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This paper focuses on network resilience to perturbation of edge weight. Other than connectivity, many

network applications nowadays rely upon some measure of network distance between a pair of connected

nodes. In these systems, a metric related to network functionality is associated to each edge. A pair of nodes

only being functional if the weighted, shortest-path distance between the pair is below a given threshold T.

Consequently, a natural question is on which degree the change of edge weights can damage the network

functionality? With this motivation, we study a new problem, Quality of Service Degradation: given a set of

pairs, find a minimum budget to increase the edge weights which ensures the distance between each pair

exceeds T. We introduce four algorithms with theoretical performance guarantees for this problem. Each of

them has its own strength in trade-off between effectiveness and running time, which are illustrated both in

theory and comprehensive experimental evaluation.
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1 INTRODUCTION

Graph connectivity is considered as an important metric on measuring the functionality of a
network. Typically, the connectivity-related problems usually ask for the minimum-size set of
components (nodes or edges) whose removal disconnects the target set of nodes. This consideration
has led to the investigation of many forms of cutting problems in a network: e.g the minimum cut
problem, the minimum multicut problem, the sparest cut problem [43] and the most recent work,
the Length-Bounded Multicut (LB-MULTICUT) problem [29]. In addition, various measures based on
connectivity have formed the framework for assessment of network resilience to external attacks
[19ś22, 25, 35ś37, 40ś42].

However, many network applications now consider other factors when determining a network
functionality in addition to connectivity. For example, in Bitcoin network, to guarantee synchro-
nization, not only the network connectivity is required but a network is also configured in order
to ensure the broadcasting time of transaction messages under several seconds [11]. As another
example, consider a time-sensitive delivery on a road network, where edge weights represents the
travel time between destinations. Connectivity between a source and a destination is insufficient
when a guarantee on the delivery time is required.
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Therefore, a natural question is whether a tech-savvy attacker can damage the network func-
tionality without impacting the connectivity? Under various forms, this kind of attacks actually is
common, yet stealthy. For example, in the I-SIG system, real-time vehicle trajectory data transmitted
using the CV technology are used to intelligently control the duration and sequence of traffic signals
[4ś6, 14, 15, 28, 34]. An adversary, therefore, can compromise multiple vehicles and send malicious
messages with false data (e.g., speed and location) to the I-SIG system to impact the traffic control
decisions. As reported by previous works, it has been shown that even one single attack vehicle
can manipulate the intelligent traffic control algorithm in the I-SIG system and cause severe traffic
jams [4, 15]. To understand the severity of such attack, it is necessary to study on which roads
the attackers can target to and what is the minimum number of vehicles the attackers have to
compromise to cause large-scale congestions, e.g. traveling from two certain locations takes several
hours longer than usual. Such attack can be for political or financial purposes, e.g. blocking traffics
of business competitors [4].
As another example, in Bitcoin network or any Blockchain-based applications, an attacker can

target to damage the consensus between copies of public ledger of major miners by delaying block
propagation between them. Recent works [11] have shown that after receiving request for a block
information from another node, a Bitcoin node can have up to 20 minutes to respond. An attacker,
therefore, can flood the Bitcoin nodes with too many requests or łdustž messages to handle, thus
delay their block delivery. By flooding multiple nodes, the attacker can disrupt miners to reach
consensus on a certain state of Blockchain. The impact of this attack varies relying upon the victims.
If the victim is a merchant, it is vulnerable to double spending attacks [1]. If the victim is a miner, the
attack wastes its computational power [38]. If the victim is a regular node, it will have an outdated
view of the Blockchain, and thus more vulnerable to the temporal attacks which exploit the lagging
in Blockchain synchronization [18, 38]. Therefore, it is necessary to study which nodes are critical
and how the attacker should attack such nodes (e.g. how much bandwidth consumption) to impact
the Bitcoin network functionality, e.g. causing major miners several hours to reach consensus.
With this motivation, we consider the Quality of Service Degradation (QoSD) problem. Given

a directed graph G representing a network, threshold T and set of pairs S in G, the objective is
to identify a minimum budget to increase the edge (or node) weights to ensure the weighted,
shortest-path distance between each pair in S is no smaller than T. Intuitively, the goal of this
problem is to assess how robust the network is; the greater budget to increase edge weights found,
the more resilient the network is to the perturbation in terms of edge weights. In addition, the
budget to increase weight of a edge in the solution provides an indication of the importance of this
edge to the desired functionality.
In the context of network reliability, Kuhnle et al. [29] have recently studied a special case of

our problem under the name LB-MULTICUT. Different to our problem, the objective of this problem
is to identify a minimum set of edges whose removal ensures the distance between each pair of
nodes is no smaller than T. Directly adopting the LB-MULTICUT solutions to our QoSD problem is
not feasible since most of those solutions exploited a trait that their problems can be formulated
by Integer Programming and exhibit submodular behaviors. QoSD problem, on the other hand, is
shown to be neither submodular nor supermodular, making QoSD more challenging to devise an
efficient algorithm. Also, modern networked systems are increasingly massive in scale, often with
size of millions of vertices and edges. The need for a scalable algorithm on large-scale networks
poses another challenge for our problem. Motivated by these observations, the main contribution
of this work are as follows.

• We provide three highly scalable algorithms for our problem: Two iterative algorithms, IG and
AT, with approximation ratioO(γ−1(ln T+ h lnn)) andO(ln T+ h lnn) respectively, where γ is
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a metric measuring the concave property of edge weight functions w.r.t a budget to increase
edge weights, h is the maximum number of edges of a path connecting between a pair in S ,
and n is the number of nodes inG; and SA, a probabilistic approximation algorithm returning

O( ln T+h ln d
γ (1−e−γ )(1−ϵ ) ) approximation result with high probability, where d is the maximum degree

of G.
• When the edge weight functions are linear w.r.t the cost to increase edge weight, we propose
LR, a randomized rounding algorithm based on LP relaxation of the problem. LR provides
O(h lnn) approximation guarantee.
• We extensively evaluate our algorithms on both synthetic networks and large-scale, real-
world networks. All of our four algorithms are demonstrated to scale to networks with
millions of nodes and edges in under a few hours and return nearly optimal solutions. Also,
the experiments show the trade-off between our proposed algorithms in terms of runtime
and quality of solution.

Organization. The rest of this paper is organized as follows. Section 2 reviews literatures related
to our problem. In Section 3, we formally define the problem and discuss its challenges. The four
solutions, IG, AT, SA and LR, are presented in Section 4, 5, 6 and 7, respectively. In Section 8, we
evaluate our algorithms, comparing to heuristic methods for the general case and to algorithms in
[29] for the special case. Finally, Section 9 concludes the paper.

2 RELATED WORKS

Relationship with Kuhnle et al. [29] Kuhnle et al. has studied the Length-Bounded Multicut
Problem (LB-MULTICUT). The objective of this problem is to identify a minimum set of edges whose
removal ensures the distance between each pair of nodes of a given set S is no smaller than T.
LB-MULTICUT is a special case of QoSD where we restrict to two conditions: 1) the only way to
increase an edge weight is making the weight greater than T and 2) the cost of doing so is uniform
among edges.

Our QoSD problem is more general and realistic than LB-MULTICUT, as briefly discussed earlier. In
the adversarial perspective, it is impractical to remove edges out of a network structure. Taking the I-
SIG system as an example, the attacker can only damage the network functionality by compromising
multiple vehicles, causing severe traffic jams on road network rather than physically damaging
road lines. Furthermore, on the Bitcoin-based applications, the Bitcoin protocol only allows a
maximum delay of 20 minutes for any packet delivery. For any damage of a P2P connection, the
protocol creates another connection to guarantee the connectivity of Bitcoin network. Thus, the
LB-MULTICUT cannot be applied on those two applications.

Other than the special case, LB-MULTICUT and QoSD are fundamentally different, thus solutions
to LB-MULTICUT are not readily applied to QoSD. More specifically, Kuhnle et al. proposed three
approximation algorithms for LB-MULTICUT, which are MIA, TAG, SAP [29]. We are going to discuss
the limits of these algorithms w.r.t solving QoSD.

The general idea of MIA is to find the multicut of sub-graphs of the input network such that each
optimal multicut is a lower bound of the optimal solution of LB-MULTICUT instance. In this solution,
the authors exploit the similarity between LB-MULTICUT and the multicut problem where cutting
an edge in a single path is sufficient to disconnect this path. With the multicut solution, MIA utilizes

the O(n11/23) approximation algorithm proposed by Agarwal et al. [10]. Thus MIA’s performance

guarantee is bounded byO(Mn11/23) whereM is the number of considered subgraphs. Our problem
does not require edge removals, so there is not clear connection with multicut. Therefore, we find
it infeasible to apply MIA, even with modification, to solve our problem.
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The next algorithm of LB-MULTICUT is TAG. In general, TAG is a dynamic algorithm, which uses
a primal-dual solution to bound the worst-case performance under incremental graph changes
and improves the solution in practice by periodic pruning. TAG utilizes the trait that cutting all
edges, which are in the maximal set of disjoint paths connecting target pairs of nodes, is sufficient
to disconnect those pairs. However, this solution may not be practical in our problem. Increasing
weights of those edges to maximum does not guarantee the shortest paths, which connect target
pairs of nodes, no smaller than the threshold T.

The SAP algorithm is a greedy, sampling-based solution with an O(h logn) approximation guar-
antee (h is the maximum number of edges of a single path connecting a pair in S), which holds with
the probability of at least 1 − 1/m. Our algorithm SA is inspired by SAP in that we also use a greedy
approach based on path samples, generated by using probabilistic hints based upon shortest path
computations to guide the sampling. However, since our objective function is non-submodular,
we prove that an approximation guarantee of SA depends on γ , where γ measures the concave
property of edge weight functions. Moreover, we boost the process of obtaining a feasible solution
by allowing a finite budget of at most q to be added on each step of sampling, where q can be any
number. We prove that q does not impact the performance guarantee of SA.

Optimization on Integer Lattice. As there is a finite budget to increase the edge weight, we
model our problem in a form of minimization problem on Integer Lattice: given a set of functions
{ fi | fi : (Z+ ∪ {0})n → R+} on the Integer Lattice, the objective is to minimize the cardinality of x
that fi (x) ≥ θi for all i . The optimization on the Integer Lattice has received much attention recently.
However, most of those works focus on the maximization version, which asks for maximizing
f (x) under a cardinality constraint | |x| | ≤ k . When f is non-submodular, those works exploits
either the submodularity ratio γs [17], generalized curvature α [12] or the diminishing-return
ratio γd [30, 32] to devise approximation solutions with performance guarantee in terms of those
parameters. However, the fact that those parameters can be small and computationally hard to
obtain on several real-world objectives raises a concern on those theoretical approximation ratios.
For example, Kuhnle et al. [30] proposed a fast maximization of Non-Submodular, Monotonic
Functions on the Integer Lattice with approximation ratio (1 − e−γdγs − η) for any η > 0. If γd or γs
is 0, this ratio will be smaller than 0. In our work, we utilize the concave property of edge weight
functions to introduce the concave ratio γ , which we use to prove the theoretical guarantee of IG
and SA, and bound the sampling size of SA. γ can be found easily from the derivative of edge weight
functions or scanning through all edge weight functions withO(m) time complexity. γ can be small
in some cases, so we devise the AT solution from an improved IG algorithm, which discards the
dependence on γ value to obtain better theoretical performance guarantee but a worse runtime in
trade-off.
Classical Multicut Problem. The Multicut problem asks for the minimum number of edges (or

nodes) whose removal ensures each pair in S is topologically disconnected. For the edge version in
an undirected graph, an O(logk) approximation was developed by Garg et al. [24] by considering
multicommodity flow. In directed graphs, Gupta [26] developed anO(

√
n) approximation algorithm,

which was later improved to O(n11/23) by Agarwal et al. [10]. These solutions were based on the
optimal solution of the linear relaxation modeling the problem instance. Our LR algorithm was
inspired by this approach but we have to deal with the challenge that a LP-optimal value of each
edge could be larger than 1. Therefore, any discretization technique of the Multicut problem cannot
be directly applied to our problem. We have devised a randomized rounding technique on which
we can obtain a feasible solution with high probability while ensuring an O(h logn) performance
ratio.
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3 PROBLEM FORMULATION

In this section, we formally define the Quality of Service Degradation (QoSD) problem in the format
of cardinality minimization on the Integer Lattice and present challenges on solving QoSD.
We abstract the network using a weighted directed graph G = (V ,E) with |V | = n nodes and
|E | = m directed edges. Each edge e is associated with a function fe : Z≥ → Z+ which indicates
the weight of e w.r.t a budget to increase weight of e . In another word, if we spend x on edge e , the
weight of edge e will be fe (x). fe is monotonically increasing.

Let be be the maximum possible budget to increase the weight of edge e . Denote x = {x1, ...xm}
is a vector where xi is the budget to increase weight of the ith edge and similarly b = {b1, ...bm},
we have xi ≤ bi ∀i ∈ [1,m]. b is called the box. The overall budget to increase weight of all edges is
denoted by | |x| | = ∑

e xe . Let f = { f1, f2, ... fm} be a set of edge weight functions. Note that, for
simplicity, the notation e is used to present an edge in E and also the index of this edge, i.e. if we
write xe , we mean the budget to increase the weight of edge e (to fe (x)) and also the element in x

that is corresponding to e . The same rule is applied with be , fe . Also, if we write e − 1 (or e + 1), we
indicate the edge right next to e on the left (right) in x.
A path p = p0,p1, ...pl ∈ G is a sequence of vertices such that (pi−1,pi ) ∈ E for i = 1, .., l . A

path can also be understood as the sequence of edges {(p0,p1), (p1,p2), ...(pk−1,pk )}. In this work,
a path is used interchangeably as a sequence of edges or a sequence of nodes. A single path is a
path containing no cycles (i.e repeated vertices). Under a budget vector x, the length of a path p is
defined as

∑

e ∈p fe (xe ). We now formally define QoSD as follows:

Definition 1. Quality of Service Degradation (QoSD). Given a directed graph G = (V ,E), a set
f = { fe : Z≥ → Z+} of edge weight functions, a box b and a target set S = {(s1, t1), ...(sk , tk )},
determine a minimum budget | |x| | such that under x, the weighted, shortest-path between each pair in

S exceeds a threshold T. A problem instance may be represented by the tuple (G, f , b, S, T)

For each edge e ∈ E, letwe = fe (0) denote the initial weight of e . In this work, we assumewe > 0
for all e ∈ E, which can be justified by the fact that most networks have positive costs associated
with their edges, even when there is no interference from external sources (i.e., propagation delay
in communication networks, processing delay in Blockchains).

Let Pi denote a set of simple paths connecting the pair (si , ti ) ∈ S and
∑

e ∈p we < T for all p ∈ Pi .
Let F = ∪ki=1Pi , we call a path p ∈ F a feasible path and F is a set of all feasible paths in G. Let

w = mine we , it is trivial that the number of edges of a feasible path is upper-bounded by ⌈ T
w
⌉.

Denote h = ⌈ T
w
⌉.

Under x, given a pair of nodes (s, t), if there exists no single path p from s to t which satisfies
∑

e ∈p fe (xe ) < T, we call s is separated from t or the pair (s, t) is separated by x. Also, given a
feasible path p ∈ F, if ∑e ∈p fe (xe ) ≥ T, we call p is blocked by x or x blocks p.
The QoSD problem can be formulated as the follows:

min | |x| | (1)

s.t.
∑

e ∈p
fe (xe ) ≥ T ∀p ∈ F (2)

xe ≤ be ∀e ∈ E (3)

xe ∈ Z+ ∪ {0} ∀e ∈ E (4)

Note that even xe ∈ Z+ ∪ {0}, this is not an Integer Program because fe (x) may not be a linear
function.
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We can see this formulation as the cardinality minimization on the Integer lattice to satisfy
multiple constraints. Before going further, we will look at several notations, mathematical operators
on Integer lattice, which will be used along the theoretical proofs of our algorithms. Given x =

{x1, ...xm}, y = {y1, ...ym} ∈ Zm , we have:
x + y = {x1 + y1, ...xm + ym}
x − y = {x1 − y1, ...xm − ym}
x ∧ y = {min(x1,y1), ...min(xm ,ym)}
x ∨ y = {max(x1,y1), ...max(xm ,ym)}
x/y = {max(x1 − y1, 0), ...max(xn − yn , 0)}
cx = {cx1, ...cxm} ∀c ∈ Z

Moreover, we say x ≤ y if xi ≤ yi for all i ∈ [1,m], the similar rule is applied to <, ≥, >.
Let si be a unit vector with the same dimension with x, si has value 1 in the ith element and 0

elsewhere. Therefore, we could also write x =
∑m

i=1 xisi . Table 1 summarizes all the notations we
have so far.
Discussion. Given an instance of QoSD (G, f , b, S, T), the optimal solution can be obtained by

formulating the problem as the following Integer Programming (IP):

min
∑

e

be
∑

i=0

i · ye,i (5)

s.t.

be
∑

i=0

ye,i = 1 ∀e ∈ E (6)

∑

e ∈p

be
∑

i=0

fe (i) · ye,i ≥ T ∀p ∈ F (7)

ye,i ∈ {0, 1} ∀e ∈ E, i ∈ [0,be ] (8)

where ye,i is an indicator variable which is 1 if xe = i and 0 otherwise. The first constraint (Eq. 6)
is to guarantee the budget to increase weight of edge e is a value in range [0,be ] and the second
constraint (Eq. 7) is to ensure the length of each feasible path is at least T. However, solving this
IP is extremely expensive. Not only because solving IP is NP-hard (the performance is strongly
dependent on which solver is used) but also listing all the paths for the second constraint is very
expensive in practice since it requires O(mh) in the worst case. Our algorithms are designed to be
efficient even when G is large and hence do not require a listing of F or an optimal solution of the
linear relaxation of this IP formulation.
Hardness and Inapproximability. Since LB-MULTICUT is a special case of QoSD, QoSD is NP-hard.

Furthermore, any inapproximability result of LB-MULTICUT or the Multicut problem is also the
inapproximability of QoSD. We summarize those results as follows:

• Kuhnle et al. [29] Let T ≥ 16. Unless NP ⊆ BPP , there is no polynomial-time algorithm to
approximate QoSD within a factor of ⌊ T6 ⌋ − 1 − ϵ for any ϵ > 0.
• Lee et al. [31]: When T is fixed and initial edge weights are uniform, QoSD is inapproximable

within a factor of Ω(
√
T ) assuming the Unique Games Conjecture.

• Chawla et al. [13]: There exist no O(log logn)-approximation algorithm for QoSD unless
P = NP .

Node version of the problem. The node version of the QoSD problem asks for the minimum budget
to increase node weights rather than edge weights in the problem definition above. All our four
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Table 1. Notation

Notation Definition

G = (V ,E) Input directed graph
V ,E Vertex and edge sets of G, respectively
n,m Number of vertices, edges in G, respectively
d The maximum degree of G
S The set of target pairs of nodes
k The number of pairs in target set S
T The threshold on the path length

fe (x) The weight function of edge e w.r.t a budget x
f The set of all weight functions of edges in G
F The set of all feasible paths
h The maximum number of edges of a path in F
q The maximum added cost in each iteration of SA

x = {x1, ..xm} The budget vector, xi is the budget on edge i

si Unit vector, 1 in the ith element and 0 elsewhere
γ The concave ratio of the function set f
α Bias parameter in the sampling of SA
x∗ Optimal solution to the problem instance

OPT = | |x∗ | | Size of optimal solution

algorithms can be easily adapted for the node version and keep the same theoretical performance
guarantees.

4 ITERATIVE SOLUTION

There are two challenging tasks to solve the QoSD problem. The first one is the number of feasible
paths could be extremely large, thus we need to avoid listing all the feasible paths as discussed earlier.
The second challenge is that the objective function of QoSD can be non-submodular, depending
on the edge weight functions. We handle the challenges via two different algorithms: Iterative
Greedy (IG) and Adaptive Trading (AT). After the discussion of IG and AT, we provide the theoretical
analysis and approximation guarantee of both algorithms.
To tackle the first challenge, instead of listing all feasible paths of the network, we build a set
P of candidate paths which is a subset of F but blocking all paths in P is sufficient to separate
all pairs in S . P is built incrementally and iteratively. For each iteration, we find a budget vector
x = {x1, ..xm} to block all paths in P. Then, we set the length of an edge e to be fe (xe ). Next, we
check whether x is sufficient to separate all pairs in S by checking whether there exists the shortest
path of a certain pair in S whose length is smaller than T. If yes, then blocking all paths in P is
not sufficient to separate all pairs in S ; we add all the shortest paths of pairs whose length has not
exceeded T into P and continue to the next iteration. If no, then x is sufficient to separate all pairs
in S ; we terminate the algorithm and return x. The full algorithms is represented by Alg. 1.

Since the maximum number of edges of a feasible path could reach up to h = ⌊ T
w
⌋, the number of

feasible paths of the network G is upper bounded by O(nh). Because we guarantee there should be
at least a feasible path is added into P in each iteration (line 3 Alg. 1), the number of iterations in
Alg. 1 is at most O(nh). This is a large number and comparable to the case if we tried to enumerate
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Algorithm 1 Iterative Solution

Input G, f , b, T, S

Output QoS adjustment vector x

1: P = ∅
2: while There exists path p ∈ F whose length < T do

3: P ← P∪ potentialPaths(G, S, x).
4: x = {0}m
5: Find x to block all paths in P

Return x

all feasible paths. However in experiment, we found that the number of iterations is much smaller
even on large and highly dense networks.

Algorithm 2 potentialPaths(G, S, x)
Input G, S, x

Output Set P of paths whose lengths is smaller than T

1: Assign edge e length is fe (xe ) ∀ e ∈ E
2: for each pair (s, t) ∈ S do

3: p ← shortest path between s and t
4: if length of p is smaller than T then

5: P = P ∪ p
Return P

Lemma 4.1. The approximation guarantee of Alg. 1 equals to the approximation guarantee of the

algorithm that finds x to block all paths in P

Proof. Since P is a subset of all feasible paths in G, the optimal solution to block all feasible
paths is also a feasible solution to block all paths in P. Therefore, the optimal solution to block
all paths in P is at most the size of the optimal solution of QoSD. Denote xo and x∗ as the optimal
solutions to block paths in P and F respectively. Assume the algorithm in line 5 of Alg. 1 returns
α-approximation result. We have | |x| | ≤ α · | |xo | | ≤ α · | |x∗ | |. And since finally x is a feasible
solution to our problem, then the output x of Alg. 1 is within α factor to optimal solution x∗. □

Now let us discuss the the second challenge: how to block all paths in P, line 5 of Alg. 1. To
address this, we propose two algorithms, Greedy and Adaptive Trading. Before delving into the
details of each algorithm, we introduce the parameter γ , which is used to measure the concave
property of weight functions. γ would be utilized on performance analysis for our algorithms.

4.1 Concave property of weight functions

The concave ratio of a set of functions is defined as follows:

Definition 2. (Concave ratio) The concave ratio of a set F of non-negative functions is the largest

scalar γ ∈ [0, 1] such that:

f (x + 1) − f (x) ≥ γ ·
(

f (y + 1) − f (y)
)

(9)

For all f ∈ F and 0 ≤ x ≤ y
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In our problem, the set of non-negative functions contains all weight functions of edges in G.
Therefore, for simplicity, we denote γ as the concave ratio of these set of weight functions. Now, we
will utilize γ to get several useful exploration for our solutions. First, given a path p and a vector x,
define:

r(p, x) = min(T,
∑

e ∈p
fe (xe )) (10)

Let д(P, x) be an arbitrary linear combination of r(p, x) for all p ∈ P. д(P, x) could be presented
as follows:

д(P, x) =
∑

p∈P
βpr(p, x) βp ∈ R+ ∀ p ∈ P (11)

Given a vector z, define:

∆zд(P, x) = д(P, x + z) − д(P, x) (12)

We have the following lemma.

Lemma 4.2. Given two budget vectors x, y where x ≤ y and a unit vector s, we have:

∆sд(P, x) ≥ γ∆sд(P, y)

Proof overview. Without lost of generality, we assume s = si , a unit vector which has value
1 at the ith element and 0 elsewhere. We prove that: given a feasible path p, the marginal gain of
r(p, x) by si is at least γ times the marginal gain of r(p, y) by si .
By definition, the r(p, ·) value of any budget vector cannot exceed T. Also, r(p, u) ≤ r(p, v) if

u ≤ v. Therefore, we consider three different cases: (1) r(p, x) < r(p, x + si ) < T; (2) r(p, x) <
r(p, x + si ) = T; and (3) r(p, x) = r(p, x + si ) = T. All three cases guarantee r(p, x + si ) − r(p, x) ≥
γ
(

r(p, y + si ) − r(p, y)
)

. Since д(P, x) is a linear combination of r(p, x), the lemma follows. □

Lemma 4.3. Given three budget vectors x, y, z where x ≤ y we have:

∆zд(P, x) ≥ γ∆zд(P, y)

Proof. Let z =
∑ | |z | |

i=1 si where si is a unit vector, we have:

∆zд(P, y) =
| |z | |
∑

j=1

∆sjд(P, y + s1 + ... + sj−1) ≤
1

γ

(

| |z | |
∑

j=1

∆sjд(P, x + s1 + ... + sj−1)
)

≤ 1

γ
∆zд(P, x)

which completes the proof. □

Note that r(p, x) ≤ T. A budget vector x is sufficient to block all paths in P iff r(p, x) = T for all
p ∈ P. Therefore, to block all paths in P, we find the minimum | |x| | such that:

D(P, x) =
∑

p∈P
r(p, x) = |P | · T (13)

In the next subsections, we devise two approximation algorithms to find such x and provide their
performance guarantees.
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4.2 Iterative Greedy algorithm

The first algorithm to block all paths in P is the iterative greedy algorithm (IG). The general idea is
that: we iteratively add a unit vector s into x, which maximizes the marginal gain ∆sD(P, x), until
x is sufficient to block all paths in P. Hence, the final overall budget (| |x| |) is equal to the number
of iterations of the algorithm. IG is fully presented by Alg. 3.

However, the objective function D(P, x) is neither submodular nor supermodular w.r.t x. If each
edge weight function is concave, D(P, ·) exhibits a submodular behavior. On the other hand, if each
weight function is convex, then D(P, x) can be much more than the sum of D(P, s) values of unit
vectors s constituting x, which is a supermodular behavior. The non-submodularity of D(P, ·)means
that the x returned by IG may not have anO(logn) approximation ratio. Actually the concave ratio
γ plays an important role on the performance guarantee of IG, which is proved theoretically by
Theorem 4.4 and would be further illustrated in the experimental evaluation.

Algorithm 3 Greedy blocking paths (IG)

Input G, f , b, T,P
Output a cost vector x

1: x = {0}m
2: while D(P, x) ≤ |P|T do

3: for each unit vector s do
4: ∆sD(P, x) = D(P, x + s) − D(P, x)
5: x = x + argmaxs∆sD(P, x)

Return x

Theorem 4.4. IG returns a solution within O(γ−1(h lnn + ln T)) factor of the optimal solution for

blocking all paths in P.

Proof overview. Denote x∗ as an optimal solution to the QoSD instance (| |x∗ | | = OPT). Denote
xi as our obtained solution before the ith iteration in Alg. 3. The key of our proof is that: the gap
between |P |T and D(P, x) will be reduced after each iteration by a factor at least 1 − γ

OPT
. To be

specific:

|P |T − D(P, xi+1) ≤ (1 −
γ

OPT
)(|P|T − D(P, xi ))

This was proved by using the property of concave ratio from lemma 4.2 and the greedy selection.
Furthermore, since there should exist at least a feasible path p ∈ P such that r(p, x) ≤ T − 1

before the final iteration of the algorithm, we prove that the number of iterations is upper bounded

by O( ln |P |T
γ /OPT ). The theorem follows as the number of iterations is equal to | |x| |. □

4.3 Adaptive Trading algorithm

The concave ratio of the edge weight functions could be very small if the weight functions are
convex, which makes the approximation guarantee of IG undesirable. Therefore, in this section,
we propose a solution whose performance guarantee does not depend on the concave ratio γ . We
name this algorithm Adaptive Trading (AT).
The algorithm still works in the iterative manner and terminates only when the desired x is

found, but different from IG on how the solution x is improved in each iteration. To be specific, in
each iteration, the algorithm finds an amount of additional budget to increase the weight of an edge
such that maximize the ratio between the increasing amount of D(P, x) and the additional budget.
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Therefore, in each iteration, the additional budget could be bigger than 1. To find such amount,
the simplest way is to scan through all possible amounts of additional budget of each edge. Note
that the maximum budget which can be added to increase weight of edge e is upper bounded by be .
Therefore, the computation complexity in each iteration of AT is upper bounded byO(| |b| |). Denote
u(e, i) ∈ Rm as a vector where the element corresponding to edge e has value i and other elements
are 0. AT is fully presented in Alg. 4 and its approximation guarantee is provided by Theorem 4.5.

Algorithm 4 Adaptive Trading solution (AT)

Input G, f , b, T,P
Output QoS adjustment vector x

1: P = ∅
2: while D(P, x) ≤ |P|T do

3: for each edge e ∈ E do

4: ze = argmaxz
∆u(e,z)D(P,x)

z

5: x = x + argmaxu(e,ze )
∆u(e,ze )D(P,x)

ze

Return x

Theorem 4.5. AT returns a solution withinO(h lnn+ ln T) factor of the optimal solution for blocking

all paths in P.

Proof overview. Denote xi = {x1, ...xm} as our obtained solution before the ith iteration in
Alg. 4. Let xoi = {xo1 , ...xom} be an optimal solution which is in addition to xi to block all paths in
P. Denote v(e) = {x1, ..xe−1,xe + xoe , ...xm + xom}. Trivially, v(1) = xi + x

o and v(m + 1) = xi . Let

u(ei , ji ) be a vector we add into solution xi in the ith iteration. The key of our proof is that the
following inequality is always guaranteed after each iteration.

∆ui (ei , ji )D(P, xi )
ji

≥ D(P, v(e)) − D(P, v(e + 1))
xoe

(14)

for any e ∈ E. This is proved by utilizing the monotonicity of r(p, x) w.r.t x and the trait that the
selection of our algorithm ensures ∆u(e,q)D(P, xi ) ≤ q

ji
∆u(ei , ji )D(P, xi ) for any e ∈ E and q ∈ Z+.

Furthermore, the Eq. 14 helps us to prove that: the gap between |P |T and D(P, x) will be reduced
after each iteration by a factor at least 1 − ji

OPT
. To be specific:

|P |T − D(P, xi+1) ≤ (1 −
ji

OPT
)
(

|P |T − D(P, xi )
)

since there should exist at least a feasible path p ∈ P such that r(p, x) ≤ T − 1 before the final
iteration of the algorithm, utilizing Cauchy theorem [3], we bound the budget | |x| | by OPT·O(ln |P |T).
Since |P | ≤ nh, the theorem follows. □

5 SAMPLING APPROACH

In this section, we introduce a sampling solution SA to QoSD which has O( ln T+h lnd
γ (1−e−γ )(1−ϵ ) ) approxima-

tion guarantee with probability at least 1 − δ where ϵ,δ > 0 are arbitrarily small numbers. SA runs
in polynomial time when the parameter T is fixed.

We define a blocking metric of a budget vector x as follows

B(x) =
∑

p∈F
r(p, x)
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It is trivial that x blocks all pairs in F iff B(x) = |F| · T.
In essence, SA attempts to minimize | |x| | while ensuring B(x) = |F| · T. To do so, SA works in

the greedy manner as follows: in each iteration, SA finds a budget vector v = {v1, ...vm}, | |v| | ≤ q,
to add into x which maximizes B(x + v). Rather than an expensive listing of F, an estimator is
employed by path sampling procedure to find the vector v. This process is repeated until the budget
vector x is sufficient to block all paths in F. SA is fully presented in Alg. 5.

Algorithm 5 Sampling Algorithm (SA)

Input G, S, T, f , b and q, ϵ,δ
Output cost vector x

1: Initiate x = {0}m
2: while There exists a path p ∈ F whose length < T do

3: Generate P = N(q, ϵ,δ/| |b| |) sample paths p1,p2, ...

4: Greedily select v (| |v| | ≤ q) that maximizes B̂(P, x + v)
5: x = x + v

Return x

Since we will not list F, the questions now are (1) how to estimate B(·); and (2) how many sample
paths should be generated to bound the error between the estimator of B(·) and its actual value.

In sub-section 5.1, we define the estimator B̂(·) employed in each iteration of Alg. 5. We provide
the approximation guarantee of greedily selection on sub-section 5.2. Sub-section 5.3 provides
the lower bound on the number of sampling paths to bound the error. We then put all the results
together to obtain the performance guarantee of SA.

5.1 Estimator

Let an instance (G, f , b, T) of QoSD be given. Denote J as a set of all single paths in G. For each
p ∈ J, define:

R(p, x) =
{

r(p, x) if p ∈ F
0 otherwise

It is trivial that
∑

p∈J R(p, x) = ∑

p∈F r(p, x). Inspired by the estimation on the number of paths in
a graph [39], we define the estimator of B(x) in the following way: Given a probability distribution
ρ on J such that ρ(p) > 0 for all p ∈ F. Let P = {p1,p2, ...pl } be a set of l paths samples from ρ,
B(x) could be estimated by

B̂(P, x) = 1

l

l
∑

i=1

R(pi , x)
ρ(pi )

Lemma 5.1. B̂(P, x) is an unbiased estimator of B(x)

Proof.

E[B̂(P, x)] = E
[

R(p, x)
ρ(p)

]

=

∑

p∈J

R(p, x)
ρ(p) · ρ(p) =

∑

p∈J
R(p, x) =

∑

p∈F
r(p, x)

□
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Algorithm 6 Sampling path

Input G, S, T, x

Output Sample path p

1: (s, t) ← randomly select a transaction.
2: p ← {s}
3: do

4: u = tail(p)
5: Let N (u) be the set of outcoming neighbors of u
6: p ← p ∪ NeighborSelection(N (u),p, (s, t))
7: while u , t and

∑

e ∈p fe (xe ) < T

Return p

To sampling paths, we utilize the following biased, self-avoiding randomwalk sampling technique,
which was once proposed by Kuhnle [29]. First, we randomly select a pair (s, t) from S and put
s into the sample path p. Considering in a certain moment, p = {s, ..u} (u is called a tail node
of p at this time). The NeighborSelection procedure would select a node among the out-going
neighbors of u to add into p. The selection is as follows: Let T be the shortest-path tree directed
towards t . Let v be the parent of u in T. If N (u)/p = {v}, then the next node we add into p is v .
If v ∈ N (u)/p, we select v with probability α and the other nodes in N (u)/p with probability of

1−α
|N (u)/p |−1 . If v < N (u)/p, we select the next node uniform randomly among N (u)/p. The sampling

procedure ends when we meet the node t or the length of p exceeds T. With the path-sampling
procedure defined, given a path p, we could easily find ρ(p). Also, ρ(p) > 0 for all p ∈ F. The
sampling technique is fully presented in Alg. 6.

5.2 Greedy selection on the estimator

Having defined the estimator B̂(P, x) and the path sampling procedure, we now find the budget

vector v, | |v| | ≤ q, to maximize B̂(P, x + v). v is found in the greedy manner as follows: we run in
q iterations and in each iteration, selecting the unit vector that maximizes the marginal gain of

B̂(P, x + v). Since it is trivial, we will not write down the pseudo-code on how we find v.

The question now is what approximation guarantee v can provide? Note that B̂(P, x) is a finite
combination of functions r(p, x)withp ∈ P. Hence, B̂(P, x) is submodular if all weight functions are

concave and supermodular if they are convex. So maximizing B̂(P, x + v) using greedy algorithm
may not return 1 − 1/e approximation result. Therefore, similar to IG, we use the concave ratio γ

to obtain the performance guarantee of the greedy selection to maximize B̂(P, x).
Denote vo =

∑q
i=1 ui as an optimal solution that maximizes B̂(P, x+ v), where ui is a unit vector

(i ∈ [0,m]). Lemma 5.2 provides approximation guarantee of the greedy selection.

Lemma 5.2.

∆vB̂(P, x) ≥ (1 − e−γ )∆vo B̂(P, xo)

Proof overview. Denote vi as the budget vector v after greedily selecting first i unit vectors.
The key of the proof comes from the following inequality:

B̂(P, x + vo) − B̂(P, x + vi+1) ≤ (1 −
γ

q
)
(

B̂(P, x + vo) − B̂(P, x + vi )
)
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This inequality is proved by using the property of γ from lemma 4.2 and the trait that B̂(P, x) is
monotone w.r.t x. Using this inequality, we prove that

∆vB̂(P, x) ≥ (1 − (1 −
γ

q
)q)∆vo B̂(P, x) ≥ (1 − e−γ )∆vo B̂(P, x)

in which the lemma follows. □

5.3 Sample size and Performance guarantee

Wehave proved the performance guarantee of the additional budget vector v to maximize B̂(P, x+v).
The question now is: what is the size of P to bound the error between ∆vB̂(P, x) and ∆vB(x)? In
this part, we will answer this question. Then, putting together with the performance guarantee of
selecting v on P, we provide the performance guarantee of SA.
To find the minimum number of samples, we utilize the following Chernoff Bound theory.

Theorem 5.3. (Chernoff Bound theorem [27]) Let X1,X2, ...Xn be random variables such that

a ≤ Xi ≤ b for all i . Let X =
∑n

i=1Xi and set µ = E(X ). Then for all ϵ > 0, we have:

Pr[X ≥ (1 + ϵ)µ] ≤ exp(− 2ϵ2µ2

n(b − a)2 ) (15)

Pr[X ≤ (1 − ϵ)µ] ≤ exp(− ϵ2µ2

n(b − a)2 ) (16)

Considering a path p ∈ F, we have:

ρ(p) ≥ 1

|S | (
1 − α
d − 1 )

h
= Ω(d−h |S |−1)

where d is the maximum out-going degree of a node in G. Therefore, for any single path p, 0 ≤
R(p,x)
ρ(p) ≤ O(T|S |dh)
Denote v∗ as an optimal solution that maximizes ∆vB(x).

Lemma 5.4. Given 0 < ϵ1,δ1 < 1, with the number of sampling paths satisfies

|P | ≥ ln(1/δ1)T2 |S |2d2h
ϵ21∆

2
v∗B(x)

(17)

the following condition is guaranteed:

Pr[∆v∗ B̂(P, x) ≥ (1 − ϵ1)∆v∗B(x)] ≥ 1 − δ1 (18)

This lemma is trivially derived from Eq. 16.

Lemma 5.5. Given 0 < ϵ2,δ2 < 1, with the number of sampling paths satisfies

|P | ≥
ln(

(n+q
q

)

/δ2)T2 |S |2d2h

2(1 − e−γ )2ϵ22∆2
v∗B(x)

we have ∆vq D̂(x) ≤ ∆vqD(x) + (1 − e−γ )ϵ2∆v∗D(x) for all budget vectors vk , which satisfy | |vk | | = q,
with probability at least 1 − δ2
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Proof. Let us consider an arbitrary budget vector vq , | |vq | | = q

Pr
[

∆vq B̂(P, x) ≥ ∆vqB(x) + (1 − e−γ )ϵ2∆v∗B(x)
]

= Pr
[

∆vq B̂(P,x) ≥ ∆vqB(x)
(

1 + (1 − e−γ )ϵ2
∆v∗B(x)
∆vqB(x)

)]

≤ exp
( 2(1 − e−γ )2ϵ22 |P |∆2

v∗B(x)
T2d2h

)

Using the union bound theory, to let ∆vq B̂(P,x) ≤ ∆vqB(x) + (1 − e−γ )ϵ2∆x∗B(x) satisfy for any
budget vector vq , | |vq | | = k , we have

Pr
[

∆vq B̂(P, x) ≥ ∆vqB(x) + (1 − e−γ )ϵ2∆v∗B(x)
]

≤
(

n + q

q

)

exp
( 2(1 − e−γ )2ϵ22 |P |∆2

v∗B(x)
T2 |S |2d2h

)

The lemma follows by letting
(n+q
q

)

exp
(

2(1−e−γ )2ϵ 22 |P |∆2
v∗B(x)

T2 |S |2d2h
)

≤ δ2 □

Lemma 5.6. Given 0 ≤ ϵ1, ϵ2,δ1,δ2 ≤ 1, let ϵ ≥ ϵ1 + ϵ2 and δ ≥ δ1 + δ2. If the number of sampling

paths is at least

T2 |S |2d2h
∆
2
v∗B(x)

max
( ln(1/δ1)

ϵ21
,

ln(
(n+q
q

)

/δ2)
2(1 − e−γ )2ϵ22

)

(19)

the greedy algorithm on P returns a budget vector v that guarantees

Pr[∆vB(x) ≥ (1 − e−γ )(1 − ϵ)∆v∗B(x)] ≥ 1 − δ

Proof. For the given number of sample paths, we have

∆vB(x) ≥ ∆vB̂(P, x) − (1 − e−γ )ϵ2∆v∗B(x) (20)

≥ (1 − e−γ )∆v∗ B̂(P, x) − (1 − e−γ )ϵ2∆x∗B(x) (21)

≥ (1 − e−γ )(1 − ϵ1)∆v∗B(x) − (1 − e−γ )ϵ2∆v∗B(x) (22)

≥ (1 − e−γ )(1 − ϵ)∆v∗B(x) (23)

The inequality (20) happens with probability 1−δ1 while the inequality (22) happens with probability
1−δ1. Overall ∆vB(x) ≥ (1−e−γ )(1−ϵ)∆v∗B(x)with probability at least (1−δ1)(1−δ2) ≥ 1−δ . □

There is a drawback of the threshold (19): it depends on ∆v∗B(x), which is untraceable. However,
we can use the simple lower bound of∆v∗B(x) as follows: As long as the algorithmhas not terminated,
there should be at least a path p ∈ F such that the length of p is at most T − 1. So the marginal
gain of the optimal solution should be at least 1. Therefore, we have the following threshold, which
is the sufficient number of sample paths to bound the error between approximation ratio of v on

∆vB̂(P, x) and ∆vB(x).

N(q, ϵ,δ ) = min
ϵ1;δ1

(

T
2 |S |2d2h max

( ln(1/δ1)
ϵ21

,

ln(
(n+q
q

)

/(δ − δ1))
2(1 − e−γ )2(ϵ − ϵ1)2

)

)

Theorem 5.7. Given 0 < ϵ,δ < 1, by generating N(k, ϵ, δ
| |b | | ) of sample paths in each sampling

iteration, SA returns a solution within O( h ln d+ln T
γ (1−e−γ )(1−ϵ ) ) factor of optimum to the QoSD instance with

probability at least 1 − δ .
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Proof overview. Denote xo =
∑s

i ui as an optimal solution, which is in addition to x to block
all paths in F (ui is a unit vector). Let v be a budget vector we get from greedy selection on the
sample set P. The key of our proof is that

∆vB(x) ≥
γq

| |xo | | (1 − e
−γ )(1 − ϵ)∆xoB(x)

This is proved by the finding that there exists a budget vector w such that | |w| | ≤ q and ∆wB(x) ≥
γq

| |xo | |∆xoB(x).
Therefore, we observe that: after each sampling iteration, the gap between |F|T and B(x) shrinks

by a factor at least (1 − kγ

OPT
(1 − e−γ )(1 − ϵ)) with probability at least 1 − δ

| |b | | .

Furthermore, since there should exist at least a feasible path p ∈ P such that r(p, x) ≤ T − 1
before the final sampling iteration, we prove that the number of iterations is upper bounded by

O( ln T+h ln d
qγ (1−e−γ )(1−ϵ ) )OPT. Since in each iteration, a budget vector v, | |v| | ≤ q, is added into solution, out

final solution guarantees O( ln T+h ln d
γ (1−e−γ )(1−ϵ ) ) approximation ratio with probability at least 1 − δ . □

Interestingly, the approximation ratio of SA does not depend on q. So whatever the value of q is,
the result of SA always has the same upper bound, which means a large value of q could reduce the
number of sampling iterations but the number of sample paths in each iteration would increase as
the trade-off.

6 LINEAR WEIGHT FUNCTIONS

Having considered approximation algorithms to QoSD, we now propose a solution, called Linear

Rounding (LR), for the case where the edge weight functions are linear. LR obtains O(h logn)
approximation guarantee, which is the best ratio compared among all the proposed solutions.
For each e ∈ E, the weight function of e is represented as fe (x) = βex + αe , where βe ,αe ∈ Z+.

Denote β = maxe βe . The QoSD instance can be solved by the following Integer Programming.

min
∑

e ∈E
xe (24)

s.t.
∑

e ∈p
(βexe + αe ) ≥ T ∀p ∈ F (25)

xe ≤ be ∀e ∈ E (26)

xe ∈ Z+ ∪ {0} ∀e ∈ E (27)

This IP has a simple linear relaxation by replacing constraint (27) with:

xe ∈ R+ ∪ {0} ∀e ∈ E (28)

Although constructing this relaxation maybe intractable due to the extremely large size of F,
this LP still can be solved in polynomial time using ellipsoid method with a simple separation oracle
similar to Multicut problem [43].
Denote the vector x′ = {x ′1, ...x ′m} as the optimal solution to the LP relaxation, x ′e can be a real

number. The problem now is how to obtain a discrete solution x from x′ and what approximation
guarantee x provides? To do so, we applied the randomized rounding technique as follows: Given
an edge e , if x ′e is an integer, let xe = x ′e . Otherwise, denote ρe = x ′e − ⌊x ′e ⌋ and given η, which
would be defined later, then:

• If ηρe ≥ 1, xe = ⌈x ′e ⌉. Let ye = xe
• If ηρe < 1, xe = ⌈x ′e ⌉ with probability ηρe and ⌊x ′e ⌋ otherwise. Let ye = ⌊x ′e ⌋
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Algorithm 7 Linear Rounding algorithm (LR)

Input G, S, T, b, f ,δ

Output cost vector x = {x1, ..xm}
1: x′← optimal solution of LP-relaxation.

2: β = maxe βe ; η =
β

1−exp(−β ) (ln
nh

δ
+ 1)

3: for each e ∈ E do

4: if x ′e is a integer then
5: xe = x ′e
6: else

7: ρe = x ′e − ⌊x ′e ⌋
8: xe = ⌈x ′e ⌉ with probability ηρe ; ⌊x ′e ⌋ otherwise.

Return x

LR is fully presented in Alg. 7.
Consider a path p ∈ F, it is trivial that x will block p if

∑

e ∈p fe (ye ) ≥ T. The question is whether
x can block p if

∑

e ∈p fe (ye ) < T? Denote:

Tp = T −
∑

e ∈p
fe (ye )

Ep = {e ∈ p;ye < xe }

So:

Tp ≤
∑

e ∈Ep
βe (x ′e − ye ) =

∑

e ∈Ep
βeρe

Then the probability that x does not block p is given as follows:

Pr[p is not blocked by x] = Pr
[
∑

e ∈p
(βexe + αe ) < T

]

= Pr
[

∑

e ∈Ep
βe (xe − ⌊x ′e ⌋) < Tp

]

(29)

= Pr
[

exp
(

−
∑

e ∈Ep
βe (xe − ⌊x ′e ⌋)

)

> exp (−Tp )
]

(30)

≤ exp(Tp ) · E
[

exp
(

−
∑

e ∈Ep
βe (xe − ⌊x ′e ⌋)

)]

(31)

= exp(Tp ) ·
∏

e ∈Ep

(

exp(−βe ) · ηρe + (1 − ηρe )
)

(32)

≤ exp(Tp ) ·
(

1 −
∑

e ∈Ep ηρe (1 − exp(−βe ))
|Ep |

) |Ep |

(33)

≤ exp(Tp ) ·
(

1 − 1 − exp(−β)
β

·
ηTp

|Ep |

) |Ep |

(34)

≤ exp(Tp ) · exp
(

− ηTp
1 − exp(−β)

β

)

≤ exp

(

−
(

η
1 − exp(−β)

β
− 1

)

)

(35)
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Eq. 31 comes from Markov inequality [8] while Eq. 33 is from Cauchy Theorem [3]. Since there are
at most nh feasible paths in F, using Union Bound theory [2], the probability that x cannot block
all paths in F is at most

nh · exp
(

−
(

η
1 − exp(−β)

β
− 1

)

)

(36)

Theorem 6.1. Given fixed 0 < δ < 1 and η =
β

1−exp(−β ) (ln
nh

δ
+ 1), LR returns a solution within

O(h lnn) factor of optimum to the QoSD instance with probability at least 1 − δ .
Proof. From Eq. 36 and the given η, the probability that x blocks all paths in F is at least 1 − δ .

Also

E[| |x| |] =
∑

e

(

⌈x ′e ⌉ηρe + ⌊x ′e ⌋(1 − ηρe )
)

≤
∑

e

(

⌊x ′e ⌋ + ηρe
)

≤
∑

e

ηx ′e

= η · | |x′ | | ≤ η · | |x∗ | |
which completes the proof. □

7 DISCUSSION

In this section, we discuss the trade-off between the performance guarantee and the runtime
complexity of the four proposed algorithms, summarized in Table. 2.
First, we consider the performance guarantee of the IG and AT algorithm. The approximation

ratio of IG and AT are O( 1
γ
(h lnn + ln T)) and O(h lnn + ln T) respectively, where γ is the concave

ratio of edge weight functions. γ plays an important role in the differences between IG and AT

solutions. The smaller γ is - which signifies a more convex of edge weight functions - the worse
IG performs. But if all edge weight functions are concave - or at least linear - γ equals to 1, then
IG and AT obtain the same approximation guarantee. Not only achieve the same ratio, the two

algorithms also return the same solution because in AT,
∆u(e,x )D(P,x)

x
reaches maximum at x = 1. So

in each iteration, the budget increases at most by 1, and it is also the selection of IG. Overall, AT
theoretically returns better solutions than IG.

However, in trade-off, AT has higher computational complexity than IG. Both algorithms use the
same framework as in Alg. 1. The maximum number of iterations in this framework (line 2 of Alg. 1)
is upper bounded by nh, which is theoretically a large number. However, from our experiments on
both random graphs and real-but-dense networks, the number of iterations never reach this amount.
Considering the strategy of blocking paths, the number of computation in each inner iteration (line
2 of Alg. 4) of AT is O(| |b| |), while this number (line 2 of Alg. 3) in IG is O(m). In the worst-case
scenario, the number of inner iterations of both IG and AT can reach up to O(| |b| |). Therefore, the
worst-case runtime complexity of IG and AT is O(nhm | |b| |) and O(nh | |b| |2) respectively.

With SA, to obtain theO( ln T+h lnd
γ (1−e−γ )(1−ϵ ) ) ratio, we have to generateN(k, ϵ,δ/| |b| |) paths withO(m)

time complexity for each path in each sampling steps. Also, after sampling, a budget vector v

(| |v| | ≤ q) is added into x, which makes the number of sampling steps at most O( | |b | |
q
). Moreover,

the greedy selection on a sample set costs O(qm) runtime complexity. Therefore, the worse-case

runtime complexity of SA is bounded by O(N(k, ϵ, δ
| |b | | ) · | |b| | ·m2). However, if h is large, the

number of samples required by SA becomes large and its sampling procedure dominates its runtime;
this is ameliorated by trivially parallelizing the sampling process, which is possible since each
sample is independent. In practice, the parameter α greatly reduces the required number of samples;
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Table 2. Algorithm performance ratio and time complexity

Algorithm Approximation Ratio Worst-case Runtime

IG O(γ−1(ln T + h lnn)) O(nhm | |b| |)
AT O(ln T + h lnn) O(nh | |b| |2)
SA O( ln T+h ln d

γ (1−e−γ )(1−ϵ ) ) N(q, ϵ, δ
| |b | | ) ·O(m2 | |b| |)

LR O(h lnn) LP-solver() +m

with α = 0.8, we found that O(|S |) samples were sufficient to provide feasible solutions within
reasonable runtime.
Next, consider the LR solution, which is only used if all the weight functions are linear. The

runtime of LR strongly depends on the linear programming solver (LP-solver()). In the experimental
evaluation, we observe that in most cases, the number of edges - whose x ′e is real - is inconsiderably
small. Therefore, after randomized rounding, the size of the discrete solution x has a diminutive gap
comparing with x′’s. Hence, although IG and AT perform fairly well in general cases, LR usually
returns the best solution if the edge weight functions are linear.

8 EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed approximation algorithms by 1) comparing their per-
formance to an intuitive heuristic as there is no other solution to QoSD, in a general case; and
2) comparing our algorithms to [29] as a special case of QoSD. The experiments were conducted
on a Linux machine with 2.3Ghz Xeon 18 core processor and 256GB of RAM. The programming
language we used is C++. Several steps in our algorithm are parallelized by using OpenMP with 64
threads. The reported running time is real-world time, not CPU time. The source code is available
at [9].

8.1 Experiment Settings

We evaluated the following algorithms; the source code of all of our implementation is written in
C++.

• AT: In this solution, to find the shortest paths between a pair of nodes, we utilized the Dijkstra
algorithm and computed each path separately. The reason for this implementation is that
by doing so, we can parallelize the process by dividing it into independent tasks. Therefore,
even the theoretical time complexity of the Dijkstra algorithm for all-pair shortest paths is
worse than Floyd-Warshall methods, the parallelization helps to boost the performance of
the Dijkstra algorithm while it is impossible to do so with Floyd-Warshall.
• IG: this algorithm used the same settings as AT.
• SA: We set the bias ratio α = 0.8 and the number of sample paths isO(|S |) for all experiments.
We found this value of α and the number of samples are sufficient to obtain feasible solutions
within reasonable runtime in most cases.
• LR: We used CPLEX [16] to solve the linear programming. Implementing the ellipsoid method

could result in impractical performance. So we used the same concept of IG and AT to solve
the LP relaxation as follows: rather than listing all feasible paths in F, we iteratively listed
the shortest LP-weighted paths as constraints until the length of the shortest paths between
each pair exceeded T.
• Centrality Cutting (CC) heuristic: Centrality has been commonly used as a metric to identify
critical components of a network in the literature. CC works in iterative manner as follows:
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Table 3. Statistics of datasets

Data Type Nodes Edges Diameter

Gnutella Directed 10.9 K 40.0 K 9
RoadCA Undirected 2.0M 2.8M 786
Skitter Directed 1.7M 11.1M 25

First, we set x = {0}m . In each iteration, we found the shortest paths between a pair of nodes
under the current budget vector x and computed the number of appearances of each edge
in those paths. The algorithm then raised the weight of the edge that appears the most to
maximum. All those steps are repeated until there were no shortest paths whose length was
smaller than T. When finding shortest paths of each pair, we also used parallelization to boost
CC performance.
• SAP, MIA, TAG [29]: These algorithms were only implemented in comparison on the special
case of QoSD (the LB-MULTICUT problem). The source code of those algorithms was taken
from [7] and it was only available for undirected networks.

To obtain S , we sampled uniformly random sets of pairs of nodes on each network. All results
were averaged over 5 independent repetitions of each experiment. The weight function of each
edge was selected from following functions

• A linear function fe (x) = Θ(x).
• A convex function fe (x) = Θ(x2). This function was inspired by the average delay calculation
on computer networks w.r.t packet arrival rate.
• A concave function fe (x) = Θ(lnx). This function was inspired by the additive metric on IoT
network w.r.t packet error rate.
• A cutting function: fe only received two values, fe (0) = 1 and fe (1) = T. This function was
used when we compared our solution with the algorithms of the LB-MULTICUT problem.

Each function was set such that the initial weight fe (0) = 1 and the maximum weight was T. Since
there exists heterogeneous coupling delays in modern networks, in our experiment, the weight
function of each edge was randomly selected from the linear, convex or concave functions as
mentioned above. In the experiments with the presence of LR, all weight functions were linear.
On the other hand, all weight functions were cutting function if compared with the algorithms of
LB-MULTICUT.

The algorithms were implemented on both synthesized networks and real-world networks. The
synthesized networks we used were the Erdos-Renyi (ER) [23] graphs with 240 nodes and varied the
edge density parameter ρ. For the real-world networks, we used the datasets from Stanford Network
Analysis Project [33], including Gnutella, Skitter and Roadnet. Skitter is highly dense IPv4 Internet
topology graph, which were collected by traceroutes run daily in 2005; Gnutella is the snapshots
of peer-to-peer file sharing; and RoadCA is a road network of California where intersections and
endpoints are represented by nodes, and the roads connecting these intersection or endpoints are
represented by undirected edges. Information of real-world datasets are summarized in Table 3.

8.2 Performance comparison

8.2.1 Small size random graph. In these experiments, we compared our algorithms with the CC
solution on directed ER networks with n = 240 and we varied the edges density ρ. The threshold T
was set to be 3 and the size of S was 10.
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APPENDIX

PROOF OF LEMMA 4.2

Let s = {s1, ..sm}, since s is a unit vector, there is only one value among s1, ..sm is 1 and the others
are all 0. By extending the Equ. 12, we have

∆sд(P, x) =
∑

p∈P
βp

(

min(T,
∑

e ∈p
fe (xe + se )) −min(T,

∑

e ∈p
fe (xe ))

)

For each path p, we will prove that:

min(T,
∑

e ∈p
fe (xe + se )) −min(T,

∑

e ∈p
fe (xe ))

≥ γ · (min(T,
∑

e ∈p
fe (ye + se )) −min(T,

∑

e ∈p
fe (ye )))

We consider three cases:

• T ≥ ∑

e ∈p fe (xe + se ) ≥
∑

e ∈p fe (xe ). Then we have

min(T,
∑

e ∈p
fe (xe + se )) −min(T,

∑

e ∈p
fe (xe ))

=

∑

e ∈p
fe (xe + se ) −

∑

e ∈p
fe (xe )

≥ γ ·
(
∑

e ∈p
fe (ye + se ) −

∑

e ∈p
fe (ye )

)

≥ γ ·
(

min(T,
∑

e ∈p
fe (ye + se )) −min(T,

∑

e ∈p
fe (ye ))

)

• ∑

e ∈p fe (xe + se ) ≥ T ≥ ∑

e ∈p fe (xe ). In this case,
∑

e ∈p
fe (ye + se ) ≥

∑

e ∈p
fe (xe + se ) ≥ T

also

min(T,
∑

e ∈p
fe (ye )) ∈ [

∑

e ∈p
fe (xe ), T]

Therefore:

min(T,
∑

e ∈p
fe (ye + se )) −min(T,

∑

e ∈p
fe (ye ))

= T −min(T,
∑

e ∈p
fe (ye ))

≤ T −
∑

e ∈p
fe (xe )

= min(T,
∑

e ∈p
fe (xe + se )) −min(T,

∑

e ∈p
fe (xe ))

• ∑

e ∈p fe (xe + se ) ≥
∑

e ∈p fe (xe ) ≥ T. This case is trivial because both min(T,∑e ∈p fe (ye +
se )) −min(T,∑e ∈p fe (ye )) and min(T,∑e ∈p fe (xe + se )) −min(T,∑e ∈p fe (xe )) are 0.

Hence, ∆sд(P, x) ≥ γ∆sд(P, y), which completes the proof.
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PROOF OF THEOREM 4.4

Denote x∗ is optimal solution to the QoSD instance. Define xi as our obtained solution before the
ith iteration in Alg. 3. Denote xoi as an optimal solution that is in additional to xi to block all paths
in P. We have:

| |x∗ | | ≥ | |x∗/xi | | ≥ | |xoi | | (37)

Assume xoi =
∑l

i=1 ui where ui is a unit vector. We have:

D(P, xi + xoi ) − D(P, xi ) =
l

∑

j=1

∆uj D(P, xi +
j−1
∑

z=1

uz ) (38)

≤ 1

γ

l
∑

j=1

∆uj D(P, xi ) (Lemma 4.2) (39)

≤
||xoi | |
γ

max
s

∆sD(P, xi ) (40)

≤ OPT

γ
(D(P, xi+1) − D(P, xi )) (41)

=

OPT

γ
(|P|T − D(P, xi ) − (|P|T − D(P, xi+1))) (42)

Equ. 41 follows by greedy selection. Since D(P, x1 + xoi ) = |P |T,

|P |T − D(P, xi+1) ≤ (1 −
γ

OPT
)(|P|T − D(P, xi ))

Note that the Alg. 3 will terminate after | |x| | iterations. Therefore:

|P |T − D(P, x | |x | |) ≤ (1 −
γ

OPT
)(|P|T − D(P, x | |x | |−1)) ≤ ...

≤ (1 − γ

OPT
) | |x | |(|P|T − D(P, {0} |E |))

≤ (1 − γ

OPT
) | |x | | |P |T

Since there should be at least a path p ∈ P whose overall delay is at most T − 1 in final round,
we have |P |T − D(P, xl ) ≥ 1. Therefore:

| |x| | ≤ ln |P |T
ln 1

1− γ
OPT

=

ln |P |T
ln(1 + γ /OPT

1−γ /OPT )

We have ln(1 + x) ≥ x − x 2

2
for x ∈ (0, 1). So

| |x| | ≤ ln |P |T
γ

OPT
(1 − γ

2OPT
)
≤ OPT ·O( ln |P |T

γ
)

And since |P | ≤ nh, IG obtains O( 1
γ
(h lnn + ln T)) approximation guarantee, which completes

the proof.
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PROOF OF THEOREM 4.5

Denote x∗ = {x∗1 , ...x∗m} as optimal solution to the QoSD problem. Define xi = {x1, ...xm} is our
obtained solution before the ith iteration in Alg. 4. Denote xoi = {xo1 , ...xom} as an optimal solution
in additional to xi to block all paths in P. We have:

| |x∗ | | ≥ | |x∗/xi | | ≥ | |xoi | |

Denote v(e) = {x1, ..xe−1,xe +xoe , ...xm +xom}. Trivially, v(1) = xi +x
o and v(m+1) = xi . Assume

u(ei , ji ) is the vector we would add into solution xi in iteration ith. We have following lemma.

Lemma .1. For all e ∈ E, we have:

∆u(ei , ji )D(P, xi )
ji

≥ D(P, v(e)) − D(P, v(e + 1))
xoe

Proof. Denote w(e) = {x1, ...xe−1,xe + xoe ,xe+1, ...xm}. Consider a single path p ∈ P, denote

h(p, s) =
∑

e ∈p&e<s
fe (xe ) +

∑

e ∈p&e≥s
fe (xe + xoe )

д(p, s) =
∑

e ∈p&e,s
fe (xe ) + fe (xs + xos )

then we have:

r(p, v(s)) − r(p, v(s + 1)) = min(T,h(p, s)) −min(T,h(p, s + 1))

r(p,w(s)) − r(p, xi ) = min(T,д(p, s)) −min(T,
∑

e ∈p
fe (xe ))

Trivially, we have that:

h(p, s) − h(p, s + 1) = д(p, s) −
∑

e ∈p
fe (xe ) = fs (xs + xos ) − fs (xs )

and due to monotonicity of r(p, x)

h(p, s) ≥ д(p, s)

h(p, s + 1) ≥
∑

e ∈p
fe (xe )

Therefore, using the similar proof as lemma 4.2, we have:

D(P, v(e)) − D(P, v(e + 1)) ≤ D(P,w(e)) − D(P, xi )
= ∆u(e,xoe )D(P, xi )

Due to AT selection, we have that:

∆u(e,xoe )D(P, xi )
xoe

≤
∆u(ei , ji )D(P, xi )

ji

in which the lemma follows. □
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Now, we will find the approximation guarantee of AT solution. We have:

D(P, xi + xoi ) − D(P, xi ) =
∑

e

(D(P, v(e)) − D(P, v(e + 1)))

≤
∑

e

xoe
ji
∆u(ei , ji )D(P, xi )

≤ OPT

ji
(D(P, xi+1) − D(P, xi ))

Since D(P, xi + xoi ) = |P |T, we have

|P |T − D(P, xi+1) ≤ (1 −
ji

OPT
)(|P|T − D(P, xi ))

Assume AT stops after l iterations, we have

|P |T − D(P, xl ) ≤
l

∏

i=1

(1 − ji

OPT
)(|P|T − D(P, {0})) (43)

≤
(

1 −
∑l

i=1 ji

l · OPT
) l

(|P|T − D(P, {0})) (44)

≤ e−
| |x| |
OPT (|P|T − D(P, {0})) (45)

Equ. 44 comes from the following Cauchy theorem

Theorem .2. (Cauchy Theorem [3]) Given n non-negative numbers x1, ...xn , we have

n
∏

i=1

xi ≤ (
∑n

i=1 xi

n
)n

Equ. 45 comes from observation that (1 − x
n
)n ≤ e−x .

Therefore, | |x| |1 ≤ OPT ln |P |T. Since |P | is bounded by nh, AT obtainsO(h logn + log T) approxi-
mation guarantee.

PROOF OF LEMMA 5.2

Denote vi as the budget vector v after greedily selecting first i unit vectors, then by monotonicity

B̂(P, x + vo) ≤ D̂(P, v + vo + vi ). We have

B̂(P, x + vo) ≤ B̂(P, x + vo + vi ) (46)

= B̂(P, x + vi ) +
q

∑

j=1

∆uj B̂(P, x + vi +
j−1
∑

i=1

ui ) (47)

≤ B̂(P, x + vi ) +
1

γ

q
∑

j=1

∆uj B̂(P, x + vi ) (48)

≤ B̂(P, x + vi ) +
q

γ
(B̂(P, x + vi+1) − B̂(P, x + vi )) (49)

The inequality (49) is due to greedy selection. Therefore,

B̂(P, x + vi+1) − B̂(P, x + vi ) ≥
γ

q
(B̂(P, x + vo) − B̂(P, x + vi ))
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Which also means

B̂(P, x + vo) − B̂(P, x + vi+1)

≤ (1 − γ

q
)(B̂(P, x + vo) − B̂(P, x + vi ))

Therefore

B̂(P, x + vo) − B̂(P, x + v) ≤ (1 − γ

q
)q(B̂(P, x + vo) − B̂(P, x))

So

∆vB̂(P, x) ≥ (1 − (1 −
γ

q
)q)∆vo B̂(P, x)

≥ (1 − e−γ )∆vo B̂(P, x)
which completes the proof.

PROOF OF THEOREM 5.7

First, considering the greedy selection v in each sampling iteration, from lemma 5.6, we have

∆vB(x) ≥ (1 − e−γ )(1 − ϵ)∆v∗B(x)
with probability at least 1 − δ/| |b| |.

Denote xo =
∑s

i ui as an optimal solution, which is additional to x, can block all paths in F (ui

is a unit vector). Let split xo into l = ⌈ | |x
o | |
q
⌉ parts L1, ...Ll where Li =

∑iq

j=(i−1)q+1 uj , we have:

∆xoB(x) =
l

∑

j=1

∆LjB(x + L1 + ... + Lj−1) ≤
1

γ

l
∑

j=1

∆LjB(x)

Therefore, there should be at least a value ∆LjB(x) ≥
γ

l
∆xoB(x). And since | |Lj | | ≤ q, we have:

∆vB(x) ≥
γ

l
(1 − e−γ )(1 − ϵ)∆xoB(x)

which also means

|F|T − B(x + v) ≤ (1 − qγ

OPT
(1 − e−γ )(1 − ϵ))(|F|T − B(x))

Now, denote xi as our solution after the ith iteration of Alg. 5. We have

|F|T − B(xi+1) ≤ (1 −
qγ

OPT
(1 − e−γ )(1 − ϵ))(|F|T − B(xi ))

Assume the algorithm terminates after д iterations, we have:

|F|T − B(xд) ≤ (1 −
qγ

OPT
(1 − e−γ )(1 − ϵ))(|F|T − B(xд−1)) ≤ ...

≤
(

1 − qγ

OPT
(1 − e−γ )(1 − ϵ)

)д

(|F|T − B({0}m))

Each inequality happens with probability at least 1− δ
| |b | | . So the probability such that |F|T−B(xд) ≤

(

1 − qγ

OPT
(1 − e−γ )(1 − ϵ)

)д

(|F|T − B({0}m)) is at least 1 − δд

| |b | | ≥ 1 − δ . Moreover, since in the дth

iteration, there should exist a path p ∈ F, whose length smaller than T. So, the maximum length of
p is T − 1. Therefore
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1 ≤ (1 − qγ

OPT
(1 − e−γ )(1 − ϵ))д |F|T

So д ≤ O( ln T+h lnd
qγ (1−e−γ )(1−ϵ ) )OPT. Since in each iteration, a budget vector v, | |v| | ≤ q is added into

solution, out final solution guaranteesO( ln T+h lnd
γ (1−e−γ )(1−ϵ ) ) approximation ratio with probability at least

1 − δ .
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