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The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with
time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol’
indices of the evolving mean and variance estimates of states are used to assess the
impact of the time-invariant uncertain model parameters and the statistics of the stochas-
tic input on the uncertainty of the output. Numerical results on two benchmark problems
help illustrate that it is conceivable that parameters, which are not so significant in con-
tributing to the uncertainty of the mean, can be extremely significant in contributing to
the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to
synthesize a surrogate probabilistic model of the stochastic system after using Lagrange
interpolation polynomials (LIPs) as PC bases. The Sobol’ indices are then directly eval-
uated from the PC coefficients. Although this concept is not new, a novel interpretation of
stochastic collocation-based PC and intrusive PC is presented where they are shown to
represent identical probabilistic models when the system under consideration is linear.
This result now permits treating linear models as black boxes to develop intrusive PC

surrogates. [DOI: 10.1115/1.4041622]

1 Introduction

Integral to the task of forecasting is the uncertainty in initial con-
ditions, model parameters, unmodeled dynamics, and stochastic
disturbances. The Kalman filter [1] and its numerous derivatives
such as the unscented transform filter [2], conjugate unscented
transform filter [3], and ensemble Kalman filter [4,5] use the mean
and covariance to quantify the uncertainty in the evolving states of
a dynamic process. The typical source of uncertainty in a Kalman
filter is process noise, which can represent unmodeled dynamics or
stochastic input, and the uncertainty in the states is a function of
the initial state uncertainty and the statistics of the stochastic input.
Model parameter uncertainties are not typically included in charac-
terizing the uncertainty in the forecast variables under the frame-
work of the Kalman paradigm. In the presence of model parameter
uncertainties, one is confronted with the question: how confident
can one be in the estimate of the variance of the output resulting
from the propagation of Kalman filters.

Whether the goal is evacuation in the face of an impending hur-
ricane, grounding a high value asset for preventative maintenance,
fault detection and isolation or avoiding expensive maneuvering
of the space station to avoid the potential of collision with space
debris, uncertainty in the state estimates is the bane of any deci-
sion maker. It is, therefore, not difficult to motivate the need to
comprehend the impact of various sources of uncertainties on the
uncertainty of the output of interest. This formal apportionment of
uncertainty in the output to the various causal uncertain sources
can permit identification of the subset of the uncertain sources
that predominantly contribute to the uncertainty in the output.
This is the purview of global sensitivity analysis (GSA), which
has garnered increasing attention over the past two decades [6].

Global sensitivity analysis has been exploited by Cho et al. [7]
where they submit that parameter sensitivity analysis can be used
to provide guidance on which measurement to consider for better
estimation of model parameters. This in essence is an efficient

Contributed by the Design Engineering Division of ASME for publication in the
JourNAL OF COMPUTATIONAL AND NONLINEAR DyNAmics. Manuscript received May 29,
2018; final manuscript received September 21, 2018; published online January 7,
2019. Assoc. Editor: Paramsothy Jayakumar.

Journal of Computational and Nonlinear Dynamics

(optimal) design of experiments to maximize the accuracy of the
estimation of model parameters [8].

Global sensitivity analysis can be used to exercise the spirit of
Occam’s Razor, which is an articulation of endorsing the simplest
model. GSA can help identify variables, which have minimal to
no impact on the output and can consequently be eliminated (or
fixed) from the set of variables used to parameterize the model,
i.e., help in model reduction [6].

Global sensitivity analysis has also been used to characterize con-
tribution of uncertainty to outputs of interest, which vary over time
[9-13]. Since this division of contribution keeps changing dynami-
cally, it is often desired to know when the influence of an uncertain
parameter is significant. For example, it is possible that a parameter
is seen to be most significant during transients while its influence is
minimal elsewhere in time. For applications where the steady-state
operation is of interest, it might be then prudent to not invest resour-
ces in better estimating those parameters since their influence is
minimal at the time of interest. McRae et al. [12] (where the popular
Fourier amplitude sensitivity test method for doing GSA was devel-
oped) talked about the dynamic nature of sensitivities. A simple
chemical reaction was considered and the time-varying influence of
the input uncertain parameters on it was presented. In another
example, McCarthy et al. [11] studied the temporal dynamics of
parameter sensitivities for gene expression in Drosophila embryos
where they showed that influence of certain parameters like
mRNA decay rate increased significantly over time while other
parameters such as those related to transcription and translation
decreased. These observations aligned with experimental results
and allowed them to corroborate existing theories on the dynamic
nature of gene expression in developing Drosophila embryos.

Cao et al. [14] looked at Sobol’ Indices-based GSA for linear
systems with parametric uncertainties and process noise for the
first time. Analytical expressions for the evolution of only the
first-order Sobol indices were derived and numerical examples
where their analytical solutions aligned with Monte Carlo results
were presented. However, the analytical expressions required
indefinite symbolic integrals of impulse responses. This approach
requires detailed knowledge of the linear model and its structure,
which may not be discernible for all practical applications. The
work in this paper, in contrast, presents a way to determine the
Sobol” indices (first-order effects as well as higher order effects)
while treating the stochastic linear model as a black box, thus
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eliminating the need for exploiting the structure of the model in
evaluating symbolic integrals.

This paper uses polynomial chaos (PC) to develop a surrogate
probabilistic model for the stochastic linear system. PC is an
uncertainty quantification tool, which has been used extensively
in the literature to characterize the propagation of uncertainty
through odes and pdes. It is shown in this work that an intrusive
approach to determining PC coefficients is equivalent to differen-
tially weighing several realizations of the stochastic system (simi-
lar to the stochastic collocation approach) when the system under
analysis is linear and the uncertainties individually appear linearly
in the model. This is done by assuming a novel set of bases, i.e.,
the Lagrange interpolation polynomials (LIPs) for the intrusive
PC expansion, which has not been considered in the literature
before. It allows one to develop an intrusive PC model nonintru-
sively for linear systems and makes evaluation of PC coefficients
computationally cheaper.

After determining the PC probabilistic model, the pioneering
work of Sudret [15] and Crestaux et al. [16] is used to derive the
Sobol” indices at a negligible computational cost. Although PC
has been used for GSA of linear dynamic systems before in Ref.
[10], process noise as a disturbance to the model has never been
considered. In this work, process noise is included while develop-
ing the PC model. Hence, when the Sobol’ indices are derived,
they reflect the contribution of the input parameters in the pres-
ence of process noise since the statistical information about the
process noise is already embedded in them.

The outputs of interest in this paper are considered to be the
first two moments of the stochastic system under the influence of
Gaussian disturbance (or white process noise). The Sobol’ indices
associated with the mean represent the influence input model
parameters have on the system when there is no disturbance. The
indices associated with the second moment on the other hand rep-
resent how much the parameters influence our estimate of the var-
iance of the states, i.e., we seek to characterize the source of
uncertainty in the estimate of the variance (here, variance refers to
variance due to process noise alone). The readers are encouraged
to think in terms of figuring out how globally sensitive the var-
iance estimate is to the uncertainty ranges of the model input
parameters. Such an analysis is novel (to the authors’ best knowl-
edge) and forms the second major contribution of this paper.

The paper has been structured in the following way: Section 2
describes the systems of interest and the desired objective of the
work. Section 3 provides an overview of Sobol’ Indices. Section 4
presents the quantification of uncertainty propagation through
time due to process noise and uncertain model parameters. This
section also presents the equivalence of nonintrusive stochastic
collocation-based polynomial chaos and the intrusive Galerkin
projection approach. Section 5 presents results from literature on
the determination of Sobol’ indices from Polynomial Chaos coef-
ficients. Section 6 applies the methods of the paper on two numer-
ical examples for illustration. The paper finally terminates with
concluding remarks in Sec. 7.

2 Problem Statement

Consider the continuous-time linear stochastic system of the
form

x=A(Q)x+B(u+G(E)w M

with initial conditions x(0) = x(&), where x € R” is the state
vector of the system, u € R™ is the input vector, w € R is an
additive noise term, and & € R” is a vector of uncertain parame-
ters. The uncertain parameter vector & is modeled as a time invari-
ant random variable with a known probability distribution
function (pdf). In this work, it is assumed that the pdf of & is uni-
form. It is also assumed that w(z) evolves according to a continu-
ous white noise process with a probability measure given by

Ey[w(n)] =0 @)
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Eu[wiyw()"] = Q(f)J 3(t — tr)dn @)

0

where Q(&) denotes the parameter-dependent co-variance, 4(%)
represents the Dirac delta function, and E,[-] is the expectation
operator evaluated over the w space.

The objective of this work is to determine and quantify the
influence of the parameter vector & on the first two moments of
the states (u and X) from a GSA perspective. The GSA is accom-
plished by calculating the popular variance-based measures called
the Sobol’ indices [17].

3 Sobol’ Indices

The main objective of variance-based GSA techniques is to
decompose the output variance of interest into a sum of variances
contributed either by individual input parameters or by a combina-
tion of the input parameters.

For example, consider the scalar function

y=1(&) “

where & = [ﬁl, . f,,]T is the input parameter vector defined on
the p—dimensional unit hypercube (i.e., & € Q" =[0,1]") and
(&) is integrable over Q7.

The function in Eq. (4) can be decomposed (also known as the
Sobol’ decomposition) as

p
FlE 0 &) =f+ D FE+ D fi(énE)
i=1

1<i<j<p

+“.+f1,2 ..... P (617"'16])) (5)

where f; is a constant and the integral of any of its summand

Jivis (é,—l,..., é,—\,) over each of its independent variables is zero

[15],i.e.,

1

[ froienti)ae —0rri <k<s @
Jo

Other properties of this decomposition (such as the number of
terms in Eq. (5) or the orthogonality of fi, i (&, ...,&;)) can be
found in Refs. [15] and [18], and have therefore not been included
in this document.

It can be shown that, with the assumption of the properties
listed in Ref. [15], the Sobol’ decomposition is unique. In fact, the
decomposition terms can be evaluated using the expressions

fo=|_rea @

p

@) = |

prl

f(&)de.i = fo ®)

i) = Jgazf(é)d@{if} —h A& —£(G) O

where any summand can be expressed as the difference between a
multidimensional integral and the previously evaluated sum-
mands. The operators Jo,-1d¢_; and [o2d& _(;;y in Egs. (8) and (9)
represent integrals over all variables except for (¢;) and (f,—, éj),
respectively. The notation used is identical to Ref. [15] and should
be referred for more details.

Now, consider a stochastic variable Y = f(&), which is depend-
ent on an input random vector & where each element of £ is uni-
formly distributed with a distribution ¢&; € U[0,1]. The total
variance of Y can be then written as
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D= varlf(@) = |_rePaz—f; (10

Using the Sobol’ decomposition of the function f(&) and the
orthogonal property of its summands, it can be shown that the
total variance D can be decomposed into

P
D="Di+ Y Dj+-- (11)
i=1 1<i<j<p
where the partial variances D;, __; are defined as
2.
Dy, :J Jivi (& oos &) 7dEs ., A& for
o
1< <---<ig<pands=1,...,p (12)

The Sobol’ indices are eventually defined in terms of the partial
variances as

Sil.,.”Jv - Di|‘.4..,15/D (13)
Also, from Eq. (11), it easily follows that:
p
Z&"F Z S+ +Sip..p=1 (14)
i=1

I<i<j<p

iance that is contributed by the combination of the uncertain
parameters in the set (&, ..., &;). For example, S; would represent
the fraction of the total variance contributed by the uncertainty in
¢, and S1, would represent the fraction of the total variance con-
tributed by the combined effects of the uncertainties in the random
variables (&; and &,).

In this work, the aim is to observe the time evolution of the
Sobol’ indices when the mean (u) and the variance (X) of the
states of a linear stochastic system with process noise are outputs
of interest. That way, the global dependence of the u and X on the
uncertain parameters of the model & can be studied.

4 Propagation of Uncertainty Through Time

This section presents details on the development of a probabil-
istic model for the time evolution of the statistics (mean and var-
iance) of the stochastic states of the system described in Eq. (1).
The first step in the process is to quantify the propagation of
uncertainty solely due to the process noise. This has been done
extensively in the literature before and the necessary differential
equations have been quoted in Sec. 4.1. The second step of the
process is to quantify the propagation of uncertainty due to the
uncertain parameters of the model. This is done by adopting a
popular probabilistic modeling tool called polynomial chaos. The
details of this step have been presented in Sec. 4.2.

4.1 Propagation of Uncertainty Due to Process Noise. It is
well known that when white noise passes through a time invariant
linear system, the pdf of the evolving state vector remains Gaus-
sian and can hence be characterized completely by its first two
moments. The differential equations that characterize this evolu-
tion are given by

it = A(©u+B(&)u (15)

T =AQZ+ZAQ)" +G(9QHGE)" (16)
where u(t) and X(r) represent the evolving mean and covariance
of x(z). The initial condition for these equations is correspond-

ingly given by
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#(0) = py = E¢lxo(&)] a7

T
£(0) = %o = Ee | (x0(&) — o) (o) —mo)"]  (18)
where E¢[-] is the expectation operator evaluated over the uncer-
tain parameter & space.

Equations (15) and (16) are linear differential equations and
can be grouped into the following linear system as:

2(17 6) :Az(é)z+Bz(§)uZ (19)
where z € R” is defined by
zZ= [ﬂT,E‘T,]T, T, =vec[Z], u, = [uT, I]T (20)

and 7i = n + n’. The operator vec[-] in the above equation assem-
bles columns of a matrix and stacks them vertically to make a vec-
tor of size equal to the number of elements in the matrix. A
formal definition of vec[-] can be found in Ref. [19].

The matrices A, and B, in Eq. (19) are defined as

A=A O A =AW L AD A Zp g, @n
0 A, mom
(1, @ A(1,2)

@ _ | @AQ2, - |8 0

Am — and BZ = 0 vec[GQGT} (22)
I, @ A(n,:)

where A(i, :) refers to the ith row of A and the operator ® denotes
the Kronecker product. Hence, Eq. (19) defines a stochastic linear
system devoid of process noise, which is now only a function of
the uncertain parameters, where the states represent the mean and
the variance of x(7) due to process noise.

At this stage, although the uncertainty due to process noise has
been quantified, the propagation of uncertainty due to the uncer-
tain model parameters still needs to be worked out. Section 4.2 is
directed at catering to model parameter uncertainties.

4.2 Propagation of Uncertainty Due to Uncertain Model
Parameters Using Polynomial Chaos. Polynomial chaos has
been an extremely popular tool in the literature for developing
polynomial probabilistic models. It was first investigated by Nor-
bert Wiener in his article [20] where he approximated states of a
Gaussian process with an infinite series expansion with Hermite
polynomials as bases. Subsequently, pioneering works by
Cameron and Martin [21], Ghanem and Spanos [22] and Xiu and
Karniadakis [23] have resulted in significant progress of PC con-
cepts. It has allowed for the development of surrogate models,
which can emulate the original stochastic system inexpensively
and has been used to determine statistics (for example mean and
variance) of states accurately. In this work, PC is used to develop
a probabilistic model for stochastic linear systems as a stepping
stone toward an efficient GSA.

From PC theory, the states of the system in Eq. (19) can be
expressed as [24]

o0

2(6,8) =Y zi()¥i(&)

(23)

i=1

where W;(&) is a complete set of multivariate orthogonal (with
respect to the pdf of &) polynomials and z.; € R" is the time-
varying coefficient vector (i.e.,z.; = [z1; ="~ z,;.,»f) of ¥;(&).

Depending on the desired level of accuracy, typically, the infi-
nite series is truncated as an approximation
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N

(6,8 ~ Y zi(O)Wi(E) 24)

i=1

The objective here in this modeling technique is to evaluate the unknown vectors z.;(¢) over time. They can be determined by either
intrusive methods or by nonintrusive methods [25]. Intrusive methods require an analytical knowledge of the system model while nonin-
trusive methods can treat models as black boxes. In this work, since the models of interest are linear, the intrusive Galerkin projection is
considered and investigated.

On substituting Eq. (24) in Eq. (19), we get

N

3 2 (0¥i()

i=1

+ B-(&u:(7) 25

Taking the Galerkin Projection of Eq. (25) over the basis function space, a deterministic system of equations is derived
MpcZpc = ApcZpc + Bpcuy(1) (26)
T . .
where Zpe = z?l, zfy . ZZN] ; Mpc is given by Eq. (28)

[ By ¥1) - (Byip), ) ]|

<Bz(ﬁl)7\ljl>7 <BZ("
Bpc = : - : ; 27
<Bz(ll)7‘PN>7 ) <BZ(1[1)7\PN>

<Bz(ﬁl)>leN>7 Ty <Bz(r7m)7\PN>_

(v oL, 0 (Y2, ¥1) 0O, 0 o (P 0f, o ]
0 (W,¥) 0, 0 (P2, ¥1)  0f, - 0 (Pnv,¥1)  Of,
0 or, (¥, ¥) 0 or, (¥, ¥)) - 0 or | (Py, 1)
Mpc = : : ; ; : : ; : : (28)
(¥, Py) O, 0 (¥, Py)  OF, 0 S (P, Py) 0F, 0
0 (P, Py) O, 0 (P, Wy)  OF, - 0 (Py, ) or |
0 of , (¥, ¥N) 0 o , (¥, Wn) - 0 I
[ <Az(11)\Pl7\Ijl>7 <Az(lﬁ)qll7qll>7 <Az(11)\},27l}ll>7 <Az(1il)\P27\Pl>7 Ty <Az(ll)\PN7\Pl>7 (Az(lil)\PN7lPl> |
<Az(21)\Pl7\IJl>7 <A2(2ﬁ)lIII7lPI>7 <Az(21)\},27l}ll>7 <Az(2il)\P27\Pl>7 Ty <Az(21)\PN7\Pl>7 (Az(Zil)\PN7lPl>
An¥L ¥, - A PLY), AP, ), o A Y2, W), o APy, ), o (A P, )
s A.qn¥1,¥2), - A Y2), Aan¥e,¥2), - AV, Y2), - AqnPw,Ya), - (Aqs)Ph, Pa)

PC — . . . . . .
An¥iYa), - (Aa)P,Y2), Aa¥Y2,Y2), - (AP, Wa), - Ay, W), - (Ags ¥y, P2)
A.qn¥1,Ph), - AL Py), AP, y), 0 A Y2, ), o Aca s y), o (A P, )

_<Az(ﬁ])\P17\PN>7 <A:(;,;,)\IJ17\'PN>, <Az(ﬁl)‘{127TN>7 <Az(ftﬁ)lP23lPN>a Tty <Az(ﬁ1)LPN7lPN>7 <Az(ﬁn“)\PN7\{JN> ]
(29)
and Apc is given by Eq. (29).
M_jj) refers to the ith row jth column element of matrix M. and the operator (g, /1) refers to the inner product operation
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(6.h) = ng(é)h(f)pdf(é)df (30)

where 7 is the support of pdf (&) and is defined in Sec. 3. Solu-
tion to Eq. (26) yields the desired coefficients.

In existing literature, the traditional choice for the PC bases
Y;(&) has been to select orthogonal polynomials according to the
Wiener Askey scheme [23]. However, the authors explore an
alternate set of bases in this work called the Lagrange interpola-
tion polynomials. This unique selection of bases leads to signifi-
cant advantages to intrusive PC modeling and form an integral
part of this paper’s contribution.

Lagrange interpolation polynomials have been extensively used
in the approximation theory literature to develop surrogate poly-
nomial models of systems or functions where a finite set of dis-
crete observations are available [26]. The bases are constructed
such that the surrogate model inherently replicates the value of
the system at the observation points. This strategy ensures that the
error in modeling at those points is zero, which may be a desired
property in some applications.

In fact, LIP has also been used to develop PC models under the
stochastic collocation framework of nonintrusive PC [27]. How-
ever, to the authors’ best knowledge, the possibility of using LIPs
as bases while doing intrusive PC has never been investigated. In
this paper, such an arrangement is explored for the first time. It is
seen that when LIPs are employed as the choice of bases, a
decoupled PC system is obtained, which eventually leads to
extremely efficient computation of intrusive Galerkin projection-
based PC coefficients by eliminating the need to evaluate multi-
variate integrals in Egs. (27)—(29).

The choice of collocation points for the LIP is made in a man-
ner identical to [27] (see Gaussian abscissas in the Tensor product
quadrature rules section of Ref. [27]). These points are derived
after taking tensor products of sets of univariate Gauss quadrature
points where each set of points depend on the pdf of the uncertain
variable. For example, if in the problem of interest there are two
independent uncertain variables ¢; and &, and they are both uni-
formly distributed as &, & € U(—1,1): the collocation points are
simply the grid nodes obtained from the tensor product of Gauss-
Legendre quadrature points.

Using the above strategy to select the collocation points make
the LIP bases orthogonal to each other with respect to the pdf of
the uncertain variables. For example, consider a case where &;
and ¢, are two independent random variables. If L;; are the LIPs
defined via

(e [ os)
Lij(&,&6) = H (00 =) qll_,/[#qm
(€29)

then it can be shown that they are orthogonal to each other with
respect to the joint pdf of £; and &5, i.e.,

2={%

where ¢, are constants, ép and ég) are the quadrature points in

the &; and &, directions, respectively, and n; and n, are the num-

ber of quadrature points in the ¢, and &, directions, respectively.
Whenp=randg=s

1 gl
<qu7qu> =0.25 J J qu(é] 5 52)2d51d52
—1J-1

p=rand g=s

L,,, L, .
{Lpg> otherwise

(32)

(33)

Note that L2 is a polynomial function in ¢, and &, having highest
orders of 2n; — 2 and 2n, — 2, respectively. Gaussian quadrature
rules allow the perfect evaluation of the aforementioned integral
via a weighted sum of function evaluations. A tensor product of

Journal of Computational and Nonlinear Dynamics

ny and n, quadrature points is sufficient to do so as they allow a
polynomial of order up to 2n; — 1 and 2n, — 1 to be integrated
without error. As the polynomial order of interest (L[%q) is less, we

can write
ny  np

ZZWU P(I(él 752 )

(Lpgs Lpg) (34)

where w;; are the Gaussian quadrature weights. Recognizing that

0) ym) _J1 i=pandj=g¢q
Lyg (él 52 ) = {0 otherwise 33)
we get
(Lpgs Lpg) = Wpq (36)

This inherent property of LIP bases to have a value of 1 at only
one of the grid points (Eq. (35)) is henceforth referred to as the
zero error property. The zero error property is why LIPs are so
popular in the approximation theory community.

With a development similar to the one above, it can be shown
that when p # r or ¢ # s we have

(Lpg,Lrs) =0 (37)
Although this property of orthogonality has been shown only for a
two-dimensional case, it can be easily extended to higher dimen-
sions of uncertainties.

The zero error and the orthogonality property can be used to
now show that if LIPs are used as basis functions in a PC expan-
sion for an uncertain linear system where the uncertain variables
also occur linearly individually (i.e., the partial derivative with
respect to a variable of the multilinear term is independent of that
variable), then the desired PC coefficients determined via the
intrusive Galerkin Projection are specific realizations of the origi-
nal system.

Once again, an illustration on a linear system with two uncer-
tain independent variables has been presented, although the devel-
opment can easily be extended to any dimensions of uncertainties.

Similar to Eq. (19), let a linear system be of the form

=A.(&1, &)z + Bo(1, &)u, (38)
where the basis functions are chosen to be the LIP (defined in Eq.
(31)). A finite PC expansion leads to

Z’N‘iizq Lij(&1,&) 39
Equation (39) is then substituted in Eq. (38) to get
i: izijl‘ii(éh &) = A6, &) (i: i:zijLi/(éu éz))
=1 j= =1 j—
B.(¢1, &)u, (40)

Taking the Galerkin Projection of Eq. (40) on the basis function
space yields a series of deterministic equations, which can be
solved to yield the coefficients Z;(z). In the interest of brevity, the
derivation of the deterministic system pertinent to the Galerkin
projection of Eq. (40) only on the first basis function is shown.
The other systems can be derived in an identical fashion.

The inner product of Eq. (40) with L leads to

ZZZL] Lij,Li1) = ZZ (&1, 8)Zi)Li(&, &) L)
i=1 j= i=1 j=
+(B:(&1, &), Linu; 41)
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The orthogonality property can be used to determine that the left-
hand side of Eq. (41) is

wiZ (42)
If the system matrix A.(¢;,&,) is linear or bilinear in &; and &,
the integrand in the first inner product integral (on the right-hand
side of Eq. (41)) is a polynomial with highest order 2n; — 1 and
2ny — 1 with respect to &; and &, respectively. Hence, a nj ny
point quadrature rule can be used to perfectly evaluate those inte-
grals. Since those quadrature points are the same as the ones
selected to generate the LIP bases, the zero error property of LIP
can be used to show that the right-hand side of Eq. (41) is given
by

wiA; (55”, 5(21)>Z11 +wnB: <f§l), él)> u; (43)

leading to the deterministic system
winZi = wiA; (551)7 f(ZU)ZH + Wlle(f(ll)7 Cfé”)“z 44)
=Zn =Az<€§”,i§”>2n +Bz(f(11>7éél)>uz (45)

Hence, it is evident that the PC coefficients (Z;;(¢)) of the basis
function Ly, are simply given by a system realization of the origi-

nal system at the quadrature point (ﬁgl), 5(21)). This result also

extends to the other deterministic systems derived from the Galer-

kin projections. To remain consistent with the notation in Eq.

(24), the double indexing strategy (Eq. (39)) is now relinquished

to adopt a single index addressing. This can be done as follows:
Let a matrix M; be defined comprising all the bases

Ly -+ Ly

My = (46)

Lnll Lnlng

The single indexing can be then defined such that the elements of
M, are assimilated row wise into a single indexed vector as
follows:

Y= [Lll>'-'7Llr127---7Ln113-~-7LH|n2]T (47)
where W, represents the ith element basis function of ‘Y. The cor-
responding coefficient vectors (Z;(r)) are addressed in a similar
manner such that z.;(7) refers to the coefficient vector of ;. It
should be pointed out that the surrogate models obtained via tradi-
tional PC—Galerkin and LIP blending of system realizations are
identical, i.e., they lead to the same exact surrogate model.

The result obtained in Eq. (45) leads to a remarkably simple
composition of matrices Mpc, Apc, and Bpc as illustrated in the
following equations:

wily 0z - 0z
0;i  wpli - 03
Mpc = ] . ) (43)
Oﬁ 0;, Wnl,,21~
Wlle <é§1)7 5(21))
(1) (2
Bpc = wiB; (51 5 52 ) (49)

Wnlnsz (ég’“)a éé’n))
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W11Az(f(11>7f§1)> 07 0

05 W12AZ<CV(11),5;2)> 0;

Apc=

0; (0 Wn]nzAz <£§”l)7£§”2))

(50)

Although the impact of this result may remain unclear at the out-
set, it actually has profound implications from a computational
perspective. Previously, to obtain a PC surrogate model using
intrusive Galerkin projection methods, several definite integrals
needed evaluation (over the compact uncertain domain) to obtain
the set of deterministic odes for the coefficients. This task of eval-
uating symbolic integrations often makes it extremely difficult or
in some cases impossible to derive the PC system. This develop-
ment shows that since the intrusive Galerkin method is equivalent
to Lagrange interpolation blending, the definite integrals over the
uncertain space need not be carried out at all to obtain the equiva-
lent surrogate model. Instead, the true system just needs to be
evaluated at a certain specific set of points and the PC approxi-
mate model is simply a differential weighing of these realizations:
providing a cook book formula to obtain intrusive PC surrogate
models easily without the need of exercising Galerkin Projections.

To keep a consistency in notation and make the previous devel-
opment more generic, the following sets are now defined:

. T
S={gle= ", ] i<i<m<j<p) 6D

where S represents the set of all quadrature node points. Every ele-
ment of the S is € R? holding the co-ordinates of the quadrature
points. i; through i, are indices to count through all the grid node
points and »n; represents the number of grid points in the &; direc-
tion. Since the total number of grid points is the tensor product of

the quadrature points in each direction, the number of elements in
the set S is

I
N=]]n (52)
i=1
The generic multivariate LIP can be defined as
L [ (ék - 5;Ej))
L., =111 11 TN (53)
=1\ =it (q“k" =& )
such that
. 9T
1 foré= [f(l”), e f;,”’)]
L, i = i i 54
&= 0 forg 28 o 2 OP
or -+ &, # ¢l
Equation (54) represents the zero error property.
We define another set L;, to hold all the basis functions
Ly={Y¥=L; ;&)1 <ij<n,1<j<p} (55

The cardinality of L, is the same as the cardinality of S. In fact,
each basis function in L, is equal to 1 when evaluated at one par-
ticular element in S and is equal to 0 when evaluated at all other
grid points in set S. Therefore, each grid point in S has a corre-
sponding basis function in L.
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Elements in S and L, are arranged in a matrix (£) and a vector
(W), respectively, for convenience of communication, i.e.,

== [e0, e, ... (56)
where = € RV ) ¢ 5 and
¥ = [¥, P, ..., Py (57)
where ¥; € L;, and
ey _ J 1 fori=j
wile )7{0 or i 4 (58)

Using the notation above, and recalling once again that the coeffi-
cients of a model where the bases are LIPs are simply the model
realizations at the grid points, we get the final surrogate model
expression as

(59)

4.3 Numerical Example. To illustrate how the methods pre-
sented above can be implemented, an application on a simple
spring mass damper linear system is shown. The governing differ-
ential equation is given by

mx + cx + kx = du (60)
where m is the mass, k is the spring constant, ¢ is the damping
constant, d is the control influence gain, and x is the displacement
of the mass.

The state space realization of the system is given by

.X’] o 0 1 X1 0

{x’z} - {—k/m —c/m} [xz] + [l/m}u
We assume, for illustrative purposes, that k and ¢ are uncertain,
independent, and have uniform distributions

(61)

k € U[12,28] and ¢ € U[0.7,1.3) (62)

If two standard uniformly distributed random variables are defined

as & = [£1,&]" where
& eU[-1,1] and & € U[-1,1] (63)

then the system parameters can be expressed as

!

] |

057} | O Realization Nodes|
w0 @ G
-0.5

—

-1 -0.5 0 0.5 1
&
Fig.1 PC realization nodes for ny =n, =3
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k=ko+ k& and ¢ =co+c1& (64)
where ky =20, ky =8, ¢o = 1, and ¢; = 0.3. Note that for this
example, 7 = 2 and p =2.

The first step in deriving the surrogate model is to assume a
degree of approximation. The degree of approximation is depend-
ent on the number of quadrature points that are selected in each
direction of uncertainty. Considering there are two uncertain vari-
ables, two sets of quadrature points are selected in their corre-
sponding directions. For illustration, we select an equal number of
points for ¢, as well as &, (although this is not a necessity) i.e.,
n; = 3 and n, = 3. The points in each direction are given by

) 7151/2 ) ; 151/2

&Y = 5 g =0 &Y = 5 (65)
and

) _1512 151/2

&) = 5 & =0 &= 5 (66)

These points are actually the roots of an (n; + 1)th order Legen-
dre polynomial and hence, are also the univariate
Gauss—Legendre points. Both sets of points have the same magni-
tudes since both uncertain variables have identical distributions.

A tensor product of the univariate quadrature points now yields
the desired comprehensive set of collocation points or grid points.
The total number of grid points is given by N = n; x n, =9 (see
Eq. (52)) Similar to Eq. (56), the points are assembled in a single
matrix = shown in Eq. (67) where the ith column (&" ) represents
the ith grid point. These points are also presented as circles in the
&4, & uncertain space in Fig. 1

—15'2 —15'/2 —151/2 152 1512 1572
0 0
s s s 5 5 s
_151/2 151/2 _151/2 151/2 _151/2 151/2
5 5 5 5 5 5
(67)

The final step of developing the surrogate model is to assimilate
the matrix ¥, which holds the LIP bases. These bases can be gen-
erated using Eq. (53). N=9 basis functions are generated using
the relation

m=2 " (ka _ 5/@)

Lin©) =] 7o L0 (68)

e (ék" =& )

The bases are assimilated into the vector W where
Y = [Li1,Li2,Li3, L1, Lap, a3, Lay, Lan, Las)" (69)

Note that the ith element basis function of ¥ is referenced as ‘P;.
The final surrogate model can be written as Eq. (59) where

2(t,8) = ba (1,), 12, €)]".

5 Evaluation of Sobol’ Indices From Polynomial
Chaos

Sudret [15] and Crestaux et al. [16] showed that once a proba-
bilistic model is available for a stochastic output of interest via
PC, the Sobol’ indices could be evaluated from the PC coefficients
for a negligible computational cost. In fact, the information of the
fractional variance contribution by each individual uncertain input
parameter is already embedded and evaluated while calculating
the PC coefficients. Hence, simple algebraic expressions of the
PC coefficients can be derived to map them to the Sobol” indices.
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In contrast to Refs. [15] and [16] where the polynomial bases
used was the traditional family of orthogonal polynomials given
by the Wiener—Askey scheme, in this work, results from these
articles are used to derive the Sobol’ indices directly from the
LIP-based PC coefficients. In order to use their results, it is neces-
sary to transform the probabilistic model derived in Eq. (59)
(where the bases are LIPs) to another model such that the bases
are given by an orthogonal family of polynomials aligned with the
Wiener—Askey schematic.

This two-step process has been elaborated in this section.

5.1 Transformation of Bases. Let the new set of orthogonal
polynomial bases be denoted by 0(¢) =
[00(8),0,(8), ..., 0n_1(&)]" where 0; represents the (i + 1)th ele-
ment of ®. We seek a transformation, i.e., a set of coefficients
r.;(t) such that

N N—

2(6,8) = Y zi(0Wi(&) = D ri(06:(8)

i=1 i=0

(70)

Since the order of the polynomials in both the expansions remains
the same, the transformation is unique and linear. It can be repre-
sented using the following relation:

ro(n)’ za(n)'
a0 | _ | 220" o
r:,N—l(l‘)T Z,N(f)T

where M), € RV is a mapping matrix, which depends on the
selection of ® and is given by

-@)(6“))T-
. ()

9( 6(2)) w(e)'
)

ofe)’

L A M,

(712)

However, recognizing the property of LIP bases where they have
a value of 1 at their corresponding collocation point and a value
of 0 at the other collocation points, we get M. =1y and Eq. (72)
reduces to

(73)

Once the PC coefficients r.;(¢) corresponding to the Wiener
Askey family of orthogonal polynomials is available, the Sobol’
indices can be directly calculated using results in Ref. [15].

5.2 Calculation of Sobol’ Indices. For ease of communica-
tion to the reader, let us consider that only the first element of
z(t, &) is the output of interest. It should be noted that this consid-
eration is in no way a limitation since the development on the first
state can be easily extended to the other states in an identical fash-
ion. Hence, in this subsection, we interest ourselves with the PC
expansion of the scalar quantity z; (¢, €), which is given by

021003-8 / Vol. 14, FEBRUARY 2019

N—-1
a8 =Y ri(00i(8) (74)
=0

where 1 ;(7) represents the first element of r.;(¢).
Due to the orthogonality of 0;(&), it can be shown that the mean
and the total variance of z; (¢, &) are given by

Z1 = E¢lz1(1,8)] = ri0(1) (75)
N—1 —1

DY) = var [Z rl‘,-(t)Q,(’g‘):| =Y R 0E0E?]  as
i=0 i=1

The superscript M in DE,IC) has been introduced to identify that
DE,IC) corresponds to the total variance of the first state z;(z, &).
Similarly, the total variance of the ith state z;(z, £) would be repre-
sented by Dlg%.

Following the development in Ref. [15], the Sobol’ indices for
z1(t, &) are given by:

S = S RL0E| 022 /DR a7
aETP,l ,,,,, is
where o = [0, ..., 0], a tuple, is used to represent a particular
basis function and
P, g o >0 szl,..‘,p, kE(il,.‘.,l’A-)
el AT oy =00 Vh=1,...,p, k& (i1,....05)
(78)

In summary, [P, ; represents a set with indices (or o), which
correspond only to polynomials, which are functions of
(f,-] yeees f,-)). For example, P, would represent a set of indices,
which correspond to a subset of @ where 0; is only a function of
&, and not any other &;. Similarly, P » 3 would represent a set of
indices, which correspond to a subset of ® where 0; is only a func-
tion of (&, &, &3) and not any other ¢;.

Hence, in Eq. (77), depending on the desired Sobol’ index (or
the joint fractional contribution to total variance by a combination
of inputs), the value of the index is evaluated by first assimilating
all the PC coefficients corresponding to a subset of all the bases,

which are only a function of those inputs. These selected coeffi-

cients are then squared, summed, and divided by Df,').

The Sobol’ indices for all the other states (Sl(>2c)(i1 AL

(3)
SPC(il oo

),‘.‘) of z(t, &) can be determined in an identical way by
defining appropriate variables (Dgc)’ D]()SC>, ...). These values repre-
sent the fractional contribution to the total variance of z(z,&).
Since z(t,£) holds the elements of u and X, we can now easily
observe which model parameter uncertainties have the most influ-
ence on the evolution of g and X.

The Sobol’ indices corresponding to u represent the fractional
contribution of variance in x(z, &) by the model parameters if pro-
cess noise was absent, since the dynamic equations of u are identi-
cal to the noise free system. These indices are Sl(fc)(,.l
Jj=11,...,n].

The Sobol’ indices corresponding to X represent the fractional
contribution of variance in the variance estimate of x(t, &) due to
process noise. To simplify, the proposed amalgamation of techni-
ques allows us to evaluate and quantify the uncertainty (and its
source of contribution) in the variance of a linear system with pro-

pforj=[n+1,..n+ n?].

i) for

seels

cess noise. These indices are Sf:’& i

44444

6 Numerical Examples

In order to illustrate the proposed methodology, two numerical
examples have been presented in this section. The first example
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involves regulating the position of a hovering helicopter under
wind disturbances and the second example studies the motion of
the sprung mass of a quarter car model under uncertain road
disturbances.

6.1 Regulation of a Hovering Helicopter. The example of a
hovering helicopter under wind disturbance as well as model
parameter uncertainties [24,28] is considered. The dynamics of
the system are given by

% = Ax + BS + Byu, (79
where x = [uy, qn, O, y]"
pi p2 —¢ O Ps P
A= PP 0 00 p— Pl ana B = | 2| 0)
1 0 0 0 0 0

uy(ft/s) represents the horizontal velocity of the helicopter,
0,(x1072 rad) represents the pitch angle, g, (>< 1072 rad/ s) repre-
sents the pitch angular velocity, and y(ff) represents the horizontal
perturbation from a ground point reference. g corresponds to the
acceleration due to gravity and is equal to 0.322. J represents the
control input to the system. u,, represents the wind disturbance on
the helicopter and is modeled as a zero mean Gaussian white noise
with variance o2 = 18.

The model comprises of six model parameters (p;—pe). P1—P4
represent the aerodynamic stability derivatives while the parame-
ters ps and pg represent the aerodynamic control derivatives.

Initial conditions to the system are assumed to be deterministic
and are adopted from [24]

xo = [0.7929, —0.0466, —0.1871,0.5780]T (81)
The control law implemented is that of a full state feedback [24]
where
0=—Kx (82)
and K = [1.9890, —0.2560, —0.7589, 1]. On substituting the con-
trol law in the original system, we get the closed-loop stochastic
system
x =A.x+ B,u, (83)
where A, = A — BK. Similar to Ref. [24], it is assumed that
parameters p = [p1, p2, p3, p4]T are uncertain and are modeled
as uniform distributions within the bounds

P = [~0.0488,0.0013,0.126, —3.3535]" (84)

Py = [—0.0026,0.0247,2.394, —0.1765]T (85)
The first step in the analysis is to determine the order of PC expan-
sion desired. The order determines the fidelity of the probabilistic
model: higher the order, higher is the fidelity. Considering there
are four uncertain parameters, we can choose a distinct order of
expansion in each direction of the uncertain space. The order of
expansion in each direction also determines the number of collo-
cation points that are needed in each direction. For illustrative
purposes, we assume an equal order of expansion in each direction
(i.e., npc = 3) leading to an equal number of collocation points in
each direction: n; = ny = n3 = ng = n, = 4 where n; represents
the number of collocation in the direction of p;. The co-ordinates
of the collocation points can be evaluated according to Sec. 4.2.

Journal of Computational and Nonlinear Dynamics

Since the total number of collocation points are given by a ten-
sor product of the collocation points in each direction, we get (for
this problem), N = 4* = 256. Therefore, we have 256 correspond-
ing LIP basis functions. After realizing the moment equations at
the 256 collocation points, we develop the probabilistic model
with LIPs as bases. Using an appropriate transformation matrix
M,,, the model is transformed to one where the bases are now mul-
tivariate Legendre polynomials. The coefficients of these Legen-
dre polynomials are assimilated, squared, and summed to
determine the Sobol” indices for each element in p(7) and 2(z).

Since there are four uncertain parameters, the total number of
indices are 2” — 1 = 15. They are arranged in the following order:

S(1) = [S1,52, 53,84, 812, S13, 514, 523, S24, S34, S123,
Si24,S134, S234, S1234] " (86)

where the subscript indices of S correspond to the index of the
parameters in p.

Figures 2 and 3 present the time evolution of the indices.
Figure 2 caters to u while Fig. 3 caters to the diagonal elements of
2. The diagonal elements of X were chosen to be presented since
they represent the variance of each element of x. Similar results
for the cross-covariance terms can also be derived. However, they
have not been included in this document.

The indices have been plotted as bands in the figures. From Eq.
(14), we already know that the sum of all the indices should add
up to one and this is evident when all the bands are stacked on top
of each other. Although there are a total of 15 indices under analy-
sis, only a prominent few bands are visibly distinguishable which
have the most influence. For example, in Fig. 2(a), which repre-
sents the Sobol’ indices for the mean horizontal velocity of the
helicopter, Sy, 52, 53,54, S14, S24, and S34 indices are most promi-
nent. This indicates that the total variance of the mean value of
the horizontal velocity of the helicopter is mainly contributed by
parameters py, p2, p3, p4 individually and coupled influences from
(P1,P4)s (P2,p4) and (p3, pg). Similar results are also seen for the
other elements of u in Figs. 2(b)-2(d). However, on observing the
width of the band for S, it is quite evident that the uncertainty in
P4 contributes the most toward the total variance of u.

It is also interesting to note that S, is no longer the dominant
contributor to the total variance when we look at X. We see that
for X, the uncertainty in p; is most significant. Not only is p; sig-
nificant alone, its contribution in conjunction with p, (for X,, and
X33) as well as p; (for X4 4) is significant.

Hence, we can conclude from Figs. 2 and 3 that it will serve the
manufacturer to invest more resources in determining the values
of p3 and p, more accurately, i.e., reduce the uncertainty associ-
ated with them to reduce the uncertainty in the total variance.

6.2 Quarter Car Model. The second example considered is
that of a quarter car [29,30]. A schematic figure of the quarter car
model is shown in Fig. 4.

The model dynamics are given by

X =Ayx+Byh (87)
where x = [x1,x,, %, %],
0 0 1 0 0
0 0 0 1 0
A, = _h_k ko and By = | f,
my mp m my ny e
ny
ko ko c 0
L ) my Ny my |
(88)
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Fig. 2 Evolution of Sobol’ indices corresponding to the diagonal elements of u over time: (a)

1, (D) p2, (€) p3, and (d) pa

m, represents the unsprung mass, m, is the sprung mass, k; is the
stiffness of the tire, k, is the stiffness of the suspension, and c¢ is
the damping constant of the suspension.

The model above is used to represent the vertical motion of the
quarter car. It is assumed in this work that the car moves in
the horizontal direction with a constant velocity V = 10m/s. The
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road dynamics h(f) is derived from Ref. [31] and is modeled as

colored noise. The governing equation is given by
h = —aVh + w(t) (89)

where a is a parameter, which determines road quality, V is the
velocity of the car, and w(¢) is a white noise process with the co-

o o
o ©

2](2‘2) Sobol' Indices
o
'S

0.2

(b) Time (s)

2:(4,4) Sobol' Indices

0 5 10 15
(d) Time (s)

Fig. 3 Evolution of Sobol’ indices corresponding to the diagonal elements of X over time: (a)

2(1.1), (b) 2(2‘2), (C) 2(3'3), and (d) Z(4$4)
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Fig.4 Schematic diagram of the quarter car model

variance function o2 = 202aV. The value of ¢? is fixed at 9 x
10~°m? and is taken from literature [31].
On augmenting the road dynamics, the stochastic system

becomes

x = Ax + Bw(1) 90)
where
0 0 1 0 0
0 0 1 0 0
hlkh ke k 0
A= m m m m m m andB= |0
Rk ¢ _c 0
ny ny ny ny 1
0 0 0 0 —aV
©n

In this work, it is assumed that the spring constants, damping
constant, and the road condition are uncertain (i.e.,
P =[p1, P2, 3, pa]" = [k, ko, c, a]"). The nominal values of
these uncertain parameters are taken from literature [30,31]. They
are then assumed to be uniformly distributed within a =30% vari-
ation about their nominal values. This leads to a lower and an
upper bound of

Iy Sobol' Indices

Fig.5 Sobol’ indices for u»
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P1» = 84000, 17500,700,0.105]" ©2)

Py, = [156000, 32500, 1300, 0.195]T 93)
The masses have values m; = 31kg and m, = 229kg [30]. It is
assumed for all simulations that the unsprung mass (m;) has an
initial displacement of 5 mm and all other states are at their mean
position, i.e., the system is simulated with initial conditions given
by

xo = [0.005,0,0,0,0]" (94)
Note that, in this problem, the variance of the white noise is a lin-
ear function of an uncertain model parameter («) and hence is also
a random variable. However, this does not pose an issue in the
analysis and the problem is approached in a manner similar to the
previous one.

Once again, the number of collocation points chosen in each
direction of uncertainty is kept the same at a value of
ny =ny =n3 = ng = n, = 4. Considering there are four uncer-
tainties, we get N=256LIP bases and their corresponding 256
collocation points. On running the stochastic linear model at these
collocation points, the LIP bases coefficients are determined. M,
is then used to transform them to a probabilistic model with multi-
variate Legendre polynomials as bases (since the distribution of
the uncertain parameters are all uniform). Similar to the previous
problem, the coefficients from the new model are then used to
evaluate the desired Sobol’ indices for u(¢) and £(¢). The arrange-
ment of the indices is done as per Eq. (86).

Since the major concern in this problem is to monitor the verti-
cal displacement of the car chassis, we are only interested in the
state x,(7). Hence, Sobol’ indices corresponding to only u, and
X (29) are presented.

Figures 5 and 6 are used to present the Sobol’ indices for the
variables of interest. Figure 5 shows the indices for the mean of
the chassis displacement while Fig. 6 shows the indices for the
variance of the chassis displacement. It is once again evident from
the figures that different parameters have influence over the total
variance when different outputs of interest are considered. We see
that for yu,_ the total variance is initially largely dependent on the
uncertainty of p,. However, with time, this influence wanes and
the uncertainty due to the combination of (pi1,p2,p3) starts
dominating.

For X5 5y, we see that at initial stages, p4 has most influence but
its dominance is overwhelmed by p; and p, with time. It is also
interesting to see that the individual influences of all the parame-
ters p; through p, count for most part of the total variance and
joint contribution for the parameters is only minimal as seen from
the indices (S12,813,S14,S23 and S24).

2(2!2) Sobol' Indices

Time (s)

Fig.6 Sobol’ indices for ):(2'2)
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7 Conclusions

This paper has presented an approach to develop Polynomial
Chaos models of linear stochastic systems without the necessity to
evaluate any indefinite integrals, which has been a drawback of
intrusive polynomial chaos. It is shown that intrusive polynomial
chaos is identical to stochastic collocation (provided the uncertain
variables appear multilinearly) as long as Lagrange interpolation
polynomials are used as bases. The coefficients from these models
are then used to determine Sobol indices for the outputs of interest.

The paper also investigates the case when the outputs of interest
are the mean and the co-variance of linear systems under the influ-
ence of process noise. It is observed that for a system, it is not
necessary that the predominant contributor to the uncertainty in
the mean and the variance be due to the same model input param-
eters. Hence, investing appropriate resources in lowering uncer-
tainties in appropriate parameters are contingent on the choice of
the output. It is often necessary in the forecasting frameworks to
have a good estimate of the variance in the presence of process
noise. If the same system is plagued with model parameter uncer-
tainties, it then becomes important to know what factors contrib-
ute most to the uncertainty in the estimate of those variances. The
methodology presented in this paper allows one to do that.

It should be noted, however, that the method is subjected to the
curse of dimensionality where the number of collocation points
exponentially increases with the number of uncertain variables
(similar to basic multivariate stochastic collocation). This requires
increasing computational efforts to compute the said coefficients
and could be prohibitive for large-scale uncertainties. However, a
future scope of work could entail looking into sparse grid colloca-
tion points (as opposed to tensor product LIP based) to reduce
computational burden with increasing uncertainties.
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