() (P Osaty gaeya | (ax) T h ) (25 meee) (i)
dp),\ Oxop  Ox>dp . dp ) ,dp o+ dp? N v \OxOp  Ox%dp dp) ydp -

Equation (45) can be further simplified by recognizing that some of the terms in the equation are inherently zero. For example, since the
initial value of the states does not depend on the value of the parameters, we have (d’x/dp*), = Oand (dx/dp), = 0. Moreover, since
the terms multiplying the boundary conditions for 4 are satisfied when evaluating 4, we can also eliminate them. Therefore, Eq. (45)

simplifies to
(RS [ LU e i P
dp p op dp Op? Opox dp Jir dp op Ox dp

(45)

i=0

N Jfam d/l 62f AaZf* de/lT u
. dp B2 a’p /Bxap " ox dp

+
i

dx %g  dxPgdx" Pg dx" dx\ di’ | (2 [dx\ di”
+Z 8§ I8, 28 ) +( ) < ) (46)
dp Ox0p  dpox*dp 0p8xdp dp).dp ;- ‘' \dp/;dp ;-
Using the properties of integration by parts, we can use
_ .
o di’ A (e dal
y——dt = |y - J ¥y dt (47)
Jff dp “dp |, ¢ dp
and
o dxT dXT] e dxT
N— dt = |np— fj i— dt (48)
Jt* d L dp o ot dp

to rewrite Eq. (46) as

sz _ % J'(,H) ( aZfﬂl _, 82f —A 6fT> it J"(,“)< 62f —A ’yﬂ l_ 6_f ~ n) ﬂdt
Tox
0

- o oxop op .\ opa ax?

ol Of  Of dir
o[, (e et 5

+(dx) dair yd_/lT }+N§ yd_/lT (dx) &’ = di’ Nin i dx" +nd_x7 —n@T
dp);dp, ''dp, | ~|"dp, \dp);dp; 0d1’0+,-=1( SN\ ap dpy- dpg-
(49)

Equation (49) is the expression to calculate the Hessian. However, this expression is still dependent on some terms which are unknown
to us (for example, (d4/dp), (dx/dp)). To solve this problem, all terms associated with them need to be eliminated (shown in gray in
Eq. (49)). An approach similar to the adjoint equation during the gradient calculation is exercised.

The third integral term of Eq. (49) is eliminated by solving

N 2 N 2
0°g d o dx0°gd d.
oy Z x P | dxPgdil Oy de
8 dpaxap dpax dp  Opoxdp |

.
—8p—yax+y =0, with /(0)70 (50)

The second integral term of Eq. (49) is eliminated by solving the differential equation in 7

82f —A 8f ) Zf—d
COpox "ox T T T T 0 D
Journal of Dynamic Systems, Measurement, and Control OCTOBER 2018, Vol. 140 / 101011-7

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 07/25/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



with a terminal boundary condmon 7(T) = 0 and other interval boundary conditions derived from 7, — 1;; = 0. It should be noted that
on doing so, the term n(dx/ dp) - also equates to 0. The method to solve for # is similar to that of 4 (i.e., it requires separate 1ntegrat10ns
for each interval with boundary conditions calculated for each of those intervals separately). Furthermore, recognizing that
(dx/dp), = 0, Eq. (49) simplifies to

L N gt 2 oA 20 —h N N 2 2 T
dL, ZJ() of E)f _naf dr +E Z de)g @0_§@+8gd_x
dp - i f)p Oxap op pr dp BxOp dpox*>dp ~ OpOxdp .

=0

dx\ di’ dir dir dx\ diT
_ 4 ) 52
+<dp>,dp, /’dp,lJr,Z{ Ldp ;- <dp>,-dpf+ oY

It appears that the intermittent values of (dx/dp) are needed to evaluate Eq. (52). However, on observing the problem carefully, one can
see that the y equation (Eq. (50)) is in fact essentially the same as the (dx/dp) equation (in Eq. (19)): justifying the selection of the ini-
tial condition y(0) = 0 in Eq. (50). Therefore, it turns out that when calculating the Hessian of the cost function, one has to evaluate the
sensitivity of the states to the parameters over time, whether directly as in DD or indirectly as in the adjoint method to determine 7.
Since (dx/dp) = 7, it can be substituted in Eq. (52).

Hence, the final value of the Hessian is given by

&> sz N (e aﬁf‘ 62f T N (924 Py | g P Pg o
\ , 53
dp? ; J,f op? (9x8p n(’?p dr| + Z op? . + Z Vaxf)p t7 a2’ + OpOx / ) (53)

i=1

Similarly, it can be shown that

&Ll & ( Pg )
= V2557 02) g+ (54)
dx(Z) ; ox2'? ( )0
where 7, € Ry, € RPN
—7 % +7, =0, withy,(0) =7 and (59)
A
Thpe T T g T 0 (56)
with 1, (T) = O and (1,);- — (12);+ = 0.
It can also be shown that
P S e g Y Pf Tt T Pg
— —p—r dr — 57
dxpdp 4 Lf ( /Zﬁxap 1728 + Z /2 Ox? / th Ox0Op . ©7

This concludes the presentation of all the results for the gradient and the Hessian calculations using the adjoint method.

6 Hybrid Method

The computational efficiency can be further reduced by using a technique that combines concepts from Secs. 4 and 5. This method is
referred to as the hybrid method.

In the hybrid method, the gradient is evaluated in a manner identical to that of DD. However, the concept of an augmented cost func-
tion is used while evaluating the Hessian. This reduces the number of additional states introduced in the derivation when compared to
the adjoint method. Moreover, using the augmented cost function approach also allows one to avoid the determination of (d*x/dp?)
over time.

The derivation of the gradient is identical to Sec. 4.1 and therefore is omitted. Only the detailed derivation of the Hessian is
presented.

6.1 Hessian. Similar to Sec. 5.2, the derivation of (d*J/dp*) is shown in detail while only the final results for (d°//dx3) and
(d*J /dxodp) are mentioned since the derivation is almost identical.
The derivation starts with the augmented cost function (Eq. (34))

dg dxdg\ 2| [wn/dx of dxof
L= (=2+—==+> || (—F=——7= dt 58
’ Z<0p+dp8x) +,-ZO: L* dp 0p dpox)” (58)
where y € R" are introduced variables (analogous to Lagrangian multipliers). When Eq. (19) is satisfied, the integrand in Eq. (58)
becomes 0 making L, = (dJ/dp). Under these conditions, the derivative of the augmented cost becomes equal to the Hessian of the

cost function, i.e., (dLy/dp) = (d*J/dp*). This relation always holds true as long as the states and their sensitivities to parameters are
calculated using Eqgs. (1) and (19), respectively. Therefore, Eq. (58) is differentiated with respect to p to get
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dg
dl, [ 0%g  0%g dx"  dx 0’g  dxdPgdx" u dzx o
Lo (L, T dx dx 08 | drdgdx +Z
dp 4\ Op* Opoxdp ~ dp0OxOdp dpOx*dp - ,
Ly . -y -7 -y (%,
T [ d?x bl azf 7 82f de v o, aZf v a f de ! d*x (i)x/)
+Z a2 o2 ~ -\ - w2 dn T dn? dt 59
) \dp op opox  dp OxOp Ox’ dp dp
However, we know from the properties of integration by parts that
1 d2 el dZ e d2 -7 i+ d2 -7
J””—’; a=2%1 2= ,J EE ar (60)
¢ dp dp> 1. dp® e g \dp
On substituting Eq. (60) in Eq. (59) and collecting appropriate terms, we get
XN: g dxT n dx 0*g  dxd*gdx' . Z ]om 82 Y o*f dxT - . 0*f -
_—t _— s — — | @
P 8p8x dp ' dpoxdp ' dpox dp ‘ 1 ap? opox  dp OxOp
P s —
( 0 f) dxT - Px _’( _f'y) x (Fo—v5) N1 42 H(a_i"_‘—y" —y?’) ix” (%N‘H'ﬁ)
— - dt - - _—
ox?) "~ dp T dp? * dp*, - —\dp* ), dpy
(61)

Equation (61) is now the expression to calculate (dJ/dp*). However, we can see that it is still dependent on (d*x/dp*) which we want
to avoid evaluating. Hence (similar to the Adjoint method), all coefficients associated with that term are forced to O (shown by the
shaded regions of Eq. (61)). This leads to solving the matrix differential equation

of
-2y =0 62
o’ (62)
in every time interval between two observations (i.e., [, #7,]). The boundary conditions for solving Eq. (62) in each of the intervals
can be derived from the equations
g dg |
-y =0 d = =0 63
Ox;i o an Oxn o (63)
It should also be noted that (d*x/dp?), = 0. The final expression for (¢J/dp*) can thus be written as
sz N g dx’ dx Pg  dxdtgdd™\ Y| (e [ o7 [ *F  ax'\
a2 aosa ) S| (e
dp — 8p8x dp ' dpoxdp  dpox>dp ) op Opox  dp
y . (64)
w O (,ﬂ aZf) dx"
— | — dp T | - — dl‘
OxOp Ox? dp
Similarly, it can be shown that
-y
&7 N[ dx 0*g dx T =L o <,,, 8f) dxT
PR RS _ dx _ dt 65
dx(z) ; (dx() 6x2 dx() ; ; J;[ ! c’)xz - dx() ( )
where y and (dx/dx,) are calculated using Eqgs. (19) and (62), respectively. It can also be shown that
2 N 2, 1T 2 N e O T P 5 -7
AT _ (e Dgdxt dx 0g )y J“‘ ( 8f>_,d_x +(#2L)) (66)
dxodp 4 \dxoOx*>dp  dxo0xdp .= e Ox? dp OxOp

This concludes the presentation of all the results for the gradient and the Hessian calculations using the hybrid method. The next section
presents a brief summary of the computational efficiencies of each method.

7 Computational Efficiency

It is already established that function evaluation (which involves state integrations for dynamic systems) based gradients and Hessians
incur more computational expense than evaluating cheap adjoint-based gradients and Hessians [2,17] suggesting that FD should be
more expensive than the adjoint and hybrid algorithms.

After profiling each method for the three numerical example problems discussed in Sec. 8, it can be observed that the majority of the
program time is spent inside the integrator function. The exact percentage(s) of total program run time (one iteration) have been listed
in Table 1. Note that the interpolation is done as part of the integration and as illustrated in Table 1 makes up a large fraction of the
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Table 1 Profiling results showing the percentage(s) of total
program run time (first iteration)

Problem Function DD Adjoint Hybrid
1 Lorenz 63 Integrator 99.95 99.98 99.98
Interpolator — 80.02 77.94
2 (Supernova 1999dq) Integrator 99.45 99.85 72.32
Interpolator — 79.78 50.27
3 Two-tank model Integrator 99.07 99.95 99.93
Interpolator — 62.26 57.28

Note: The integration subsumes the interpolation time.

Table2 Comparison of computational expense

Algorithm Gradient Gradient + Hessian

(FD) 2np + 2n? n +2n°p +p?n+n* +pn+n
NP n+pn+n? n? +n+pn+pin+nd +n’p
NiAdJOf“[) 2n+p p+p*+2n+2n%+3pn
NEHyb"d) n+pn+n? P +2n+2n% + 2pn

Note: n: # of states and p: # of parameters.

—o—Fp: 10°°
—4—rD: 10®
FD: 107 | 1
—t+—FD: 108
—— Adjoint
= A = Hybrid
——DD

Cost

10710 A
100 150
Iteration

Fig.3 Convergence of different algorithms

integration time. Therefore, it makes sense to compare objectively
the number of scalar integrations being executed in each algo-
rithm as a measure of computational efficiency.

Comparisons have been made for when only the gradient is cal-
culated and when both the gradient and Hessian are calculated.
More details can be found in the Appendix.
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Fig. 4
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(b)

lllustration of system dynamics for parameters estimated using the hybrid method for the example problems: (a) Lorenz-

Table 2 compares the computational cost of the FD, DD,
adjoint, and hybrid approaches clearly illustrating the benefit of
the adjoint and hybrid algorithms (For details regarding the calcu-
lation of N, refer to the Appendix). Column three from Table 2
suggests that the growth of N; is given by the third-order polyno-
mials for FD as well as DD, while it is only a second-order poly-
nomial for the adjoint and the hybrid. It should also be noted that
the adjoint method is preferable over the hybrid method when cal-
culating only gradients, while the hybrid method is less expensive
when calculating the gradient as well as the Hessian. This is
because the additional co-states in the adjoint method (1 and #;)
are matrices, while the co-state in the hybrid method (y) is only a
vector.

The DD, adjoint, and hybrid values of N that have been quoted
in the third column of Table 2 do not consider the symmetry of
the Hessian matrix. Hence, the counts for Ny provided are
conservative.

It is also interesting to note that a significant amount of time is
also spent in the interpolator function (refer Table 1) and is
responsible for lengthening the program run time significantly.
The interpolator function is used to interpolate several values of
states and costates when solving numerous two point boundary
value problems that show up in the adjoint and the hybrid method.
In this work, efforts have not been made to improve on interpola-
tions of independent variables, however, there is literature that
looks into the issue ([ 18] and references therein).

8 System Identification Problems

Several system identification problems can be posed with the
structure of the cost function being investigated in this work. The
adjoint method of gradients and Hessians, therefore, now provides
another tool to solve all such problems. The results from three test
problems are presented. The first example uses synthetic data to
illustrate the algorithm and the following two examples use pub-
licly available data to identify the parameters of the dynamic
models.

8.1 Problem 1. The objective is to identify the parameters
and initial conditions of the popular Lorenz System (also known
as the Lorenz-63 model). The dynamics of the system are given
by

X1 =—pi(xi —x) (67)
Xy =x1(p2 —X3) — X2 (68)
X3 = X1X2 — P3X3 (69)

This particular system is chosen since it is known to be chaotic
and has been used as a system identification example to illustrate
effectiveness of algorithms in the literature ([19,20] and

=3
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(5]
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w
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o
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63 model, (b) Supernova 1999dq luminosity, and (c¢) two-tank model
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Table 3 Supernovae dataset

Supernova 1999dq 1998aq 1990n

Bret 14.5 12.0 12.0

N 25 52 34

gler=0 1001, 1,1, 1,1,1)" 10,1, 1,1,1, 07 5[1,1,1,1,1,1)T

references therein). It is highly sensitive to initial conditions and
parameters making it an ideal choice to illustrate the accuracy and
the feasibility of the adjoint and the hybrid method.

It is assumed that all the parameters p, p,, p; and the initial
conditions for x, and x3 are unknown. For system identification, it
is also assumed that a time series of observations (at intervals of
At = 0.01 up to r=1) is available for x1, x,, and x3 similar to Ref.
[20]. The observations are grouped as [y(#;),y2(t),v3(t;)]"
= [x1(#),x2(t;),x3(t;)]7. The time series is generated from the
following values: p1 =10,p, = 60,p3 = 8/3,x,(0) = 20,
x2(0) =25, and x3(0) =30 (these values were selected from
Ref. [19]). The intention is to estimate ¢ = [pi,pa,
P3,%2(0),x3(0)]7 correctly.

To identify the optimal ¢, an optimization problem is posed as

minimize J
! (70)

subject to Equations (67) through (69)

where the cost function J is defined to be a sum of the squared

errors between the observed states and the estimated states

J= ZZ(yj(t,-) - %(t:))? an

The problem is solved iteratively. The initial guesses are chosen
to be p, =20, p, =75,p; = 10,%,(0) = 10, and £3(0) = 15 for
all the methods.

The gradients and the Hessians of the cost function J with
respect to ¢ are evaluated at every iteration. These quantities are
then used to employ a gradient-based algorithm in MATLAB to con-
verge to a solution. This is done for each of the methods discussed
in the document under identical optimization environments.
Figure 3 shows a comparative plot of convergence between differ-
ent techniques. The only difference while simulating them was
the source of gradients and Hessians that were fed to the
optimizer.

Four distinct simulations were made for the FD method with
each simulation having a distinct step size to calculate the gra-
dients and Hessians. The step sizes have been listed in Fig. 3.
Curves corresponding to step sizes 10~ and 10~ show compara-
tively slow convergences. FD with a step size of 107° performs

-
[=]
w

Cost Value

=y
o
L

—de— Hybrid
——DD

,101 . i
10° 10! 10? 10°
Iteration

Fig.6 Convergence of different algorithms

very well, while FD with a step size of 107% fails to converge.
These results illustrate the variability in the accuracy of FD. Since
it is impossible to know the magnitude of the optimal step size
beforehand, a method independent of step size is motivated. The
DD and the adjoint method have comparable performance
although the DD appears to be the most accurate algorithm in this
example having converged to the lowest terminal cost with the
fewest iterations. However, it must be noted that the adjoint and
the hybrid approach are far less expensive as compared to FD as
well as DD.

Time response of the states (determined from parameters identi-
fied via the hybrid method) along with observations has been
shown in Fig. 4(a) for reference.

8.2 Problem 2. The second example presented is that of
parameter identification of dynamic type la supernovae models
using real observed luminosity data. This particular example is
chosen since it has already been shown to be a difficult data fitting
problem [21]. The details regarding the physics of the phenom-
enon and the model can be found in Ref. [21]. However, before
presenting results from three different supernovae, a brief descrip-
tion of the problem statement is provided.

The governing system dynamics are given by the equations

%1 =W(t,p1,p2,p3) — x1/8.764p4 (72)
Xz = X1/8.764p4 — X2/111.42p4 (73)
X3 =x2/111.42p, (74)

where W(t,p1,pa,p3) is the Weibull distribution and is given by
the following equation:

10?

—e—FD: 10
——FD: 10°
FD: 107
—— Adjoint
—de— Hybrid
—— Direct Di

Ne—to040q

Cost Value
3
Cost Value

Cost Value

o
o

Iteration

(a)

Iteration

10° 10° 10°

Iteration

(b) (c)

Fig. 5 Convergence for different algorithms in supernova system identification: (a) Supernova 1999dq, (b) supernova 1998aq,

and (c) supernova 1990n
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Table 4 Supernovae system ID results

Supernova Parameters FD:1x 107 FD:1x 10°° FD:1x 107 DD Adjoint Hybrid
1999dq P1 5.387346 9.492225 9.455105 5.381856 5.345180 5.403384
P2 2.375212 1.906856 1911192 2.375813 2.379884 2.373393
D3 19.396321 15.199001 15.241670 19.401609 19.438616 19.379808
Pa 0.726794 0.728809 0.728346 0.726823 0.726809 0.726818
Ps 16.754936 16.152228 16.158109 16.755841 16.760413 16.752827
Dé 5.593438 5.544746 5.545865 5.593443 5.593827 5.593384
Cost 0.023091 0.029096 0.028948 0.023091 0.023090 0.023091
R? 0.998692 0.998344 0.998352 0.998692 0.998692 0.998692
1998aq P — 14.703285 — 14.703516 14.703373 14.703456
P2 — 2.094165 — 2.094131 2.094152 2.094139
P3 — 15.325454 — 15.325210 15.325349 15.325273
Pa — 0.655404 — 0.655405 0.655405 0.655405
Ps — 14.743421 — 14.743401 14.743408 14.743411
Dé — 4.367701 — 4.367689 4.367697 4.367690
Cost — 0.031963 — 0.031963 0.031963 0.031963
R? — 0.999144 — 0.999144 0.999144 0.999144
1990n 2 13.574933 13.539436 — 13.559120 13.559156 13.559125
P2 2.337681 2.342851 — 2.339985 2.339980 2.339984
D3 17.639979 17.676908 — 17.656383 17.656346 17.656378
Pa 0.690074 0.690061 — 0.690075 0.690075 0.690075
Ds 10.746664 10.747313 — 10.746995 10.746994 10.746995
Dé 4.052780 4.053178 — 4.052910 4.052910 4.052911
Cost 0.104936 0.104935 — 0.104935 0.104935 0.104935
R? 0.995074 0.995073 — 0.995074 0.995074 0.995074
pa (t—p\" 7! _(’;A)”l where g = [pl,pz,p37p47p57pg,]T, and w; are weights associated
W(t,p1,p2,03) = 3 p3 < A ) enn = (75)  with each observation and are given by w; = 1/y(#;). N represents
0 1< pi the number of observations available for each of the supernovae

The initial conditions for all the states are known and are equal to
zero, i.e., x1(0) = 0,x,(0) = 0, and x3(0) = 0. The output model
is a linear function of the states and is given by

y() = + e (76)

X1 X2

P38 76ap, " PO111.42p,
where y represents the total observed luminosity. The observations
are, however, made in terms of astronomical magnitudes (B(;)),
where ¢; represents the time of the ith observation. To pose a
weighted least squares cost function, the observations are first
transformed to the total observed luminosity space using the
relation

y(t) = 10704(B(t)=Brer) )
where B is a known reference magnitude constant specific to
each supernovae (refer Table 3). The final optimization problem
can be posed as

N
minimize, J = Z(Wi((y(l‘i) —f(fi)))z

. (78)
i=1
subjectto Equations (72) through (74)

(shown in Table 3).

Three distinct simulations were made for the FD method for
each of the supernovae corresponding to distinct step sizes. The
convergence of all the algorithms for the three supernovae have
been shown in Figs. 5(a)-5(c). It is once again evident that the
adjoint and the hybrid methods are consistently as effective as the
DD although they are computationally more efficient. In the FD
method, as can be seen from the figures, it is impossible to deter-
mine beforehand the step size magnitude which would give the best
performance. For example, in supernova 1999dq, all the FD step
sizes work reasonably well with 1 x 1075 being most effective. In
supernova 1998aq, FD with the step size of 1 x 107 is the only
one which converges. In supernova 1990n, step sizes 1 x 107% and
1 x 1077 converge with 1 x 107® converging faster. This variabil-
ity again makes a strong case for the proposed algorithms especially
because the Adjoint as well as the Hybrid is cheaper than FD. In
fact, for the Supernova 1990n, all finite difference algorithms are
outperformed by the DD, Adjoint, and the Hybrid in efficiency.

The gradients and the Hessians are evaluated at every iteration
and are then fed to the MATLAB optimizer under identical optimiza-
tion environments. The initial conditions used were identical for
all the algorithms and have been listed in Table 3 (row 3).

The identified parameter values are listed in Table 4. Algo-
rithms which did not converge have been replaced by “—.” The
final values of the cost, as well as Rz, the coefficient of determina-
tion, for each algorithm have also been listed. R* was calculated

Table 5 Two-tank system ID results

Parameters FD:1 x 1073 FD:1 x 10°¢ FD:1 x 1077 DD Adjoint Hybrid

P 0.038652 0.042732 — 0.041798 0.041796 0.041799
P2 0.020728 0.027374 — 0.023773 0.023772 0.023774
P3 0.021493 0.022253 — 0.021545 0.021546 0.021544
Pa 0.062638 0.054184 — 0.059154 0.059155 0.059152
x1(0) 0.256533 0.253653 — 0.420376 0.419485 0.420434
x2(0) 0.252388 0.252185 — 0.178079 0.178487 0.178367
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in a manner identical to [21] and is seen to be comparable (for the
algorithms that converged) to the values reported there.

The estimated time response of B(f) of the supernova 1999dq
(determined from parameters estimated via the hybrid method)
along with the observations is shown in Fig. 4(b).

8.3 Problem 3. The final illustrative example chosen is that
of the extremely popular benchmark nonlinear system identifica-
tion two-tank problem that has been used for testing system iden-
tification algorithms extensively in the literature [22]. The system
dynamics are given by the equations

X| = —piy/X1 +pau (79)
Xy = —p3\/Xy + par/xi (80)

where x; and x, represent the water level in tanks 1 and 2, respec-
tively. The objective is to identify the parameters as well as the
initial conditions using data collected from a real experiment. The
data are publicly available and can be found from Ref. [22]. For
identification, it is assumed that only the second state is available
as measurement, i.e., y(#;) = xp(#;).

To ensure that the value of the states always remains greater
than 0, the transformation x; = z2 and x, = z3 is used to rewrite
the model equations as

71 = —p1/2 + pau/2z, 81)
7y = —p3/2 + paz1 /22, (82)
The final identification problem is solved in the [zl,zz}T space.

Similar to the previous sections, the final optimization problem
can be posed as

Z (t;) — 22(8:)%)?

subject to Equatlgns (81) and (82)

minimize, (83)

. In this work, only the first
, N=501.

where q = [pl yP2,P3,P4, 21 (0)7 22(0)]T
501 observations were used for identification, i.e
Consecutive observations differ by a time of 5s.

The convergence of different algorithms for this problem is
shown in Fig. 6. It can be seen that the adjoint, hybrid, and the
DD are equally effective, while the adjoint and hybrid approaches
are more efficient relative to the DD. The identified parameter val-
ues are listed in Table 5.

The estimated time response of x,(¢) for this example (deter-
mined from parameters estimated via the hybrid method) along
with the observations are shown in Fig. 4(c).

9 Conclusion

Stimulated by the variability in finite difference estimates of
gradients and Hessians and extensive computational requirements
for the direct differentiation method, this paper presents a detailed
development of the adjoint and the hybrid approaches for the
determination of the exact Hessian for system identification prob-
lems where the measurements are available at discrete times.

The adjoint method uses a Lagrange multiplier technique to
eliminate the need to evaluate (dx/dp) for gradients and
(d*x/dp*) for Hessians of the cost function. On the other hand,
the hybrid method evaluates (dx/dp) using the DD method while
calculating the gradient but uses the adjoint technique to avoid
evaluating (d’x/dp?) while calculating the Hessian.

The proposed approaches are then illustrated on identifying the
Lorenz System, the type la Supernovae as well as the benchmark
two-tank system. It is seen from the results that the Hessian
derived from the adjoint as well as the hybrid method is as accu-
rate as direct differentiation, more consistent and reliable than
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finite difference and definitely requires fewer integrations than
both finite difference and direct differentiation. We realize that
tests on a few numerical examples do not provide insight into the
relative benefits of the proposed approaches which are agnostic of
application, however, they provide a strong motivation in favor of
using the adjoint and hybrid algorithms for system identification.
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Appendix

Since all implementation was done in MATLAB, in-built functions
such as interpl and ode45 were used to execute interpolation
and integration operations, respectively. After the code was written
to implement all the algorithms, the profiling tool in MATLAB
(profile) was used to determine the relative time that was spent
in each function.

The percentages quoted in Table 1 were calculated as follows:
For integrator, we have (fogess/fier=1) X 100, and for the interpo-
lator, we have (finierpl /fiter=1) X 100, where foq4e45 is the time spent
inside the function ode45 when running the algorithms for 1 iter-
ation, finerp1 is the time spent inside the function interpl when
running the algorithms for 1 iteration, and #je—; is the total run
time of the algorithms for 1 iteration.

Values determined for different algorithms have been listed in
Table 1.

Table 2 summarizes the number of scalar integrations that are
necessary to evaluate the gradient as well as the Hessian. A
detailed breakdown for the determination of the expressions is
presented next.

A.1 Finite Difference. It should be noted that each model
evaluation takes n scalar integrations since x € R". To evaluate
the gradient using the central-difference approach, each element
requires two model evaluations (since dJ/da = (J(a+ da)
—J(a — da)/20a)). Therefore, to evaluate each element of
(dJ/dq), 2n scalar integrations are needed. Since there are (n + p)

elements in (dJ/dq), a total of N = 212 4 2np scalar integra-
tions are needed to evaluate (dJ/dq).

When the Hessian is also desired, the method in which calcula-
tions from the gradient can be used to evaluate elements of the
Hessian is used to make the computations cheaper.

The basic formulae to determine Hessians for a two variable
((x,y)) cost function (f(x,y)) are given by equations d*f/Jdx*> =

(FG5-+ 0.) — 2 (6.) + £ (3 — 0%,/ (02 and
2 X
D (et by + )~ (a4 003) =y + )
+2f(x7y) _f(x - 5)(,))) _f(xvy - 5_)7)

+f(x =8,y = dy))/(26xdy).

For (d*]/dg?), the diagonal elements do not need any additional
integrations apart from one evaluation of the states (i.e., n integra-
tions). The nondiagonal elements, however, each need additional
two state evaluations (i.e., 2n integrations as per the above for-
mula). Since the total number of unique nondiagonal elements in
(d*J/dq?) is (n+p)(n+p—1)/2 (because of symmetry), the
number of integrations necessary for the nondiagonal elements is
n® + 2n%p — n*> + p>n — pn. Therefore, the total number of neces-
sary integrations for (d*J/dq*) is (n® +2n’p —n® +p’n
—pn+ n).

OCTOBER 2018, Vol. 140 / 101011-13

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 07/25/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Table 6 DD integration breakdown

Variables # of integrations Variables # of integrations
d*x N
x(1) n e np
dx d*x 3
4 n(p + n) a2 n
d*x 2
dpdxy P
Table 7 Adjoint integration breakdown
Variables # of integrations Variables # of integrations
x(t) Y np
A B n’
@ 2
dp p Y2
d* 5
n i
p e P
2] N
dpdxy P
Table 8 Hybrid integration breakdown
Variables # of integrations Variables # of integrations
a7 >
[ _
x(t) n ap? 4
dx d* s
da n(p +n) a2 n
y ; 27 ;
! dpdx, P

When the number of integrations from the gradient computation
is added, we get NS(FD> =’ +2%p +p’n+n* +pn+n.

A.2  Direct Differentiation. The number of integrations nec-
essary in this method can be derived by observing the equations
that need to be solved. A breakdown in the form of a table has
been presented in Table 6. The first and third columns list all the
variables that need evaluation. The second and fourth columns list
the scalar integrations needed to evaluate the corresponding varia-
bles in columns 1 and 3, respectively.

For only gradient evaluations, Ny
in the second column, i.e., NS(DD> =n-+pn+ n*. However, when

both the gradient and the Hessian are of interest, we get
NP = 02 4 0+ pn+ pPn+ 13 + n2p.

is just the sum of the rows

A.3 Adjoint Method. Table 7 presents the integration break-
down for the adjoint method. Hence, we have for gradient:

NS(AdjOim) = 2n+ p (sum of first three rows, second column) and

for gradient 4+ Hessian: NEAdjOim) =p+p>+2n+2n0°+3pn.
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A.4 Hybrid Method. Table 8 presents the integration break-
down for the hybrid method. )

Hence, we have for gradient: Nﬁﬂyb"d) = n+pn+n* (sum of
first two rows, second column) and for gradient+ Hessian:

NS(Hybrid) =p? +2n+2n% + 2pn.
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