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Abstract—Motivated by various settings, we study a new Influ-
ence Maximization problem at the Community level (IMC) which
aims at finding k users to maximize the benefit of influenced
communities where a community is influenced iff the number of
influenced users belong to this community exceeds its predefined
threshold. In general, IMC objective function is not submodular
nor supermodular, thereby making it very challenging to apply
existing greedy solutions of the classic influence maximization
(IM) where submodular function is required. Furthermore, the
major challenge in the traditional methods for any related IM
problem is the inefficiency in estimating the influence spread.
IMC brings this difficulty to a higher level when considering in-
fluenced communities instead of influencing each individual user.
In this paper, we propose different approximation algorithms
for IMC: (1) Using Sandwich approach with a tight submodular
function to bound the IMC objective function, (2) Activating the
top-k influencing nodes found from network sampling. Further-
more, when the activated thresholds of communities are bounded
by a constant, we propose an algorithm with performance
guarantee tight to the inapproximability of IMC assuming the
exponential time hypothesis. Each algorithm has its own strengths
in a trade-off between effectiveness and running time, which
are illustrated both in theory and comprehensive experimental
evaluation.

Index Terms—Influence Maximization; Approximation Algo-
rithms; Online Social Networks; Optimization; Viral Marketing

I. INTRODUCTION

Information propagation in Online Social Networks (OSNs)
has become a popular research topic recently. Social networks
have been shown to be a useful tool for large scale behavioral
manipulation and a social network user can be influenced by
their friends to adopt certain behaviors. In this context, the
Influence Maximization (IM) problem [1] has been studied
extensively: Given a network and an integer k, IM asks for k
influential users that maximizes the expected influence spread.
IM has been widely adopted in viral marketing: companies
target top k users by offering them free products or services
with the hope to trigger a chain reaction of product adoption.
A lot of research [2], [3], [4], [5] (and references therein) has
been done to develop a scalable solution with 1 − 1/e − ǫ
performance guarantee for IM.

In this paper, we study a new problem, Influence Max-
imization at the Community level (IMC). Given a social
network and a collection of disjoint set of users, we call each
set of users is a community. An influenced community is a
community in which the number of influenced users in this
community exceeds its predefined threshold. A community, if
being influenced, will bring back some benefit. The objective

is to identify k seed nodes that maximize the expected benefit
of influenced communities.

The IMC problem is motivated by many different appli-
cations, where communities are disjoint. As mentioned in the
“Collaborative Based” concept on viral marketing: the product
may be useful for a single user but is much more useful when
used in a group context [6]. In this type of viral marketing,
a certain group of users must be influenced to some degree
(threshold) so the product or service can be adopted. Moreover,
with an increasing in integrating social network to power grid
for energy management, IMC could also be applied in the
information attack of a power grid through a social network
[7]. In this kind of attack, an adversary tries to influence
a certain amount of electric users of each community in
order to cause inter-area oscillations, causing cascading failure
and devastating impact on large geographical areas. In this
context, communities represent geographical neighborhoods,
hence they are disjoint. Another readily application of IMC is
in the context of election where each community represents a
state of population.

As IM is a special case of IMC, we ask what will hap-
pen if we adopted IM’s solutions to IMC. Indeed, most of
IM’s solutions [1], [2], [3], [4], [8] exploited a trait that
IM exhibits submodular behavior, a critical property on how
the (1 − 1/e − ǫ)-performance guarantee could be acquired.
IMC problem, on the other hand, is shown to be neither
submodular nor supermodular, making IMC more challenging
to devise an efficient algorithm. Moreover, computing the
influence spread of a given seed set is a challenging task and
IMC elevates this challenge while considering the impact to
communities rather than individual independently. Motivated
by these observations, the main contributions of this work are:

• We show that IMC is inapproximable within
O(r1/(2(log log r)c)) ratio and does not exhibit submodular
behaviors, where r is the number of communities and
c > 0 is a universal constant independent of r.

• We present a new sampling technique, modifying from
the Reverse Influence Sampling (RIS) [5] so that we take
communities as the main subject and randomly sample
deterministic instances of the social network in which a
community can be influenced. This sampling technique
then helps us acquire an estimation on the benefit of
influenced communities given an initial seed set.

• We propose three approximation algorithms to solve
IMC: (1) Using sandwich approach to provide upper
bounded submodular function for the objective function,
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(2) Classifying communities/users by their impact on
influencing the other and activating the most influencing
users, and (3) When the activation threshold of each com-
munity is bounded, we obtain an O(r1/2)-approximation
algorithm, which is tight to the inapproximable ratio
result assuming the exponential time hypothesis [9].

• We conduct extensive experiments using real world
datasets to show the effectiveness of our proposed al-
gorithms and illustrate the above trade-offs.

Related work. Kempe et al [1] first formulated IM and
proved its NP-hardness. In addition, computing the expected
influence spread for a given seed set is #P-hard. Series of stud-
ies have been done to approximate the influence maximization
problem [2], [3], [4], [5], [8]. However, different to our work,
all of these studies exploited IM’s submodularity to obtain
the ratio of 1 − 1/e − ǫ and focused on improving the time
complexity.

Some versions of non-submodular related-influenced maxi-
mization have been studied recently. Most notably, Lin et al.
[10] introduced a k-boosting problem which aims at finding k
users to boost so to trigger a maximized “boosted” influence
spread. Lu et al. [11] proposed the Comparative Independent
Cascade model where the IM under this model is no longer
submodular. Both works utilized the Sandwich Approximation
strategy, finding a submodular function that bounds the origi-
nal objective function; the derived results associated with these
relaxed functions are then used as the estimated solution to the
original non-submodular problem. Furthermore, Ma et al [12]
proposed a seed selection strategy using network graphical
properties in another non-submodular diffusion model, called
the influence barricade model. However, this method provides
no theoretical approximation guarantee. All of these models
still focused on maximizing influence spread. Different from
the above studies, we study how the spread of influence makes
an impact to communities given a seed set. The difference in
objective function requires us to devise new approaches.

Organization. Section II formally defines the IMC problem
and its challenges, including its inapproximability. In Section
III, we propose a new approach to estimate the benefit of
influenced communities given an initial seed set. Sections IV
and V present our three approximation solutions to IMC. The
experimental evaluation of our methods is demonstrated in
Section VI. Finally, Section VII concludes the paper.

II. MODELS AND PROBLEM DEFINITION

A. Propagation Model and Problem Definition

We abstract a social network using a weighted graph G =
(V,E,w) with |V | = n nodes and |E| = m directed edges.
Each edge e ∈ E is associated with a weight we ∈ [0, 1] which
indicates the probability that u influences v. By convention,
we = 0 if e �∈ E. Note that for each edge e = (u, v) ∈ E, the
notation we and w(u, v) are used interchangeably. Technically,
we can view G as a generative model for deterministic graphs.
A deterministic graph G = (V,EG) is generated from G
by selecting each edge (u, v) ∈ E, independently, with
probability w(u, v). We refer to G as a sample graph of G.

We use the fundamental diffusion model namely Indepen-
dent Cascade (IC) [1]. Assume that we have a set of seed
nodes S, the propagation processes happen in discrete rounds.
At round 0, all nodes in S are active (influenced) and the others

are inactive. At round t ≥ 0, when a node u gets activated,
initially or by another node, it has a single chance to acti-
vate each inactive neighbor v with the successful probability
proportional to the edge weight w(u, v). An activated node
remains active till the end of the diffusion process. Note that
even we only use IC model, similar to [2], [13] the solution
can be easily extended to the Linear Threshold model [1].

Given a collection of disjoint sets Com = {Ci|1 ≤ i ≤
r, Ci ⊂ V }, r = |Com|. We call each set Ci a community. Let
hi be activation threshold of community Ci. A community is
influenced if the number of activated users in this community
exceeds its activation threshold. Denote bi as a benefit if
the community Ci gets influenced. Let c(S) be the expected
benefit of influenced communities under a seed set S and a
given propagation model. We formally define IMC as follows:
Definition 1. (IMC) Given a graph G = (V,E,w) an integer
1 ≤ k ≤ |V |, a propagation model and a set of communities
Com. The IMC problem asks for a seed set S ⊂ V of k nodes
that maximizes the expected benefit of influenced communities
c(S) under the given propagation model.

B. Challenges of the ICM Problem

We now provide key properties and challenges of the IMC
problem. Because IM is a special case of IMC, IMC is also
NP-hard and computing c(S) given S is #P-hard. Moreover,
we show the following inapproximable result, indicating the
complexity of IMC.
Theorem 1. Assuming the exponential time hypothesis [9],
there is no polynomial time algorithm that approximates IMC
to within O(r1/2(log log r)c) factor of the optimum, where c > 0
is a universal constant independent of r.

Fig. 1: Conversion from DkS instance to IMC instance. The
labels on the edges of DkS graph are corresponding to the
labels on communities of IMC instance.

Proof. We consider the following Densest k-Subgraph (DkS)
problem: given a connected undirected graph G and an integer
k, the goal is to find a set S of k-nodes that an induced
subgraph of G from S contains maximum number of edges.
Let e(S) be the number of edges in induced subgraph of G
from S. DkS has been shown to be inapproximable within
factor of O(n1/(log log n)c) [14] assuming the exponential time
hypothesis [9]. To reach the relation between the inapproxima-
bility of DkS and IMC, given an instance (GD, k) of DkS,
we construct an instance (GI , Com, k) of IMC as follows: For
each edge e = {a, b} ∈ E, we create a community Ce with
activation threshold he = 2 and two nodes ae and be in Ce.
Node a(b) is called corresponding node of ae(be). By that
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construction, a multiple nodes in GI would have the same
corresponding node in GD. Let Ua be a set of nodes having
the same corresponding node a. We create edges connecting
between nodes in Ua such that Ua is strongly connected
and each edge is weighted by 1. Figure 1 shows a simple
conversion from DkS instance to ICM instance. Let SD and
SI are optimal solutions of the DkS and IMC instance. We
have following observations:

• We create a solution S′
I for the IMC instance by: for each

node a ∈ SD, pick an arbitrary node in Ua and put into
S′
I . Because Ua is strongly connected, all nodes in Ua will

be activated. Hence, all communities, corresponding to
the edges in the induced subgraph of SD, are influenced.
So we have: e(SD) = c(S′

D) ≤ c(SI)
• We create a solution S′

D for the DkS instance by: for each
node u ∈ SI , pick its corresponding node in GD and put
into S′

D. Consider a community Ce which is influenced
by SI , both two node ae, be ∈ Ce are activated, which
means that at least one node in Ua and one node in Ub
are in SI . So a, b will be put into S′

D and edge e = {a, b}
is in the induced subgraph of S′

D. So we have: c(SI) =
e(S′

D) ≤ e(SD).

Hence, e(SD) = c(SI). Assuming there is a

O(r1/2(log log r)c) approximation algorithm K for IMC
problem. Denote SK

I as K’s solution for IMC instance.
We create solution SK

D for DkS instance by picking all
corresponding node to SK

I . It is trivial to see that:

e(SK

D) = c(SK

I ) ≥ O(r−1/2(log log r)c)c(SI) (1)

≥ O(r−1/2(log log r)c)e(SD) (2)
During the construction of two instances, we have r =

|GD.E| ≤ O(n2) while r = O(n). Replacing into equation
(1), we observe that: By using K, we could achieve a solution
SK

D for the DkS problem which guarantees:

e(SK

D) ≥ O(n−1/(log log n)c)e(SD)
which contradicts to the inapproximability of DkS problem.

Non-submodularity of c(·). In IM, the expected influence
of the seed set S is a monotone and submodular function.
Thus, a natural greedy algorithm returns a solution with 1−1/e
approximation ratio. However, the objective function c(S) in
IMC is neither submodular nor supermodular on the set S of
initial activated nodes. Consider each community needs only
one node to be influenced, then c(·) exhibits a submodular
behavior. On the other hand, when several nodes are activated
initially, their benefit of influenced communities can be more
than the sum of their individual activation effect, which is
a supermodular behavior. To illustrate, consider an example
in Fig. 2, each edge has weight 0.3 and each community
has the activation threshold 2. Therefore, we have c(∅) =
0, c({a}) = 0.327, c({b}) = 0.39, c({a, b}) = 1.09. Hence,
c({b}) − c(∅) < c({a, b}) − c({a}), which means c(·) does
not exhibit submodular behavior. The non-submodularity of
c(·) means that the seed set returned by the greedy algorithm
may not have the (1− 1/e)-approximation ratio.

Differences to IM. Two notable state-of-the-art influence
maximization frameworks are Influence Maximization via
Martigale (IMM) [4] and SSA/DSSA [2]. Both of them are based
on the sampling method called Reverse Influence Sampling

Fig. 2: Non-submodular example

(RIS). Briefly, RIS captures the influence landscape of G by:
for a node v ∈ V , a random set R of nodes is generated such
that for any seed set S, the probability that R∩ S �= ∅ equals
the probability that v can be influenced by S. If v is selected
uniform randomly from V , the expected influence of any seed
set S ⊆ V equals n · E[1R∩S �=∅] where expectation is taken
over the randomness of R. Then, both SSA and IMM used the
greedy algorithm for the max-coverage problem to find a seed
set that covers the maximum number of sampling sets.

However, the IMC problem is fundamentally different due
to the objective function that considers influenced communities
instead of individuals separately. RIS seems to be inapplicable
in IMC because we find no relationship between the randomly
selected node in RIS with the community it belongs to and how
it can contribute to estimate the expected benefit of influenced
communities. Although such challenge can be solved by subtly
modifying RIS, the most challenging task is that IMC’s ob-
jective function is non-submodular and inapproximable within
O(r1/(2(log log r)c)). Hence, using greedy solutions for the
max-coverage problem given a collection of samples will not
provide 1 − 1/e approximation ratio. Therefore, we need to
devise efficient approximation algorithms based on the new
sampling technique.

III. BENEFIT ESTIMATION

In this section, we propose a sampling method, called Re-
verse Influenceable Community (RIC), to estimate the expected
benefit of influenced communities given a seed set S.

We denote ρ : Com → R
≥ as a probability distribution

among Com, where ρ(Ci) = bi
b

and b =
∑

r

j=1 bi. Given a
sample graph G of G, a community C is called being touched
by u ∈ V (or u touches C) in G if there exist a path in G that
connects u to any nodes in C. The RIC sample is defined as
follows:
Definition 2. (RIC) Given G = (V,E,w), Com, a random RIC

sample g is generated by: 1) selecting a random community
Cg given probability distribution ρ; 2) generating a sample
graph Gg from G and 3) returning a set of nodes that touch
Cg in Gg . Cg is called the “source” community of g.

Fig. 3 shows an example of RIC-sample g. The “source”
community Cg is marked by the dotted circle and contains
node {v1, v2, v3, v4}. hg = 3 is an activation threshold of Cg .
In this example, we need at least 3 activated users among
{v1, v2, v3, v4} to make g influenced. As definition 2, g
contains all nodes (even outside Cg) that connect to the nodes
in Cg , including v5, v6 and v7. For simplicity, if Cg is touches
by u in Gg , we also call u touches g or g is touched by u.

Alg. 1 presents in detail how a RIC sample is generated.
For each u ∈ Cg , Rg(u) is a reachable set of node u, which is
defined as a set of nodes v ∈ V that can reach u in Gg (there
exists a path from v to u). First, Cg is randomly selected given
probability distribution ρ. Next, we mark each edge e in G
with one of three states: (1) ⊥ - e has potential to be in Gg ,
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Fig. 3: Example of RIC-sample. Additionally, we also store
Rg(·) values of v1, v2, v3, v4, i.e Rg(v1) = {v1, v3, v5, v6, v7}

(2) y - e is in Gg , and (3) n - e is not in Gg . Each edge’s state
is set to be ⊥ initially and will be changed to y or n when we
first process it. This state information is stored by st[·] array.
The algorithm then works in backward Breadth-First Search
(BFS) manner as follows: First, we put all nodes in Cg into Q
- a queue storing nodes we are going to visit. While Q is not
empty, we take a node u out of Q and mark it as “visited”
(ck[u] = true if u is “visited”, false otherwise). Next, we
consider all nodes v that u has incoming edge (e = (v, u))
with. If st[e] =⊥, edge e is never processed before, so we
randomly generate edge e = (v, u) with probability we. If
edge e = (v, u) exists in Gg and v does not exist in Q as well
as was not visited before, we put v into Q. This process is
repeated until Q is empty and we will have a deterministic
sample graph Gg that contains paths by which the nodes in
Cg could be activated. Finally, for all u ∈ Cg , we determine
Rg(u) by using Depth-First Search with graph Gg .

Estimating c(S). We now present how we use the RIC-
sampling to estimate c(·). Let g be a given RIC sample with the
source community Cg and the activation threshold hg . Given a
seed set S, we say that g is influenced by S if S could reach at
least hg nodes in Cg . In Fig. 3, g is influenced by {v5, v6} or
{v7} but not by {v1} or {v1, v4}. Define Xg(S) : 2

V → {0, 1}
as an indicator function whether g is influenced by S.

Algorithm 1 Generate a random RIC graph

Input A social graph G, set of communities Com

Output Source community Cg and its activation threshold hg ,
reachable set Rg(u) ∀u ∈ Cg

1: Select source community Cg randomly
2: Create a graph Gg with all nodes in G and no edge
3: st[euv] =⊥ ∀(u, v) ∈ E
4: Initiate empty queue Q
5: Put all nodes v ∈ Cg into Q
6: while Q is not empty do
7: u ← Q.dequeue()
8: ck[u] ← true

9: for each in-comming edge evu of u do
10: if st[evu] =⊥ then
11: st[evu] = y with prob we : n otherwise
12: if st[evu] = y then create edge evu in Gg

13: if st[evu] = y & !ck[v] & !Q.contain(v) then
14: Q.enqueue(v)

15: for each node u ∈ Cg do
16: Run DFS to find Rg(u)

Return Cg, hg, Rg(u) ∀u ∈ Cg

Lemma 1. For any S ⊆ V , we have c(S) = b · E[Xg(S)]

where the expectation is taken over the randomness of g.

Proof. Because Xg(S) is an indicator variable, then
E[Xg(S)] = Pr[Xg(S) = 1]. We have:

Pr[Xg(S) = 1] =
∑

Ci∈Com

Pr[Ci = Cg] · Pr[Ci is influenced by S]

=
∑

Ci∈Com

bi
b

Pr[Ci is influenced by S] =
1

b
c(S)

which completes the proof.

Let R be a set of independent random RIC samples, define:

ĉR(S) =
b

|R|
·
∑

g∈R

Xg(S) ∀S ⊆ V (3)

Intuitively, ĉR(S) closely estimates c(S) for any S ⊆ V if
|R| is sufficiently large. Therefore, IMC could be solved by
generating a large collection R of RIC samples, then finding a
seed set S that influences the maximum number of RIC graphs
in R. We define a problem of finding S given a collection R of
RIC samples - the MAXR problem, which is essentially different
with the max-coverage problem solved in IM.
Definition 3. (MAXR) Given a set R of RIC samples, find a seed
set S ⊂ V of k nodes that maximizes the number of influenced
RIC samples in R. The RIC sample g is called influenced by
S if S can reach at least hg nodes in Cg .

By this definition, we observe that the objective function of
MAXR is equivalent to ĉR(·). So from now on, we will also
call ĉR(·) the objective function of MAXR.

Clearly, MAXR is NP-hard as max-coverage is a special
case. Moreover, the additional challenge of solving MAXR is
presented by the following lemma, indicating that a natural
greedy algorithm cannot solve MAXR either.
Lemma 2. ĉR(·) is non-submodular.

Proof. We consider a simple instance where R contains
only one RIC graph g. The source community Cg has only
2 nodes u, v and Rg(u) = {u}, Rg(v) = {v}. We have
ĉR(∅) = 0, ĉR({u}) = 0, ĉR({v}) = 0 and ĉR({u, v}) = 1.
Therefore, ĉR({u})− ĉR(∅) < ĉR({u, v})− ĉR({v})

Overall, two critical pieces needed to solve IMC are:

• Solving the MAXR problem to find a seed set S that
influences the maximum number of RIC samples.

• Generating a sufficiently large number of RIC samples
such that the returned set S from the MAXR problem
guarantees the bounded error.

IV. ALGORITHMS FOR THE MAXR PROBLEM

In this section, we tackle the first piece by devising three
approximation algorithms to solve the MAXR problem.

A. Upper Bound Greedy (UBG)

The first algorithm is called Upper Bounded Greedy. Over-
all, UBG uses a concept of Sandwich Approximation [11]
by bounding ĉR(·) with a submodular function. The most
challenging task is to devise a submodular function that is
tight to our objective function. In this solution, we propose
submodular functions ν(·), νR(·) to bound c(·), ĉR(·) respec-
tively and prove the tightness by observing that those functions
overlap our objective function in a special case. The Sandwich
Approximation is defined as follows:
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Algorithm 2 UBG algorithm

Input R, k
Output S

1: Sν ← greedy selection with objective function νR(·)
2: Sc ← greedy selection with objective function ĉR(·)
3: S ← argmaxSν ,Sc

ĉR(S)

Return S

Theorem 2. (Sandwich Approximation [11]) Let σ : 2V → R

be a non-submodular. Let µ and ν be submodular and defined
on the same ground set V such that µ(S) ≤ σ(S) ≤ ν(S)
for all S ⊆ V . That is µ(·)(ν(·)) is a lower (resp., upper)
bound on σ everywhere. Consider the problem of maximizing σ
subject to a cardinality constraint k: run the greedy algorithm
on all three functions. It produces an approximate solution for
µ and ν. Let Sσ, Sµ, Sν be the solution obtained from σ, µ, ν
respectively. Then, select the final solution to be

Ssand = argmax
S∈{Sσ,Sµ,Sν}

σ(S) (4)

Then we have:

σ(Ssand) ≥ max

{

σ(Sν)

ν(Sν)
,
µ(S∗

σ)

σ(S∗
σ)

}

(1− 1/e)σ(S∗
σ) (5)

Therefore, we have to find at least one of µ(·) or ν(·)
that should be close to our objective function. In this work,
we derive a submodular upper bound νR(·) of ĉR(·). νR(·)
is considerably closer to ĉR(·) than any other submodular
bounded functions we have tested. Define:

ν(S) = b · E
[

min(
|Ig(S)|

hg
, 1)

]

(6)

νR(S) =
b

|R|

∑

g∈R

min
( |Ig(S)|

hg
, 1
)

(7)

where Ig(S) is the a set of nodes in Cg that can be connected
by S in RIC sample g.

ν(S) presents the expected fractional benefit from being
influenced of all communities while νR(S) provides an esti-
mation on ν(S) from the sample set R. Recalling that RIC
sample g is called influenced if |Ig(S)| ≥ hg . Therefore, to
display the fractional value of being influenced, we take min
value between |Ig(S)|/hg and 1.
Lemma 3. For any set S ⊆ V , c(S) ≤ ν(S). Also, for a
given collection R of RIC samples, ĉR(S) ≤ νR(S).

Proof. First, let compare ĉR(·) and νR(·). Given g ∈ R, if
Xg(S) = 1 then |Ig(S)| ≥ hg and min

(

|Ig(S)|/hg, 1
)

= 1.

Otherwise Xg(S) = 0, but min
(

|Ig(S)|/hg, 1
)

≥ 0. There-
fore, ĉR(S) ≤ νR(S), ∀S ⊆ V .

To prove ν(·) is an upper bound of c(·), recalling c(S) =
b · E[Xg(S)] where:

E[Xg(S)] = E[1|Ig(S)|≥hg
] = Pr[|Ig(S)|/hg ≥ 1]

Without loosing generality, we have:
Pr[|Ig(S)|/hg ≥ 1] = Pr[min(|Ig(S)|/hg, 1) ≥ 1]

Using Markov inequality [15], we have:
Pr[min(|Ig(S)|/hg, 1) ≥ 1] ≤ E[min(|Ig(S)|/hg, 1)] (8)

So c(·) is upper bounded by ν(·).

Considering an RIC sample g, it is trivial that |Ig(·)|
is a submodular function, which also means νR(S) =
b

|R|

∑

g∈R min
(

|Ig(S)|
hg

, 1
)

is a submodular function. Further-

more, νR(·) overlaps ĉR(·) when the activation thresholds of
communities are bounded by 1. We have the following lemma.

Algorithm 3 MAF algorithm

Input R, k
Output S

1: Initiate S1, S2 ← ∅
2: SC ← sorted list of Com in order of their appearance in R
3: while SC is not empty do
4: C ← take out 1st community of SC;
5: X ← pick h nodes in C

6: if |S1 ∪ X| ≤ k then S1 = S1 ∪ X

7: S2 ← k nodes that appear the most in R
8: S = argmaxS′∈{S1,S2} ĉR(S′)

Return S

Lemma 4. For any set S ⊆ V , c(S) = ν(S) and ĉR(S) =
νR(S) if hg = 1 for all g ∈ R.

Proof. If hg = 1 for all g, then

min(
|Ig(S)|

hg
, 1) = min(|Ig(S)|, 1)

= 1|Ig(S)|≥1 = Xg(S)
the lemma follows.

Lemma 4 also implies that c(·) and ĉR(·) are submodular
if the activation thresholds are bounded by 1.

Our UBG algorithm to MAXR is presented in Alg. 2. Denote
Sν as a solution obtained from the greedy algorithm with
objective function νR(·). By Theorem 2, UBG guarantees
ĉR(Sν)
νR(Sν)

(1− 1/e) approximation ratio to the MAXR problem.

B. Most Appearance First (MAF)

The second algorithm we present is called Most-
Appearance-First (MAF). Accordingly, the idea of MAF is that
we compute the frequency of appearance of communities or
nodes in R, then try to activate the most influential one. First,
MAF considers the communities that appear the most in R. The
algorithm starts by determining frequency each community in
Com appears in R then sorts these communities in descending
order of their frequency. Let SC be a sorted list of communities.
MAF then sequentially takes the community C with highest
frequency out of SC. Let h be the activation threshold of C.
MAF then randomly picks h nodes in C and puts into S1. This
process then repeats until |S1| = k. Next, MAF considers nodes
that appear the most in R. A node v is considered to appear
in RIC sample g if v is either in Cg or there exists u ∈ Cg that
v ∈ Rg(u). MAF then picks k nodes that appear the most in R
and put into S2. Finally, MAF returns a solution S ∈ {S1, S2}
that influences the most RIC samples in R. The full MAF is
presented by Alg. 3.
Theorem 3. MAF returns a 1

r
⌊ k
h⌋ approximate result to the

MAXR problem, where h = maxri=1 hi

Proof. Denote SOPT an optimal solution to MAXR, we have:

ĉR(S1) =
b

|R|

∑

g∈R

Xg(Sk) ≥
b

|R|
·
1

r
·
⌊k

h

⌋

· |R| (9)

≥
1

r

⌊k

h

⌋

·
b

|R|

∑

g∈R

Xg(SOPT) ≥
1

r

⌊k

h

⌋

ĉR(SOPT)

(10)
The inequality (9) comes from the observation that MAF

chooses to influence communities appearing the most in R
and the “budget” to influence each community is at most
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h = maxri=1 hi. Therefore, there are at least |R| 1
r
⌊ k
h⌋ RIC

samples which are influenced by the seed set S1.
S2, on the other hand, does not provide any approximation

guarantee. We consider an example as follows: Assume R
contains 6 RIC samples {g1, g2, ..g6} in which Cgis are disjoint
sets, |Cgi | = 3 and hgi = 2 for all i ∈ [1, 6]. Given a node
u �∈ Cgi for i ∈ [1, 6], there exists an edge in gi that connects
u with a node in Cgi for i ∈ {1, 2, 3}. Similarly, given a
node v �∈ Cgi for i ∈ [1, 6], there exists an edge in gj that
connects v with a node in Cgj for j ∈ {4, 5, 6}. Other than
these, there is no other edges in gi for i ∈ [1, 6]. Let k = 2. In
this scenario, u, v are nodes that appear the most in R, thus
S2 = {u, v}. However ĉR(S2) = 0 since each community
Cgi required at least 2 nodes to be influenced while S2 only
guarantees to influence one node in each community. The
optimal solution is ĉR(SOPT) = 1. Therefore, S2 does not
provide any approximation guarantee to MAXR. However, S2

actually performs well in experiments. By selecting the best
among S1, S2, we can bound the performance guarantee of
MAF and integrate MAF into IMC framework, which will be
presented in next section.

C. Algorithm for Bounded Activation Threshold

Having considered two approximation algorithms to MAXR,
we now propose solutions with a tight approximation ratio for
a special case where the activation threshold of communities
is bounded by 2, which means a community needs at least
2 or 1 activated users to be influenced. Then we extend our
solution to a case that the input network has bounded activation
thresholds by a constant d ≥ 2.

Denote Ig(S) as a set of nodes in Cg that can be connected
by S in the RIC sample g, Ig(S) = {u | u ∈ Cg, Rg(u)∩ S �=
∅}. Next, let GR(u) be a set of RIC samples in R that u
can touch - GR(u) = {g | g ∈ R : ∃v ∈ Cg, u ∈ Rg(v)};
and DR(S, u) is a set of RIC samples in GR(u) that S can
influence, DR(S, u) = {g | g ∈ GR(u), Ig(S) ≥ hg}. Before
going further, we have the following lemma.
Lemma 5. Given a seed set S ⊆ V , we have

max
u∈S

|DR(S, u)| ≤
∑

g∈R

Xg(S) ≤
∑

u∈S

|DR(S, u)|

Proof. The first inequality is trivial because DR(S, u) is a
subset of the RIC samples set that S can influence. The second
inequality comes from observing that: a sample g, if being
influenced by S, would appear on at least one set DR(S, u)
for all u ∈ S.

Lemma 5 gives us an observation that: the number of
influenced RIC samples by S is lower bounded by the size of
DR(S, u) with any u ∈ S separately but being upper bounded
by sum of |DR(S, u)| ∀u ∈ S. This motivates us to propose
the BT algorithm, which is presented in Alg. 4.

The idea of BT is that: for each node u ∈ V , we find a seed
set K(u) that maximizes the number of influenced RIC samples
in GR(u). To find K(u), we first add u in K(u). Because every
RIC sample g ∈ GR(u) is touched by u and hg ≤ 2, to make
g be influenced by K(u), we only need at most one more
node in Cg to be connected by K(u) beside the one that is
already connected by u. That brings us back to the case when
the activation threshold is bounded by 1 and a natural greedy
algorithm can return (1− 1/e)-approximation result for K(u).

Algorithm 4 BT algorithm

Input R, k
Output S

1: for each node u ∈ V do
2: G ← Copy of GR(u)
3: for each RIC sample g ∈ G do
4: for each node v ∈ Cg do
5: if u ∈ Rg(v) then
6: Remove v out of g
7: hg = hg − 1

8: T ← greedily select k − 1 nodes with collection G

9: K(u) ← {u} ∪ T

10: S = argmax
K(u);u∈V |DR(K(u), u)|

Return S

BT returns a seed set S which is K(u) that has the maximum
|DR(K(u), u)|. The approximate guarantee of BT is obtained
by the following theorem.
Theorem 4. BT provides a 1

k (1−
1
e ) approximation guarantee

to the MAXR problem if the activation threshold of each
community is at most 2.

Proof. Denote SOPT as an optimal solution for the MAXR

problem. For any u ∈ SOPT, the natural greedy algorithm
guarantees
|DR(K(u), u)| ≥ (1− 1/e) max

T⊂V ;|T |=k−1
|DR(T ∪ {u}, u)|

≥ (1− 1/e)|DR(SOPT, u)|
Denote v = argmaxu∈SOPT

|DR(SOPT, u)| and u =
argmaxu∈V |DR(K(u), u)|. According to BT, S = K(u).
Therefore, we have:

ĉR(SOPT) =
r

|R|

∑

g∈R

Xg(SOPT) ≤
r

|R|

∑

u∈SOPT

|DR(SOPT, u)|

≤
r

|R|
k · |DR(SOPT, v)| ≤

r

|R|

k

1− 1/e
|DR(K(v), v)|

≤
k

1− 1/e

r

|R|
|DR(K(u), u)| ≤

k

1− 1/e
ĉR(S)

which completes the proof.

In Alg. 4, BT starts by iterating through every node u ∈ V .
For each node, BT creates a sample set G which contains all
RIC samples that u can touch. For each sample g ∈ G, BT
removes nodes in Cg that u can connect to and decreases hg .
After this step, each sample g ∈ G will have an activation
threshold at most 1. Then the greedy algorithm is applied to
find k − 1 nodes that maximizes the number of influenced
samples in G. K(u) will contain all these nodes and u.

Extending to d-bounded thresholds: An interesting obser-
vation is that we can extend BT to solve IMC with activation
thresholds are bounded by a constant d. Denote BT(d) as an
algorithm to solve IMC with bounded threshold d.

Assume we have BT(d−1) in hand with α-approximation
guarantee. We devise BT(d) by modifying from Alg. 4 that the
set T (line 8) is selected by running BT(d−1) to find k − 1
nodes that maximize influenced RIC samples in GR(u). Using

similar proof as Theorem 4, BT(d) provides α
k approximation

guarantee to IMC with d-bounded threshold. As the approxi-

mation ratio of BT(2) is
1−1/e

k , using induction, we bound the

approximation guarantee of BT(d) by
1−1/e
kd−1 .
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Combining with MAF: In subsection IV-B, we proposed
the MAF algorithm which guarantees rh

k approximate ratio.
Interestingly, if we combine MAF and BT by running both these
two algorithms to get two different results - called SMAF, SBT

- then return S = argmaxS′∈{SMAF,SBT} ĉR(S′), we obtain a
solution with a new approximation guarantee, which is tight
to the inapproximability result in Theorem 1. Let us call this
solution MB (MAF and BT).

Theorem 5. MB provides Θ(
√

1−1/e
r

) approximation guaran-

tee to the MAXR problem if the activation threshold of each
community is at most 2.

Proof. By definition, we have:
ĉ2R(S) ≥ ĉR(SMAF) · ĉR(SBT)

≥
1− 1/e

k
·
1

r
·
⌊k

2

⌋

· ĉ2R(SOPT)

⌊k/2⌋
k = Θ(1) with sufficient large k. Therefore, ĉR(S) ≥

Θ(
√

1−1/e
r

)ĉR(SOPT), which completes the proof.

V. ALGORITHMIC FRAMEWORK TO IMC

In this section, we solve the second required piece: finding
the minimum number of RIC samples to provide a bounded-
error guarantee ǫ, where ǫ is an arbitrary small number. Then,
putting together with any algorithm for MAXR described in
section IV, we provide an algorithmic framework IMCAF for
the IMC problem such that: given an α-approximation algo-
rithm to MAXR, the IMCAF returns an α(1 − ǫ)-approximation
guarantee to IMC with probability at least 1 − δ, where δ
is an arbitrary small number. Accordingly, we have three
approximation algorithms to IMC with the following ratios:

1
r
⌊ k
h⌋(1 − ǫ) using MAF, Θ(

√

1−1/e
2r )(1 − ǫ) using MB, and

c(Sν)
ν(Sν)

(1− 1/e− ǫ) using UBG.

A. Minimum size of R

To bound the error between ĉR(·) and c(·) within an ǫ value,
we utilize the following lemma, which is trivially derived from
the martingale theory in [16].
Lemma 6. [16] Given a collection R of RIC samples, a seed
set S and ǫ > 0, the following inequalities hold,

Pr[ĉ(S) > (1 + ǫ)c(S)] ≤ exp(
−|R|ǫ2

3b
c(S)) (11)

Pr[ĉ(S) < (1− ǫ)c(S)] ≤ exp(
−|R|ǫ2

2b
c(S)) (12)

Denote S∗ as an optimal solution to IMC. We have the
following observations:
Corollary 1. Given 0 < ǫ1, δ1 < 1, with the number of RIC
samples satisfies

|R| ≥
2b ln(1/δ1)

ǫ21c(S
∗)

the following condition is guaranteed:
Pr[ĉ(S∗) ≥ (1− ǫ1)c(S

∗)] ≥ 1− δ1 (13)

This corollary is trivially derived from equation (12).
Corollary 2. Given 0 < α, ǫ2, δ2 < 1, with the number of
RIC samples satisfies

|R| ≥
3b ln(

(

n
k

)

/δ2)

α2ǫ22c(S
∗)

(14)

for any seed set Sk of k nodes, the following condition is
guaranteed:

Pr[ĉ(S) ≥ c(S) + αǫ2c(S
∗)] ≤ δ2 (15)

Proof. Consider an arbitrary seed set of k nodes Sk, we have:
Pr[ĉ(S) ≥ c(S) + αǫ2c(S

∗)]

= Pr[ĉ(S) ≥ (1 + αǫ2
c(S∗)

c(S)
)c(S)]

≤ exp(−
|R|

3b

α2ǫ22c
2(S∗)

c2(S)
c(S)) ≤ exp(−

|R|α2ǫ22
3b

c(S∗))

Using the union bound theory, to let condition (15) satisfy for
any seed set S of k nodes, we have:

Pr[ĉ(S) ≥ c(S) + αǫ2c(S
∗)] ≤

(

n

k

)

exp(−
|R|α2ǫ22

3b
c(S∗))

The equation (15) follows by replacing
(

n
k

)

exp(− |R|α2ǫ22
3b c(S∗)) ≤ δ2

Given an α-approximation algorithm to MAXR, we can now
formally define the minimum number of RIC samples to get
the bounded error guarantee ǫ as follows.
Theorem 6. Given an α-approximation algorithm to the MAXR
problem and 0 ≤ ǫ1, ǫ2, δ1, δ2 ≤ 1, let ǫ ≥ ǫ1 + ǫ2 and δ ≥
δ1 + δ2. If the number of RIC graphs satisfies:

|R| ≥
b

c(S∗)
max

(

2 ln(1/δ1)

ǫ21
,
3 ln(

(

n
k

)

/δ2)

α2ǫ22

)

(16)

the returned seed set S will guarantee:
Pr[c(S) ≥ α(1− ǫ)c(S∗)] ≥ 1− δ (17)

which means S is an α(1 − ǫ)-approximate solution to the
IMC instance with probability at least 1− δ.

Proof. Let SOPT be an optimal solution to MAXR problem.
c(S) ≥ ĉ(S)− αǫ2c(S

∗) (18)

≥ αĉ(SOPT)− αǫ2c(S
∗) ≥ αĉ(S∗)− αǫ2c(S

∗) (19)

≥ α(1− ǫ1)c(S
∗)− αǫ2c(S

∗) (20)

≥ α(1− ǫ)c(S∗) (21)
Inequality (18) happens with probability 1−δ2 while inequality
(20) happens with probability 1− δ1. Overall, c(S) ≥ α(1−
ǫ)c(S∗) with probability at least (1− δ1)(1− δ2) ≥ 1− δ

A drawback of this threshold is that it depends on c(S∗),
which is intractable. However, we can replace c(S∗) by its
lower bound while still making our conditions be satisfied. As
long as the input k is greater than at least one threshold hi of
any community, the optimal solution always guarantees that
at least one community will be influenced. We then tighten

this lower bound by observation that c(S∗) ≥ βk
h - where

β = minri=1 bi and h = maxri=1 hi. Replacing this bound into
(16), we achieve an official bound of |R| (denoted Ψ) that we
will use in our entire algorithm.

Ψ =
bh

βk
max

(

2 ln(1/δ1)

ǫ21
,
3 ln(

(

n
k

)

/δ2)

α2ǫ22

)

(22)

B. IMC Algorithm Framework

Since the bound Ψ in equation (22) can be a large number,
generating Ψ samples then applying any MAXR algorithms
should not be a good strategy. Therefore, we utilize the SSA

method [2], [17], [18] in which we could reduce the number
of generated samples but still keep α(1 − ǫ) approximation
guarantee with probability at least 1 − δ. In short, the SSA
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Algorithm 5 IMC Algorithmic Framework (IMCAF)

Input G, Com, k, ǫ, δ and an α-approx alg κ to MAXR

Output An α(1−ǫ)-approximation solution S with probability
at least (1− δ)

1: Initiate ǫ1, ǫ2, δ1, δ2 such that ǫ1+ ǫ2 ≤ ǫ and δ1+ δ2 ≤ δ

2: Ψ = bh
βk max

(

2 ln(1/δ1)
ǫ21

,
3 ln((nk)/δ2)

α2ǫ22

)

3: Initiate ε1, ε2, ε3 such that ǫ ≥ ε1 + ε2 + ε3 + ε1ε2
4: Λ = (1 + ε1)(1 + ε2)

3
ε23

ln 3
2δ

5: R ← generate Λ RIC samples using Alg. 1.
6: do // stop stage
7: S ← κ(R, k)

8: if
|R|
r
ĉR(S) ≥ Λ then

9: c∗ ← Estimate(G,S, ε2,
δ

3 logΨ/Λ , |R| 1+ε2
1−ε2

ε23
ε22
)

10: if ĉR(S) ≤ (1 + ε1)c
∗ then return S

11: Double size of R with new RIC samples
12: while |R| ≤ Ψ

method keeps generating samples and stop at exponential
check points to verify if there is adequate statistical evidence
on the solution quality for termination. The SSA method has
been successfully applied on IM. But because IMC is different
to IM, some modification should be done. Therefore, we pro-
vide an IMC algorithmic framework (IMCAF) presented in Alg.
5. Comparing to SSA, IMCAF has the following modifications:

• We setup the maximum number of samples by equation
(22) (line 2)

• We use Alg. 1 to generate RIC samples (line 5 and 11)
• We find a candidate seed set S in stop stage by solving

the MAXR problem, which we already proposed several
approximation algorithms in section IV. (line 7)

• We use an Estimate procedure (Alg. 6) to verify whether
the candidate set S is within α(1− ǫ)-approximate ratio
to optimal solution. (line 9)

The first and second modification are to adapt the IMC
objective which is to maximize the benefit of influenced
communities. The third modification comes from the fact
that finding a candidate set S given a collection of samples
is defined as MAXR problem, which is different to the max
coverage problem in SSA. (In SSA, S could be found by solving
max coverage, which is submodular). The final modification
is to utilize Dagum’s estimation [19] to estimate c(S). An
estimation is presented by Alg. 6. The key part of Estimate
procedure is that we iteratively generate RIC samples until the
number of influenced samples reaches Λ′ value. Line 6-9 is
used to verify whether a newly generated sample is influenced
by S. Based on Stopping Rule Algorithm (Section 2.1 [19]),
Estimate procedure guarantees an estimation c∗ of c(S) such
that c∗ ≥ (1− ǫ′)c(Sk) with probability at least 1− δ′.
Theorem 7. Given 0 < ǫ, δ < 1 and an α-approximation
algorithm to MAXR, IMCAF provides an α(1 − ǫ)-approximate
guarantee to IMC with probability at least 1− δ. Specifically,

Pr[c(S) ≥ α(1− ǫ)c(S∗)] ≥ 1− δ (23)

Proof. According to IMCAF, the seed set S would be returned
when one of following conditions is satisfied: (1) |R| ≥ Ψ or

(2)
|R|
r
ĉR(S) ≥ Λ and ĉR(S) ≤ (1 + ε1)c

∗.
By Theorem 6 and equation (22), we already proved that: if

|R| ≥ Ψ, the seed set S guarantees an α(1− ǫ)-approximate
ratio with probability at least 1 − δ. So let us consider the

Algorithm 6 Estimate procedure

Input G,S, ǫ′, δ′, Tmax

Output Estimation of c(S) with error ǫ′

1: Λ′ = 1 + 4(e− 2) ln 2
δ′

1
(ǫ′)2 (1 + ǫ′)

2: Inf = 0
3: for T from 1 to Tmax do
4: C, h, R(·) ← generate a RIC sample using Alg. 1
5: tmp = 0
6: for each node v ∈ C do
7: if R(v) ∩ S �= ∅ then tmp = tmp+ 1

8: if tmp ≥ h then
9: Inf = Inf+ 1

10: if Inf ≥ Λ′ then return rΛ′/T

11: Return −1

second condition: Given
|R|
r
ĉR(S) ≥ Λ, Lemma 6 in [2]

proved that:
Pr[ĉR(S∗) ≤ (1− ε3)c(S

∗)] ≤ 2δ/3 (24)
Denote SOPT as an optimal solution of MAXR given the collec-
tion R. We have:

ĉR(S) ≥ αĉR(SOPT) ≥ αĉR(S∗) (25)
Thus, combining equation (24) and equation (25) gives:

Pr[ĉR(S) ≤ α(1− ε3)c(S
∗)] ≤ 2δ/3 (26)

Now, based on Stopping Rule Algorithm (Section 2.1 [19]),
we have:

Pr[c∗ ≥ (1 + ε2)c(S)] ≤ δ/3 (27)
Combine equation (27) and the condition ĉR(S) ≤ (1+ε1)c

∗,
we have:

Pr[ĉR(S) ≥ (1 + ε1)(1 + ε2)c(S)] ≤ δ/3 (28)
Finally, combining equation (26) and equation (28) gives

Pr[c(S) ≥ α
1− ε3

(1 + ε1)(1 + ε2)
c(S∗)] ≥ 1− δ

Since ǫ ≥ ε1 + ε2 + ε3 + ε1ε2 (line 3 alg 5), we have:
Pr[c(S) ≥ α(1− ǫ)c(S∗)] ≥ 1− δ

which completes the proof.

How to integrate the MAXR algorithms? MAF or BT(MB) al-
gorithms could be easily integrated into Alg. 5. However, UBG
algorithm has a problem that: UBG’s approximation guarantee
depends on R, which leads to inconsistency on approximate
ratio of MAXR on each stop stage in Alg 5. To deal with
this problem, we only consider an upper-bound function ν(·).
Running SSA with objective function ν(·) would produce a
solution Sν that guarantees 1 − 1/e − ǫ approximation ratio.
By returning S = Sν , we have:

c(S) =
c(Sν)

ν(Sν)
ν(Sν) ≥

c(Sν)

ν(Sν)
(1− 1/e− ǫ)ν(S∗

ν )

≥
c(Sν)

ν(Sν)
(1− 1/e− ǫ)ν(S∗) ≥

c(Sν)

ν(Sν)
(1− 1/e− ǫ)c(S∗)

where S∗
ν , S

∗ are optimal solutions to the objective functions
ν(·), c(·) respectively.

VI. EXPERIMENTAL EVALUATION

In this section, we compare the performance of our proposed
algorithms with several intuitive heuristic solutions.

A. Experimental Settings

The experiments were conducted on a Linux machine with
2.3GHz Xeon 18 cores processor and 256GB of RAM. We
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TABLE I: Statistics of datasets

Data Type Nodes Edges

Facebook Undirected 747 60.05 K
Wiki-vote Directed 7.1 K 103.6 K
Espinions Directed 76 K 508.8 K
DBLP Undirected 317 K 1.05 M
Pokec Directed 1.6 M 30.6 M

(a) Facebook, Random (b) Facebook, Louvain

(c) Facebook, Louvain, bounded threshold (d) DBLP, Louvain

Fig. 4: Quality of solution with different community structures.
Y-axis is the expected benefit of influenced communities.

used the datasets from Stanford Network Analysis Project [20],
summarized in Table I.

Settings. To partition the social networks into disjoint
communities, we utilized the well-known Louvain algorithm
[21], [22], which extracts communities to optimize the network
modularity. In order to see the impact of communities selection
on IMC, we also use Random algorithm as the baseline. In
the Random algorithm, we fix the number of communities
and randomly put nodes into communities. To prevent cases
in which some communities are significantly larger than the
others, we limited the community size by a certain value s.
If a community C was larger than s, we split it into ⌈|C|/s⌉
communities. We set s = 8 unless otherwise stated.

The benefit of a community was equal to its population
(bi = |Ci|). For each edge e = (u, v), let e’s weight equal
1

d(v) where d(v) is the in-coming degree of node v (in case of

undirected graph, the edge e = (u, v) will be considered as two
directed edges (u, v) and (v, u)). The activation threshold of
each community was set to be 2 in the experiments including
MB algorithm. Otherwise, the activation threshold of each
community was set to be 50% of its population (hi = 0.5|Ci|).
In all the experiments, we kept ǫ = δ = 0.2, ǫ1 = ǫ2 = ǫ/2
and ε1 = ε2 = ε3 = ǫ/4.

Baselines: To our extent, no existing algorithm was appli-
cable to the IMC problem. Thus, we compared our proposed
algorithms with the following heuristic methods:

• HBC (High Beneficial Connection). HBC selects k nodes
that have high beneficial connection to the communities
set. A beneficial connection of node u was defined as
B(u) =

∑

v∈N−(u) w(u, v) ·
bC(v)

hC(v)
where N−(u) is u’s

out-coming neighbors; C(v) is a community in which v

(a) Wiki-vote (b) Pokec

Fig. 5: Benefit of different algorithms on regular case. Y-axis
is the expected benefit of influenced communities.

is a single user, and hC(v) is its activation threshold.
• KS (Knapsack-like Algorithm). KS considers the activa-

tion threshold of a community as a cost to influence
it. Then KS finds communities set with cost constraint
k to maximize the overall benefit. This is a Knapsack
problem and it is possible to obtain an optimal solution
in polynomial runtime. Define R as an optimal solution
to the Knapsack problem: for each community C ∈ R,
we selected h nodes in C and put them into the seed set
S, where h is the activation threshold of C.

• IM (Influence Maximization). IM selects k nodes that
maximize the influence spread. Then we estimate their
expected benefit on influenced communities.

With the baseline algorithms, to evaluate the benefit of influ-
enced communities, we used Dagum [19] estimation method
with the same ǫ, θ we used for our proposed algorithm. Also,
for simplicity, in this section UBG/MAF/MB means running the
IMCAF framework with the corresponding MAXR algorithms.
For each set of experiments, we ran ten times and report
the average results. Due to space limits, we only report the
important observations.

B. Performance comparison

Quality of solution. First, we compare the algorithms’
performance with different community formations. Also, with
each community formation, we changed value of s and
recorded our results in Figure 4. In this experiment, we
fix k = 10. Figure 4a, 4b and 4d show the results of
the experiments with Facebook and the DBLP dataset using
the Louvain and Random community formation. Figure 4c
shows the result in the case of bounded activation threshold.
Generally, our algorithms always returned the best solutions
regardless community formation methods. Also, the quality
of all algorithms tended to decrease when s increases, which
contradicts the experiment on bounded activation threshold.
These experiments suggest that: there should be a relationship
between s, the overall benefit, and the average activation
threshold of influenced communities.

Next, we compare the algorithms’ performance in regard
to the change of k. Fig. 5 compares the quality of different
algorithms without bounded activation threshold. Both of
our proposed algorithms returned better solutions than any
baseline algorithm. All algorithms performed similarly when
k is small but the gap became noticeable when k increases.
We could say UBG always returned the best solutions while
KS was the worst one, which is explainable because KS does
not consider the network topology and diffusion model of
users when finding solution. Furthermore, the gap of quality
between IM and our two solutions grew when k increased.
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(a) Wiki-vote (b) Pokec

Fig. 6: Benefit of different algorithms on the bounded activa-
tion threshold case. Y-axis is the expected benefit of influenced
communities.

(a) Espinions (b) Pokec

Fig. 7: Runtime of our algorithms. Y-axis is the average
runtime in seconds

This is because when k is large, the number of activated users
increases but scatters in the network. When we estimated the
benefit of IM solution, we observed there was a huge amount
of RIC samples that needed only one more activated node to be
influenced, which occasionally happened in UBG and MAF. This
further demonstrates the difference in objective between ICM
and IM. The similar patterns were met in the experiments with
bounded activation threshold (Fig. 6). Note that we discarded
the MB’s results in Fig. 6b because they exceeded the runtime
limit.

Running time. We now compare the CPU runtime between
our three solutions (Fig. 7) to evaluate the tradeoffs. Since the
algorithms ran very fast (several seconds) on the small net-
works, we only show their performance on the large networks.
As can be seen in Fig. 7b, MAF ran much faster than UBG. Also,
the change in k did not affect much on MAF’s performance,
which totally contradicted to UBG. This could be explained
by: MAF takes one-pass on all communities/nodes to calculate
their impacts, another pass to sort them in order of this value
and finally identify the k most influencing nodes. Meanwhile,
the performance of the greedy algorithm in UBG was highly
affected when k increases.

In case of bounded activation threshold, our three algorithms
showed similar running time on the small-scale dataset. How-
ever, in the large networks shown in Fig. 7a, MAF and UBG

outperformed MB by a huge margin. Furthermore, MB could
not finish within the runtime limit in the experiments with the
Pokec datasets. The poor performance of MB was because MB

splits the IMC instance into O(|V |) subproblems and solves
them all to get the best solution (Alg. 4). The runtime for each
subproblem is equivalent to the runtime of UBG.

Evaluation of UBG. Even UBG always returned the best
results among all algorithms, UBG’s approximate guarantee

depends on the ratio
c(Sν)
ν(Sν)

where Sν is 1−1/e−ǫ approximate

solution to the submodular function ν(·). Within our configura-

Fig. 8: Relation of UBG ratio with seed size k. Y-axis is the

average value of
c(Sν)
ν(Sν)

.

tion, we observed that: the ratio has a strong relationship with
k and the average activation threshold of the communities.
These relations are shown in Fig. 8. We calculated the ratio by
obtaining Sν and using Monte Carlo method to estimate c(Sν)
and ν(Sν). We observed that: the ratio increased and was
closer to 1 when k grew. Also, the ratio increased when the
average activation threshold of communities decreased. This
could be observed by comparing the experiments in the same
network with and without bounded activation threshold. For
example in Pokec network, we obtained the ratio approximate
to 1 with k = 10000 in the bounded threshold case but only
get 0.4 ratio in the regular case. This is because when the ac-
tivation threshold decreases, c(·) exhibits more “submodular”
behaviors and becomes closer to ν(·). c(·) would be totally
submodular if the activation threshold is bounded by 1, which
we already proved in subsection IV-C.

VII. CONCLUSION

In this paper, we introduced a novel IMC problem, on
which we consider the collaborative impact of the influence
spread in social networks. Solving this problem was shown to
be very challenging. We proposed a new sampling method,
which could be used as a baseline for any algorithm for
IMC. We next devised several approaches in a trade off
between effectiveness and running time. Experimental results
demonstrated the effectiveness of our proposed algorithms and
confirmed with the theoretical results.
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