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Abstract—Privacy breaches are one of the biggest concerns on Online Social Networks (OSNs), especially with an introduction of

automated attacks by socialbots, which can automatically extract victims’ private content by exploiting social behavior to befriend them.

The key insight of this attack is that by intelligently sending friend requests to a small subset of users, called the Critical Friending Set

(CFS), such a bot can evade current defense mechanisms. We study the vulnerability of OSNs to socialbot attacks. Specifically, we

introduce a new optimization problem, Min-Friending, which identifies a minimum CFS to friend in order to obtain at least Q benefit,

which quantifies the amount of private information the bot obtains. The two main challenges of this problem are how to cope with

incomplete knowledge of network topology and how to model users’ responses to friend requests. In this paper, we show that

Min-Friending is inapproximable within a factor of (1− o(1)) lnQ and present an adaptive approximation algorithm using adaptive

stochastic optimization. The key feature of our solution lies in the adaptive method, where partial network topology is revealed after

each successful friend request. Thus the decision of whom to send a friend request to next is made with the outcomes of past

decisions taken into account. Traditional tools break down when attempting to place a bound on the performance of this technique with

realistic user models. Therefore, we additionally introduce a novel curvature-based technique to construct an approximation ratio of

lnQ for a model of user behavior learned from empirical measurements on Facebook.

Index Terms—SocialBots Attacks; Social Networks Analysis; Content-Centric Privacy; Adaptive Algorithms; Non-Submodularity.

✦

1 INTRODUCTION

W ITH a huge amount of personal information ripe
for the taking in modern Online Social Networks

(OSNs), privacy breaches have become a central concern.
During the last two decades, we have witnessed the blos-
soming of a variety of attacks aimed at collecting users’
private content, many of which apply socialbots to automat-
ically infiltrate users’ social circles and exfiltrate sensitive
data [1], [2]. This information may then be exploited for a
number of purposes, including spearphishing and account
compromise via security questions [2]. Therefore, studying
such threats to online privacy is of great importance both as
a way to protect users and a means to improve awareness
of these dangers.

Motivated by the above discussion, we present a new
paradigm to measure the OSN privacy vulnerability in
light of socialbot attacks. Although quantitative analysis of
network vulnerability can be addressed from a variety of
perspectives, an intuitive measure is the minimum number
of users that attackers need to befriend in order to max-
imally collect private information from a target network.
Obviously, if this number is small compared to the benefit
gained from collecting private content, one can conclude
that the network is vulnerable to attack, whereas if this
number is large the network is robust against socialbot
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attacks. Identifying the set of users to friend, called the
critical friending set (CFS), is useful from both attack and
defense perspectives. In the former, the attacker identifies
an optimal set of users they need to befriend, whereas in the
latter, the defender has an opportunity to protect the CFS
and interfere with attack in order to protect users’ privacy.

Accordingly, we introduce a new optimization prob-
lem, called the Adaptive Minimum Critical Friending Set
(Min-Friending) Problem. It asks us to find the minimum
number of users to befriend in order to obtain at least
Q benefit, which quantifies valuable private content. The
key challenges of this problem are multifold. First of all,
the topological information of social networks is partially
unavailable. Since only two-hop topology is available by
default in closed OSNs such as Facebook, the users’ connec-
tions are gradually revealed to the attacker when acquiring
new friends, thereby requiring us to investigate adaptive
strategies. Additionally, the huge number of OSN users and
amount of data available on OSNs poses a substantial chal-
lenge to mining the critical friending set with incomplete
topology. Finally, the variety of potential social responses
to friend requests makes it difficult to design an efficient,
general friending strategy, and thus challenging to identify
the CFS.

A further notable challenge of Min-Friending is that
whether the objective function is submodular (i.e. pos-
sessing the property of diminishing returns) depends on
the way users behave. Although it is well-known that
the greedy algorithm obtains an approximation ratio of
(1 + lnQ) for minimization of submodular objective func-
tions [3], [4], there is no tool to theoretically bound the
performance of adaptive greedy minimization with non-
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submodularity.
Our contributions are summarized as follows:

• Prove Min-Friending cannot be approximated within
the ratio of (1 − o(1)) lnQ unless NP ⊂
DTIME(nO(loglogn)). That being said, no one can
design an algorithm which can guarantee its solution
is within (1 − o(1)) lnQ factor from the optimal
solution under all instances.

• Design an adaptive approximation algorithm,
AReST, to Min-Friending. Using adaptive stochastic
optimization, we show that AReST has a perfor-
mance ratio of (1 + lnQ) in some cases, which is
a tight bound.

• Provide a novel curvature-based technique to theo-
retically bound the approximation ratio of adaptive
and non-submodular greedy minimization. This in
turn shows AReST has a bound of (δ lnQ) in the
general case, where δ denotes the maximum change
in acceptance rate.

• Conduct extensive experimental evaluations show-
ing that AReST outperforms several alternate meth-
ods. Further, we find that the effectiveness of infiltra-
tion has strong dependencies on the network topol-
ogy and user behavior in addition to the attacker’s
choice of target. Among target settings, we find that
attacking individuals and communities are the most
difficult, while attacking the network as a whole or a
tightly co-located group is notably easier.

Related Work. Socialbot attacks on OSNs may be simple
attempts to collect personal information, but have shown to
be critically important [5]. Ryan & Mauch showed that fake
profiles can be effectively used to befriend members of the
NSA, military intelligence agencies, and Global 500 corpo-
rations [6]. These fake profiles can be automated to form
socialbots [2], which can be used to automatically infiltrate
organizations [7]. Furthermore, these attacks preclude the
use of existing defenses to Sybil attacks, which have seen
significant study [8], [9], [10] (and references therein). The
reasons are twofold. On the one hand, a socialbot attack may
consist of only a single bot, and even in cases where multiple
bots are involved they do not need to be related by network
topology (which is a key assumption of common Sybil
defenses). On the other hand, they are carefully designed to
behave similarly to the real users. Thus, neither the graph-
based nor the feature-based Sybil detection mechanisms are
likely to be effective against socialbot attacks. Therefore,
there is an urgent need for radically new models and
analytical techniques to assess OSNs’ vulnerability against
these attacks.

When considering friending strategies for socialbots, the
number of works on this new direction is rather limited.
Two works that are the most relevant to our paper are [11],
[12]. However, these papers aimed to find the top k users
to friend in order to maximize the gained benefit, which
is a dual to our problem. In addition, they only consider
a simple constant friend acceptance rate, which may be
impractical. Along the line of defense, the only relevant
work is in [13], by monitoring a subset of users within an
organization, and evaluating the cost to the organization
by simulating an attacker on topologies taken from social

networks. However, this work is based on heuristics built
on known sociological properties and further assumes hav-
ing complete knowledge of network topology. Instead, we
provide a better defense strategy with a theoretical perfor-
mance guarantee with support for incomplete topological
knowledge.

Further, assessing network vulnerability to socialbot at-
tacks has not been addressed. The vulnerability of net-
works due to malicious actors or external disasters has
been characterized in a number of ways [14], [15], [16]
(and references therein). However, the differences between
these destructive attacks and socialbot attacks precludes
applying these vulnerability measurements directly. Where
prior work is concerned with the ability of an attacker
to disrupt a network in term of network connectivity for
example, we instead look at the ability of an attacker to
extract information from it, thereby forming a new research
direction.

With respect to theoretical tools to analyze the per-
formance of greedy algorithms for optimization problems,
Golovin and Krause showed that if the objective func-
tion is adaptive submodular and monotone non-decreasing,
then the well-known approximation ratio of greedy in a
non-adaptive setting can be extended to an adaptive one
[4]. When the objective function is non-submodular, Wang
et al. [17] derived a ratio for the maximization problems.
However, the ratio quickly approaches to 0 for non-trivial
problem sizes. In addition, this work only applied in the
case of non-adaptive settings. Instead, our work introduced
a new primal curvature concept to bound the adaptive non-
submodular greedy minimization.

Organization. The rest of the paper is organized as
follows. Section 2 presents the problem models and pre-
liminaries, including the inapproximability. The AReST al-
gorithm and its efficient implementation are introduced in
Section 3, followed by the theoretical analysis in Section 4.
Section 5 presents our experimental evaluation and Section
6 concludes the paper.

2 PROBLEM MODELS AND PRELIMINARIES

2.1 Friending by Socialbots

In order to solve Min-Friending, we first need to understand
how socialbots befriend targets. To generalize our problem,
we consider a target set of users T that an attacker wants to
collect information from. T could be a set of employees in
a targeted organization, one individual with a high profile
(|T | = 1), or the set of all users in a network. For simplicity,
we assume that there is a single attacker s, i.e. a socialbot,
who is an online user in the same networking environment1.

Conceptually, the socialbot attack works as follows. The
attacker s first obtains a master-list of target users T through
some public channels, e.g. organization’s website or the
OSNs themselves which expose a certain amount of per-
sonal information. This has been made even easier by the
fact that popular social networks such as Facebook enforce a
real-name policy, which facilitates identifying users. Because

1. The solution proposed in this paper can be easily extended to
handle multiple attackers.
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a set of possible friendships between users, each edge e ∈ E exists
with a probability pe ∈ [0, 1], and a threshold Q ∈ Z

+. The
benefit function B and acceptance probability function accept(·)
are defined earlier. The problem asks us to find a set of nodes to
befriend F ⊂ V with minimum size so as when s sends friend
requests to F , the total expected benefit gain is at least Q.

Note that finding F is equivalent to finding an adaptive
attack strategy π, in which s will befriend u ∈ F iteratively.
Each time s becomes a friend of u, the network topology
G will be updated to reveal all edges incident with u. As
|F | is minimized, the number of friend request steps is also
minimized.

Since G is partially unknown to s and friend requests
sent from s to u may fail, we use adaptive stochastic op-
timization to tackle our problem. We begin by introducing
our notation. For each node u ∈ V , let Xu ∈ {0, 1, ?} denote
the state of u where 1 indicates that u accepts the friend
request from s, 0 indicates that u rejects the friend request,
and ? represents an unknown, i.e., s has not sent a request
to u yet. Initially, the states of all us should be ?. Likewise,
for each edge (u, v) ∈ E, define Yuv ∈ {0, 1, ?}. 1 means
the edge (u, v) exists (revealed when s befriends u and v is
u’s friend), 0 indicates edge (u, v) is not present (revealed
when s befriends u and we learn for certain that v is not a
friend of u), and ? means unknown, i.e. u rejects the friend
request from s, or s has not sent a friend request to u yet,
or u has the privacy setting to himself only (not friend of
friend). Let Ω be the collection of all possible states of G
and φ = {Xv}v∈V ∪ {Yuv}(u,v)∈E → Ω be a possible state,
called a realization. Thus we call φ(u) the state of node u
and φ(e) the state of edge e under realization φ. We require
each realization to be consistent. That is, each node and edge
must be in only one of the states {0, 1, ?}. Clearly there
are many possible realizations which follow a probability
distribution Pr[φ]. We denote Φ as a random realization and
Pr[φ] = Pr[Φ = φ] over all realizations.

We will consider the problem where s sequentially sends
a friend request to u, sees the state Φ(u), and sees the states
Φ(e) for all e incident to u iff Φ(u) = 1. s then picks the next
user to befriend, see its state, and so on. We use the notation
F (π, φ) be the set of nodes selected by strategy π under
realization φ. After each friend request, our observations
thus far can be represented as a partial realization ω. We
use dom(ω) to refer to the domain of ω, ie., the set of
nodes and edges observed in ω. A partial realization ω is
consistent with a realization φ if they are equal everywhere
in the domain of ω, written as φ ∼ ω. If ω and ω′ are both
consistent with some φ and dom(ω) ⊆ dom(ω′), we say ω
is a subrealization of ω′.

Let π be an adaptive attack strategy of s. The total
benefit gain from this strategy π under realization φ can
be formulated as follows.

f(π, φ) =
∑

u∈Nf (π,φ)

Bf (u) +
∑

v∈Nfof (π,φ)

Bfof (v)

+
∑

(u,v)∈Ni(π,φ)

Bi(u, v) (2)

v1 v2 v3 vn U

u1 u2 um S

s

. . .

. . .

Fig. 2: An instance Π′ of Min-Friending after the attacker s
friends u1 and um (corresponding to S1 and Sm).

where

Nf (π, φ) = {u|u ∈ F (π, φ), φ(u) = 1},

Nfof (π, φ) = {v|∃u ∈ Nf (π, φ) : φ(u, v) = 1}\Nf (π, φ),

and Ni(π, φ) = {(u, v)|u ∈ Nf (π, φ), φ(u, v) = 1}

Therefore, the Min-Friending problem can be stated for-
mally as:

min E[|F (π,Φ)|] (3)

s.t. E[f(F (π,Φ),Φ)] ≥ Q

That is: find a policy π that minimizes the expected
number of friend requests to obtain at least Q benefit in
expectation (where benefit is defined by Eqn. (2)). Each
expectation is taken w.r.t. the set of potential realizations.

2.4 Inapproximability

Instead of proving that Min-Friending is NP-hard, we prove
a stronger theorem, showing the inapproximability of Min-
Friending.

Theorem 1. The Min-Friending problem cannot be approx-
imated within a factor (1 − o(1)) lnQ unless NP ⊂
DTIME(nO(loglogn))

Proof. Let Π = (S,U ,K) be an instance of the set-cover
problem in which U = {e1, e2, . . . , en} is the set of n
elements and S = {S1, S2, . . . , Sm} is the collection of m
subsets of U . The set cover problem asks if there are k
subsets which cover at least K ≤ n items in U . We construct
an instance Π′ = G(V,E, p,B, accept) with target benefit Q
of the Min-Friending problem as follows.

• For each element ei ∈ U , we include into V a vertex
vi. Similarly, we put into V a vertex uj for each
subset Sj ∈ S .

• For each pair of element ei and subset Sj , we connect
uj and vi if ei ∈ Sj . For all edges (uj , vi) ∈ E, we set
pujvi = 1.

• For benefit B, we set Bfof (vi) = 1 and Bf (vi) = 0
for each vi ∈ V that corresponds to ei ∈ U . And
we set Bf (uj) = Bfof (uj) = 0 for all uj , associated
with subset Sj , and Bi(uj , vi) = 0 for all edges in
the graph.

• For accept(.), set accept(uj) = 1 ∀uj , set accept(vi) =
ρ1 log(E [|N(v) ∩N(s)|] + 1) + ρ0 ∀vi.

• Finally, set Q = K .
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So the Min-Friending problem asks us if there exists a
CFS of size q such that the total benefit is at least Q. The
construction is illustrated in Fig. 2.

Since Bf (vi) = 0, there is no incentive to friend vi.
Thus attacker s will befriend uj . This friend request to uj

is always successful as accept(uj) = 1. In order to have
Q = K benefit, s needs to have at least K vi in his two-
hop neighbors. Then the users uj that s chooses to befriend
are corresponding to the k sets Sj of Π. Clearly if we
have an approximation algorithm with an approximation
factor α(Q) for Min-Friending, then we also have an α(K)
approximation algorithm for the set cover problem. Thus,
due to the inapproximability of set cover [21], the Min-
Friending problem cannot be approximated within a factor
(1− o(1)) lnQ unless NP has nO(log logn) deterministic time
algorithms.

3 ADAPTIVE RECONNAISSANCE STRATEGIES

In this section, we present our solution to Min-
Friending, namely Adaptive Reconnaissance Strategy algo-
rithm (AReST), followed by the discussion of its efficient
implementation.

3.1 Algorithm Description

At an abstract level, the Adaptive Reconnaissance Strategy
algorithm (AReST) has two main phases: Selection and Feed-
back. At the Selection phase, AReST will select a node u for
s to friend so as to increase the potential function (which
will be discussed later) the most. After selecting u and
sending a friend request to u, if u accepts the friend request,
AReST executes the Feedback phase, which will (1) update
the network topology with more exact information on pe ;
and (2) update the accept(v) for all v ∈ N(u). If u rejects the
friend request, AReST will continue the first phase to select
another node. These two phases will be iteratively executed
until the total expected benefit exceed Q.

Algorithm 1: Adaptive Reconnaissance Strategies
(AReST)

Input: Graph G = (V,E, p,B, accept), and Q ∈ Z
+

Output: An ordered set of nodes F ⊂ V for s to friend
with.

1 F ← ∅;ω ← ∅
2 while E[f(F )] < Q do
3 foreach u ∈ V \F do
4 ∆(u|ω) = accept(u)(P1 + P2)

5 Select u∗ ∈ argmaxu ∆(u|ω)
6 Set F ← F ∪ {u∗}
7 Send a friend request to u∗

8 if u∗ accepts the friend request then
9 Feedback: Update ω with new observed

information of pu∗v and accept(v) for all
v ∈ N(u∗)

10 Return F

The main challenge of the first phase is to define an
efficient potential function. As the friend request acceptance
probability may change after each successful friend request,

the potential function must account for the likelihood of
increasing the acceptance probability in a later iteration,
in addition to the gain defined by the benefit function B.
Let F denote the set of s’ friends at the current step, with
corresponding partial realization ω. In order to select a
node u at the next step, we define the potential function
as follows:

∆(u|ω) = accept(u)(P1 + P2)

where P1 and P2 represent the gain in increasing the accep-
tance probability for later stages and the gain in increasing
the benefit function B, respectively. Mathematically, we
have:

P1 =
1

|N(u) \N(s)|

∑

v∈N(u)\N(s)

puv ×∆Pu(s, v)×∆uvB

where ∆Pu(s, v) denotes the gain in the acceptance prob-
ability when u becomes a friend of s. ∆Pu(s, v) can be
calculated based on the definition of accept(.) function:
∆Pu(s, v) = ρ1 log(1 + puv/(E [|N(u) ∩N(s)|] + 1)). In the
special cases of u placing low value on mutual friends or u
having many friends, this tends to 0. ∆uvB represents the
benefit gain assuming s adds u as a friend, and then add v
as a friend. Thus ∆uvB = f(ω ∪ {u, v})− f(ω ∪ {u}) and

P2 = Bf (u)− Ifof (u)Bfof (u)

+





∑

v∈N(u)\N(s)

puv(1− Ifof (v))Bfof (v)

+
∑

(u,v)∈E

puvBi(u, v)





where Ifof (u) = 1 if u is a friend of a friend of s, and 0
otherwise. Algorithm AReST is depicted in Algorithm 1.

3.2 Improving the Efficiency of Potential Updates

Lines 3-4 of Alg. 1 update the potential of every element
that could be added to the solution in the next step. We
note that the efficiency of this operation can be dramatically
improved by maintaining a cache of the potentials and up-
dating only the entries whose potential might have changed
as a result of adding a node w to the solution F .

Lemma 1. ∆(u | ω) is a function only of the nodes and
edges within an unweighted distance of 2 of u (the ”2-hop”
neighborhood of u), the bot s, and the current solution F .

We only sketch the proof of Lemma 1 here. Fundamen-
tally, the proof comes down to examining each term of
∆(u | ω) to see which nodes and edges are needed for
computation. In large part, it is straightforward to verify
under the stated assumptions that each term is a function
only of s, F , N(N(u)) = N(u) ∪

⋃

v∈N(u) N(v), and edges
with both endpoints in N(N(u)). While there are a few
terms which appear to require other inputs for computation,
in each case after expanding the definition it becomes clear
that the apparent requirement for other input is only a
product of notational shortcuts.

As an example, consider the term N(u)\N(s). This term
appears to require that one examine N(s) so that one knows
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the correct elements to remove from N(u). However, this
can be flipped around to only examine nodes and edges
in the 2-hop neighborhood of u as follows: for each node
v ∈ N(u) check the set N(v). If it contains s, omit it.

Corollary 1. For any u ∈ V \ F , if w 6∈ N(N(u)), w 6= u is
added to the solution, then ∆(u | ω ∪ {w}) = ∆(u | ω).

4 THEORETICAL PERFORMANCE ANALYSIS

In this section, we provide a comprehensive analysis of
AResT with respect to various friend request acceptance
models. We first focus on a special case of the model where
our objective function f(·) is adaptive submodular. We next
cover a wide range of friend request acceptance models
which makes f(·) no longer submodular.

4.1 Adaptive Submodular: A Special Case

We are going to analyze the performance of AReST where
∆Pu(s, v) = ρ1 log(1 + 1/E [|N(u) ∩N(s)|]) = 0. This
relates to u placing low value on mutual friends or u having
many friends, and thus their friend acceptance probility de-
pends on ρ0(u). We show that AReST has an approximation
ratio of (1+lnQ). As shown in Theorem 1, this ratio is tight.

Note that AReST calculates ∆(u|ω) for all u ∈ V \F and
chooses u∗ with the maximal gain over all realization. Thus
in this case, the expected marginal gain of u conditioned on
having partial realization ω is defined as follows:

∆(u|ω) = E[f(dom(ω) ∪ {u},Φ)− f(dom(ω),Φ)|Φ ∼ ω]

Before continuing with our analysis, we state the follow-
ing definitions, which are defined in [4].

Definition 2 (Strongly Adaptive Monotone). A function
f(·) is strongly adaptive monotone with respect to the distri-
bution Pr[φ] if the following condition holds. For all ω, all
v /∈ dom(ω), and all possible states o of node v such that
Pr[Φ(v) = o|Φ ∼ ω] > 0, we have:

E[f(dom(ω),Φ)|Φ ∼ ω]

≤ E[f(dom(ω) ∪ {v},Φ)|Φ ∼ ω,Φ(v) = o] (4)

Definition 3 (Adaptive Submodularity). A function f(.) is
adaptive submodular w.r.t the distribution Pr[φ] of all realizations
if for all ω and ω′ such that ω ⊆ ω′ and for all v ∈ V \dom(ω′),
we have:

∆(v|ω) ≥ ∆(v|ω′) (5)

Definition 4 (Self-certifying). An instance (f,Pr[φ]) is self-
certifying if for all φ, φ′, and ω such that φ ∼ ω and φ′ ∼ ω, we
have f(dom(ω), φ) = f(V, φ) iff f(dom(ω), φ′) = f(E,ω′).

Lemma 2. The objective function f of the Min-Friending prob-
lem is strongly adaptive monotone.

Proof. Consider a fixed ω, v /∈ dom(ω), and status o. Let
A(ω) be a set of nodes and edges that can be reached from
s after selecting dom(ω) and observing ω. Clearly, for all
paths from s to u ∈ A(ω) consisting of ω(e) = 1. Therefore,
every path from any u ∈ A(ω) to any v ∈ V \A(ω) must
consist at least one ω(e) 6= 1 or ω(w) 6= 1 for some w on the
path. Thus we have f(A(ω)) = E[f(dom(ω),Φ)|Φ ∼ ω].

With a similar argument, we have f(A(ω ∪ {v})) =
E[f(dom(ω) ∪ {u},Φ)|Φ ∼ ω,Φ(u) = o]. Note that ω ⊆ ω′

implies A(ω) ⊆ A(ω′). Since f is a monotone function by
definition, we have f(A(ω)) ≤ f(A(ω′)). Thus we obtain
E[f(dom(ω),Φ)|Φ ∼ ω] ≤ E[f(dom(ω) ∪ {v},Φ)|Φ ∼
ω,Φ(v) = o]. This completes the proof.

Lemma 3. The objective function f of the Min-Friending prob-
lem is adaptive submodular.

Proof. Consider two fixed partial realizations ω and ω′

where ω ⊆ ω′ and a node v ∈ V \dom(ω′), we need to
prove that ∆(v|ω) ≥ ∆(v|ω′). We first prove the following
claim:

Given ω ⊆ ω′ and define a coupled distribution µ over
pairs of realization φ ∼ ω, φ′ ∼ ω′ such that φ(v) = φ′(v)
for all v /∈ dom(ω′). For all (φ, φ′) in support of µ, we have:

∆(v|ω, φ ∼ ω) ≥ ∆(v|ω′, φ′ ∼ ω′)

where ∆(v|ω, φ) = f(dom(ω)∪ {v}, φ)− f(dom(ω), φ).
Define A(ω) and A(ω′) as in the proof of Lemma 2. We

have:

∆(v|ω, φ ∼ ω) = f(dom(ω) ∪ {v}, φ)− f(dom(ω), φ)

= f(A(ω) ∪ {(v, φ(v))})− f(A(ω))

≥ f(A(ω′) ∪ {(v, φ′(v))})− f(A(ω′))

= f(dom(ω′) ∪ {v}, φ′)− f(dom(ω′), φ′)

= ∆(v|ω′, φ′ ∼ ω′)

Having proven the above claim, we can straightfor-
wardly finish our proof. Since ω ⊆ ω′, we have:

∆(v|ω) = E[f(dom(ω) ∪ {v},Φ)− f(dom(ω),Φ)|Φ ∼ ω]

=
∑

(φ,φ′)

µ(φ, φ′)∆(v|ω, φ ∼ ω)

≥
∑

(φ,φ′)

µ(φ, φ′)∆(v|ω′, φ′ ∼ ω′)

= ∆(v|ω′) �

Theorem 2. The AReST algorithm has an approximation ratio of
(1 + lnQ).

Proof. Let OPT represent an optimal solution to Min-
Friending. According to [4], if f is strongly adaptive mono-
tone, adaptive submodular, and self-certifying, then we
have:

|F | ≤ (1 + ln(
Q

η
))OPT

where η is any value such that f(F, φ) > Q − η implies
f(F, φ) = Q for all F and φ.

If range(f) ∈ Z, we set η = 1 and thus have |F | ≤
(1 + lnQ)OPT .

Therefore, the only thing left we need to prove is that f is
self-certifying. Clearly, we have f(V, φ) = min{Q, f(V )} =
Q. We have shown that f(dom(ω), φ) = f(A(ω)) for every
φ ∼ ω. It follows that f(dom(ω), φ) = f(dom(ω), φ′) for
all ω and φ, φ′ ∼ ω. Thus, we obtain f(dom(ω), φ) = Q iff
f(dom(ω), φ′) = Q, which completes the proof.
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4.2 Adaptive Non-Submodular - A Generalization

Outside of the special case analyzed in the previous section,
the objective function for AReST may not be submodular,
and therefore the (1 + lnQ) ratio does not hold in general.
In this section, we introduce the notion of adaptive primal
curvature (APC) to assist in the derivation of an adaptive
approximation ratio in the general case without adaptive
submodularity. The notion is motivated by the elemental
curvature defined in [17], with the capability of coping with
adaptive functions and greater precision. Intuitively, the
APC depicts the rate at which the marginal gain ∆(u | ω)
of the objective function changes would change if ω were
extended with an additional element v prior to adding u.
The elemental curvature, when extended to the adaptive
case, is the maximum of all such rates of change. Formally,
we have:

Definition 5 (Adaptive Primal Curvature). The APC of an
adaptive monotone non-decreasing function f is

∇f (i, j | ω) = E

[

∆(i | ω ∪ s)

∆(i | ω)

∣

∣

∣

∣

s ∈ S(j)

]

where S(j) is the set of possible states of j and ∆ is the conditional
expected marginal gain [4].

For notational clarity, we also define the fixed adaptive primal
curvature in terms of a single state s ∈ S(j):

∇′(i, s | ω) =
∆(i | ω ∪ s)

∆(i | ω)

We also introduce the adaptive total primal curvature
(ATPC), which intuitively captures the total change in the
marginal value from a partial realization ω to another (ω′)
such that dom(ω) ⊂ dom(ω′).

Definition 6 (Adaptive Total Primal Curvature). Let
dom(ω) ⊂ dom(ω′) and let ω → ω′ represent the set of possible
state sequences leading from ω to ω′. Then the ATPC is

Γ(i | ω′, ω) = E

[

∏

sj∈R∇
′(i, sj | ω ∪ {s1, . . . , sj−1})

∣

∣

∣ R ∈ ω → ω′
]

In the following, we derive the approximation ratio of
AReST in two steps. First, we provide a relation between
the optimal policy and greedy policy of any size. Then, we
prove the approximation ratio based on the bound.

Denote π∗
k as the optimal policy of size k, and πg

l as the
greedy policy of size l. We introduce the following auxiliary
Lemmas before the main result.

Lemma 4.

Γ(i | ω′, ω) =
∆(i | ω′)

∆(i | ω)

Proof. Fix a sequence R ∈ ω → ω′ of length r and R =
{s1, . . . , sr}. Then, expanding the product we obtain

∆(i | ω ∪ {s1})

∆(i | ω)
·
∆(i | ω ∪ {s1, s2})

∆(i | ω ∪ {s1})
· · ·

∆(i | ω′)

∆(i | ω′ \ {sr−1})

Notice that for any sequence in ω → ω′, the product reduces
to the same ratio. From this, we directly obtain the statement
of the lemma.

From Lemma 4, we can also see that Γ(i | ω′, ω) is inde-
pendent of the order in which elements of R are considered.
Therefore, we can treat R as simply a set rather than a

sequence. Further, we can derive an upper bound on all Γ
in terms of accept(u | ω).

Lemma 5. Γ(i | ω′, ω) ≤ δ, ∀i, ω′, ω where

δ = max
u,ω,ω′

accept(u | ω)

accept(u | ω′)

Proof. For any i, ω′, ω, we have

Γ(i | ω′, ω) =
accept(i | ω′)∆B(i | ω′)

accept(i | ω)∆B(i | ω)
≤ δ

∆B(i | ω′)

∆B(i | ω)

where ∆B(u | ω) is the marginal gain of successfully be-
friending u in partial realization ω. ∆B(u | ω′) ≤ ∆B(u | ω)
by definition, and therefore Γ(i | ω′, ω) ≤ δ.

Corollary 2. For the ETC acceptance function, δ = O(1).

Proof. Recall that the ETC acceptance function is defined as:

accept(u) = ρ1 log(E [|N(u) ∩N(s)|] + 1) + ρ0

Thus, for any u, minω accept(u | ω) is achieved in all
partial realizations that guarantee |N(u) ∩ N(s)| = 0 and
maxω accept(u | ω) ≤ 1. Thus, ρ0 ≤ accept(u | ω) ≤ 1, ∀ω.
So we have:

δ ≤
maxω accept(u | ω)

minω accept(u | ω)

≤
1

ρ0

As ρ0 is a constant, δ = O(1) for the ETC acceptance
function.

In the following, we prove the approximation ratio of
AReST. We first bound the arbitrary marginal gain by the
marginal gain in the greedy solution utilizing ATPC, then
we relate the optimal solution with the greedy solution and
eventually derive the approximation ratio.

Lemma 6.
∆(i|ω′) ≤ δ∆(gl+1|ω)

where ω denotes an arbitrary partial realization that can be the
result of the greedy policy πg

l that sent l requests, ω′ is any
realization that ω is a subrealization of, i is an element not in
dom(ω′) and gl+1 denotes the (l+ 1)th step of the greedy policy.

Proof. By Lemma 4, we have ∆(i|ω′) = Γ(i|ω′, ω)∆(i|ω). By
Lemma 5, Γ(i|ω′, ω) ≤ δ. By property of the greedy pol-
icy, ∆(i|ω) ≤ ∆(gl+1|ω). Combining all the facts together
guarantees the desired result.

Now we are ready to relate the greedy policy to the
optimal policy.

Theorem 3.

favg(π
∗
k)− favg(π

g
l ) ≤ kδ(favg(π

g
l+1)− favg(π

g
l ))

where favg(π) = E [f(E(π,Φ),Φ)] and E(π,Φ) denotes the
observed states of poilcy π in a random realization Φ.

Proof. As the optimal policy selects k elements, the differ-
ence between favg(π

∗
k) and favg(π

g
l ) is upper bounded by

the marginal gain of sending the k extra requests of the
optimal policy on top of the l requests in the greedy policy.
By Lemma 6, the marginal gain of adding each element i is
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bounded for each partial realization that can be a result of
the greedy policy πg

l . Thus:

favg(π
∗
k)− favg(π

g
l ) ≤ E [kδ∆(gl+1 | ω) | ω]

= kδE [∆(gl+1 | ω) | ω]

= kδE [E [f(dom(ω) ∪G′,Φ)− f(dom(ω),Φ)) | Φ ∼ ω] | ω]

= kδE
[

f(E(πg
l+1),Φ),Φ)− f(E(πg

l ,Φ),Φ))
]

= kδ(favg(π
g
l+1)− favg(π

g
l ))

where G′ = {gl+1}.

Denote OPT as the optimal solution to the Min-Friending
problem and Λk = kδ, we have the following theorem on
the performance of AReST.

Theorem 4. AReST can reach the benefit of at least Q− 1 with
approximation ratio of (δ lnQ).

Proof. Based on Theorem 3, for any j, we have:

favg(OPT ) ≤
j
∑

i=1

(favg(π
g
i+1)− favg(π

g
i )) + δf j+1

avg Λ|OPT |

favg(OPT ) ≤
j
∑

i=1

δf i
avg + δf j+1

avg Λ|OPT | (6)

where δf i+1
avg = favg(π

g
i+1)− favg(π

g
i ). (Note that favg(π

g
0) =

0) By similar technique as in [17], we can multiply both sides
of (6) by (1− 1

Λ|OPT |
)l−j for any l and sum both sides from

j = 1 to j = l, which gives the lhs as:

Λ|OPT |

(

1− (1−
1

Λ|OPT |
)l
)

favg(OPT )

For rhs, the coefficient of δf j
avg is in the form of:



Λ|OPT |(1− Λ−1
|OPT |)

l−j +
l
∑

i=j+1

(1− Λ−1
|OPT |)

l−i





and can be simplified to Λ|OPT |.
Thus, the rhs is exactly Λ|OPT |favg(π

g
l ) and we have



1−

(

1−
1

Λ|OPT |

)l


 favg(OPT ) ≤ favg(π
g
l ) (7)

Now, we consider the problem of finding the minimum
l such that favg(π

g
l ) is at least favg(OPT ) − c where c is a

constant. Thus, we need to solve:


1−

(

1−
1

Λ|OPT |

)l∗


 favg(OPT ) = favg(OPT )− c

Notice that the minimum of l, l∗, is the size of the solution
outputted by AReST. Rearranging terms and taking log on
both side gives:

−l∗ ln(1−
1

Λ|OPT |
) = ln favg(OPT )− ln c

Using the fact that ln(1 + x) < x (when x 6= 0), we have

l∗

Λ|OPT |
< ln favg(OPT )− ln c

Selecting c = 1 gives

l∗

|OPT |
<

(

Λ|OPT |

|OPT |
ln favg(OPT )

)

≤ O(δ lnQ) �

Notice that the result is bi-criteria as favg(π
g
l∗) is one less

than favg(OPT ) by the selection of c. The gap is hard to
remove as f is non-submodular and the value favg(OPT )
may be reached after arbitrary number of greedy selections
starting from l∗.

Corollary 3. For the ETC acceptance model, AReST achieves an
approximation ratio of ρ−1

0 lnQ = O(lnQ) with benefit at least
Q− 1.

Proof. The corollary immediately follows when combining
Corollary 2 and Theorem 4.

5 EXPERIMENTAL EVALUATIONS

Having established our model for a near-optimal attacker,
we now apply it to understand the structure of vulnerability
on online social networks. In addition to the broad, overar-
ching question of how vulnerable are OSNs to socialbot attacks?
we also wish to understand the impact of user behavior and
the attacker’s priorities and knowledge level. To this end,
we structure our experiments as follows. First, we introduce
the user and attacker models we use in our experiments
(Sec. 5.1). We next apply these to the networks listed in Table
1 and examine how vulnerability changes as a function of
the model used (Sec. 5.2). In particular, we find that user
behavior is a dominant factor in determining the attacker’s
success across all attack models. Beyond this, it generally
appears to be easiest to conduct untargeted or structured
attacks as within each user model these kinds of attacks
achieve the greatest success.

5.1 Models Used

We begin by presenting our model of user behavior. We
consider three models in total: the fixed-probability and
Expected Triadic Closure (ETC, eqn. 1) models described
in previous sections, and the Expected Shared Neighbors
(ESN) model:

accept(u) = E

[

| N(u) ∩N(s) |

| N(u) ∪N(s) |

]

(8)

This model describes users as increasingly more likely
to accept a friend request based on the number of shared
friends, normalized by the sum of friends of u and s.
Intuitively, this matches the expectation that users want to
see mutual friends before accepting a friend request, but also
penalize simply befriending users in bulk. We additionally
model a commonly-used bootstrapping strategy in the ESN
and ETC settings. This strategy prioritizes high-degree users
early in the attack because they have been observed to
have significantly higher acceptance rates. This is useful for
evading automated detection by increasing the proportion
of friend requests accepted. We model this with the function

di(u) =

(

E [deg(u)]

M

)5

where M = maxu∈V E [deg(u)] is the maximum ex-
pected degree of any node in V . This term is added to
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Twitter Fixed ESN ETC

Untargeted 41.55 3023.58 83.98
Individual 446.69 32234.25 937.17
Unstructured Set 43.50 13423.26 127.94
Structured Set 54.31 2478.89 56.85

TABLE 3: Normalized Resistance Scores under the Naı̈ve-
Importance benefit model.

Twitter Fixed ESN ETC

Untargeted 44.90 3299.76 91.60
Individual 436.29 33540.81 936.96
Unstructured Set 15.88 6612.41 51.61
Structured Set 19.71 838.65 20.42

TABLE 4: Normalized Resistance Scores under the External-
Priorities benefit model.
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