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Abstract—Privacy breaches are one of the biggest concerns on Online Social Networks (OSNs), especially with an introduction of
automated attacks by socialbots, which can automatically extract victims’ private content by exploiting social behavior to befriend them.
The key insight of this attack is that by intelligently sending friend requests to a small subset of users, called the Critical Friending Set

(CFS), such a bot can evade current defense mechanisms. We study the vulnerability of OSNs to socialbot attacks. Specifically, we
introduce a new optimization problem, Min-Friending, which identifies a minimum CFS to friend in order to obtain at least Q benefit,
which quantifies the amount of private information the bot obtains. The two main challenges of this problem are how to cope with
incomplete knowledge of network topology and how to model users’ responses to friend requests. In this paper, we show that
Min-Friending is inapproximable within a factor of (1 — o(1)) In @ and present an adaptive approximation algorithm using adaptive
stochastic optimization. The key feature of our solution lies in the adaptive method, where partial network topology is revealed after
each successful friend request. Thus the decision of whom to send a friend request to next is made with the outcomes of past
decisions taken into account. Traditional tools break down when attempting to place a bound on the performance of this technique with
realistic user models. Therefore, we additionally introduce a novel curvature-based technique to construct an approximation ratio of

In @ for a model of user behavior learned from empirical measurements on Facebook.

Index Terms—SocialBots Attacks; Social Networks Analysis; Content-Centric Privacy; Adaptive Algorithms; Non-Submodularity.

1 INTRODUCTION

ITH a huge amount of personal information ripe

for the taking in modern Online Social Networks
(OSNSs), privacy breaches have become a central concern.
During the last two decades, we have witnessed the blos-
soming of a variety of attacks aimed at collecting users’
private content, many of which apply socialbots to automat-
ically infiltrate users’ social circles and exfiltrate sensitive
data [1], [2]. This information may then be exploited for a
number of purposes, including spearphishing and account
compromise via security questions [2]. Therefore, studying
such threats to online privacy is of great importance both as
a way to protect users and a means to improve awareness
of these dangers.

Motivated by the above discussion, we present a new
paradigm to measure the OSN privacy vulnerability in
light of socialbot attacks. Although quantitative analysis of
network vulnerability can be addressed from a variety of
perspectives, an intuitive measure is the minimum number
of users that attackers need to befriend in order to max-
imally collect private information from a target network.
Obviously, if this number is small compared to the benefit
gained from collecting private content, one can conclude
that the network is vulnerable to attack, whereas if this
number is large the network is robust against socialbot
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attacks. Identifying the set of users to friend, called the
critical friending set (CFS), is useful from both attack and
defense perspectives. In the former, the attacker identifies
an optimal set of users they need to befriend, whereas in the
latter, the defender has an opportunity to protect the CFS
and interfere with attack in order to protect users’ privacy.

Accordingly, we introduce a new optimization prob-
lem, called the Adaptive Minimum Critical Friending Set
(Min-Friending) Problem. It asks us to find the minimum
number of users to befriend in order to obtain at least
() benefit, which quantifies valuable private content. The
key challenges of this problem are multifold. First of all,
the topological information of social networks is partially
unavailable. Since only two-hop topology is available by
default in closed OSNs such as Facebook, the users’ connec-
tions are gradually revealed to the attacker when acquiring
new friends, thereby requiring us to investigate adaptive
strategies. Additionally, the huge number of OSN users and
amount of data available on OSNs poses a substantial chal-
lenge to mining the critical friending set with incomplete
topology. Finally, the variety of potential social responses
to friend requests makes it difficult to design an efficient,
general friending strategy, and thus challenging to identify
the CFS.

A further notable challenge of Min-Friending is that
whether the objective function is submodular (i.e. pos-
sessing the property of diminishing returns) depends on
the way users behave. Although it is well-known that
the greedy algorithm obtains an approximation ratio of
(1 +InQ) for minimization of submodular objective func-
tions [3], [4], there is no tool to theoretically bound the
performance of adaptive greedy minimization with non-

2168-6750 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2018.2840433, IEEE

Transactions on Emerging Topics in Computing

submodularity.
Our contributions are summarized as follows:

e Prove Min-Friending cannot be approximated within
the ratio of (1 — o(1))In@ wunless NP C
DTIM E(n®{ge9m))  That being said, no one can
design an algorithm which can guarantee its solution
is within (1 — o(1))In@ factor from the optimal
solution under all instances.

e Design an adaptive approximation algorithm,
AReST, to Min-Friending. Using adaptive stochastic
optimization, we show that AReST has a perfor-
mance ratio of (1 + In@) in some cases, which is
a tight bound.

o Provide a novel curvature-based technique to theo-
retically bound the approximation ratio of adaptive
and non-submodular greedy minimization. This in
turn shows AReST has a bound of (§In@Q) in the
general case, where § denotes the maximum change
in acceptance rate.

e Conduct extensive experimental evaluations show-
ing that AReST outperforms several alternate meth-
ods. Further, we find that the effectiveness of infiltra-
tion has strong dependencies on the network topol-
ogy and user behavior in addition to the attacker’s
choice of target. Among target settings, we find that
attacking individuals and communities are the most
difficult, while attacking the network as a whole or a
tightly co-located group is notably easier.

Related Work. Socialbot attacks on OSNs may be simple
attempts to collect personal information, but have shown to
be critically important [5]. Ryan & Mauch showed that fake
profiles can be effectively used to befriend members of the
NSA, military intelligence agencies, and Global 500 corpo-
rations [6]. These fake profiles can be automated to form
socialbots [2], which can be used to automatically infiltrate
organizations [7]. Furthermore, these attacks preclude the
use of existing defenses to Sybil attacks, which have seen
significant study [8], [9], [10] (and references therein). The
reasons are twofold. On the one hand, a socialbot attack may
consist of only a single bot, and even in cases where multiple
bots are involved they do not need to be related by network
topology (which is a key assumption of common Sybil
defenses). On the other hand, they are carefully designed to
behave similarly to the real users. Thus, neither the graph-
based nor the feature-based Sybil detection mechanisms are
likely to be effective against socialbot attacks. Therefore,
there is an urgent need for radically new models and
analytical techniques to assess OSNs’ vulnerability against
these attacks.

When considering friending strategies for socialbots, the
number of works on this new direction is rather limited.
Two works that are the most relevant to our paper are [11],
[12]. However, these papers aimed to find the top k users
to friend in order to maximize the gained benefit, which
is a dual to our problem. In addition, they only consider
a simple constant friend acceptance rate, which may be
impractical. Along the line of defense, the only relevant
work is in [13], by monitoring a subset of users within an
organization, and evaluating the cost to the organization
by simulating an attacker on topologies taken from social
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networks. However, this work is based on heuristics built
on known sociological properties and further assumes hav-
ing complete knowledge of network topology. Instead, we
provide a better defense strategy with a theoretical perfor-
mance guarantee with support for incomplete topological
knowledge.

Further, assessing network vulnerability to socialbot at-
tacks has not been addressed. The vulnerability of net-
works due to malicious actors or external disasters has
been characterized in a number of ways [14], [15], [16]
(and references therein). However, the differences between
these destructive attacks and socialbot attacks precludes
applying these vulnerability measurements directly. Where
prior work is concerned with the ability of an attacker
to disrupt a network in term of network connectivity for
example, we instead look at the ability of an attacker to
extract information from it, thereby forming a new research
direction.

With respect to theoretical tools to analyze the per-
formance of greedy algorithms for optimization problems,
Golovin and Krause showed that if the objective func-
tion is adaptive submodular and monotone non-decreasing,
then the well-known approximation ratio of greedy in a
non-adaptive setting can be extended to an adaptive one
[4]. When the objective function is non-submodular, Wang
et al. [17] derived a ratio for the maximization problems.
However, the ratio quickly approaches to 0 for non-trivial
problem sizes. In addition, this work only applied in the
case of non-adaptive settings. Instead, our work introduced
a new primal curvature concept to bound the adaptive non-
submodular greedy minimization.

Organization. The rest of the paper is organized as
follows. Section 2 presents the problem models and pre-
liminaries, including the inapproximability. The AReST al-
gorithm and its efficient implementation are introduced in
Section 3, followed by the theoretical analysis in Section 4.
Section 5 presents our experimental evaluation and Section
6 concludes the paper.

2 PROBLEM MODELS AND PRELIMINARIES
2.1 Friending by Socialbots

In order to solve Min-Friending, we first need to understand
how socialbots befriend targets. To generalize our problem,
we consider a target set of users 7" that an attacker wants to
collect information from. 7" could be a set of employees in
a targeted organization, one individual with a high profile
(IT| = 1), or the set of all users in a network. For simplicity,
we assume that there is a single attacker s, i.e. a socialbot,
who is an online user in the same networking environment!.

Conceptually, the socialbot attack works as follows. The
attacker s first obtains a master-list of target users 7' through
some public channels, e.g. organization’s website or the
OSNs themselves which expose a certain amount of per-
sonal information. This has been made even easier by the
fact that popular social networks such as Facebook enforce a
real-name policy, which facilitates identifying users. Because

1. The solution proposed in this paper can be easily extended to
handle multiple attackers.
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of the privacy settings available to users?, the only way s can
reliably gather the information about ¢ € T', assuming ¢ has
privacy setting to “Friends”, is befriending ¢. To successfully
become friends with ¢, s needs to achieve the following: 1)
s needs to mimic a normal user, and thus needs to have
a few friends initially. This can be easily done by sending
friend requests to users who have a high number of friends
as they tend to accept all friend requests [2], [7]. 2) Since s
and ¢ usually have no mutual friends, the probability of ¢
accepting s’s request is likely low. Thus s should attempt to
befriend ¢’s friends first, which in turn means s should send
friend requests to friends of friends of ¢, and so on.

However, s cannot send too many friend requests or
it will easily get detected by any network monitoring ser-
vice/manager (e.g. based on anomaly detection methods).
The best strategy for s is to mimic normal behavior by send-
ing friend requests to a small number of users, observing
the response and then sending to another set of users. Once
a user v accepts the friend request of s, s can collect all v’s
information, and all the friends of v become visible to s.
This strategy of repeating the process of making decisions
subject to previous decisions and observing new results is
called an adaptive strategy.

Based on the above discussion, the central concern is
who s should select in each decision making step to min-
imize the number of friend requests while successfully
gathering information about 7. Addressing this concern is
equivalent to solving our Min-Friending problem.

2.2 Network Models

From the aforementioned insights, we abstract an OSN as a
directed graph G = (V, E) where V = {v1,v2,..., 0,8} is
the set of n users and attacker s, who initially has no connec-
tions to other users. E is the set of m directed edges where
each edge (u,v) € E represents the friendship between u
and v. Note that due to the privacy settings, the friendship
information (network topology) available to s is incomplete.
However, s can estimate these friendship probabilities based
on link prediction methods [18], [19], [20] which may com-
bine both the publicly observable connections and users’
public profiles. Therefore, we model this by letting each
edge e € E exist with some probability p. € [0,1]. Once
u accepts the friend request from s and all of u’s friends are
visible to s, then p,,,, = 1 iff v is u’s friend. Else p,,, = 0.

Friend Request Acceptance Model. Let accept(u) de-
note the probability that u accepts a friend request from
s. This function accept(u) is complex due to the social
behaviors of users. For example, when u has a very high
number of friends in his circle, accept(u) tends towards 1 [7].
Boshmaf et al. found that increasing the number of mutual
friends dramatically increased the friend acceptance rate on
Facebook, which they explained as a result of the Triadic
Closure principle [2].

To derive an acceptance model, we fit the data generated
in [2] to a degree-1 polynomial with a natural log term.

2. Privacy settings allow account owners to specify who can see
what in their accounts. For example, in Facebook, users can specify
who are able to see their friends list based on three categories: Public
(everybody), Friends (only whom you are connected with) and Only
Me (nobody else but me).
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Fig. 1: The friend acceptance rate from the experiments of
Boshmaf et al. [2] as a function of the number of mutual
friends, with a logarithmic function fit to the data.

Figure 1 shows the original data and the estimated function.
We use the following fitted function as the main friend
request acceptance model in our paper:

accept(u) = p1log(E[|[N(u) N N(s)|[]+1)+p0 (1)

with p; = 0.22805837 and py = 0.18014571. N(-) denotes
the set of neighbors. In a more general sense, this formula
incorporates the willingness of a user to accept a new,
unknown friend (pp) and how much sharing mutual friends
improves that willingness (p1). Given the limited amount of
data available, learning the distribution of per-user weights
is currently infeasible, though we conduct experiments in
the special case of each user u having independent pg(u).

Information Benefit Model. In order to quantify the ben-
efit that s achieves by gathering the information in OSNs,
each node u € V is associated with a benefit B,/ (u) € Rd
when u becomes a friend of friend of s, i.e., 2 hops away
from s®. Each node u is also associated with a benefit
By(u) > Byos(u), Bf(u) € R when u becomes a friend
of s. Note that when w is both a friend and a friend of friend
of s, only the friend benefit By(u) is in effect. Moreover,
when each edge (u,v) € E is revealed, (i.e. the attacker
learns about the existence of (u,v)), the attacker gains an
information benefit B;(u,v) € RT. The existence of edge
(u, v) is revealed only when node v becomes a friend of s.
At this point, p,, = 1.

We note that a target set 7' can be encoded in the benefit
functions B = (By, Byof, B;). For example, we can define
B¢(u) = 1yer where 1, is the indicator function taking
value 1 when predicate p is true. Therefore, rather than take
a target set T as a parameter, we take the more general
benefit functions B.

2.3 Problem Definitions and Formulations

Based on the above model, the goal of attacker s is to gain
the greatest total benefit in the minimum number of friend
requests. Accordingly, we study the following problem:

Definition 1 (Adaptive Minimum Critical Friending
Set (Min-Friending)). Given a social network G =
(V,E,p, B,accept) where V is the set of user accounts, E is

3. Rar is the set of non-negative reals.
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a set of possible friendships between users, each edge e € E exists
with a probability p. € [0,1], and a threshold Q € Z*. The
benefit function B and acceptance probability function accept(-)
are defined earlier. The problem asks us to find a set of nodes to
befriend F' C V with minimum size so as when s sends friend
requests to F', the total expected benefit gain is at least Q).

Note that finding F' is equivalent to finding an adaptive
attack strategy m, in which s will befriend u € F iteratively.
Each time s becomes a friend of u, the network topology
G will be updated to reveal all edges incident with u. As
|F'| is minimized, the number of friend request steps is also
minimized.

Since G is partially unknown to s and friend requests
sent from s to u may fail, we use adaptive stochastic op-
timization to tackle our problem. We begin by introducing
our notation. For each node v € V, let X,, € {0,1, 7} denote
the state of u where 1 indicates that w accepts the friend
request from s, 0 indicates that u rejects the friend request,
and ? represents an unknown, i.e., s has not sent a request
to u yet. Initially, the states of all us should be ?. Likewise,
for each edge (u,v) € E, define Y, € {0,1,7}. 1 means
the edge (u,v) exists (revealed when s befriends u and v is
u’s friend), 0 indicates edge (u,v) is not present (revealed
when s befriends u and we learn for certain that v is not a
friend of u), and ? means unknown, i.e. u rejects the friend
request from s, or s has not sent a friend request to u yet,
or u has the privacy setting to himself only (not friend of
friend). Let 2 be the collection of all possible states of G
and ¢ = { Xy }vev U{Yuo}(uv)er — 2 be a possible state,
called a realization. Thus we call ¢(u) the state of node u
and ¢(e) the state of edge e under realization ¢. We require
each realization to be consistent. That is, each node and edge
must be in only one of the states {0,1,7}. Clearly there
are many possible realizations which follow a probability
distribution Pr[¢]. We denote ® as a random realization and
Pr[¢] = Pr[® = ¢] over all realizations.

We will consider the problem where s sequentially sends
a friend request to u, sees the state ®(u), and sees the states
®(e) for all e incident to u iff ®(u) = 1. s then picks the next
user to befriend, see its state, and so on. We use the notation
F(m,¢) be the set of nodes selected by strategy = under
realization ¢. After each friend request, our observations
thus far can be represented as a partial realization w. We
use dom(w) to refer to the domain of w, ie., the set of
nodes and edges observed in w. A partial realization w is
consistent with a realization ¢ if they are equal everywhere
in the domain of w, written as ¢ ~ w. If w and w’ are both
consistent with some ¢ and dom(w) C dom(w’), we say w
is a subrealization of w’.

Let m be an adaptive attack strategy of s. The total

benefit gain from this strategy m under realization ¢ can
be formulated as follows.

fmo)= > Bylu)+

uENf (m,p)

o)

(u,v)EN;(m,$)

>

VENyfof(m,0)
Bi(u, U) (2)

Byos(v)

Fig. 2: An instance II' of Min-Friending after the attacker s
friends 1y and u,,, (corresponding to S; and Sy,).

where

Ny(m,¢) = {ulu € F(m, ), ¢(u
Nyog(m,¢) = {v|Fu € Ny(m, ¢) : ¢(u,v) = L]\Ny(m, ¢),
and N;(m, ¢) = {(u,v)|u € N¢(m, ¢), d(u,v) =1}

Therefore, the Min-Friending problem can be stated for-
mally as:

1),
v)

min E[|F(r, ®)|] ®3)
st EB[f(F(m, ®),?)] > Q

That is: find a policy m that minimizes the expected
number of friend requests to obtain at least ) benefit in
expectation (where benefit is defined by Eqn. (2)). Each
expectation is taken w.r.t. the set of potential realizations.

2.4

Instead of proving that Min-Friending is NP-hard, we prove
a stronger theorem, showing the inapproximability of Min-
Friending.

Inapproximability

Theorem 1. The Min-Friending problem cannot be approx-
imated within a factor (1 — o(1))In@Q wunless NP C
DTIM E(nCloglogn))

Proof. Let II = (S,U, K) be an instance of the set-cover
problem in which & = {ej,es,...,e,} is the set of n
elements and § = {51,5s,...,Sn} is the collection of m
subsets of U. The set cover problem asks if there are k
subsets which cover at least K < n items in /. We construct
an instance Il' = G(V, E, p, B, accept) with target benefit )
of the Min-Friending problem as follows.

e For each element e; € U, we include into V' a vertex
v;. Similarly, we put into V' a vertex u; for each
subset S; € S.

o For each pair of element e; and subset S, we connect
uj and v, if e; € S;. For all edges (u;,v;) € E, we set
Pujv; = L

o For benefit B, we set Byor(v;) = 1 and By(v;) = 0
for each v; € V that corresponds to e¢; € U. And
we set By(u;j) = Byos(uj) = 0 for all u;, associated
with subset S, and B;(u;,v;) = 0 for all edges in
the graph.

o Foraccept(.), setaccept(u;) = 1Vu,, setaccept(v;) =
p1log(E[|[N(v) N N(s)|]] + 1) + po Vv;.

o Finally, set Q = K.
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So the Min-Friending problem asks us if there exists a
CFS of size g such that the total benefit is at least ). The
construction is illustrated in Fig. 2.

Since By(v;) = 0, there is no incentive to friend v;.
Thus attacker s will befriend u;. This friend request to u;
is always successful as accept(u;) = 1. In order to have
(Q = K benefit, s needs to have at least K v; in his two-
hop neighbors. Then the users u; that s chooses to befriend
are corresponding to the k sets S; of II. Clearly if we
have an approximation algorithm with an approximation
factor a(Q) for Min-Friending, then we also have an «a(K)
approximation algorithm for the set cover problem. Thus,
due to the inapproximability of set cover [21], the Min-
Friending problem cannot be approximated within a factor
(1 —o0(1)) In Q unless NP has n°{1°81°6™) deterministic time
algorithms. O

3 ADAPTIVE RECONNAISSANCE STRATEGIES

In this section, we present our solution to Min-
Friending, namely Adaptive Reconnaissance Strategy algo-
rithm (AReST), followed by the discussion of its efficient
implementation.

3.1 Algorithm Description

At an abstract level, the Adaptive Reconnaissance Strategy
algorithm (AReST) has two main phases: Selection and Feed-
back. At the Selection phase, AReST will select a node u for
s to friend so as to increase the potential function (which
will be discussed later) the most. After selecting v and
sending a friend request to u, if u accepts the friend request,
AReST executes the Feedback phase, which will (1) update
the network topology with more exact information on p. ;
and (2) update the accept(v) for all v € N(u). If u rejects the
friend request, AReST will continue the first phase to select
another node. These two phases will be iteratively executed
until the total expected benefit exceed Q).

Algorithm 1: Adaptive Reconnaissance Strategies
(AReST)
Input: Graph G = (V, E, p, B, accept), and Q € Z"
Output: An ordered set of nodes F' C V for s to friend
with.
F+ Qw0
while E[f(F)] < @ do
foreach u € V\F do
| A(ulw) = accept(u) (P + P2)
Select u* € arg max, A(u|w)
Set F + F U {u*}
Send a friend request to u*
if u* accepts the friend request then
Feedback: Update w with new observed
information of p,+, and accept(v) for all
v e N(u)

=W N =

o e N o »

0 Return F’

=

The main challenge of the first phase is to define an
efficient potential function. As the friend request acceptance
probability may change after each successful friend request,

5

the potential function must account for the likelihood of
increasing the acceptance probability in a later iteration,
in addition to the gain defined by the benefit function B.
Let F' denote the set of s’ friends at the current step, with
corresponding partial realization w. In order to select a
node u at the next step, we define the potential function
as follows:

A(ulw) = accept(u)(Py + Pz)

where P; and P, represent the gain in increasing the accep-
tance probability for later stages and the gain in increasing
the benefit function B, respectively. Mathematically, we
have:

1
= Z Duv X AP, (8,v) X Ay B
N@NNG v e
where AP, (s,v) denotes the gain in the acceptance prob-
ability when u becomes a friend of s. AP,(s,v) can be
calculated based on the definition of accept(.) function:
AP, (s,v) = p110g(1 + pyuo/(E[|N(u) N N(s)|]] +1)). In the
special cases of u placing low value on mutual friends or u
having many friends, this tends to 0. A, B represents the
benefit gain assuming s adds u as a friend, and then add v
as a friend. Thus A, B = f(w U {u,v}) — f(wU{u}) and

Py = By(u) — Itor(u)Bos(u)

>

vEN (u)\N(s)

Puv(l — IfOf(”))BfOf(U)

+ Z puvBi(uav)

(u,v)EE

where I¢or(u) = 1 if u is a friend of a friend of s, and 0
otherwise. Algorithm AReST is depicted in Algorithm 1.

3.2

Lines 3-4 of Alg. 1 update the potential of every element
that could be added to the solution in the next step. We
note that the efficiency of this operation can be dramatically
improved by maintaining a cache of the potentials and up-
dating only the entries whose potential might have changed
as a result of adding a node w to the solution F'.

Improving the Efficiency of Potential Updates

Lemma 1. A(u | w) is a function only of the nodes and
edges within an unweighted distance of 2 of w (the ”2-hop”
neighborhood of w), the bot s, and the current solution F'.

We only sketch the proof of Lemma 1 here. Fundamen-
tally, the proof comes down to examining each term of
A(u | w) to see which nodes and edges are needed for
computation. In large part, it is straightforward to verify
under the stated assumptions that each term is a function
only of s, F, N(N(u)) = N(u) UU,en () N(v), and edges
with both endpoints in N(N(u)). While there are a few
terms which appear to require other inputs for computation,
in each case after expanding the definition it becomes clear
that the apparent requirement for other input is only a
product of notational shortcuts.

As an example, consider the term N (u)\ N(s). This term
appears to require that one examine N (s) so that one knows
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the correct elements to remove from N (u). However, this
can be flipped around to only examine nodes and edges
in the 2-hop neighborhood of u as follows: for each node
v € N(u) check the set N (v). If it contains s, omit it.

Corollary 1. Foranyu € V\ F,ifw ¢ N(N(u)), w # u is
added to the solution, then A(u | w U {w}) = A(u | w).

4 THEORETICAL PERFORMANCE ANALYSIS

In this section, we provide a comprehensive analysis of
AResT with respect to various friend request acceptance
models. We first focus on a special case of the model where
our objective function f(-) is adaptive submodular. We next
cover a wide range of friend request acceptance models
which makes f(-) no longer submodular.

4.1 Adaptive Submodular: A Special Case

We are going to analyze the performance of AReST where
AP, (s,v) = pilog(l + 1/E[|[N(u) N N(s)|]]) = 0. This
relates to u placing low value on mutual friends or u having
many friends, and thus their friend acceptance probility de-
pends on po(u). We show that AReST has an approximation
ratio of (1+1n Q). As shown in Theorem 1, this ratio is tight.

Note that AReST calculates A(u|w) for all w € V\F and
chooses u* with the maximal gain over all realization. Thus
in this case, the expected marginal gain of « conditioned on
having partial realization w is defined as follows:

A(ulw) = E[f(dom(w) U{u}, ®) — f(dom(w), ®)[® ~ w]

Before continuing with our analysis, we state the follow-
ing definitions, which are defined in [4].

Definition 2 (Strongly Adaptive Monotone). A function
f(-) is strongly adaptive monotone with respect to the distri-
bution Pr[¢] if the following condition holds. For all w, all
v ¢ dom(w), and all possible states o of node v such that
Pr[®(v) = o|® ~ w] > 0, we have:

B[ (dom(w), @)| ~ ]
< E[f(dom(w) U {0}, D)@ ~ w,(v) =d] ()

Definition 3 (Adaptive Submodularity). A function f(.) is
adaptive submodular w.r.t the distribution Pr[¢] of all realizations
if for all w and w' such that w C W' and for all v € V\dom(w'),
we have:

A(v|w) > A(vw’) ®)

Definition 4 (Self-certifying). An instance (f,Pr[¢]) is self-
certifying if for all ¢, @', and w such that ¢ ~ w and ¢’ ~ w, we
have f (dom(w),6) — J(V. 9) iff f(dom(w), &) = (B, o).

Lemma 2. The objective function f of the Min-Friending prob-
lem is strongly adaptive monotone.

Proof. Consider a fixed w, v ¢ dom(w), and status o. Let
A(w) be a set of nodes and edges that can be reached from
s after selecting dom(w) and observing w. Clearly, for all
paths from s to v € A(w) consisting of w(e) = 1. Therefore,
every path from any v € A(w) to any v € V\A(w) must
consist at least one w(e) # 1 or w(w) # 1 for some w on the
path. Thus we have f(A(w)) = E[f(dom(w), ®)|P ~ w].

6

With a similar argument, we have f(A(w U {v})) =
E[f(dom(w) U {u}, ®)|® ~ w,P(u) = o]. Note that w C '
implies A(w) C A(w’). Since f is a monotone function by
definition, we have f(A(w)) < f(A(w’)). Thus we obtain
E[f(dom(w), ®)[® ~ w] < E[f(dom(w) U {v},®)|® ~
w, ®(v) = o]. This completes the proof. O

Lemma 3. The objective function f of the Min-Friending prob-
lem is adaptive submodular.

Proof. Consider two fixed partial realizations w and w’
where w C w’ and a node v € V\dom(w'), we need to
prove that A(vjw) > A(v|w'). We first prove the following
claim:

Given w C w’ and define a coupled distribution u over
pairs of realization ¢ ~ w, ¢/ ~ w’ such that ¢(v) = ¢'(v)
for all v ¢ dom(w'). For all (¢, ¢’) in support of 11, we have:

A(vlw, ¢ ~w) > A(U|w/7 ¢/ ~ w/)

where A(v|w, @) = f(dom(w) U {v}, ) — f(dom(w), &).
Define A(w) and A(w’) as in the proof of Lemma 2. We
have:

)
U{(v,6(v))}
W) U{(v, ¢ (v)
dom(w’) U{v}, ¢
=A(v|w', ¢ ~w')

S
L&

\
S~
—

Q.
Qo
3
—
S
A

Having proven the above claim, we can straightfor-
wardly finish our proof. Since w C w’, we have:

A(vlw) = E[f(dom(w) U {v},®) — f(dom(w), ®)|P ~ w]
= > (e, ¢)Alw, ¢ ~w)

(¢,9")

> > (¢, )AL, ¢ ~ )
(¢,9")

= A(v|w) O

Theorem 2. The AReST algorithm has an approximation ratio of
(1+In@).

Proof. Let OPT represent an optimal solution to Min-
Friending. According to [4], if f is strongly adaptive mono-
tone, adaptive submodular, and self-certifying, then we
have:

IFl < (1 +1n(%))0PT

where 7 is any value such that f(F,¢) > @ — 7 implies
f(F,¢) = Q for all F and ¢.

If range(f) € Z, we set n = 1 and thus have |F| <
(1+1InQ)OPT.

Therefore, the only thing left we need to prove is that f is
self-certifying. Clearly, we have f(V,¢) = min{Q, f(V)} =
Q. We have shown that f(dom(w), ¢) = f(A(w)) for every
¢ ~ w. It follows that f(dom(w),¢) = f(dom(w),¢’) for
all w and ¢, ¢’ ~ w. Thus, we obtain f(dom(w), ¢) = Q iff
f(dom(w), ¢') = Q, which completes the proof. O
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4.2 Adaptive Non-Submodular - A Generalization

Outside of the special case analyzed in the previous section,
the objective function for AReST may not be submodular,
and therefore the (1 + In Q) ratio does not hold in general.
In this section, we introduce the notion of adaptive primal
curvature (APC) to assist in the derivation of an adaptive
approximation ratio in the general case without adaptive
submodularity. The notion is motivated by the elemental
curvature defined in [17], with the capability of coping with
adaptive functions and greater precision. Intuitively, the
APC depicts the rate at which the marginal gain A(u | w)
of the objective function changes would change if w were
extended with an additional element v prior to adding u.
The elemental curvature, when extended to the adaptive
case, is the maximum of all such rates of change. Formally,
we have:

Definition 5 (Adaptive Primal Curvature). The APC of an
adaptive monotone non-decreasing function f is

it |50

where S(j) is the set of possible states of j and A is the conditional
expected marginal gain [4].

For notational clarity, we also define the fixed adaptive primal
curvature in terms of a single state s € S(j):

V(s | w) = 7Ax (L“rtj)s)

We also introduce the adaptive total primal curvature
(ATPC), which intuitively captures the total change in the
marginal value from a partial realization w to another (w’)
such that dom(w) C dom(w’).

Definition 6 (Adaptive Total Primal Curvature). Let
dom(w) C dom(w') and let w — w' represent the set of possible
state sequences leading from w to w'. Then the ATPC is

Vitisg ) ~E |

I |w,w)=E [HsJeva(i7Sj |wU{s1,...,55-1}) ‘ Rew %w’]

In the following, we derive the approximation ratio of
AReST in two steps. First, we provide a relation between
the optimal policy and greedy policy of any size. Then, we
prove the approximation ratio based on the bound.

Denote 7} as the optimal policy of size k, and 7} as the
greedy policy of size [. We introduce the following auxiliary
Lemmas before the main result.

Lemma 4.

A(i | W)

Al | w)

Proof. Fix a sequence R € w — w’ of length r and R =
{s1,...,8:}. Then, expanding the product we obtain

Al |wU{s1}) A(i|wU{s1,s2}) Ai | W)

AGiw)  AGJwu{s)) A \{s-1})

Notice that for any sequence in w — w’, the product reduces
to the same ratio. From this, we directly obtain the statement
of the lemma. O

I |w,w)=

From Lemma 4, we can also see that T'( | w’,w) is inde-
pendent of the order in which elements of I are considered.
Therefore, we can treat R as simply a set rather than a

7

sequence. Further, we can derive an upper bound on all I'
in terms of accept(u | w).

Lemma 5. I'(i | w',w) < §,Vi,w',w where
5 — max accept(u | w)
ww,w’ accept(u | w')
Proof. For any i,w’, w, we have
accept(i | W )AB(i | w') AB(i | W)
accept(i | w)AB(i |w) — AB(i|w)

where AB(u | w) is the marginal gain of successfully be-
friending u in partial realization w. AB(u | w') < AB(u | w)
by definition, and therefore I'(i | ', w) < 4. O

G| w,w)=

Corollary 2. For the ETC acceptance function, § = O(1).
Proof. Recall that the ETC acceptance function is defined as:

accept(u) = p1 log(E [N (u) N N(s)[] + 1) + po

Thus, for any wu, min, accept(u | w) is achieved in all
partial realizations that guarantee |N(u) N N(s)| = 0 and
max,, accept(u | w) < 1. Thus, po < accept(u | w) < 1, Vw.
So we have:

5 < maxe accept(u | w)

~ min,, accept(u | w)

1
<

Po

As po is a constant, 6 = O(1) for the ETC acceptance
function.

In the following, we prove the approximation ratio of
AReST. We first bound the arbitrary marginal gain by the
marginal gain in the greedy solution utilizing ATPC, then
we relate the optimal solution with the greedy solution and
eventually derive the approximation ratio.

Lemma 6.
A(ilw') < 0A(git1|w)

where w denotes an arbitrary partial realization that can be the
result of the greedy policy wj that sent | requests, w' is any
realization that w is a subrealization of, i is an element not in
dom(w') and g4 denotes the (I + 1)th step of the greedy policy.

Proof. By Lemma 4, we have A(i|w’) = I'(i|w’, w)A(i|w). By
Lemma 5, I'(ijw’,w) < 4. By property of the greedy pol-
icy, A(ilw) < A(gi+1|w). Combining all the facts together
guarantees the desired result. O

Now we are ready to relate the greedy policy to the
optimal policy.

Theorem 3.

fuvg(WZ) - fuvg(ﬂlg) < ké(favg(wlg+1) - fuvg(wiq))

where fre(m) = E[f(E(m, ®),®)] and E(m,®) denotes the
observed states of poilcy 7 in a random realization .

Proof. As the optimal policy selects k elements, the differ-
ence between fug(7;) and fag(n]) is upper bounded by
the marginal gain of sending the k extra requests of the
optimal policy on top of the [ requests in the greedy policy.
By Lemma 6, the marginal gain of adding each element ¢ is
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bounded for each partial realization that can be a result of
the greedy policy 7. Thus:

favg(Th) = favg (7)) S E[R6A (141 | w) | w]
= kOE[A(gi41 |w) | w]

= kOE [E[f(dom(w) UG, ®) — f(do
= kOE [f(E(nf,,), ®),®) — f(E(r],
= ko( favg(mi11) — favg(7]))

where G’ = {g;41}.

m(w), ®)) [ ¢ ~ w] | ]
), ®))]

O

Denote OPT as the optimal solution to the Min-Friending
problem and A, = kd, we have the following theorem on
the performance of AReST.

Theorem 4. AReST can reach the benefit of at least Q — 1 with
approximation ratio of (§ 1n Q).

Proof. Based on Theorem 3, for any j, we have:

M-~

favg(OPT) <

(favg(ﬂ—ig+1) favg( )) +5favg A|OPT\

Il
-

7

fan(OPT) 6 avg + 6favg A|OPT‘ (6)

'Fﬂ“

Il
-

?

where § f;j[c, = favg (Tl 1) — favg(7)). (Note that fue (7)) =
0) By similar technique as in [17], we can multiply both sides
of (6) by (1 — +———)!=7 for any | and sum both sides from

j=1ltoj=1, Wthi’l gives the lhs as:

1

Aopr

Mjorr (1 -0~ >l> Josg(OPT)

is in the form of:

l_i)
|OPT|
and can be simplified to Ajop7|-.

Thus, the rhs is exactly Ao pr|favg(7]) and we have

{1 ) <1 ) A|olpT|)l

Now, we consider the problem of finding the minimum
I such that fu(n]) is at least fayg(OPT) — ¢ where ¢ is a
constant. Thus, we need to solve:

1 a
1—(1-—
[ < AOPT>

Notice that the minimum of [, [*, is the size of the solution
outputted by AReST. Rearranging terms and taking log on
both side gives:

For rhs, the coefficient of § gvg

l]+z

(AOPTI(l - A\OIPT|
i=j+1

fan(OPT) < favg(ﬁlg) ()

favg(OPT) = fan(OPT) — C

—I*1n(1 — ) =In faug(OPT) — Inc

|OPT|

Using the fact that In(1 + x) < z (when z # 0), we have

—Ine

0 < In fog(OPT)
|OPT|

Selecting ¢ = 1 gives

r_ <AOPT
opt] < \JopT|

Notice that the result is bi-criteria as favg(77. ) is one less
than f,,;(OPT) by the selection of c. The gap is hard to
remove as f is non-submodular and the value f,,,(OPT)
may be reached after arbitrary number of greedy selections
starting from [*.

In favg(OPT)) <0@WhhQ) O

Corollary 3. For the ETC acceptance model, AReST achieves an
approximation ratio of py ' In Q = O(In Q) with benefit at least
Q-1

Proof. The corollary immediately follows when combining
Corollary 2 and Theorem 4. O

5 EXPERIMENTAL EVALUATIONS

Having established our model for a near-optimal attacker,
we now apply it to understand the structure of vulnerability
on online social networks. In addition to the broad, overar-
ching question of how vulnerable are OSNs to socialbot attacks?
we also wish to understand the impact of user behavior and
the attacker’s priorities and knowledge level. To this end,
we structure our experiments as follows. First, we introduce
the user and attacker models we use in our experiments
(Sec. 5.1). We next apply these to the networks listed in Table
1 and examine how vulnerability changes as a function of
the model used (Sec. 5.2). In particular, we find that user
behavior is a dominant factor in determining the attacker’s
success across all attack models. Beyond this, it generally
appears to be easiest to conduct untargeted or structured
attacks as within each user model these kinds of attacks
achieve the greatest success.

5.1 Models Used

We begin by presenting our model of user behavior. We
consider three models in total: the fixed-probability and
Expected Triadic Closure (ETC, eqn. 1) models described
in previous sections, and the Expected Shared Neighbors
(ESN) model:

| N(u) N N(s) |
| N(u) UN(s) |

This model describes users as increasingly more likely
to accept a friend request based on the number of shared
friends, normalized by the sum of friends of u and s.
Intuitively, this matches the expectation that users want to
see mutual friends before accepting a friend request, but also
penalize simply befriending users in bulk. We additionally
model a commonly-used bootstrapping strategy in the ESN
and ETC settings. This strategy prioritizes high-degree users
early in the attack because they have been observed to
have significantly higher acceptance rates. This is useful for
evading automated detection by increasing the proportion
of friend requests accepted. We model this with the function

s - (S’

where M = maxyecv E [deg(u)] is the maximum ex-
pected degree of any node in V. This term is added to

accept(u) = E ®)
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Fig. 3: Mean number of friend requests sent before reaching benefit threshold ) on each dataset using the ETC user model
and Structured Set attack model. Note that although the parameter we vary is (), we flip the axes to simplify interpretation.

Network | Nodes Edges | Kind
Facebook 4k 88k | Social

Enron Email 37k 184k | Communication
Slashdot 77k 905k | Social

Twitter 81k 1.77M | Social

DBLP 317k 1.056M | Collaboration

TABLE 1: The networks used in our simulations. All net-
works are from SNAP [22].

the acceptance probability in the ESN and ETC models
and modifies the acceptance probability such that nodes
with high degree begin with near-guaranteed acceptance
(as observed in prior work [2], [7]) while having virtually
no impact on the bulk of nodes with relatively small degree.

We now turn our attention to the attacker models we
consider. Five models are used to explore the variation in
vulnerability due to the goals of the attacker.

Untargeted. In this model, the attacker is indiscriminate;
interested only in extracting as much private content as
possible from the network. This simple model is used as
a baseline.

Individual. The attacker is interested only in information
about a specific individual. This corresponds to an attacker
using socialbots for stalking or attempting to mine private
information to use for blackmail.

Unstructured Set. The attacker is interested in informa-
tion pertaining to a target set of users 7', where the selection
of T' is not based on network topology. This kind of attack
would be seen when the attacker selects targets based on
criteria orthogonal to social ties. We model this by selecting
T uniformly at random from V, with |T'| fixed as 100.

Structured Set. The attacker seeks information related to
users that are socially interconnected, and uses noisy data
from the targeted network to collect this information. We
model this kind of set by selecting a user at random, then
performing a stochastic breadth-first search to collect up to
100 users. The breadth-first search is stochastic in the sense
that whether the BFS traverses an edge or not is determined
by the edge probability p,,. This traversal happens indepen-
dently of the state of the edge in the simulation (e.g. the BFS
may traverse an edge (u,v) that is not present when the
socialbot reveals the edges around u in the simulation).

Community. The attacker seeks information as in the
Structured Set setting, and bases their target list on an
ground-truth selection of socially related users. For example,
an attacker may target an organization by scraping LinkedIn
profiles or from illicitly obtained employment rolls. We

model this by using the ground-truth communities on the
DBLP network as target sets.

Lastly, we consider the possibility of the attacker prior-
itizing certain users within the target set (note that for the
untargeted setting we can equivalently take 7' = V). If the
attacker assigns a user u priority w,, then we write the ben-
efit functions as By(u) = lyerWy, Brof(u) = lyerwy/2,
and Be(u,v) = 2tvertloery, w, /M, where 1, is the indi-
cator function taking value 1 when predicate p is true and
0 otherwise. We examine three Benefit Models: Unweighted
(w, = 1), weighted by a sense of Naive Importance
(w, = Eldeg(u)]), and weighted according to External
Priorities (modeled as weights being distributed according
to a uniform distribution on [1, 10]).

5.2 Vulnerability Analysis

We now turn to the results of our simulations. We compare
against several simple heuristics as a baseline: randomly
selecting users to friend (Random), greedily selecting users
with maximum expected degree (Max-Degree), and greedily
selecting users with maximum PageRank (Max-PageRank).
Each result presented is the mean of 500 independent runs
of the associated algorithm. Due to space constraints, we
cannot give a complete representation of the vulnerability
of each combination of settings.

5.2.1 Efficiency of the AReST Model

Our analysis begins with a comparison of AReST to the
heuristic baselines in Fig. 3. It is easy to see that AReST
outperforms each, and often does so by a large margin. As
one might expected, the performance of the Random heuris-
tic decreases as network size increases. However, we can see
that the performance of both the Max-PageRank and Max-
Degree heuristics relative to AReST varies independently of
network size or density. In particular, the performance of
AReST displays complex behavior with respect to topology:
the most difficult (Facebook; 500 requests needed to reach
40 benefit) and second most difficult (Twitter; 200 requests
needed to reach similar benefit) networks are dramatically
different sizes — but share the common factor that both are
popular OSNs. The behavior we observe in Fig. 3 indicates
that topology may be an important factor in determining the
difficulty of an attack.

Difficulty, for the purposes of our analysis, is defined
to be the time required to obtain some level of benefit. If
the bot can obtain large amounts of benefit very quickly,
we say that the attack it performs is easy. Similarly, if it
requires a significant length of time (corresponding to many
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Fig. 7: Performance of
AReST as the target struc-
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settings on Twitter.

friend requests) to obtain benefit, we say the attack is hard.
Visually, an easy attack should have a steep slope upwards
initially, while a difficult attack will have a lower slope.
Next, we examine the importance having an accurate
model of user behavior. To model this scenario, we set the
underlying acceptance model to the ETC model described
previously. This matches the literature on real-world accep-
tance probabilities [2]. Then, the bot makes decisions using
one of our three models but the true acceptance probability
is determined using the underlying model. From Fig. 4
we can see that incorrectly assuming that user acceptance
follows the fixed-probability model has little impact on
overall performance. However, this is tempered by the
results shown in Fig. 5: assuming the fixed model dra-
matically reduces the fraction of the target set befriended.
This is caused by the bot aiming for valuable, untargeted
users in the fixed-probability case merely due to their high
probability of accepting requests (often coupled with a large
value from revealing edges). On the other hand, when the
bot knows the true model, it is able to exploit the increasing
probabilities to more quickly infiltrate the target set. This
experiment implicitly compares to prior simulation work,
which assume a constant acceptance model [11], [12].
Continuing along this line of analysis, we compare the
source of benefit gained by each heuristic. Fig. 6 illustrates
that the heuristics, which do not take into account the target
set T, perform poorly at the task of infiltrating 7". This
is an unsurprising result. This further supports the above
interpretation of the benefit gained in the mis-applied fixed-
probability model: we see from Fig. 3 that the Max-Degree
heuristic in general performs relatively well as measured by
our objective. However, Fig. 6 likewise indicates that little
of this benefit comes from befriending targeted users. By

10

04+

0 100 200 300 100 0 100 200 300 100
# of Friend Requests # of Friend Requests

Fig. 8: Mean acceptance
probability of the node tar-
geted at each step of the
AReST algorithm.

Fig. 9: Benefit obtained
under each acceptance
model, assuming the bot
knows the true model.

the process of elimination, we conclude that these heuristics
are primarily obtaining benefit from revealing edges on the
network from requests to high-degree users and not by
befriending the target set.

Finally, we conclude this subsection by examining the
mean acceptance probability of each request under each
acceptance model. Figures 8 shows even though the mean
acceptance probability on the Twitter network is 0.5 under
the Fixed-Probability model, the average request remains
near 0.8 for the course of the run. We see a similar bias
towards highly-likely requests in the ETC model. However,
this model begins with a uniform probability of py ~ 0.18
for each user — thus, it is clear that a socialbot run by
AReST crawls along from an initial position, exploiting the
friendships it has already made to improve the likelihood
of further accepted requests. Before moving on, we note
that the ESN model performs atrociously: the likelihood of a
user accepting a request rapidly approaches 0. This appears
to be due to the slow growth of acceptance probabilities
under this model, leading to the bot rapidly exhausting the
reasonably likely requests given by the degree incentive and
then floundering with many low-probability requests being
rejected as it fails to gain a foothold. This view is supported
by the performance shown in Figures 4 & 9, where the bot
gains nearly no benefit under the ESN model.

5.2.2 Factors Influencing Attack Difficulty

In the previous sub-section, we noted several factors that
may influence the difficulty of the reconnaissance attack
from the perspective of the attacker. In this section, we ex-
plore those factors in greater detail. For this purpose, we use
the vulnerability of each setting, measured as the expected
number of friend requests to obtain 1% of network benefit,
as a means to understand the difficulty. This normalization
allows more direct comparison across target settings, since
each has a different amount of benefit available. Table 2
shows overall scores.

The intractability of attacking the ESN model is again im-
mediately obvious. However, this observation is tempered
by the fact that it is not a model based on observed user
behavior. When examining small networks, it seems that
when users follow the ETC acceptance model, their private
content is more vulnerable. However, on larger networks
this property vanishes. However, these numbers are promis-
ing from a defense perspective. In every case, an attacker
seeking to attack an individual or community requires more
time than for attacking either topologically-close users or
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Fig. 10: Vulnerability of
DBLP under each benefit
model under ETC target-
ing a Structured Set.

Fig. 11: Fraction of T
friended under the ETC ac-
ceptance and varying tar-
get settings.

Enron Email Fixed ESN ETC
Untargeted 35.08 139.61 31.55
Individual 169.47 677.49 153.45
Unstructured Set 46.20 387.21 67.55
Structured Set 194.19 38.03 53.63
Slashdot Fixed ESN ETC
Untargeted 43.32 468.40 47.17
Individual 243.83 2767.71 271.69
Unstructured Set 63.60 1305.19 126.75
Structured Set 73.98 471.72 76.96
Facebook Fixed ESN ETC
Untargeted 25.63 831.05 43.74
Individual 236.74 7055.66 355.80
Unstructured Set 54.68 3481.76 109.08
Structured Set 84.21 1766.10  109.108
Twitter Fixed ESN ETC
Untargeted 41.53 2897.87 84.31
Individual 446.39  33208.39 935.10
Unstructured Set 43.63 12142.53 128.43
Structured Set 54.85 2077.276 58.62
DBLP Fixed ESN ETC
Untargeted 264.68 4899.80 621.74
Individual 1027.81 15494.18 2370.87
Unstructured Set 678.17  14994.75  1646.89
Structured Set 72841 12933.14 1277.30
Community 999.43  15490.64 2217.69

TABLE 2: Normalized Resistance Score (mean number of
friend requests required to earn 1% of the maximum benefit
on the network) for each combination of user and attacker
models with the unweighted benefit model on each net-
work. Larger numbers indicate higher resistance.

the network as a whole. This is supported further by Figure
7. Figure 11 indicates that successfully infiltrating a user
under the ETC model only happens roughly 1 in 5 times,
and require hundreds of friend requests to reach that point.
On the other hand, infiltrating a community can be done
relatively rapidly and quickly reaches saturation due to
failed requests blocking off the remaining portions of the
community.

Tables 3 and 4 give insight into the vulnerability as the
attackers’ priorities vary. From Table 3 we see that when
an adversary aims for “important” users, very little changes
from the unweighted case. However, when the attacker has
external priorities towards individual users within the target
set, the users are notably more vulnerable. We note that
under the External-Priorities model, a greater portion of the
benefit is tied to members of the target set than either of the
other two models, which indicates that the more focused an
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attacker is on their targets, the more vulnerable those targets
are. This does not appear to include the case of an Individual
target, which would seem to indicate that regardless of how
much an individual is prioritized (beyond a certain point,
which is reached by the Unweighted priority model) there is
a limit on the ability of an attacker to successfully automate
the theft of private content. However, this must be taken
with a grain of salt as Fig. 10 indicates that this pattern does
not hold on the Structured Set setting on DBLP.

This leads us to a concrete set of properties that influ-
ence the vulnerability of users’ private content on an OSN.
First — and most impactful - is the users’ behavior, which
indicates that effective user education directed at altering
this behavior may be the most effective means of reducing
vulnerability. However, users have proven to be notoriously
difficult to train away from poor security practices (e.g.
Dhamija & Perrig found that “the level of security train-
ing did not prevent users from choosing trivial passwords
or from storing them insecurely” [23]), so the feasibility
of this approach is somewhat suspect. Next, we observe
that network topology plays a significant role. Facebook, a
topology drawn from a closed network, is less vulnerable
than a topology drawn from an open network (Slashdot
and Twitter) when an attacker is interested in topologically
co-located users. This indicates that perhaps restructuring
OSN s to encourage the growth of certain topologies could
produce safer environments for OSN users. Finally, the
structure of the target set plays a significant role. Both
attacking the network as a whole and attacking many co-
located users are more efficient than alternatives. Based on
this, we conclude that defenses to these kinds of attacks are
most pressing.

6 CONCLUSION

In this paper, we present a new paradigm to quantify the
OSN privacy vulnerability with respect to socialbot attacks.
Specifically, we introduce a new optimization problem,
namely Min-Friending, which identifies a minimum CFS
to friend with in order to obtain at least ) benefits. We
show that Min-Friending is inapproximable within a factor
of (1 —0(1))InQ@ and present an adaptive approximation
algorithm which has a tight performance bound of (1+1n Q)
using adaptive stochastic optimization, when the friend
request acceptance rate is constant. The key feature of our
solution lies in the adaptive method, where partial network
topology is revealed during each successful friend request.
We further generalize our analysis to cope with a more
practical friend request acceptance model, which requires
us to introduce a novel theoretical tool to analyze the adap-
tive non-submodular greedy minimization. Extensive exper-
iments not only confirm the performance of our algorithm,
but also provide new insights towards privacy protection
under socialbot attacks.
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Twitter | Fixed ESN ETC
Untargeted 41.55  3023.58  83.98
Individual 446.69 3223425 937.17
Unstructured Set 43.50 1342326 12794
Structured Set 54.31 2478.89 56.85

TABLE 3: Normalized Resistance Scores under the Naive-
Importance benefit model.

Twitter | Fixed ESN ETC
Untargeted 44.90 3299.76 91.60
Individual 436.29 33540.81 936.96
Unstructured Set 15.88 6612.41 51.61
Structured Set 19.71 838.65 20.42

TABLE 4: Normalized Resistance Scores under the External-
Priorities benefit model.
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