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Polynomial Chaos-Based
Controller Design for Uncertain
Linear Systems With State and
Control Constraints
For linear dynamic systems with uncertain parameters, design of controllers which drive
a system from an initial condition to a desired final state, limited by state constraints dur-
ing the transition is a nontrivial problem. This paper presents a methodology to design a
state constrained controller, which is robust to time invariant uncertain variables. Poly-
nomial chaos (PC) expansion, a spectral expansion, is used to parameterize the uncertain
variables permitting the evolution of the uncertain states to be written as a polynomial
function of the uncertain variables. The coefficients of the truncated PC expansion are
determined using the Galerkin projection resulting in a set of deterministic equations. A
transformation of PC polynomial space to the Bernstein polynomial space permits deter-
mination of bounds on the evolving states of interest. Linear programming (LP) is then
used on the deterministic set of equations with constraints on the bounds of the states to
determine the controller. Numerical examples are used to illustrate the benefit of the pro-
posed technique for the design of a rest-to-rest controller subject to deformation con-
straints and which are robust to uncertainties in the stiffness coefficient for the
benchmark spring-mass-damper system. [DOI: 10.1115/1.4038800]

1 Introduction

It is well known that the performance of open-loop control
strategies for motion control of flexible structures is sensitive to
imperfect models. This has prompted numerous researchers to
investigate the problem of developing controllers that are robust
to parametric uncertainties in the models [1–6]. One approach has
been to design controllers to take care of worst case scenarios
among all realizations, which corresponds to a minimax design
which requires knowledge of the support of the uncertainties. A
second strategy of dealing with parametric uncertainties in the
model has been to reduce the sensitivity of the cost function in the
proximity of the nominal model by forcing the local sensitivity to
zero.

The aforementioned problem forumulations have often consid-
ered minimizing the residual energy, i.e., the undesired energy in
the system at the end of the maneuver. This is important in rest-
to-rest class of problems. In addition to the residual energy con-
straint, deflection constraints have been considered by Singhose
et al. [7] where an analytical expression for the evolution of the
deflection for a spring-mass system is derived and its gradient is
forced to zero to identify time instants, which correspond to maxi-
mum or minimum deflections. Deflection sampling is also used to
constrain the permitted deflection in the design of the controller.
Vossler and Singh [8] addressed the problem of design of the opti-
mal control profiles for systems with uncertain parameters, for
rest-to-rest maneuvers with state constraints. They formulated a
linear programming (LP) problem with a cost function of mini-
mizing the maximum excursion of the states over the duration of
the maneuver called the minimax control. This, in conjunction
with constraints on the terminal energy, resulted in a robust state
and energy constrained controller. A uniform sampling of the
uncertain space was used to solve the minimax problem. Monte
Carlo (MC) realization can also be used to sample the uncertain
space. However, it is well known that MC methods suffer from
slow convergence with convergence rate being inversely

proportional to the square root of number of sample points. This
means that one needs to increase the number of samples by 100 to
improve the accuracy by one decimal place. Furthermore, there is
no guarantee that model parameters, which span the complement
of the finite samples, will not violate the state and energy con-
straints. This paper considers applications where constraints have
to be imposed on states over the duration of the maneuver, in the
presence of model parameter uncertainties. The proposed
approach does not depend on sampling to identify the realiza-
tion(s), which correspond to the active constraints.

Building on the rich literature of the use of polynomial chaos
(PC) in control [9–13], Nandi et al. [14] presents an approach,
which rewrites the polynomials associated with the specified dis-
tributions of the uncertain variables using Bernstein polynomials.
The mapping permits determination of time evolutions of the
bounds on the uncertain states and is illustrated on a numerical
example with one uncertain parameter. This paper generalizes the
development in Ref. [14] and presents a systematic technique to
generate tight bounds on the evolving states which are required
for the controller design. In addition, since the illustrative exam-
ples in the paper include uniformly distributed uncertain parame-
ters, comparisons to interval analysis (IA) methods are also
presented. It is observed that bounds determined from IA are
severely conservative making the Bernstein formulation a more
appropriate choice. Then, an optimization problem is posed to
ensure that the state constraints are not violated for all possible
realizations of the uncertain variables. The proposed approach is
attractive since it does not require Monte Carlo simulations to
estimate the bounds on the states. Finally, an LP problem can be
posed to determine a controller, which is robust to the uncertain
variables. Although the individual ideas of a PC expansion of sto-
chastic states, the Bernstein formulation to bound polynomials
and control input design methodology via linear programming is
not new, the novelty of the work lies in the fluid integration of the
three frameworks, which has not been studied before.

The structure of the paper is as follows: In Sec. 2, an LP-based
approach for the design of optimal control profiles, which are
robust to model uncertainties, is presented. This motivates the
need for the development of a PC-based approach for state con-
strained control for uncertain systems. A review of PC is provided
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in Sec. 3 to characterize uncertainties and propagate them through
the dynamical model. This is followed in Sec. 4 by the PC map-
ping using Bernstein polynomial basis function, which illustrates
how the bounds on the states are determined. Section 5 presents
the bounds determined from IA and provides motivation for using
the Bernstein method over IA. Section 6 elaborates on the
improvement on these bounds by splitting the Bernstein coeffi-
cients. Section 7 illustrates the robust controller design using LP
and the numerical results corresponding to the benchmark floating
oscillator problem.

2 Controller Design

This section describes the linear programming-based approach
for robust optimal control by following the development in Ref.
[15]. The problem is formulated for rest-to-rest maneuvers of
vibratory system in the presence of model uncertainties using the
minimax approach [8], where the inclusion of state constraints
into the design results in a much more challenging design prob-
lem. The resulting problem statement for state-limited control is

min
u tð Þ

F ¼ maxaE að Þ½ � (1a)

subject to _x tð Þ ¼ Acx tð Þ þ Bcu tð Þ (1b)

x t0ð Þ ¼ x0; x tfð Þ ¼ xf (1c)

ulb � u tð Þ � uub 8 t (1d)

state constraints 8 t (1e)

where x tð Þ ¼ pT; vT
� �T 2 Rn; u tð Þ 2 Rk, ulb, and uub are lower

and upper bounds on the control input, respectively. E að Þ is the
residual energy given by

E að Þ ¼ 1

2
v að ÞTMv að Þ þ 1

2
p að Þ � pref
� �T

K að Þ p að Þ � pref
� �

(2)

where M is the mass matrix, K(a) is the uncertain stiffness matrix,
p að Þ and v að Þ are the positional and velocity states corresponding to
a realization of the uncertain a, respectively. a represents a finite
parametric set of the uncertain variable that must lie within the
domain of uncertainty specified by

alb � a � aub (3)

where alb and aub represent the lower and upper bounds, respec-
tively. The nonlinear optimization problem can be transformed
into a convex problem in the discrete domain by posing it as a lin-
ear programming problem [15].

Consider the discrete time realization of Eq. (1b)

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ (4)

The recursive relation of Eq. (4) can be expressed as a linear
expression of the initial conditions and the control input u as

x k þ 1ð Þ ¼ Akx 1ð Þ þ
Xk
i¼1

Ak�iBu ið Þ (5)

where x 1ð Þ is the initial condition of the states.
The objective of the problem is to determine a control input u,

which drives the dynamical system from an initial state x 1ð Þ to a
final state x Nt þ 1ð Þ, where k¼Nt is the final iterative step of
Eq. (4) in a given finite interval of time. Thus, the known quanti-
ties of the problem are initial time (T0), final time (Tf), initial con-
ditions (x 1ð Þ), and final conditions (x Nt þ 1ð Þ).

The LP problem is posed as a feasibility problem in this case
with linear constraints. From Eq. (5), the final condition constraint
is given by

ANt�1B ANt�2B … AB B
� � u 1ð Þ

u 2ð Þ
�

u Ntð Þ

2
664

3
775

¼ x Nt þ 1ð Þ � ANtx 1ð Þ (6)

State constraints can be implemented by

CAkx 1ð Þ þ
Xk
i¼1

CAk�iBu ið Þ6U 8 k 2 1 : Nt½ � (7)

where C is the output matrix and U represents a prespecified
bound. The control constraints are implemented as

ulb 6u kð Þ6uub 8 k 2 1 : Nt½ � (8)

where ulb and uub are lower and upper bounds on the control
inputs. The solution to the problem stated above yields the desired
control input over all the time instants (k¼ [1: Nt]).

Singh [16] proposed a linear programming-based approach for
the design of optimal controllers, which are robust to model
parameter uncertainties. This was accomplished by uniformly
sampling the compact support of the uncertainty. A minimax
problem is now formulated to minimize the worst residual energy
at the end of the maneuver over the sampled models. It was shown
that the resulting solution closely approximated the solution gen-
erated by the nonlinear programming problem.

When state constraints are included in the controller design
problem, a large number of additional constraints are included in
the linear programming problem. These constraints correspond
to the satisfaction of the state constraint at every time instant.
Since the accuracy of the optimal control improves as the sam-
pling time decreases, one needs to tradeoff the computational cost
of the additional state constraints to the improved representation
of the optimal control. When one endeavors to solve the state-
constrained optimal control problem in the presence of model
uncertainties, the problem quickly becomes intractable as the
number of uncertainties grows. To address this issue, a polyno-
mial chaos-based approach is proposed in this paper.

3 Polynomial Chaos Expansion

Polynomial chaos was first introduced by Norbert Wiener in
1938 in his article [17]. In this work, he first approximated a sto-
chastic state following a Gaussian process by an infinite series
expansion of orthogonal Hermite polynomials. Later, in 1947,
Cameron and Martin [18] proved that such an expansion always
converges for stochastic processes with a finite variance. Years
later, this property was used by Ghanem and Spanos in their book
[19] to solve stochastic differential equations. Instead of an infi-
nite expansion, they truncate the series to a finite number of mem-
bers. Then they use Galerkin projection to formulate a set of
deterministic equations, and finally solve them to obtain the coef-
ficients of their original series expansion. Xiu and Karniadakis
[20] generalize the concept of PC to express the generic stochastic
process as a series expansion of appropriate orthogonal polyno-
mials (given by the Wiener–Askey scheme). This development
was termed as the generalized polynomial chaos (gPC) theory.
This particular concept is used in the present work to approximate
a stochastic process with uniformly distributed variables.

A detailed formulation of the PC expansion is presented in this
section and illustrated on a benchmark problem.

3.1 Methodology. Let a stochastic dynamical system be
expressed in the form

071009-2 / Vol. 140, JULY 2018 Transactions of the ASME



_x t; nð Þ ¼ f x tð Þ; n; u tð Þð Þ and x t0; nð Þ ¼ x0 (9)

where x2Rn is the state vector, n2Rm is the vector of random
variables with known probability distributions, x02Rn is the
initial state ðwhich may also be uncertainÞ, and u tð Þ is the control
input.

From the theory of generalized gPC, the states can be expressed
as

x t; nð Þ ¼
X1
i¼0

xi tð ÞWi nð Þ (10)

where Wi nð Þ is a complete set of multivariate orthogonal polyno-
mials depending on the type of distribution of n and xi 2 Rn is
the time varying coefficient vector of the polynomialsWi nð Þ.

The selection of the set of orthogonal polynomials for popular
distributions is given by the Wiener–Askey scheme [20]. The
expansion is typically truncated to a finite number of terms as an
approximation of the expression. The number of terms to be
included in the approximation is determined by the degree of
accuracy desired. Larger the number of terms (N), longer the time
span over which the states are accurate [20]. Hence, Eq. (10) is
rewritten as

x t; nð Þ ¼
XN
i¼0

xi tð ÞWi nð Þ (11)

which is a vector equation

x1
x2
�

xn

2
4
3
5

|ffl{zffl}
x

¼
x10
x20
�

xn0

2
4

3
5

|fflffl{zfflffl}
x0

W0 þ
x11
x21
�

xn1

2
4

3
5

|fflffl{zfflffl}
x1

W1 þ � � � þ
x1N
x2N
�

xnN

2
4

3
5

|fflffl{zfflffl}
xN

WN (12)

where xi is the ith state and xij is the coefficient of the jth polyno-
mial belonging to the ith state.

The objective is to determine all the time varying coefficients,
i.e., xij. The basis functions of the states, i.e., Wi, are a set of
orthogonal polynomials with respect to the probability density
function (pdf) of the random variable. If a system has multivariate
independent random variables, the basis functions are the multi-
variate polynomials derived from the tensor product of the univar-
iate basis functions of each random variable. To continue with the
PC formulation, Eq. (11) is substituted in Eq. (9) to get

XN
i¼0

xi
:
tð ÞWi nð Þ ¼ f

XN
i¼0

xi tð ÞWi nð Þ; n; u tð Þ
 !

(13)

The essence of PC expansion is to form a set of deterministic dif-
ferential equations from the stochastic equation (13), whose solu-
tion allows us to approximate the states over time. These
equations are formed by performing the Galerkin Projection on it
over each of the orthogonal basis functions (i.e., Wk, where k¼ 0,
1,…, N). The solution to these equations yields our desired coeffi-
cients xij.

The kth deterministic differential equation on taking the Galer-
kin Projection is given by

�XN
i¼0

xi
:
tð ÞWi nð Þ;Wk nð Þ

�
¼
�
f
XN
i¼0

xi tð ÞWi nð Þ; n; u tð Þ
 !

;Wk nð Þ
�

(14)

The property of orthogonality of the polynomials, permits writing
the inner product as

hWi nð Þ;Wj nð Þi ¼
ð
X
Wi nð ÞWj nð Þpdf nð Þdn ¼ cidij (15)

for k¼ 0, 1,…, N where dij is the Kronecker delta function, ci is a
coefficient whose value depends on the orthogonal polynomials,
and X is the support of the distribution of the random variables.
Now, Eq. (14) can be simplified to yield

_xk tð Þ ¼ 1

ck

ð
X
f
XN
i¼0

xiWi nð Þ; n;u tð Þ
 !

Wk nð Þpdf nð Þdn (16)

for k¼ 0, 1,…, N.
Equation (16) is a set of (Nþ 1) vector differential equations

with the vectors having n elements each. Hence, a total of
(Nþ 1)n scalar equations need to be solved simultaneously. Since
the equations are deterministic, they can be easily numerically
evaluated.

3.2 Illustrative Example. To clearly demonstrate the theory
presented above, an implementation of it on a simple two mass
spring damper system (Fig. 1) is undertaken. PC expansion is
used to determine the stochastic states, and the results are com-
pared with MC simulations.

The first and the second bodies have masses m1 and m2 with
displacements y1 and y2, respectively. The coefficient of the spring
between them is k and the damping constant is c. The determinis-
tic control input u(t) is applied to the first mass.

Assuming that the spring constant is uncertain with a uniform
distribution

k ¼ U 0:7; 1:3ð Þ (17)

the Wiener–Askey scheme, for a uniform distribution, requires the
orthogonal polynomials of expansion to be Legendre polynomials.
The orthogonality of the polynomials is present in the domain
[�1, 1]. Hence, the spring constant (k) is defined in terms of
another random variable (n) with a similar domain, i.e., n ¼
U �1; 1ð Þ and thus, we have

k ¼ 1þ 0:3n (18)

Truncating the PC expansion to the fifth-order, i.e., N¼ 5, the
states are expanded as

y1
y2
y3
y4

2
664

3
775 ¼

y10
y20
y30
y40

2
664

3
775W0 þ

y11
y21
y31
y41

2
664

3
775W2 þ � � � þ

y15
y25
y35
y45

2
664

3
775W5 (19)

and the dynamic system in terms of the uncertain variable is

_y1

_y2

_y3

_y4

2
666664

3
777775 ¼

0 0 1 0

0 0 0 1

� 1þ 0:3nð Þ
m1

1þ 0:3nð Þ
m1

� c

m1

c

m1

1þ 0:3nð Þ
m2

� 1þ 0:3nð Þ
m2

c

m2

� c

m2

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

y1

y2

y3

y4

2
666664

3
777775þ

0

0

1

m1

0

2
666664

3
777775

|fflffl{zfflffl}
B

u tð Þ

(20)

Differentiating Eq. (19) with respect to time and equating it to Eq.
(20), we get four equations

Fig. 1 Two mass spring damper system
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_y10W0 þ _y11W1 þ � � � þ _y15W5 ¼ A11 y10W0 þ � � � þ y15W5ð Þ
þA12 y20W0 þ � � � þ y25W5ð Þ þ � � � þ A14 y40W0 þ � � � þ y45W5ð Þ
þB11u tð Þ

(21)

�

_y40W0 þ _y41W1 þ � � � þ _y45W5 ¼ A41 y10W0 þ � � � þ y45W5ð Þ
þA42 y20W0 þ � � � þ y25W5ð Þ þ � � � þ A44 y40W0 þ � � � þ y45W5ð Þ
þB41u tð Þ

(22)

where Aij and Bij are the ith row-jth column elements of A and B,
respectively. Taking the Galerkin projection on Eq. (21), we get
(Nþ 1¼ 6) deterministic equations

_y10hW0;W0i ¼ f10 y10;…; y4N ; uð Þ (23)

� (24)

_y15hW5;W5i ¼ f15 y10;…; y4N ; uð Þ (25)

Similarly, Galerkin projections on the other equations from Eqs.
(21) and (22) yield a total of ((Nþ 1)n¼ 24) differential equa-
tions. These equations are solved to determine all the coefficients
of the PC expansion representation of the states.

Simulating the unforced system with nonuncertain system
parameters of c¼ 1, m1¼ 5, m2¼ 5, and initial conditions
y 0ð Þ ¼ 1; 0; 0; 0ð ÞT, Fig. 2 illustrates the time evolution of the
mean of the position of the first mass evaluated using PC expan-
sion (truncated to the fifth-order, i.e., N¼ 5). It is plotted along
with Monte Carlo simulations and the mean is derived from
10,000 such simulations. The overlapping curves for the mean of
the Monte Carlo and the mean determined from PC prove the con-
vergence of PC expansion over the given interval of time. The
inset graph is an illustration of the difference between the mean
estimated from Monte Carlo simulations and the mean estimated
from the PC expansion, clearly illustrating the small difference in
the two estimates. The higher-order moments can also be similarly
compared.

To illustrate the development of the PC model for two uncertain
variables, consider the mass spring damper system with the fol-
lowing uncertainties:

k ¼ U 0:7; 1:3ð Þ; c ¼ U 0:8; 1:2ð Þ (26)

Following the same argument as before, new random variables are
defined as:

n1 ¼ U �1; 1ð Þ; n2 ¼ U �1; 1ð Þ (27)

leading to

k ¼ 1þ 0:3n1; c ¼ 1þ 0:2n2 (28)

Since there are two independent variables, the basis functions
(orthogonal polynomial functions) are now functions derived
from the tensor product of univariate polynomial functions. In this
case, since both the uncertain variables have uniform distribution,
the product is between Legendre polynomials. Numerical simula-
tion of the gPC model model for two uncertain variables con-
firmed the agreement with the mean estimated from 10,000 Monte
Carlo runs.

4 Determination of Bernstein Bounds

In numerous fields of engineering, it is often desired to deter-
mine the bounds on the range of a particular state or function. If
the particular function of interest is, or can be well approximated
by a multivariate polynomial, Bernstein polynomials can be
exploited to determine these bounds [21]. In fact, algorithms have
also been proposed to determine the exact range of multivariate
polynomials using Bernstein expansions [12,22]. The work pre-
sented here, however, makes use of the bounding properties of
Bernstein bases to estimate tight bounds on the range of stochastic
states and use these bounds as constraints to design a robust
controller.

In Sec. 3, it was shown that gPC allows a good approximation
of states of a stochastic process, as a polynomial function of the
random variables. The example in particular had Legendre poly-
nomials as the basis functions. This section highlights a procedure
to find those bounds and improve them. As bounds only exist for
compact support, the procedure only works when variables have a
finite distribution.

Bounds’ determination is done by a basis transformation from
the existing bases (of PC expansion) to the Bernstein bases. The
transformation allows the exploitation of Bernstein properties to
establish bounds. Garloff [23] shows that these bounds can be
improved if the domain of the Bernstein polynomials is subdi-
vided. This subdivision to improve bounds is done using De
Casteljau’s algorithm. The algorithm can be found in Ref. [24].

4.1 Methodology. A polynomial function can be expressed in
terms of other polynomial bases. The most common form used is
the power bases, i.e.,

1; n; n2; n3;… (29)

Other popular forms include the Bernstein basis or the set of
orthogonal polynomials (like Legendre, Jacobi, Hermite, etc). Pol-
ynomials whose orthogonality domain is finite (Legendre, shifted
Legendre, Jacobi,…) are used as bases in PC expansion of sto-
chastic states with compact support. Hence, the first objective is a
basis transformation from the orthogonal bases to the Bernstein
bases.

A stochastic state expressed as a PC expansion

xj t; nð Þ ¼
XN
i¼0

xji tð ÞWi nð Þ (30)

where xj is the jth state of the model, Wi are the multivariate
orthogonal bases (Legendre, Jacobi,…), and xji(t) are the corre-
sponding coefficients of the bases now need to be expressed as

Fig. 2 MC simulations (10,000), MC mean and PC mean for
mass 1 position—one uncertain variable
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xj t; nð Þ ¼
XN
i¼0

bji tð ÞBi nð Þ (31)

where Bi are the multivariate Bernstein polynomials with domain
n 2 0; 1½ �m and bji(t) are their coefficients. This linear transformation
(from Eqs. (30) to (31)) of the coefficients involves three stages.

The first stage requires Wi (which has domain of orthogonality
[a, b]) to be transformed to orthogonal bases W0

i with orthogonal-
ity domain [0, 1] as the property of Bernstein polynomials to be
utilized is satisfied only within that domain. Hence, the first trans-
formation is given by

xj t; nð Þ ¼
XN
i¼0

xji tð ÞWi nð Þ ! xj t; nð Þ ¼
XN
i¼0

x0ji tð ÞW0
i nð Þ (32)

The second stage requires the transformation from W0
i to the

power bases Pi

xj t; nð Þ ¼
XN
i¼0

x0ji tð ÞW0
i nð Þ ! xj t; nð Þ ¼

XN
i¼0

pji tð ÞPi nð Þ (33)

The final transformation gives the desired polynomial expressed
in terms of multivariate Bernstein bases

xj t; nð Þ ¼
XN
i¼0

pji tð ÞPi nð Þ ! xj t; nð Þ ¼
XN
i¼0

bji tð ÞBi nð ÞÞ (34)

Equations (32)–(34) refer to linear transformations and vary accord-
ing to the number of random variables, the original bases functions,
and the order of truncation. For example, Legendre–Bernstein
transformations and Jacobi–Bernstein transformation methods are
provided by Farouki [25] and Rababah [26], respectively.

Multivariate Bernstein polynomial bases are derived from the
tensor product of univariate Bernstein polynomials. Without loss
of generality, the subscript j is dropped (to indicate any state
member) for convenience from Eq. (31), and the equation is
rewritten in terms of Bernstein polynomials as

x t; nð Þ ¼
Xd;d;…d

n1 ;n2 ;…nm¼0

bn1;n2;…nm tð ÞBd
n1;n2;…nm

nð Þ (35)

where bn1 ;n2 ;…nm are the Bernstein coefficients, Bd
n1;n2;…nm

nð Þ ¼Qm
i¼1 B

d
ni
nið Þ are the m-dimensional Bernstein polynomials and d

is the degree of the univariate polynomials. Now, the range
enclosing property of Bernstein polynomials over the box
n 2 0; 1½ �m

x t; nð Þ � min
d;d;…d

n1;n2;…nm¼0
bn1;n2;…nm ; max

d;d;…d

n1;n2;…nm¼0
bn1;n2;…nm

" #
(36)

is used to immediately obtain bounds on the state expressions.
Equation (36) can also be expressed as a convex hull property

by defining control points

n

x t; nð Þ

 !
: n 2 0; 1½ �m

( )
�

conv

( 
b� að Þ � n1

d
;
n2
d
;…

nm
d

� �
bn1 ;n2 ;…nm tð Þ

!
:

n1; n2;…nm ¼ 0; 0;…0 to d; d;…d

)
(37)

where conv{M} denotes the convex hull of setM.

4.2 Illustrative Example. Solution to Eqs. (23)–(25) gives
the PC expansion of the first state. Analysis of just this one state is
shown henceforth, i.e., the position of mass 1. Analysis for the
other states can also be done in a similar manner

y1 ¼ y10W0 þ y11W1 þ � � � þ y15W5 (38)

The Legendre coefficients [y10, …, y15]
T are transformed to

Bernstein coefficients [b10,…, b15]
T using the methodology

described in Ref. [25] where a transformation matrix is developed
to transform multivariate Legendre polynomial coefficients to
multivariate Bernstein ones based on Eqs. (32)–(34). Therefore,
y1 is expressed as

y1 tð Þ ¼ b10 tð ÞB5
0 nð Þ þ � � � þ b15 tð ÞB5

5 nð Þ (39)

Using the property mentioned in Eq. (36), at every instant in time,
the maximum and minimum values of the state are obtained
directly by observing the coefficients [b10,…, b15]

T. The maxi-
mum values of the coefficients provide the upper bound while the
minimum values provide the lower bound. Figure 3(a) shows that
the state values determined from all the MC simulations of the
model lie within the envelope provided by the bounds.

Slices taken from Fig. 3(a) at times t¼ 11, 17, and 29 are shown
in Figs. 4(a)–4(c). These time instants were selected to show a vari-
ety of convex hulls. The stars denote the control points derived
from Eq. (37). The convex hull determined from the set of control
points form a superset for all points lying on the black curve (curve
of mass 1 position with varying k). Hence, finally, a deterministic
bound is now available for the states of a stochastic process.

Similar to the one-dimensional (1D) case (one uncertain vari-
able), a transformation can be used to convert the multivariate
Legendre coefficients to Multivariate Bernstein coefficients [25].
The definitive bounds once again directly drop out of the coeffi-
cients and have been shown in Fig. 3(b).

Slices are once again taken, at times t¼ 17, 19, and 27. Since
there are two uncertain parameters now, the variation of the state
is shown as a surface plot. Using relation (37), new control points
are generated. A convex hull is determined from the set of these
control points and is shown to envelope the entire surface of the
states (Figs. 5(a)–5(c)), thus, proving the validity of the bounds.

5 Determination of Interval Analysis Bounds

Interval analysis, first introduced by Moore [27], represents any
real number (x) by an interval bounded by a lower limit and an
upper limit (i.e., x ¼ x; �x½ �). All mathematical operations between
such quantities are done in terms of their intervals. For example,
if x ¼ x; �x½ � and y ¼ y; �y

� �
, then xþ y ¼ xþ y; �x þ �y

� �
. Similar

definitions for difference, multiplication, etc., are present, with the
guarantee that the output variable will lie within the resulting
interval.

For linear time invariant systems (class of systems being stud-
ied), parametric uncertainties can be mapped to an interval system
matrix [A] where every element of [A] is an interval variable.
The solution to an unforced linear time invariant system with
nonuncertain initial conditions and an interval system matrix [A]

is given by: x tð Þ ¼ e A½ �tx 0ð Þ. This expression requires the
evaluation of another interval matrix e[A]t at every instant
t, which is typically approximated by a truncated Taylor
series expansion and a bounding truncation error [28].

Interval analysis suffers from the major drawback of overesti-
mation of true intervals. In fact, calculating the true bounds of the
interval matrix exponential (e[A]t) is a NP-hard problem [29].
Althoff et al. [28] calculates the exponential interval by determin-
ing exact bounds on the first three terms of the Taylor series
expansion and overestimating the rest of the series (method 1).
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Truncation error is also considered. An improvement to this
method is seen by re writing the Taylor expansion in the Horner
format of polynomials accompanied by a scaling-squaring process
(method 2) [29].

Both these methods allow determination of bounds in a continu-
ous domain. An extension can be easily made to the discrete one.
The motivation to do so lies in the fact that determining the matrix
exponential at every instant in time can be computationally signif-
icantly expensive. In discrete domain, however, the matrix expo-
nential needs to be evaluated just once. For a given sampling time
T, the discrete state transition matrix (e[A]T) is calculated using
similar methods as the continuous domain. Once the interval state
transition matrix is known, the interval states are propagated using
the rules of interval arithmetic matrix–vector product.

The bounds can be further improved if the entire interval is sub-
divided and the results from the analysis of each separate smaller
interval are combined [30].

Figure 6 shows a comparison of the nature of bounds deter-
mined from each of these methods as well as the ones determined

from Bernstein coefficients. Simulation parameters are the same
as Sec. 3.2 with the stiffness interval k¼ [0.7, 1.3]. For the simula-
tion, the stiffness interval was divided into four equal subinterv-
als: [0.7, 0.85]; [0.85, 1]; [1, 1.15] and [1.15, 1.3] and bounds
were combined from each interval. Continuous method 1 and both
discrete methods (sampling time: T¼ 0.01) quickly become very
conservative and thus have not been shown beyond times t¼ 4
and t¼ 6, respectively. Continuous method 2 performs the best
among all the IA techniques. However, bounds from Bernstein
coefficients are far superior. Hence, it makes sense to adopt the
Bernstein bounds over the IA techniques for subsequent work.

6 Splitting Bernstein Coefficients

Definite bounds were established from the extreme values of
the Bernstein coefficients in Sec. 4. However, Figs. 4(a)–5(c)
make a visual point toward stating that the bounds yet have room
for improvement. Existing bounds can be made tighter by splitting
the Bernstein coefficients along each dimension.

Fig. 3 Bernstein bounds: (a) definite bounds from Bernstein coefficients (1D) and (b) definite
bounds from Bernstein coefficients two-dimensional (2D)

Fig. 4 Convex hulls: (a) time511, (b) time5 17, and (c) time5 29

Fig. 5 Three-dimensional convex hulls: (a) time5 17, (b) time5 19, and (c) time527
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Splitting of Bezier curves (parametric curves which are deter-
mined by Bernstein polynomials and lie within the convex hull of
its control points) was first presented by French engineer de Cas-
teljau [31]. His algorithm (famously known as de Casteljau’s
algorithm in computer graphics) is used to date to split the convex
hull into segments. In our case, that reduces the conservative
nature of the bounds.

Figure 4(c) (pertaining to example 1) shows a Bezier curve
with its control points marked with asterisk. De Casteljau’s algo-
rithm is used to split this Bezier curve into two separate curves
each with its own set of control points. The split can be made at
any arbitrary point n ¼ a : 06 a6 1ð Þ.

The procedure for problems with one uncertain variable (1D) is
explained prior to making the procedure more generic.

Consider the 1D control points (k, b1i) from Fig. 4(c), i.e., the
Bezier curve at t¼ 29 (Table 1):

The lower and upper bounds for this curve is given by

min b1ið Þ ¼ 0:4948 max b1ið Þ ¼ 0:5040 (40)

Hence, the lower bound and upper bound for mass 1 position at
time¼ 29 is 0.4948 and 0.5040, respectively.

On applying de Casteljau’s algorithm, and splitting the curve at

n ¼ a ¼ 0:5; i:e:; k ¼ 0:7þ 1:3� 0:7ð Þa ¼ 1 (41)

the new control points (Fig. 7(a)) obtained are listed in Table 2.
The lower and upper bounds for this curve is now given by

min b1ið Þ ¼ 0:4979 and max b1ið Þ ¼ 0:5021 (42)

The lower bound for mass 1 position increases and the upper bound
decreases, thus improving the definitive bound. In this particular
case, the range on the bounds see a decrease of 54.13% when the
coefficients are split, indicating a substantial improvement.

Splitting of Bernstein surfaces or higher dimensional coeffi-
cients is slightly more involved than the 1D case. An explanation
of the 2D case makes it simpler to understand the procedure for
higher dimensional cases. The following discussion deals with the
splitting of the Bernstein surface represented in Fig. 5(c).

Since, now we have a Bernstein surface (2D), the control points
must be laid out in the form of a meshgrid (Table 3). Unsplit
Bernstein coefficients at t¼ 27 (Table 3) shows all the Bernstein
coefficients with horizontally varying n1 (i.e., k) and vertically
varying n2 (i.e., c).

The bounds of the state are calculated by observing the maxi-
mum and the minimum value of the coefficients (from Table 3)
where

min bn1;n2ð Þ ¼ 0:4779 and max bn1 ;n2ð Þ ¼ 0:5068 (43)

Hence, the lower and upper bounds of the state at time¼ 27 are
0.4779 and 0.5068, respectively, for unsplit control points.

Using De Casteljau’s algorithm, the coefficients are split along
n1¼ 0.5 (i.e., k¼ 1) first to get the partially split control points.
The coefficients so obtained are now further split; however, this
time along n2¼ 0.5 (i.e., c¼ 1) to obtain completely split coeffi-
cients (Table 4).

Bounds are determined in the same way from Table 4. The
lower bound found is 0.4922 and the upper bound is 0.5068.
Again, we see that there is an improvement in the bounds once the
coefficients are split (Split bounds improve the range by 49.52%).
The convex hull formed from the split control points is shown in
Fig. 7(b) as opposed to unsplit control points in Fig. 5(c). For
higher dimensional cases, the procedure for the 2D case is fol-
lowed. The splitting is carried out separately along each dimen-
sion independently. The bounds as well as the convex hull are
determined after the split control points (i.e., split Bernstein coef-
ficients) have been calculated.

It should be noted that it is not necessary that the splitting be
done along all the dimensions. Splitting, however, should be car-
ried out along dimensions, which have the most influence over the
states to substantially improve bounds.

Moreover, throughout the procedure, the splitting has been
done once and for all cases at n¼ 0.5. Splitting the coefficients
more than once is possible and does improve bounds. However,
splitting the coefficients more than once greatly increases compu-
tational requirements considering that the computations have to
be performed at all times. Splitting can also be done at values
other than n¼ 0.5 and would yield different results. It would be
ideal if the splitting could be done at an optimal point; however,
determining the optimal point at every stage is once again expen-
sive and a computational compromise is made.

7 Controller Design

Determination of definite bounds on the states of a stochastic
process leads to an obvious application in controller design. The
information from the Bernstein coefficients can now be used to
satisfy state constraints in the design of a controller robust to the
uncertainties in the model.

The controller is designed in a discrete time setting of the sys-
tem. A LP formulation is used (as the constraints can be reduced
to linear equalities and inequalities) to solve for the desired con-
trol input. The LP problem formulation for linear dynamical sys-
tems as elaborated by Singh [15] was discussed in Sec. 2. The
extension of the LP approach, which incorporates the Bernstein
bounds is discussed next.

7.1 Linear Programming Problem for Stochastic Processes.
The LP formulation for a stochastic process has a similar framework
as that of the deterministic problem. However, the primary difference
lies in the fact that even though the desired final states are known,
the final state values for a stochastic process remains unknown.

To formulate the problem considering uncertainty, the residual
energy of the final states is chosen to be the cost to be minimized.
The residual potential energy is only a function of the position
states and the residual kinetic energy is only a function of the
velocity states. Hence, constraining the residual energy constrains
the final state residues to become minimum.

Fig. 6 Comparison of bounds

Table 1 1D unsplit control points

k b1i k b1i k b1i

0.7000 0.5005 0.8200 0.4982 0.9400 0.4948
1.0600 0.5040 1.1800 0.5018 1.3000 0.5010
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However, the residual energy is a quadratic term and does not
fit the requirements of an LP problem. Hence, the residual energy
constraint is approximated to conform to LP rules.

For linear systems

M€z þ C _z þ Kz ¼ Du (44)

where M, C, and K are mass, damping, and stiffness matrices and
D is the control influence matrix; the energy (E) at any time
instant is given by

E ¼ 1

2
_zTM _z þ 1

2
zTKz ¼ 1

2

ffiffiffiffiffi
M

p
_z


 �T ffiffiffiffiffi
M

p
_z


 �
þ 1

2

ffiffiffiffi
K

p
z


 �T ffiffiffiffi
K

p
z


 �
(45)

which is the sum of the kinetic and potential energies. It can be
also visualized as the l2 norm of the square root of potential and
kinetic energies. To make the residual energy constraint compati-
ble with a LP problem, a linear approximation of Eq. (45) is
assumed. This is done by using an l1 or a l1 norm instead of the l2
norm (which is essentially circumscribing or inscribing the l2
hypersphere with bounding hyperplanes).

Linear systems (i.e., Eq. (44)) can be written in state space as

_z
€z

n o
|ffl{zffl}

_z

¼ 0 I
�M�1K �M�1C

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

A0

z
_z

n o
|ffl{zffl}

Z

þ 0

M�1D

h i
|fflfflfflffl{zfflfflfflffl}

B0

u (46)

After discretization, the model is given as

Z k þ 1ð Þ ¼ AZ kð Þ þ Bu kð Þ (47)

The terminal time error states are defined as

X ¼ x Nt þ 1ð Þ
_x Nt þ 1ð Þ

� 

¼ z Nt þ 1ð Þ � zf

_z Nt þ 1ð Þ � _zf

� 

(48)

where zf and _zf are the desired final states.
A new set of states (at final time) are defined (which will be

used to implement the residual energy constraint later) as

Fig. 7 Split Bernstein coefficients and split convex hulls: (a) split coefficients at time529 and hull (1D) and (b) split coeffi-
cients at time527 and hull (2D)

Table 2 1D split control points

k b1i k b1i k b1i

0.7000 0.5005 0.7600 0.4994 0.8200 0.4979
0.8800 0.4979 0.9400 0.4987 1.0000 0.4997
1.0000 0.4997 1.0600 0.5006 1.1200 0.5016
1.1800 0.5021 1.2400 0.5014 1.3000 0.5010

Table 3 2D unsplit control points

c\k 0.7000 0.8200 0.9400 1.0600 1.1800 1.3000

0.8000 0.5050 0.5036 0.5025 0.5017 0.5012 0.5008
0.8800 0.5000 0.5021 0.5023 0.5022 0.5018 0.5015
0.9600 0.4779 0.4871 0.4921 0.4952 0.4971 0.4983
1.0400 0.4993 0.4974 0.4973 0.4975 0.4979 0.4983
1.1200 0.5061 0.5028 0.5014 0.5007 0.5003 0.5001
1.2000 0.5068 0.5038 0.5023 0.5014 0.5009 0.5005

Table 4 2D completely split control points

c\k 0.7000 0.7600 0.8200 0.8800 0.9400 1.0000 1.0600 1.1200 1.1800 1.2400 1.3000

0.8000 0.5050 0.5043 0.5037 0.5032 0.5027 0.5023 0.5019 0.5015 0.5012 0.5010 0.5008
0.8400 0.5025 0.5027 0.5027 0.5025 0.5024 0.5022 0.5020 0.5017 0.5015 0.5013 0.5011
0.8800 0.4957 0.4972 0.4983 0.4990 0.4995 0.4998 0.5001 0.5003 0.5004 0.5005 0.5005
0.9200 0.4922 0.4942 0.4956 0.4966 0.4974 0.4981 0.4987 0.4991 0.4994 0.4996 0.4998
0.9600 0.4922 0.4938 0.4951 0.4961 0.4968 0.4974 0.4981 0.4985 0.4989 0.4991 0.4994
1.0000 0.4942 0.4952 0.4960 0.4967 0.4972 0.4977 0.4981 0.4985 0.4988 0.4990 0.4992
1.0400 0.4961 0.4965 0.4969 0.4973 0.4976 0.4979 0.4982 0.4985 0.4987 0.4989 0.4991
1.0800 0.5001 0.4995 0.4992 0.4990 0.4990 0.4990 0.4990 0.4990 0.4991 0.4992 0.4993
1.1200 0.5045 0.5031 0.5021 0.5015 0.5010 0.5006 0.5002 0.5000 0.4999 0.4998 0.4998
1.1600 0.5064 0.5049 0.5037 0.5029 0.5022 0.5017 0.5012 0.5009 0.5006 0.5005 0.5003
1.2000 0.5068 0.5053 0.5042 0.5033 0.5027 0.5021 0.5016 0.5012 0.5009 0.5007 0.5005
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y Nt þ 1ð Þ
_y Nt þ 1ð Þ
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ffiffiffiffi
K

p
x Nt þ 1ð Þffiffiffiffiffi

M
p

_x Nt þ 1ð Þ
� 


(49)

where y ¼ y1; y2;…yr½ �T; _y ¼ _y1; _y2;… _yr½ �T and r is the dimen-
sion of z.

7.1.1 l1 Formulation. The final states, and hence the residual
states, are a linear function of the control input. The new set of
states (y and _y) defined by Eq. (49) are linear transformations of
the residual states. Thus, a set of linear inequalities can be framed
to solve for the minimax problem.

The final problem can be posed as

minimizeu;f f

subject to �f 6 yi1 Nt þ 1ð Þ6 f

�f 6 yi2 Nt þ 1ð Þ6 f

�

�f 6 yir Nt þ 1ð Þ6 f 8i ¼ 0; 1;…p

�f 6 _yi1 Nt þ 1ð Þ6 f

�

�f 6 _yir Nt þ 1ð Þ6 f

ulb 6u kð Þ6uub 8k ¼ 1; 2;…Nt

state constraints 8k ¼ 1; 2;…Nt

where p is the number of uncertain models selected over the space
of uncertainty on which the residue is to be minimized, ulb and
uub are the bounds on the control and the State Constraints are the
desired state restrictions during the control operation.

7.1.2 l1 Formulation. The l1 problem can be formulated as

minimizeu;f f

subject to
Xr
s¼1

Csy
i
s Nt þ 1ð Þ6 f

" #
for i ¼ 1; 2;…; p

ulb 6 u kð Þ6 uub 8k ¼ 1; 2;…Nt

state constraints 8k ¼ 1; 2;…Nt

where Cs¼61; r is the dimension of z, p is the number of models
selected within the region of uncertainty, and k the time index of
the discrete system. As each Cs can have two values (61), the
total number of residual energy constraints becomes 2r.

7.2 Linear Programming Problem With Bernstein Coeffi-
cients. In Secs. 7.1.1 and 7.1.2, it was stated that the number of
models used to form the constraints was p. Accurate representa-
tions of multivariate stochastic systems with sampling require a
large number of such samples. The magnitude of this number
exponentially increases with the dimensionality of the uncertainty
[32]. Hence, the robustness of the controller is limited by the num-
ber of samples of the model chosen.

However, when the stochastic process has a Bernstein formula-
tion, the control points of the Bernstein expansion provide abso-
lute deterministic bounds on the states. Hence, a smart sampling
method, which requires the model samples to be the control points
(which make the convex hull), always makes the control design
valid.

The case for using the unsplit control points is first presented
before the split control points case is presented. Once again, the
same example is used to show the theory discussed.

7.2.1 Illustrative Example. In this section, the method to for-
mulate the LP problem and solve it has been shown. Considering
the model from Fig. 1, the dynamics are given by the matrices

M ¼ 5 0

0 5

� �
; C ¼ 1 �1

�1 1

� �
; K ¼ k �k

�k k

� �
(50)

For this example, it is once again assumed that the uncertainty in
the model is one-dimensional. The uncertainty lies in the spring
constant value given by Eq. (17).

To calculate the l1 or l1 form of the residual energy, the square
root of K matrix is desired. Thus, a pseudo spring (with spring
constant kp) is attached to the first mass to make the stiffness
matrix positive definite, which is required when defining a resid-
ual energy cost function for the linear programming problem.
Therefore

Kh ¼ k þ kp �k
�k k

� �
(51)

For all simulations, Kh is used as the effective stiffness matrix
with the value of kp being 0.05.

As seen previously, in order to formulate the LP problem, a dis-
crete setting is necessary. The whole procedure for PC expansion
is followed to obtain the Legendre states in discrete format. After
similar formulations to Eqs. (19)–(22), followed by a Galerkin
projection, a set of deterministic equations are derived similar to
Eqs. (23)–(25)

_z10hW0;W0i ¼ f10 z10;…; z45; uð Þ (52)

�

_z45hW5;W5i ¼ f45 z10;…; z45; uð Þ (53)

Equations (52) and (53) are discretized to yield

Z k þ 1ð Þ ¼ AZ kð Þ þ Bu kð Þ ¼ AkZ 1ð Þ þ
Xk
i¼1

Ak�iBu ið Þ (54)

where Z ¼ z10;…; z45½ �T are the Legendre coefficients. Therefore

Z Tfð Þ ¼ Z Nt þ 1ð Þ ¼ ANtZ 1ð Þ þ
XNt

i¼1

ANt�iBu ið Þ (55)

The transformation from Legendre states to Bernstein states is lin-
ear and the transformation matrix is said to be represented by MN.
Therefore, the terminal states in Bernstein form are

ZB Tfð Þ ¼ MNZ Nt þ 1ð Þ ¼ MNA
NtZ 1ð Þ þ

XNt

i¼1

MNA
Nt�iBu ið Þ (56)

or ZB Tfð Þ ¼ MNA
NtZ 1ð Þ þ MNA

Nt�1B…MNB
� � u 1ð Þ

�

u Ntð Þ

2
4

3
5 (57)

where ZB is a vector of dimension (n(Nþ 1)¼ 24) containing all
the Bernstein coefficients of the Bernstein basis functions
obtained under the influence of the input u(k). The objective of
the example is to find a control input, which can drive the system
from its initial states ([0, 0, 0, 0]T) to its final states ([1, 1, 0, 0]T)
while constraining the input to remain within the domain [�1 1]
and constraining the relative displacement of the masses to remain
within 0.2. From the desired final states, the desired Bernstein
coefficients at the final time can be easily determined as

ZBd Tfð Þ ¼ 1; … 12ð Þ …; 1; 0; … 12ð Þ…; 0
� �T

(58)
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Thus, the residual states are

X Tfð Þ ¼

x1 Tfð Þ
x2 Tfð Þ
_x1 Tfð Þ
_x2 Tfð Þ

2
66664

3
77775 ¼ ZB Tfð Þ � ZBd Tfð Þ (59)

where x1 and x2 are vectors of dimension 6 having the Bernstein
coefficients of the final residual positions of mass 1 and 2, respec-
tively. Similarly, _x1 and _x2 hold the coefficients for their residual
velocities.

Now, depending on the way in which the residual energy con-
straint is implemented (l1 or l1), separate formulations of the LP
problem can be made.

Defining new states similar to Eq. (49)

y ið Þ
1 ¼

ffiffiffiffiffiffi
Kh

p ið Þ
1;1ð Þx

ið Þ
1 þ

ffiffiffiffiffiffi
Kh

p ið Þ
1;2ð Þx

ið Þ
2 (60)

y ið Þ
2 ¼

ffiffiffiffiffiffi
Kh

p ið Þ
2;1ð Þx

ið Þ
1 þ

ffiffiffiffiffiffi
Kh

p ið Þ
2;2ð Þx

ið Þ
2 (61)

y ið Þ
3 ¼

ffiffiffiffiffi
M

p
1;1ð Þ _x1 ið Þ þ

ffiffiffiffiffi
M

p
1;2ð Þ _x2 ið Þ (62)

y ið Þ
4 ¼

ffiffiffiffiffi
M

p
2;1ð Þ _x1 ið Þ þ

ffiffiffiffiffi
M

p
2;2ð Þ _x2 ið Þ (63)

where i¼ 0, 1,…, p are the sample models and x ið Þ
a is the ith mem-

ber of xa. In this framework, as stated earlier, the samples are
selected to be the control points of the convex hull enveloping the

uncertain region. Therefore, p¼N¼ 5.
ffiffiffiffiffiffi
Kh

p i
r;cð Þ refers to the rth

row and cth column of the matrix
ffiffiffiffiffiffi
Kh

p
defined for k(i) where k(i) is

defined as

k ið Þ ¼ 0:7þ 1:3� 0:7ð Þ i

N
(64)

l1 Formulation. For an l1 formulation, the nature of constraints
is provided in Sec. 7.1.1. Since there are four states in the model,
the constraint equations are

�f 6 y ið Þ
1 6 f ; �f 6 y ið Þ

2 6 f (65)

�f 6 y ið Þ
3 6 f ; �f 6 y ið Þ

4 6 f (66)

These constraints can be exercised with the help of an output
matrix Cl1. The constraints can therefore be written in a matrix
format as

6 Cl1MNA
Nt�1B … Cl1MNB 7124;1½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H6

u 1ð Þ
�

u Ntð Þ
f

2
64

3
75

|fflfflfflffl{zfflfflfflffl}
~z

66h1 (67)

where h1 is the vector of constant terms derived from Eqs. (65)
and (66). Hence, the final problem can be stated as

minimize f ¼ ~cT~z

subject to H~z6 h

~zmin 6~z6~zmax

jrelativemass positionj6 0:2

(68)

where

~cT ¼ 0…01½ �; ~z ¼ u 1ð Þ…u Ntð Þ f� �T
(69)

H ¼ Hþ
H�

� �
; h ¼ h1

�h1

� �
(70)

umin 1ð Þ
�

umin Ntð Þ
0

2
6664

3
77756~z6

umax 1ð Þ
�

umax Ntð Þ
1

2
6664

3
7775 (71)

l1 Formulation. Constraints for an l1 norm formulation (similar to
Sec. 7.1.2) can be stated as

�f 6 y ið Þ
1 6y ið Þ

2 6y ið Þ
3 6y ið Þ

4 6 f (72)

Note that Eq. (72) is a shorthand for eight constraints. Once again,
these constraints can be expressed through an output matrix Cl1.
The final problem can be posed in a similar fashion as the l1
norm formulation described in Sec. 7.1.2.

On solving these LP problems, the resulting residual energy as a
function of the uncertain stiffness for both the l1 and l1 can be cal-
culated to illustrate the relative robustness of the solutions. Figure
8(a) shows the variation of residual energy with stiffness for both
norms and the worst cost is comparable. Figures 8(b) and 8(c) show
the residual state distributions over the entire region of uncertainty.

7.3 Linear Programming Problem With Split Bernstein
Coefficients. Using the previously illustrated example, the meth-
odology to apply the split Bernstein coefficients to the LP problem
is shown in this section.

Initially, the order of PC expansion chosen was (N¼ 5). Hence,
each state was represented by (Nþ 1¼ 6) coefficients. Since there
are four states in our chosen problem, the total number of coeffi-
cients were ((Nþ 1)� 4¼ 24). As the Bernstein coefficients are
split, the Bernstein coefficients representing each state increases
to (2Nþ 1¼ 11) and the total number of coefficients become
(11� 4¼ 44).

Following the procedure described previously, the desired set
of Bernstein coefficients at the final time (Tf) are now given by:

ZBd Tfð Þ ¼ 1; … 22ð Þ …; 1; 0; … 22ð Þ…; 0
� �T

(73)

where ZBd Tfð Þ 2 R44.
Consider a matrix MB(a), which when multiplied with a vector

containing the unsplit Bernstein coefficients of all the states, gives
a vector containing all the split Bernstein coefficients (split at the
point a)

Bs ¼ MB að Þ � Bus (74)

where Bs and Bus are split and unsplit coefficients of the same
states, respectively. As the initial PC order was N¼ 5 in the prob-

lem, MB 2 R4 2Nþ1ð Þ�4 Nþ1ð Þ
and is used to enforce the constraints

previously discussed.
The terminal states in unsplit Bernstein form (as given by

Eq. (56)) can now be rewritten in split Bernstein form as

ZB Tfð Þ ¼ MBMNA
NtZ 1ð Þ þ MBMNA

Nt�1B…MBMNB
� � u 1ð Þ

�

u Ntð Þ

2
4

3
5

(75)

where ZB Tfð Þ 2 R44.
The residual states, thus, become

X Tfð Þ ¼ x1 Tfð Þ x2 Tfð Þ _x1 Tfð Þ _x2 Tfð Þ� �T
¼ ZB Tfð Þ � ZBd Tfð Þ (76)
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where x1 and x2 are vectors of dimension 11 having the Bernstein
coefficients of the final residual positions of mass 1 and 2, respec-
tively. Similarly, _x1 and _x2 hold the coefficients for their velocities.

New states are once again defined by Eqs. (60)–(63). As the
number of control points have increased on splitting the Bernstein
coefficients, the number of samples increase to p¼ 2Nþ 1¼ 11.
All the Bezier curves (i.e., the residual state curves with respect to
stiffness) were split at their midpoints (i.e., at k¼ 1 or n¼ 0.5).
Hence, k(i) for this scheme of implementation is defined as

k ið Þ ¼ 0:7þ 1:3� 0:7ð Þ i

2N þ 1
8i ¼ 0; 1;…; p ¼ 11 (77)

The rest of the formulation remains almost identical. Considering
Cl as the output matrix (depending on the l1 or the l1 formula-
tion), the inequality constraints are given by

6 ClMBMNA
Nt�1B…ClMBMNB;71½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H6

u 1ð Þ
�

u Ntð Þ
f

2
6664

3
7775

|fflfflfflfflffl{zfflfflfflfflffl}
~z

66h1 (78)

where h1 is the vector of constant terms derived from the con-
straint equations. The final problem can be summarized by Eqs.
(68)–(71).

On solving the split LP problem, the control (obtained from l1)
is used to make MC simulations of the relative displacement of
the masses (Fig. 9(a)) and is shown to lie within the constraints
(60:2) as well as within the envelope of Bernstein bounds.

Figure 8(a) shows the residual energy sensitivity, and Figs. 8(b)
and 8(c) show the residual state distributions. Comparisons
with the unsplit Bernstein control show that the split residual
energy is consistently lower than the unsplit counterpart.

Figures 9(b) and 9(c) show a comparison between the unsplit and
split methods based on residual energy sensitivity. The dotted
curves correspond to the split method while the solid lines corre-
spond to the unsplit method. The difference in color corresponds
to results obtained from different orders of PC expansion.

Once again, it is evident that in the case of the split method, the
residual energy has lower values at the edges (i.e., worst case val-
ues). Also, as expected, with an increase in the order of the PC
expansion, the worst case residual energy improves.

8 Conclusion

This paper proposes to exploit the Bernstein Polynomials to deter-
mine the bounds of states of uncertain dynamical systems. A two
mass spring system is used to illustrate the development of a set of
deterministic differential equations after parameterizing the time-
invariant model parameter uncertainties using polynomial chaos
series. The coefficient of the Bernstein polynomials defines a convex
hull, which permits determination of the upper and lower bounds of
the uncertain evolution of the system states. The splitting of the
Bernstein coefficients allows the development of a tighter convex
hull. Finally, a rest-to-rest maneuver for a system with uncertain
stiffness is used to illustrate the design of a state constrained control-
ler, which is robust to model parameter uncertainties.
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