IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

649

TipTop: (Almost) Exact Solutions for Influence
Maximization in Billion-Scale Networks

Xiang Li

, Member, IEEE, J. David Smith, Thang N. Dinh

, Member, IEEE,

and My T. Thai™, Senior Member, IEEE

Abstract—1In this paper, we study the cost-aware target viral
marketing (CTVM) problem, a generalization of influence maxi-
mization. CTVM asks for the most cost-effective users to influence
the most relevant users. In contrast to the vast literature,
we attempt to offer exact solutions. As the problem is NP-
hard, thus, exact solutions are intractable, we propose TipToOP,
a (1 — €)-optimal solution for arbitrary € > O that scales to very
large networks, such as Twitter. At the heart of TIPTOP lies an
innovative technique that reduces the number of samples as much
as possible. This allows us to exactly solve CTVM on a much
smaller space of generated samples using integer programming.
Furthermore, TIPTOP lends a tool for researchers to benchmark
their solutions against the optimal one in large-scale networks,
which is currently not available.

Index Terms—Viral marketing, influence maximization,
algorithms, online social networks, optimization.

I. INTRODUCTION

ITH the recent development, Online Social Net-

works (OSNs) have become one of the most effective
platforms for marketing and advertising. Through “word-of-
mouth” exchanges, so-called viral marketing, the influence and
product adoption can spread from few key users to billions of
users in the network. To identify these key users, Influence
Maximization (IM) problem, which asks for a set of & seed
users that maximizes the expected number of influenced nodes,
has been studied extensively [2]-[7] (and references therein).
Taking into account both arbitrary cost for selecting a node
and arbitrary benefit for influencing a node, a generalized
problem, Cost-aware Targeted Viral Marketing (CTVM), has
been introduced recently [8]. Given a budget x, CTVM asks
to find a seed set S with the total cost at most x such as to
maximize the expected total benefit over the influenced nodes.

Manuscript received August 25, 2017; revised August 25, 2018; accepted
January 9, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor A. Wierman. Date of publication March 6, 2019; date of current version
April 16, 2019. This work was supported in part by the NSF under Grant
CNS-1443905 and Grant EFRI 1441231 and in part by the Defense Threat
Reduction Agency under Grant HDTRA1-14-1-0055. The preliminary version
of this paper has appeared in [1]. (Corresponding author: My T. Thai.)

X. Li is with the Department of Computer Engineering, Santa Clara
University, Santa Clara, CA 95053 USA (e-mail: xli8 @scu.edu).

J. D. Smith is with the Computer and Information Science and Engineering
Department, University of Florida, Gainesville, FL 32601 USA (e-mail:
jdsmith@cise.ufl.edu).

T. N. Dinh is with the Computer Science Department, Virginia Common-
wealth University, Richmond, VA 23284 USA (e-mail: tndinh@vcu.edu).

M. T. Thai is with the Division of Algorithms and Technologies for Net-
works Analysis & Faculty of Information Technology, Ton Duc Thang Univer-
sity, Ho Chi Minh City, Vietnam, and also with the Department of Computer
and Information Science and Engineering, University of Florida, Gainesville,
FL 32601 USA (e-mail: thaitramy @tdt.edu.vn; mythai@cise.ufl.edu).

Digital Object Identifier 10.1109/TNET.2019.2898413

Despite a great amount of works [2]-[11], none of these
attempts to solve IM or CTVM exactly. The lack of such a
solution makes it challenging to evaluate the performance of
existing solutions, such as IMM [6] and SSA [7] algorithms,
in real-world datasets, against optimal solutions. Despite the
fact that these algorithms have a theoretical performance
guarantee of (1 — 1/e — ¢€) in the worst case, one can always
ask: how well do these algorithms actually perform on the
billion-scale OSNs? This question has remained unanswered
til now.

Obtaining exact solutions to CTVM (and thus to IM) indeed
is very challenging. Due to the nature of the problem, stochas-
tic programming is a viable approach for optimization under
uncertainty when the probability distribution governs the data
is given [12]. However traditional stochastic programming-
based solutions to various problems in NP-hard class are only
for small networks with a few hundreds nodes [12]. Thus
directly applying existing techniques to IM and CTVM is
not suitable because OSNs consist of millions of users and
billions of edges. Furthermore, the theory developed to assess
the solution quality such as those in [12], [13], and the refer-
ences therein, only provide approximate confidence interval.
Therefore, sufficiently large samples are needed to justify
the quality assessment. This requires us to develop novel
stochastic programming techniques to optimally solve CTVM.

In this paper, we provide the first (almost) exact solutions
for CTVM with an approximation ratio of (1 — ¢). To tackle
the above challenges, we develop two innovative techniques:
1) Reduce the number of samples as much as possible so that
the stochastic programming can be solved in a short time. This
requires us to tightly bound the number of samples needed to
generate a candidate solution. 2) Develop novel computational
method to assess the solution quality with just enough samples,
where the quality requirement is given a priori. These results
cross the barriers in stochastic programming theory where
solving stochastic programming on large-scale networks had
been thought impractical. Our contributions are summarized
as follows:

o Design two exact solutions, namely T-EXACT and
E-EXACT, to CTVM using two-stage stochastic pro-
gramming which utilizes the sample average approxima-
tion method to reduce the number of realizations. Using
T-EXACT and E-EXACT, we illustrate that traditional
stochastic programming techniques badly suffer the scal-
ability issue.

o Develop an (almost) optimal algorithm to CTVM with a
performance ratio of (1 — €): The Tiny Integer Program

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7761-6212

650

with Theoretically OPtimal results (TTPTOP). Being able
to obtain the optimal solution, TTPTOP is used as a bench-
mark to evaluate the absolute performance of existing
solutions in billion-scale OSNs.

o Conduct extensive experiments confirming that the the-
oretical performance of TIPTOP is attained in practice.
Our experiments show that it is feasible to compute 98%
optimal solutions to CTVM on billion-scale OSNs. These
experiments confirm that our sampling reductions are
significant in practice, by a factor of 10% on average.

Organization: Section II briefly discusses the related work
and the Reverse Influence Sampling (RIS). In Section III,
we present the network model, propagation models, and the
problem definition. Section IV presents our EXACT algo-
rithms for CTVM. Our main contribution, TIPTOP is intro-
duced in Section V. We analyze Ti1pTOP approximation factor
in Section VI. Experimental results on real social networks are
shown in Section VII. And finally Section VIII concludes the

paper.

II. RELATED WORK AND REVERSE INFLUENCE SAMPLING

Influence Maximization: Kempe et al. [9] formulated viral
marketing as the IM optimization problem, focused on two
fundamental cascade models, Linear Threshold (LT) and Inde-
pendent Cascade (IC) models. They showed the problem to
be NP-complete and devised an (1 — 1/e — €) approximation
algorithm. In addition, IM cannot be approximated within a
factor (1 —2 +¢) [14] under a typical complexity assumption.
Computing the exact influence is shown to be #P-hard [3].

Following [9], a series of work have been proposed, focused
on improving the time complexity [2]-[5], [15]-[19]. All of
these work retain the ratio of (1—1/e—e¢). Their major bottle-
neck is the inefficiency in estimating the influence spread, thus
restraining them from being able to run on large networks.

Reverse Influence Sampling (RIS): Borgs et al. [10] have
introduced a novel sampling approach, RIS, which is a foun-
dation for the later works. Briefly, RIS captures the influence
landscape of G = (V, E,p) through generating a hypergraph
H = (V,{&1,&2,...}). Each hyperedge £; € H is a subset of
nodes in V' and constructed as follows: 1) selecting a random
node v € V' 2) generating a sample graph g C G and 3) return-
ing &; as the set of nodes that can reach v in g. Observe that
&; contains the nodes that can influence its source v. If we
generate multiple random hyperedges, influential nodes will
likely appear more often in the hyperedges. Thus a seed set .S
that covers most of the hyperedges will likely maximize the
influence spread. Here S covers a hyperedge &;, if SNE; # (.
Therefore, IM can be solved using the following framework.
1) Generate multiple random hyperedges from G. 2) Use
the greedy algorithm for the Max-coverage problem [20] to
find S that covers the maximum number of hyperedges and
return S as the solution. The core issue in applying the above
framework is that: How many hyperedges are sufficient to
provide a good approximation solution?

Based on RIS, Borgs et al. [10] presented an O(kl*(m +
n)log® n/e®) time algorithm for IM under IC model. It returns
a (1 — 1/e — €)-approximate ratio with probability at least

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

1 —n~!. In practice, the proposed algorithm is, however, less
than satisfactory due to the rather large hidden constants. In a
sequential work, Tang et al. [6] reduced the running time to
O((k+1)(m+n)logn/e?) and showed that their algorithm is
efficient in billion-scale networks. Nguyen et al. [7] proposed
SSA/DSSA algorithms to further reduce the running time up to
orders of magnitudes. The algorithm keeps generating samples
and stops at exponential check points to verify (stare) if there
is adequate statistical evidence on the solution quality for
termination. Huang et al. showed gaps in SSA/D-SSA [21]
and propose the fixes for SSA. Independently, the authors
of SSA/D-SSA provided the fixes for both SSA and D-SSA
in [22] with the summary of changes in [23]. However, SSA
does not put an effort in minimizing the number of samples
at the stopping point to verify the candidate solution, which
is needed to solve the Integer Programming (IP). All of these
works have a (1 — 1/e — €)-approximation ratio.
Generalization: In generalizing IM, Nguyen and Zheng [11]
investigated the BIM problem in which each node can have
an arbitrary selecting cost. They proposed a (1 — 1/4/e — ¢)
approximation algorithm (called BIM) based on a greedy algo-
rithm for Budgeted Max-Coverage in [20] and two heuristics.
However, none of the proposed algorithms can handle billion-
scale networks. Recently, Nguyen et al. introduced CTVM and
presented a scalable (1 — 1/+/e — €) algorithm [8]. They also
showed that straightforward adaption of the methods in [5],
[6], and [10] for CTVM can incur an excessive number of
samples, thus, are not efficient enough for large networks.

III. MODELS AND PROBLEM DEFINITIONS

Let G = (V, E,¢,b, D) be a network with a node set V' and
a directed edge set E, with |V| = n and |E| = m. Each node
u € V has a selecting cost ¢, > 0, also written ¢(u), and a
benefit b(u) if u is influenced.! Each directed edge (u,v) € E
is associated with an influence probability p,, € [0, 1].

The diffusion of information in G is captured through a
probability space D that associates each possible cascade
graph g = (V, Es), Es C E with a probability. Each cascade
graph g is also called a realization or a sample graph of G.
An edge (u,v) € E; in g implies that u can activate v in that
graph.

Given a seed set S C V/, the number of nodes get influenced
by S within a sample graph ¢ is defined as the number of nodes
reachable from S in g, and denoted by R(g, S). The influence
spread of S in G is, similarly, defined as the expected influence
of .S over all possible realization graphs in D. Mathematically,
define D = (Q,F, P) where Q = {9 = (V. E,)|E; C E}
is the set of all possible graph samples of G, F = 2%, and
P : F —[0,1], a probability measure.

Let GG denote a random graph defined over D. The influence
spread of the seed set S' is

I(S) = E[R(G, 8)] = >_ P(g)|R(g,5)], (1)

geN

IThe cost of node u, ¢, can be estimated proportionally to the centrality
of u (how important the respective person is), e.g., out-degree of w [11].
Additionally, the node benefit b(u) refers to the gain of influencing node wu,
e.g., 1 for each node in our targeted group and O outside [24].

LI et al.: TIPTOP: (ALMOST) EXACT SOLUTIONS FOR IM IN BILLION-SCALE NETWORKS 651

where R(g,S) denotes the set of nodes reachable from S
within g.

For example, we consider the popular Independent Cas-
cade (IC) model [9]. In IC, the influence propagation happens
inround t =1,2,3,.... At round 1, nodes in S are activated
and the other nodes are inactive. The cost of activating .S is
given ¢(S) =), cgcu. Atround ¢ > 1, each newly activated
node u will independently activate its neighbor v with a
probability p,,. Once a node becomes activated, it remains
activated in all subsequent rounds. The influence propagation
stops when no more nodes are activated.

For IC, the probability mass function for each sample graph
g=(V.E;) is

P(g)=PriG=g/ =[] re [] (1—po).

eckE, e€EE\E;

Similarly, the benefit of S is defined as the expected total
benefit over all influenced nodes, i.e.,

B(S) = E[B(G,S)| = > P(9)B(g,5), 2

geQ

where B(g,S) = 3_,cp(y,s) b(u) is the benefit of selecting
S with respect to (w.r.t.) graph sample g.

Without loss of generality (w.l.o.g.), we assume that the
benefit of the nodes are normalized so that:

op =Y b(u)=n. 3)

ueV

This is compatible with the uniform benefit case in the IM
problem in which each node has a same benefit one and
B(g,S5) = R(g, 9).

We are now ready to define the CTVM problem as follows.

Definition 1 (Cost-aware Targeted Viral Marketing -
CTVM): Given a graph and its diffusion model G =
(V,E,c,b,D) and a budget k > 0, find a seed set S C V
with the total cost ¢(S) < k to maximize the benefit B(S).

IV. MULTI-STAGE PROGRAMMING FORMULATIONS

In this section, we present two variants of EXACT solu-
tions, T-EXACT and E-EXACT and their corresponding sam-
ple average approximation T-SAA and E-SAA, respectively.
T-EXACT is based on two-stage stochastic programming
while E-EXACT is the edge-based formulation with cycle-
elimination. We then discuss the scalability issue of traditional
stochastic programming which is later verified in our experi-
ment, shown in Section VII.

A. Two-Stage Stochastic Linear Program (T-EXACT)

Given an instance G = (V, E, ¢, b, p) of CTVM, we first use
integer variables s,,v € V to represent whether or not node
v is selected as a seed node. That is, s, = 1 if v is selected;
otherwise s, = 0.

Variables s are known as first stage variables. The values
of s are to be decided before the actual realization of the
uncertain parameters in G. Further, the set of selected nodes
need to satisfy the budget constraint Zuev SupCo < K.

Given a random graph G, we define variable z,,v € V, to
be the activation state of node v when the propagation stops.
That is, =, = 1 if v is eventually activated; otherwise x, = 0.

The benefit obtained by seed set can be computed using
a second stage mixed integer programming, denoted by
B(s,x,G) as follows.

B(s,z,G) = max Z b(v)x, (©))
veV
s. t. Z Su = Xy, VEV, 5)
u€IR(G,v)
sy € {0,1}, 2, € [0,1] (6)

where I R(G,v) denotes the set of nodes u so that there exists
a path from v to v in G.

The two-stage stochastic linear formulation for the CTVM
problem is as follows.

E[B(s,z,G 7

L [B(s,z,G)] @

s. t. Z SpCy < K (3)
veV

where B(s,z,G) is given in (4)-(6) 9)

The objective is to maximize the expected benefit of the
activated nodes E [B(s, z, G)], where B(s, z, G) is the optimal
value of the second-stage problem. This stochastic program-
ming problem is, however, not yet ready to be solved with a
linear algebra solver.

1) Discretization: To solve a two-stage stochastic problem,
one often needs to discretize the problem into a single (very
large) linear programming problem. That is we need to con-
sider all possible realizations g € €) and their probability
masses Pr[G = g]. The two-stage stochastic program can
be discretized into a mixed integer programming, denoted by
MIPFr as follows.

max » Pr(G =g]» b(v)a! (10)
geQ v
S. t. Z SpCo < K (11)
veV
Z Su>ad, veV,ged (12)
u€IR(g,v)
sy € {0,1},29 € [0,1] (13)

B. Sample Average Approximation T-SAA

An approach to reduce the number of realizations in
T-EXACT is to apply the Sample Average Approxima-
tion (SAA) method. In that method, we generate independently
T graph samples G*,G?,--- ,GT from D.

The expectation objective ¢(s) = E[B(s,z,G)] is
then approximated by the sample average ¢r(x) =

* Zszl >, (b(v)zl), and the new formulation is then

T
max % Z Z b(v)z!,
=1

v

s. t. Constraints (11) — (13), (14)

. L !
where 2!, € [0,1] is an abbreviation for z& .

652

We shall refer to the above mixed integer linear program-
ming as T-SAA.

We start with identifying the number of samples 7" needed
to guarantee an e error, followed by the expected (exponential)
time complexity to solve the above mixed integer linear
programming with 7" samples.

1) Sample Complexity: We bound the concentration with
Hoeffding’s inequality

Lemma 1 (Hoeffding’s Inequality): Let Xq,...,X, be
independent random variables in [0,1]. Let X = 23" X
Then, we have Pr[|X — X| > t] < 2exp (—2nt?).

Let C = {S CV : 3 cg5C < r} be the set of
all candidate seed sets. In the worst-case, C can contains
exponentially many candidates.

The following lemma gives a bound on the number of
necessary samples to guarantee an eop additive error.

Lemma 2: For fixed T = Q(Z log % log |C|), we have

Pr[|B(S) — B(S)| > eap] <6,

Proof: ~ For a fixed candidate solution S € C,
apply the Hoeffding’s inequality on -LB(G',S),
éB(GQ, S)yeens éB(GT, S), we have

Pr[|B(S) — B(S)| > eop] < 2exp (—26°T).

By choosing 7' = (2 (6% log % log|C|) and taking the union
bound over all candidate solutions in C, we obtain the desired
error bound. []

In the worst-case, C = 2V, the powerset of V, thus, |C| = 2"
and T = O(nl1/€?).

The estimation on 7" maybe too conservative for practical
estimates. While it provides some evidence on the convergence
of the solution, it is excessively large for practical purposes.

2) Time Complexity: We analyze the time complexity of
T-SAA in Eq. 14, assuming an exhaustive search on 0 — 1
integer variables s,,v € V. While the branch-and-cut (and
other mixed integer linear programming methods) performs
much better in practice, it has the same worst-case time
complexity.

For each of the 2™ possible assignments of s,,, we need to
solve a remaining linear programming of n7" random variables
xf} of size, measured by the number of non-zeros, M. The
expectation of M depends on 7" and the expected influence of
nodes in G as characterized in the following lemma.

Lemma 3: The expected size, measured by the number of
non-zeros, of T-SAA is E[M] =T x), oy I(u), where I(u)
denotes the expected influence of node u € V.

Proof: For each u € V, the number of constraints (12) that
u was on the left hand sides equal the number of nodes that
u can reach to. Thus, the expected number of constraints (12)
that u participates into is, hence, I(u). Taking the sum over all
possible u € V, we have the expected size of the T-EXACT
with 7" graph realizations is 7" x >y, I(u). [|

In other words, for each G, the size of T-SAA increases by
the size of transitive closure in G', i.e., the number of pairs
(u,v) that u can reach to v. For many subgraphs, this increase
is of O(n?), making T-SAA bloats rapidly as T increases.

To bound the time complexity of solving the LP, we use the
following time bound on Karmarkar’s algorithm

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Theorem 1 [25]: Denoting by N the number of variables
and L the number of bits of input in a linear programming,
then the runtime of Karmarkar’s algorithm is

O(N35L? -log L - loglog L).

Substitute N = nT = O(%n?) and L = O(M) =
O(T x Y ,cv 1(u)) = O(%n?) from Lemma 3, we obtain
the approximate time to solve T-SAA as

O (2"n"1/€"1/e*n® polylog(n))

Simplify and we get the following result
Lemma 4: The worst-case time complexity of T-SAA is
O (2"n'3 4y polylog(n)).

C. Edge-Based Formulation With
Cycle-Elimination (E-EXACT)

We provide an alternative formula in which for each random
graph G, the size of the mixed integer linear program increases
by O(|E|) rather than O(n?) as in T-EXACT.

It is important that we formulate the second stage as a max-
imum problem, so that we will obtain a bi-level Max — max
optimization. The alternative M ax — min formulation is not
only more sophisticated but also constrained to small size
instances in practice.

The main idea is fo build a cascade tree from the seed nodes
and count the number of activated nodes instead of counting
the number of activated nodes like in T-EXACT. Given a
random graph G = (V, E), for each (u,v) € E we define
1 if the edge (u,v) is “active”,

0 otherwise.

To “build” a cascade tree, we constraint that each node v in
V' has at most one active edge (u,v) going to v, as shown in
Eq. (17). In addition, (u,v) is active if and only if a) (u,v)
is an edge on the graph realization and b) either u is selected,
ie., s, = 1, or there exists active edge (w,u) going to wu,
see Eq. (16). Moreover, we forbid cycles composed of all
active edges. This is similar to the sub-tour elimination for the
TSP problem [26]. There might be an exponential number of
cycles, however, the cycle can be added gradually. In each step,
we identify a cycle of which constraint is violated and add the
constraint to the programming formulation. Given a fractional
solution (s;y), an exact separation algorithm for some class
of inequalities either finds a member of the class violated by
(s;y) or proves that no such member exists. There is an exact
algorithm for the separation procedure based on finding the
shortest path as follow.

Let 24y = 1 — yuo, the constraint (18) can be rewritten
as >, pyec 2uv = 1 Thus we can find violated constraint
by looking for the smallest length cycles in the graph with
edges’ lengths z,,. In that graph, each edge (u,v) with
Zuw+d(u,v) < 1, where d(u, v) denotes the shortest distance
between u and v, will correspond to an violated constraint.
The major time complexity in finding the violated cycles
is on finding all-pair-shortest paths which can be solved in
O(n?logn + nm) using the Johnson’s algorithm.

Since each activated node u is either already in the seed
set or activated by exactly one neighbor in the built cascade

a variable y,, =

LI et al.: TIPTOP: (ALMOST) EXACT SOLUTIONS FOR IM IN BILLION-SCALE NETWORKS 653

tree, the objective and the complete formulation is then as
follows.

BE(vavG)
= max Z b(v)Yuw + Z b(u)sy (15)
(u,v)EE ueV
St Yuut s> Yu, (wv) EE (16)
weN ~ (u)
> Ywtsy<1, veEV (17)
ueN~(v)
Z Yuo < |C|—1, anycycle C (18)
(u,w)eC
sy €{0,1}, w eV, (19)
Yuw € 10,1], (u,v) € E (20)

The two-stage stochastic linear formulation for the CTVM
problem is as follows.

E[B 21

SEI*I{IOEE(}" [E(Sv xz, G)] ()

s. t. Z SpCy < K (22)
veV

where Bg(s,z,G) is given in (15)-(20) (23)

The following lemma proves the one-to-one mapping
between activated nodes (not in the seed) and the active edges
in the cascade tree.

Lemma 5: The number of activated nodes will be the sum
of the number of active edges plus the number of seed nodes.

Proof: Define Ap = {(u,v)|yus = 1} the set
of active edges and Ay = S U T, where S =

{uls, = 1} and T = {v reachable from some u €
S via a path of only active edges}. We need to show that
|Av| = |S| + |Ag| or equivalently we need to show

[Ag| =T].

The constraints (19) guarantee that each node v € V has at
most one incoming active edge. The constraints (20) forbid
cycles to form among the active edges, thus each active edges
will point to exactly one active node that is not in .S’ (otherwise
we would have a cycle). Thus, we have an one-to-one mapping
between the active edges and the active nodes that are not in
S, ie., |Ag| = |T]. [|

D. Sample Average Approximation E-SAA

Similarly, we construct a Sample Average Approximation,
called E-SAA. Given T graph samples, G, G?,--- GT from
D, we have

T
max % Z Z b(v)yl, + Z b(u)sy, (24)

=1 (u,v)EE ueV
s. t. Z 50Co < K (25)
veV
Constraints (16)-(20) for G',1 = 1..T (26)

We shall refer to the above mixed integer linear program-
ming as E-SAA.

1) Sample Complexity and Time Complexity of E-SAA:
Similar to that in Lemma 2, we can obtain the same bound
on the number of samples.

Lemma 6: For fixed T = Q(}2 log % log|C

Pr[|Be(S) — B(S)| > eop] < 6,

), we have

Since the number of sub-tour elimination constraints in
Eq. (18) can be exponentially many, in theory the worst-case
complexity of E-SAA is much worse than that in T-SAA.
However, in practice, those constraints are added gradually
and potentially lead to a more overall efficient formulation.

E. Scalability Issues of Traditional Stochastic Optimization

While both T-EXACT and E-EXACT (called EXACT for
short) are designed based on a standard method for stochastic
programming, traditional methods can only be applied for
small networks, up to few hundreds nodes [12].

There are three major scalability issues when applying SAA
and using EXACT for the influence maximization problem.
First, the samples have a large size O(m). For large networks,
m could be of size million or billion. As a consequence,
we can only have a small number of samples, sacrificing the
solution quality. For billion scale networks, even one sample
will let to an extremely large ILP, that exceeds the capability
of the best solvers. Second, the theory developed to assess
the solution quality such as those in [12] and [13], only
provide approximate confidence interval. That is the quality
assessment is only justified for sufficiently large samples and
may not hold for small sample sizes. And third, most existing
solution quality assessment methods [12], [13] only provide
the assessment for a given number of sample size. Thus, if the
quality requirement is given a priori, e.g., (¢, §) approximation,
there is not an efficient algorithmic framework to identify the
number of necessary samples.

V. T1PTOP - AN EFFICIENT (1 — ¢)-OPTIMAL SOLUTION

In this section, we introduce our main contribution TIP-
Top, which is the first algorithm that can return a (1 — €)-
approximation ratio w.h.p of (1 —¢) where ¢ is given a priori.
It overcomes the above mentioned scalability issues and can
run on billion-scale networks.

A. TPToP Algorithm Overview

For readability, we start with the solution to CTVM in which
all nodes have uniform cost. Let x = k, we want to find S with
|S| < k so as to maximize the benefit B(S). Note that benefit
function is still heterogeneous. The solution to non-uniform
cost is presented later in Subsection VI-B.

At a high level, TIPTOP first generates a collection R of
random hyperedges sets which serves as the searching space to
find a candidate solution Sj to CTVM. It next calls the Verify
procedure which independently generates another collection
of random hyperedges sets to closely estimate the objective
function’s value of the candidate solution. If this value is not
close enough to the optimal solution, TIPTOP generates more
samples by calling the IncreaseSamples procedure to enlarge

654

Algorithm 1 TipToP Algorithm
Input: Graph G = (V, E,b, ¢, w), seed set size k > 0, and
e, 0 € (0,1).
Output: Seed set Sk.
I: A= (1+e)(2+2e)5n2
2: t— Litmar = [2Inn/€]; Vmas — 6
30 Amaz — (146)(2+ 26)Z(In ﬁ +In(}))
4: Generate random A hyperedges sets Ri, Ro, ...
BSA [8]
5: repeat
6: Nt<—AX€€t;Rt<—{R1,R2,..
Sp — ILPye (R, ¢, k)
< passed, €1 ><—Verify($'k, Umazy € bmaz, 27 Ny)
if (not passed) and (CovR(Sk) < Ajqz) then
t < IncreaseSamples(t, €, €1)
10: until passed or CovR(S'k) > Amaz
11: return S’k

using

Ry, }

Yo

the search space, and thus finding another better candidate
solution. When the objective function’s value of the candidate
solution is close enough to the optimal one, TIPTOP halts
and returns the found solution. The pseudo-code of TiPTOP
is presented in Alg. 1.

As CTVM considers arbitrary benefits, we utilize Benefit
Sampling Algorithm — BSA in [8] to embed the benefit of each
node into consideration, shown in line 4 of Algorithm 1. BSA
performs a reversed influence sampling (RIS) in which the
probability of a node chosen as the source is proportional to
its benefit. Random hyperedges generated via BSA can capture
the “benefit landscape”. That is they can be used to estimate
the benefit of any seed set S as stated in the following lemma.

Lemma 7 [8]: Given a fixed seed set S C V, and

let R, Ro,...,R;,... be random hyperedges sets generated
using Benefit Sampling Algorithm [8], define random variables
1 ifR;NS
z,= 40 TROSED @7)
0 otherwise.
then
B(S
BIZ,] = Pr{; 0§ # 0] = 20 28)
where T' =3 ., b(v) is the total nodes’ benefit.

For a collection of 7' random hyperedges sets R =
{R1,Ra,...,Rr}, we denote by

Covr(S) = _ Z;,

Jj=1
the number of hyperedges sets that intersect S, and

Br(s) = 2228) . .
T
the estimation of B(S) via R.

As shown in Theorem 3, TIPTOP has an approximation
of (1 — €) with a probability of at least (1 — J). The key
point to improve the current best ratio of (1 —1/e — ¢€) (and
(1—1/y/e—¢)) to (1—e) lies in solving the Maximum Cover-
age (MC) problem after generating R random hyperedges sets

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

of samples (line 7 of Alg. 1). Instead of using greedy technique
as in all existing algorithms, we solve the MC exactly using
Integer Linear Program (ILP) (detailed in subsection V-B).

As exactly solving ILP for MC is NP-hard itself, we need to
reduce the time and memory complexities as much as possible.
This becomes the solely drive force for the design of our
algorithm, which is handled as follows.

First, we need to keep the ILP search space small at the
first phase during the searching for the candidate solution Sk.
Else, the ILP solver cannot be executed. It is worth noting that
existing solutions only focused on reducing the fotal number
of samples generated, not at the searching phase. Relevant to
our approach, SSA [7] does have the first phase, however,
it has fixed parameter setting, thus cannot achieve optimal
number of samples for this phase. This enforces us to carefully
generate the first set R with size A as shown in line 1 of
Alg. 1. And once Sy is not good enough, IncreaseSamples
will generate an additional set of samples, which should be
dynamically determined in order to meet the requirement of
ILP, that is, it should be just large enough to find a near-
optimal candidate solution to CTVM. We will discuss more
details about IncreaseSamples later in subsection V-C.

Second, in an effort to keep the ILP size small, we need
to avoid executing IncreaseSamples as much as possible.
Therefore, we need to put more effort in proving the quality
of candidate solutions, which is handled by Verify, described
in subsection V-C.

We discuss the rest of TIPTOP in the following subsections.

B. Mixed Integer Linear Programming I LPy;c

Given a collection of hyperedges sets R and the cost ¢(v)
of selecting nodes v € V' and a seek size k, we formulate the
following ILPy;¢(R, ¢, k), to find the optimal solution over
the generated hyperedges sets R to the MC problem.

maximize Z (1—-yj) (29)
R;eR

subject to Z So < k 30)
veV
Y sty =1 VR ER (31)
vER;
s; €{0,1} y; €10,1] 32)

Here, s, = 1 iff node v is selected into the seed set, and
s, = 0, otherwise. The variable y; = 1 indicates that the
hyperedges sets R; cannot be covered by the seed set (S =
{v|sy, = 1}) and y; = 0, otherwise. The objective aims to
cover as many hyperedges sets as possible while keeping the
cost at most k using the constraint (30).

We note that the benefit in selecting the node b(u) does
not appear in the above ILP as it is embedded in the Benefit
Sampling Algorithm (BSA) in [8].

On one hand, the above ILP can be seen as a Sample
Average Approximation (SAA) of the CTVM problem as it
attempts to find optimal solutions over the randomly generated
samples. On the other hand, it is different from the traditional
SAA discussed in Sec. IV as it does not require the realization

LI et al.: TIPTOP: (ALMOST) EXACT SOLUTIONS FOR IM IN BILLION-SCALE NETWORKS 655

Algorithm 2 Verify

Algorithm 3 IncreaseSamples

Input: Candidate solution S'k, Umazs> € tmaz, and Teqp.
Output: Passed/not passed and €.
1: RW<—®,52:§,c0v:0,61:62:oo
2: for i < 0 to Ve — 1 do

3: €2 = min{e, 1}/2% ¢, =
tmam)

4: Ay =1+ (2—1—2/36’2)(1—1-6'2)11163(62)2
5: while cov < Ay do

6: Generate [?; with BSA [8] and add it to R,
8: if R; NS # 0 then cov = cov + 1

9: if [Ryer| > Teap then return < false,e; >
10: end wpile .

1 Buep(Sk) — Tty %Tfj:))

12: if (e1 > €) then return < false, e, >

3In (tmax/61)
(1—e1)(1—e2)Covr, (Sk)

14: if (1 —€1)(1 —e€2)(1 —€3) > (1 —¢) then
return < true, e; >

15: end for

16: return < false,e; >

€2 .5l _
ﬁ,(SQ = 52/(Um(m X

o

61<—1—

13: €3

of all random variables, i.e., the status of the edges. Instead,
only a local portion of the graph surrounding the sources of
hyperedges sets need to be revealed. This critical difference
from traditional SAA significantly reduces the size of each
sample, effectively, results in a much more compact ILP.

C. The Verify and IncreaseSamples Procedures

As shown in Alg. 2, Verify takes a candidate solution S’k
precision limit v,,4,, and the maximum number of hyper-
edges sets Tr,, as the input. It keeps generating hyperedges
sets to estimate B(S’k) until either the relative error reaches
€/2vma==1 or the maximum number of generated samples T,
is reached.

Verify uses the stopping rule algorithm in [7] to estimate the
influence. It generates a new pool of random hyperedges sets,
denoted by R..,. For each pair €, 6}, derived from ey and
02, the stopping rule algorithm will stop when either the cap
Tonaz 18 reached or there is enough evidence (i.e. cov > As)
to conclude that

Pr{(1 - €y)B(Sk) < Bgr,.,.(Sk) < (14 €,)B(Sk)] > 1 — 8.

ver

The value of 0} is selected as in line 3 so that the probability
of the union of all the bad events is bounded by Js.

If the stopping rule algorithm stops within T,, hyperedges
sets, the algorithm evaluates the relative difference ¢; between
the estimations of B(Sk) via R; and Re,. It also estimates
the relative gap €3 between B(S}) and its estimation using R;.
If the combined gap (1 —€1)(1 —e€2)(1 —€3) < (1 —e¢), Verify
returns ‘true’ and goes back to TIPTOP. In turn, TIPTOP will
return S‘k, as the solution and terminate.

If S’k does not pass the check in Verify, TIPTOP uses the
sub-procedure IncreaseSamples (Alg. 3) to increase the size
of the hyperedges sets. Having more samples will likely lead
to better candidate solution Sk, however, also increase the

Input: ¢ and ¢;.

Output: ¢.

11 Atpas = [2/€] ,

2: return ¢ + min{max{[1/eln 31,1}, Atyaz}

B(Sk) Byer (Sk)| Legend

>(1—-¢€)x
Prob.1 -6,

X zax y

o Prob. p D
>(1—¢€)x

2 (Sk) =
PriX > a¥] > p

>1x if not specified

B.’R(SI:) thenp =1

B(SIW=OPTy s (1-¢,) <

Fig. 1. Proof map of the main Theorem 3.

ILP solving time. Instead of doubling the current set R as
SSA does, we carefully use the information in the values of
€1 from the previous round together with e to determine the
increase in the sample sizes. Recall that the sample size is
etA for increasing integer t. Thus, we increasze the sample
size via increasing ¢ by (approximately) log,. Z—; We force ¢
to increase by at least one and at most At = [2/¢]. That is
the number of samples will increase by a multiplicative factor
between e &~ (1 + ¢) and eAtmer 2 €2,

VI. OPTIMALITY OF TipTOP

In this section, we prove that TIPTOP for arbitrary cost
CTVM problem returns a solution S that is optimal up to a
multiplicative error 1 — ¢ with high probability. Fig. 1 shows
the proof map of our main Theorem 3. We first prove the
optimality of TIPTOP in the case of the uniform cost and
then extend it to arbitrary cost in subsection VI-B.

A. Uniform Cost CTVM

Let Ry, Ry, R3, ..., Rj,... be the random hyperedges sets
generated in TIPTOP. Given a seed set .S, define random vari-
ables Z; as in (27) and Y; = Z; —E[Z;]. Then Y satisfies the
conditions of a martingale [27], i.e., E[Y;|Y1,Y2, ..., Y 1] =
Y;—1 and E[Y;] < 4o0. This martingale view is adopted from
[6] to cope with the fact that random hyperedges sets might
not be independent due to the stopping condition: the later
hyperedges sets are generated only when the previous ones do
not satisfy the stopping conditions. We obtain the same results
in [6, Corollaries 1 and 2].

Lemma 8 [6]: Given a set of nodes S and random
hyperedges sets R = {R;} generated in TIPTOP, define
random variables Z; as in (27). Let iz = @ and iz =
% ZiTzl Z; be an estimation of |z, for fixed T > 0. For any
0 < ¢, the following inequalities hold

—T}L€2

Prli> (1+e)u] <e? 3, and (33)
_Tpe?

Priap > (1+e)pu] <e E , and (34)
— L€2

Prii < (1-eu] < e +° (35)

656

A common framework in [5]-[7] is to generate random hyper-
edges sets and use the greedy algorithm to select £ seed nodes
that cover most of the generated hyperedges sets. It is shown in
Lemma 3 [5] that (1 —1/e — €) approximation algorithm with
probability 1 — § is obtained when the number of hyperedges
sets reaches a threshold

n 2 n 1
O(e,0) =cx (8+¢) <ln (k) +1ng> OPT,

for some constant ¢ > 0.

The constant ¢ is bounded to be 8 + ¢ in [5], brought down
to 8(e — 2)(1 — 1/(2€))? ~ 3.7 in [8] using the zero-one
estimator in the work of Dagum et al. [28]. And the current
best is ¢ = 2 + 2/3¢, inducted from [6, Lemma 6].

Note that 6(e,d) cannot be used to decide how many
hyperedges sets we need to generate since 6 depends
on the unknown value OPT}), of which computation is
#P-hard.

To overcome that hurdle, a simple stopping rule is developed
in [8] to check on whether we have sufficient hyperedges sets
to guarantee, w.h.p., a (1 — €) approximation. The rule is that
we can stop when we can find any seed set S, of size k, that
coverage Covg (Sk) exceeds

(36)

Apmas = (14 €)0(e, 5/4) x @ 37)
2 .1 2 n

Our algorithm TIPTOP utilizes this stopping condition to
guarantee that at most O(6(e, d)) hyperedges sets are used in
the ILP in the worst-case. As a result, the size of the ILP is
kept to be almost linear size, assuming k < n.

Theorem 2: The expected number of non-zeros in the ILP

of TIPTOP is
n 2\ n

Proof: The expected number of hyperedges sets is O((1+
€)0(e, 0)). Moreover, the expected size of each hyperedges sets
is upper-bounded by % ([5, Lemma 4 and eq. (7)]). Thus,
the size of the ILP which is equal the total sizes of all the
hyperedges sets plus n, the size of the cardinality constraint,
is at most O((14€)0(¢, 6)OPT;) = O ((In(}) +In2) %) m

In practice, the number of required samples in our ILP
is many times larger than the minimum number of required
samples, i.e., the ILP size is much smaller than the worst-case
bound in the above theorem, as shown in Section VII.

Lemma 9: Let S}, be a seed set of size k with maximum
benefit, i.e., B(S}) = OPT},. Denote by i1}, = Ol;T’“ ,00=10/4
and

y 3In (tmaz/01)
€ = | ———7—.

Ntﬂz
We have:

Pr[Br,(S;) > (1—€)B(SE) ¥t = 1..tmax] > 1 — 01

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Proof: Apply Lem. 8 (Eq. 34) for seed set S}, mean puj,
e; and N; samples. For each ¢ € [1..t,,4,], We have

Pr[Br, (S;) < (1 — €)B(S})] (39)
B, (S} B(S:
=Pr Lr(- et)—(rk) (40)
_3Nt#‘ri‘»f2 . 7ln(f’7g,n,a:
<e 3 =e 1) <01 /tmaz- 41

Taking the union bound over all ¢ € [1,¢,,4.] yields the
proof. []

Lemma 10 (D—@): The probability of the bad event that
there exists some set of ¢t € [1,tmaz),¢ € [0,Vmaz — 1],
and €2 = ¢/2° so that the Verify algorithm returns some bad
estimation of S’k at line 10, i.e.,

1 ~
(1 — EQ)B(Sk’)a

is less than dy. Here Bye,(Sk) = T x Cm’fn”i"(‘s") be an

estimation of B(S’k) using random hyperedges sets in Ryer-

Proof: After reaching line 10 in Verify, the generated
hyperedges sets within Verify, denoted by R, will satisfy
the condition that

Bver (Sk) >

N 2
cov = Covg,,, (Sp) > Ao =1+ (2+ 55,2)(1 +¢€)In PPN

! €2
where €, = =

According to the stopping rule theorem? in [28], this stop-
ping condition guarantees that

Pr[Bver(Sk) > (]. + E/Q)B(gk)] < (55

and simplify, we obtain

Substitute e, = 12
—

Pr[Bye, (Sk) > B(Sy)] < 5.

1-— €9

The number of times Verify invoked the stopping condition
to estimate S’k is at most t,,42 X Umaz. Thus, we can use the
union bound of all possible bad events to get a lower-bound
0h X timaz X Umas = 02 for the probability of existing a bad
estimation of S’k. |
@—®: This holds due to the definition of ¢; in Verify. Since
€1 — 1 — Byer(Sk)/Br, (Sk), it follows that

Bver(s’k) = (1 - 61)BR1, (gk)

We note that it is possible that ¢; < 0, and the whole proof
still goes through even for that case. In the experiments, we,
however, do not observe negative values of €.

®—®: Since Sy, is an optimal solution of ILPy;c (R, ¢, k),
it will be the k-size seed set that intersects with the maximum
number of hyperedges sets in R. Let S} be an optimal k-size
seed set, i.e., the one that results in the maximum expected
benefit’. Since |S}| = k, it follows that

Br, (Sk) > Br, (Si),

2replacing the constant 4(e — 2) with 2 +2/3¢ due to the better Chernoff-
bound in Lemma 8

3Tf there are multiple optimal solutions, we break the tie by using alpha-
betical order on nodes’ ids.

LI et al.: TIPTOP: (ALMOST) EXACT SOLUTIONS FOR IM IN BILLION-SCALE NETWORKS 657

where B, (S;) and B, (S;) denote the number of hyper-
edges sets in R; that intersect with S‘k, and S}, respectively.

Theorem 3 (Main Theorem ®—®): Let S, be the solution
returned by TIPTOP (Algorithm 1). We have

Pr[B(Sy) >

Proof: First we use the union bound to bound the
probability of the bad events. Then we show if none of the bad
events happen, the algorithm will return a solution satisfying
B(Sx) > (1 — €)OPT}. The bad events and the bounds on
their probabilities are

1) Pr[3t: Bg,(S)) < (1 —¢)B(S)] < 61 (Lem. 9)
2) Pr[3t,i,ea = 57 1 Br,., (Sk) > (Sk)] < 02
(Lem. 10)
3) Pr[(Covg, (Sk) > Amaz)
and (B(Sy) < (1 —€)OPT})] < 6/4
4) Pr[(t > timaz) and (Covgr, (Sk) < Apmaz)] < 0/4
The bounds in 1) and 2) come directly from Lems. 9 and
10. The bound in 3) is a direct consequence of the stopping
condition algorithm in [8]. The bound in 4) can be shown
by noticing that when ¢ > ¢4, then Ny > 6(¢,0). Apply
the union bound, the probability that none of the above bad
events happen is, hence, at most 01 + d3 + 6/4 + §/4 = 0.
Assume that none of the above bad events happen,
we show that TIPTOP returns a (1 — ¢) optimal solution.
If TipTOP stops with CovRt(gk) > Aaz, it 18 obvious
that B(Sg) > (1 — €)OPTy, since the bad event in 3) do
not happen. Otherwise, algorithm Verify returns ‘true’ at line
13 for some t € [1,tmaz] and i € [0, Upmas)-
Follow the path @®—@—@—®@. No bad event in 2) implies

(1—€)OPT,] >1-46 (42)

B(Sk) = (1—€2)Buer(Sk) 2 (1=€2)(1 — e1)Br, (k) (43)
Z (1 — 62)(1 — el)BRt (S]:) (44)
No bad event in 1) implies Br, (S}) > (1 — €;)B(S}).

Claim [®—®]:
Br, (S¢) = (1—e3)B(SE),

To show the above inequality, we prove that

o — 31ln (tmaw/(Sl 3111 mam/‘sl)
t Ny, (1 —e1)(1 —e)Covg, (Sk)
< Ny, > (1 —€1)(1 — e2)Coug, Sk)

& NB(SH)/T > (1—e)(1 —e)NyBr, (S)/T
& B(S;) > (1—e)(1 —e2)Br, (Sk).

The last one holds due to the optimality of S} and Eq. 43.
B(S7) = B(5k) > (1—e1)(1 — €2)Br, (Sk).
Combine Eq. 44 and the above claim, we have

B(Sk) = (1 - e2)(1 - €1)Br, (S7)
> (1= e)(1 —er)(1 - e3)B(Sy)
2 (]. - E)OPTk.

The last one holds due to the terminating condition (1—e2)(1—
€1)(1 —€3) < (1 —¢) in line 13 in the Verify algorithm. H

B. Arbitrary Cost CTVM

We now consider the case of heterogeneous cost. Note that
TIPTOP and its proofs in subsection VI-A already considered
the heterogeneous benefit function b(.) thus we only discuss
the arbitrary cost function ¢(.) in this subsection.

Changes in the Algorithm: With heterogeneous selecting
cost, seed sets may have different sizes. We define k00 =
max{k : 35S CV, |S| =k, c(S) < k}. The value of A, at
line 3 of Alg. 1 will be defined as follows:

Apaz = (1 +6)(2+ %e)é[ln (8/0) + min{kyaq Inn, n}.
Line 7 of Alg. 1 will be replaced by Sy, — ILPyc (Re,c, k)
where we pass the value « instead of k.

In addition, the cardinality constraint (30) will be changed
into a knapsack constraint)y c(v)s, < Kk, where c(v) is
the cost of selecting node v and « is the given budget.

The Verify and IncreaseSamples procedures are kept intact.

Theorem 4: The generalized TIPTOP as discussed above
has an approximation ratio of (1 — €) with high probability.

Proof: We follow the same proof map as in
subsection VI-A. All the previous proofs of the convergence
and correctness are still held. Note that we only use A4, in
Lemma 10, in which we apply the inequality A,,,, < 2n%te.
This inequality still holds with the new value of A,,q,. [|

1) Time Complexity: Assume that we solve TIPTOP using
exhaustive search that provides the same worst-case time
complexity as other methods such as branch-and-cut.

The number of variables y; in TIPTOP equals to the number
of hyperedges and is bounded by O(nk log nﬁpn) from
Eq. (36). Since OPT}, > k, the number of variables in TIPTOP
is Nriprop = O(nlog nﬁ%)

For each of the 2™ possible assignments of s,,, we need to
solve a remaining linear programming of size

2
- (u(2)23) 2

=0 (nkjlnné) = O(n%lognl/e?). (46)

(45)

Apply Theorem 1 and note the high concentration of the
number of hyperedges and their total size around the above
values, we have,

Lemma 11: The expected time to solve TIPTOP will be

1 1
0] <2" 3. 56 4polylog()) =0 <2”n7‘5€jp0lylog(n)>.

In theory, the worst-case of TIPTOP (with a multiplicative ¢
error guarantee) is better than T-SAA (with an additive error
eop guarantee) by a factor n®. In practice, TIPTOP is also
much more efficient due to its simple constraints.

VII. EXPERIMENTS

We conduct several experiments to illustrate the perfor-
mance and utility of TIPTOP. First, the performance of
TIPTOP is compared to both T-SAA and E-SAA. Our results
show that it is magnitudes faster while maintaining solution
quality (sec. VII-A). We then apply TIPTOP as a benchmark

658

TABLE I
NETWORKS USED IN OUR EXPERIMENTS

Dataset Network Type Nodes Edges
US Pol. Books [29] | Recommendation 105 442
GR-QC [30] Collaboration 5242 14496
Wiki-Vote [30] Voting 7115 103689
NetPHY [31] Collaboration 37149 180826
Slashdot [30] Social 82168 948464
Twitter [32] Social 41M 1.5B

for existing methods, showing that they perform better than
their guarantee in certain cases—but have degraded perfor-
mance in others. Finally, we conclude the section with an in-
depth analysis of TIPTOP’s performance, with a focus on its
sampling behavior.

We implemented TIPTOP in Rust using Gurobi to solve the
IP# Unless noted otherwise, each experiment is run 10 times
and the results averaged. Settings for ¢ are listed with each
experiment, but § is fixed at 1/n. All influence values are
obtained by running a separate estimation program with ¢ =
0.02 using the seed sets produced by each algorithm as input.
Throughout this section, we scale solution quality by an upper
bound on the optimal solution. When comparing to T-SAA and
E-SAA, we treat the maximal performance of these algorithms
as optimal to show the performance of TIPTOP. Subsequently,
we assume that TIPTOP exactly matches its approximation
guarantee, which places an upper bound on the optimal of
1/(1 — €) times the TIPTOP solution.

A. Comparison to the Exact IPs

Since both T-SAA and E-SAA produce exact results for
influence maximization, we use them to show the optimality of
TIPTOP. As the SAA-based methods lack scalability, we run
on the 105-node US Political Books network only. As shown
in Fig. 2, TIPTOP consistently performs as well as T-SAA
while performing more than ten times faster even despite
the threading difference. Note that the decreasing runtime of
TipTOP with increasing k is on the scale of 5-10 seconds
and can easily be explained as variation in the number of
samples needed by TIPTOP and in running time of the IP
solver. Different behaviors are observed in running time for
T-SAA and E-SAA between normalized and random costs.
The reason is that the sampling procedure in T-SAA and
E-SAA do not take the node benefit in the account. In contrast,
the sampling algorithm in TIPTOP will sample hyperedges
starting from high-benefit nodes more often. Thus, the TIPTOP
running time is more stable across cost settings.

B. Benchmarking Greedy Methods

Having established that TIPTOP is capable of producing
almost exact solutions significantly faster than other IP-based
solutions, we now exploit this property to place an upper
bound on the performance of other algorithms. Ultimately,
this allows us to make statements about the absolute perfor-
mance of these algorithms rather than merely their relative

4Code available at https://github.com/emallson/tiptop

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

04, . 0]
0.8

—— ESAA
0.2 —¥— TSAA 104
—$— TipTop

0 5 10 15 20 25 0 5 10 15 20 25
Budget Budget

(a) (b)

& £
204 & 1024 \/‘__‘/»———'
—— ESAA
0.2 —¥— T-SAA 10' 4
—&— TipTop
0.0 T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Budget Budget
(c) (d
Fig. 2. The performance of TIPTOP (¢ = 0.02,5 = 1/n), T-SAA, and

E-SAA (T' = 5000) on the US Political Books [29] network under the
cost-aware problem setting. Costs are (a-b) normalized by node degree and
(c-d) assigned uniformly at random on [0,1). The y-axes of Figures (b),
(d) are log-scaled. (a) Solution quality (normalized linear costs). (b) Run-
ning time (normalized linear costs). (c) Solution quality (random costs).
(d) Running time (random costs).

107 W 109
0.84 0.84
Eo06 £ 06
2 2
o o
= 44 2544
0.4 4 BCT 04 — BCT
—— MM —— MM
0.2+ —4— SSA 0.24 —4— SSA
—&— TipTop —&— TipTop
0.0~ - - - T 0.0 T T T T
20 40 60 80 100 20 40 60 80 100
Budget Budget
(a) (b)

Fig. 3. Mean performance of each approximation algorithm as the budget is
varied under the Unweighted and Cost-Aware problem settings with e = 0.02.
OPT is estimated assuming that TIPTOP achieves exactly (1 — €)OPT.
(a) Unweighted NetPHY. (b) Cost-aware NetPHY.

performance. The algorithms we examine are IMM, BCT, and
SSA under three problem settings across four networks. All
evaluations are under the IC model with edge probabilities set
to p(u,v) = 1/din(v), where di(v) is the in-degree of v. This
weight setting is adopted from prior work [6], [7].

We first consider the traditional IM problem, referred to
as Unweighted here to distinguish it from the subsequent
problems. The authors’ implementations of each algorithm
are applied directly. Fig. 3a shows that the decade-or-so of
work on this problem has resulted in greedy solutions that far
exceed their guarantee of 1 —1/e —e. Interestingly, this pattern
continues under the Cost-Aware setting (Fig. 3b).

Parameter Settings: The Cost-Aware setting generalizes the
Unweighted setting by adding a cost to each node on the net-
work. In a social network setting, the costs can be understood
as the relative price each user sets for their participation in the
marketing campaign. Note that neither IMM nor SSA support
costs natively. We extend both to this problem by scaling

LI et al.: TIPTOP: (ALMOST) EXACT SOLUTIONS FOR IM IN BILLION-SCALE NETWORKS 659

-

M,'\“"—'—v—v——v—v—'

=
3

o
&

% Optimal
% Optimal

049 - BCT 049 —¥— BCT 047 - BCT 0.4+ ‘\‘\.\\‘_—F BCT
—— MM H—‘—"—H+ MM —— IMM *+ MM
021 M_‘_ SsA - 0.2+ —h— SSA 02+ —&— SSA 024 —&— S5A
—4— TipTop —4— TipTop —4— TipTop —&— TipTop
0.0 . : . , 0.0 - : - . 0.0 . - . T 0.0 . - . .
20 40 60 80 100 20 40 60 80 100 20 10 60 80 100 2 10 60 80 100
Budget Budget Budget Budget
(a) (b) (© (d)

Fig. 4. Mean performance as the budget is varied under the CTVM problem setting with linear costs. Note that IMM and SSA have no guarantees on the

CTVM setting. (a) GR-QC. (b) Wiki-Vote. (c) NetPHY. (d) Slashdot.

their objective functions by cost and limiting the number of
selected nodes by the sum of costs instead of the number
of nodes, which gives each an approximation guarantee of
1—1/+/e—e [20]. We consider three ways users may determine
their costs.

Random Costs. First, users may determine the value of their
influence independently from the network. We model this with
Random Costs: each node selects a cost at random on [0, 1).

Degree-Normalized Costs. Users may instead use the most
readily-available metric of their relative importance to deter-
mine prices: follower count. We examine two different func-
tions of this, Normalized Linear Costs and Normalized
Logarithmic Costs, to develop an understanding of how this
impacts algorithm performance. In the linear case, each user
sets its cost as cost(u) = TET out (1) (dout (1) is the out-degree
of u). The logarithmic case wraps the degree component:
cost(u) = TET log(dout(w)). The n/|E| term normalizes costs
across networks to allow using the same budget on each. These
two cases function as rough upper and lower bounds on
reasonable behavior, as shown by the following example.

Suppose two users are setting prices, one with two thousand
followers and one with two million. In the linear case if
the former user demands $800 to become an influencer, then
the latter user will demand $800,000. On the other hand,
in the log case the latter will demand only $1,527 — slightly
less than double that demanded by the two-thousand-follower
user. We find that the performance remains similar to the
unweighted case under degree scaling (see Fig. 3).

Benefit Settings: Lastly, we consider the full CTVM prob-
lem described above. We target 5% of each network at
random, assigning each targeted user a benefir on [0.1,1)
and each non-targeted user a benefit of 0. Costs are assigned
according to one of the previous models (Random, Degree-
Normalized Linear or Logarithmic). Neither IMM nor SSA can
be extended to this problem without significant modifications,
and therefore neither incorporates benefits. Fig. 4 shows the
performance on the GR-QC, Wiki-Vote, NetPHY and Slashdot
networks.

From Fig. 4, we can see that the topology has a signifi-
cant impact on the performance of each algorithm. Further,
on NetPHY both IMM and SSA do astonishingly well despite
being ignorant of the targeted nodes. However, their behavior
remains inconsistent across datasets due to their ignorance of
the varying benefit assignments. Figure 5 shows that BCT
performs similarly regardless of cost function, though random
costs can cause notably worsened performance (Fig Sa).

0.8 **i\.—._._______‘ 0.84
£ 00 £ 001 \\%
S S
o —~+ &t * 044 —+ &t
—4— IMM —4— IMM
0.2 —h— SSA 0.2 —A— SSA
—— TipTop —— TipTop
0.0 = T T T T 0.0 4= T T T T
20 40 60 80 100 20 40 60 80 100
Budget Budget
(@ (b)
Fig. 5. Performance on the Slashdot network under the CTVM setting with

alternate costs. (a) Random. (b) Log-Outdegree.

o] —g o T *

10% 4

10% 4

onds)

101 4

—h— SSA
= IMM

1003 :
10-1] {: —* BCT
; —8— TipTop

02 04 0.6 08 10 20 40 60 80 100
Approximation Guarantee Budget

(a) (b)

—A— SSA
—— IMM
—¥- BCT
—o— TipTop

z
g
i3
e,
E
H

Runtime (sect

Fig. 6. Mean running time on the NetPHY network under the CTVM
problem setting as € and k are varied. (a) Runtime as € is increased. Budget
is held constant at 50. Dotted lines show 1 —1/4/e and 1 —1/e, respectively.
(b) Runtime as budget is increased. e is held constant at 0.02.

C. Analyzing TIPTOP’s Performance

We now turn our attention to dissecting the performance
of TIPTOP in more detailed. Even it can be seen from the
above section (Fig. 4 and 5) that TIPTOP outperforms existing
solutions, we did not examine the relative costs of running
TIPTOP on these or larger networks.

Running Time: From Fig. 6 we can see that the runtime
performance of TIPTOP is near that of the greedy algorithms.
With a comparable approximation guarantee to the greedy
methods, we can see that TIPTOP has truly competitive
runtime performance. However, as e approaches O the runtime
rapidly increases. Fig. 6b illuminates one of the key costs of
using an ILP: unpredictability. An ILP solver will in many
cases find the solution relatively quickly, but in the worst case
the complexity remains exponential. Finally, we note that in
our tests on the Twitter dataset (Fig. 7), we are able to solve
the unweighted setting with a guarantee of 98% in 13 hours
and 28 minutes of CPU time — which, as sampling is easily
parallelized, takes under an hour with 16 threads on our
server. Further, for ¢ > 0.05 the runtime of TIPTOP remains

660

B

120 : :
£ 100 /

804

604

Runtime (seconds)

Max Memory Consumptior

107 § —h— SSA 10 : i —o— TipTop
—— MM H v —¥— BCT
. —¥- BCT 204y ‘y www —— MM
10 —o— TipTop : : —A— SSA
0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1.0
Approximation Guarantee Approximation Guarantee
@ (b)

Fig. 7. Running time and memory consumption on the Twitter network under
the unweighted problem setting. Only one repetition is used on this dataset.
Budget is fixed at 50. Dotted vertical lines show 1 — 1/4/e and 1 — 1/e,
respectively. (a) Running time. (b) Memory.

TABLE I

MEAN REQUIRED SAMPLES FOR EACH ALGORITHM ON NETPHY.
APPROXIMATION GUARANTEES ARE 0.61 FOR GREEDY METHODS
IN THE UNWEIGHTED CASE AND 0.37 FOR THE COST-AWARE
CASE (AND THE CTVM CASE FOR BCT). THE APPROXIMATION
GUARANTEE FOR TIPTOP IS 0.6 IN ALL CASES. Coverage:
SAMPLES INPUT INTO THE MC SOLVER. Verification:
SAMPLES USED TO VERIFY SOLUTION QUALITY.

IMM AND BCT DO NOT INCORPORATE A
VERIFICATION STAGE

Coverage \ Unweighted Cost-Aware CTVM
IMM 3.849 x 107 7.683 x 10° 7.683 x 10°
SSA 2.361 x 10° 5.179 x 10° 9.154 x 10*
BCT 2.406 x 108 2.261 x 10° 1.130 x 10°
TipPTOP 1.215 x 10* 6.016 x 10* 3.658 x 10°
Verification | Unweighted — Cost-Aware CTVM
SSA 5.383 x 10 1.072 x 10° 1.149 x 10°
TipTOP 3.550 x 10° 5.200 x 10* 2.900 x 10*

competitive with and even outperforms other methods on the
same dataset.

Number of Samples: The problem of maximizing influence
on billion-scale graphs like Twitter is incredibly difficult —
a fact further complicated by the worst-case complexity of
solving an IP. TIPTOP addresses this by dramatically reducing
the number of samples needed to solve the problem. Table II
shows that on average, TIPTOP uses 10® fewer samples than
prior work. Each sample corresponds to one constraint in
the TP formulation (specifically, Eqn. 31), and therefore this
reduction has a direct impact on the size of the resulting IP.

This is made possible by a SSA-like approach: adding a
“Stare” phase to the algorithm. This phase validates the quality
of the solution with significantly more samples than the IP
uses. Since verification does not require an IP, it has similar
complexity to the Stare phase in SSA. The samples used in
each algorithm are divided into two sections in Table II. The
upper section corresponds to samples used in generating the
solution, while the bottom section corresponds to samples used
in the Stare phases of SSA and TiPTOP. Note, however, that
T1PToP takes a similar number of samples for verification to
SSA when obtaining a similar approximation guarantee while
also using dramatically fewer for solving the IP.

Memory Consumption: Lastly, we briefly examine the
amount of memory consumed by each algorithm. We measure

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

this by running each algorithm with the t ime binary> present
on Debian, which reports peak memory usage in kilobytes.
While for the greedy methods, the number of samples used
is the dominating factor, the IP solver used in TIPTOP may
consume an additional large chunk of memory. Figure 7b
shows that while this may be true, it does not consume an
unreasonable amount of memory. TIPTOP peaks at 120GB on
the Twitter network—a value which we find wholly reasonable
for solving with an error of 1 — ¢ on a billion-scale network.

VIII. CONCLUSION

In this paper, we propose the first (almost) exact and
optimal solutions to the CTVM (and thus IM) problem, namely
T-EXACT, E-EXACT, and TrpTop. T-EXACT and E-EXACT
use the traditional stochastic programming approach and thus
suffer the scalability issue. In contrast, our TIPTOP with
innovative techniques in reducing the number of samples to
meet the requirement of ILP solver is able to run on billion-
scale OSNs such as Twitter. TIPTOP has an approximation
ratio of (1 — €) which significantly improves from the current
best ratio (1 — 1/e — €) for IM and (1 — 1//e — ¢) for
CTVM. TirToP also lends a tool to benchmark the absolute
performance of existing algorithms on large-scale networks.

REFERENCES

[1] X. Li, J. D. Smith, T. N. Dinh, and M. T. Thai, “Why approximate
when you can get the exact? Optimal targeted viral marketing at scale,”
in Proc. INFOCOM, May 2017, pp. 1-9.

[2] J. Leskovec et al., “Cost-effective outbreak detection in networks,” in
Proc. ACM KDD, 2007, pp. 420—429.

[3] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. ACM
KDD, 2010, pp. 1029-1038.

[4] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “SIMPATH: An efficient
algorithm for influence maximization under the linear threshold model,”
in Proc. ICDM, Dec. 2011, pp. 211-220.

[5] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proc. ACM SIGMOD,
2014, pp. 75-86.

[6] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-
linear time: A martingale approach,” in Proc. ACM SIGMOD, 2015,
pp. 1539-1554.

[71 H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
Proc. ACM SIGMOD, 2016, pp. 695-710.

[8] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Cost-aware targeted
viral marketing in billion-scale networks,” in Proc. IEEE INFOCOM,
Apr. 2016, pp. 1-10.

[9] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of

influence through a social network,” in Proc. KDD, 2003, pp. 137-146.

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social

influence in nearly optimal time,” in Proc. 25th Annu. ACM-SIAM Symp.

Discrete Algorithms (SODA), 2014, pp. 946-957.

H. Nguyen and R. Zheng, “On budgeted influence maximization in social

networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 6, pp. 1084-1094,

Jun. 2013.

A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic

Programming: Modeling and Theory, 2nd ed. Philadelphia, PA, USA:

SIAM, 2014.

G. Bayraksan and P. D. Morton, “Assessing solution quality in stochastic

programs,” Math. Program., vol. 108, no. 2, pp. 495-514, 2006.

[14] U. Feige, “A threshold of In n for approximating set cover,” J. ACM,

vol. 45, no. 4, pp. 634-652, 1998.

A. Goyal, W. Lu, and L. V. S. Lakshmanan, “Celf++: Optimizing

the greedy algorithm for influence maximization in social networks,”

in Proc. WWW Companion, 2011, pp. 47-48.

[10]

[11]

[12]

[13]

[15]

SNote that this is distinct from the bash built-in command.

LI et al.: TIPTOP: (ALMOST) EXACT SOLUTIONS FOR IM IN BILLION-SCALE NETWORKS 661

[16] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Sketch-based
influence maximization and computation: Scaling up with guarantees,”
in Proc. CIKM, 2014, pp. 629-638.

[17] T. N. Dinh, Y. Shen, D. T. Nguyen, and M. T. Thai, “On the
approximability of positive influence dominating set in social networks,”
J. Combinat. Optim., vol. 27, no. 3, pp. 487-503, 2014.

[18] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-I. Kawarabayashi, “Fast and
accurate influence maximization on large networks with pruned Monte-
Carlo simulations,” in Proc. AAAI, 2014, pp. 138-144.

[19] J. S. He, S. Ji, R. Beyah, and Z. Cai, “Minimum-sized influential node
set selection for social networks under the independent cascade model,”
in Proc. MobiHoc, 2014, pp. 93-102.

[20] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39-45, 1999.

[21] K. Huang, S. Wang, G. Bevilacqua, X. Xiao, and L. V. Lakshmanan,
“Revisiting the stop-and-stare algorithms for influence maximization,”
Proc. VLDB Endowment, vol. 10, no. 9, pp. 913-924, 2017.

[22] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,”
CoRR, vol. abs/1605.07990, pp. 1-18, Feb. 2016.

[23] H. T. Nguyen, T. N. Dinh, and M. T. Thai, “Revisiting of ‘revisiting
the stop-and-stare algorithms for influence maximization,” in Proc. Int.
Conf. Comput. Social Netw., 2018, pp. 273-285.

[24] S. Chen et al., “Online topic-aware influence maximization,” Proc.
VLDB Endowment, vol. 8, no. 6, pp. 666—677, 2015.

[25] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proc. ACM Symp. Theory Comput., 1984, pp. 302-311.

[26] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Oper. Res., vol. 2, no. 4, pp. 393—410,
1954.

[27] F. Chung and L. Lu, “Concentration inequalities and martingale inequal-
ities: A survey,” Internet Math., vol. 3, no. 1, pp. 79-127, 2006.

[28] P. Dagum, R. Karp, M. Luby, and S. Ross, “An optimal algorithm
for Monte Carlo estimation,” SIAM J. Comput., vol. 29, no. 5,
pp. 1484-1496, Mar. 2000.

[29] V. Krebs. Books About us Politics. Accessed: Jun. 24, 2017. [Online].
Available: http://www-personal.umich.edu/~mejn/netdata/

[30] J. Leskovec and A. Krevl. (Jun. 2014). SNAP Datasets: Stanford Large
Network Dataset Collection. [Online]. Available: http://snap.stanford.
edu/data

[31] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in Proc. KDD, 2009, pp. 199-208.

[32] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. WWW, 2010, pp. 591-600.

Xiang Li (M’18) received the Ph.D. degree from the
Computer and Information Science and Engineering
Department, University of Florida.

She is currently an Assistant Professor with
the Department of Computer Engineering, Santa
Clara University. Her research interests include
the large-scale optimization and its intersection
with cyber-security of networking systems, big data
analysis, and cyber physical systems. She has pub-
lished 25 articles in various prestigious journals
and conferences, such as the IEEE TRANSACTIONS
ON MOBILE COMPUTING, IEEE TRANSACTIONS ON SMART GRIDS, IEEE
INFOCOM, and IEEE ICDM, including one Best Paper Award in IEEE MSN
2014, the Best Paper Nominee in IEEE ICDCS 2017, and the Best Paper
Award at the IEEE International Symposium on Security and Privacy in Social
Networks and Big Data 2018. She has served as the Publicity Co-Chair of the
International Conference on Computational Data and Social Networks 2018,
the Session Chair of the ACM SIGMETRICS International Workshop 2018,
and on the TPC of many conferences, including IEEE ICDCS, IEEE ICDM
Workshop, and COCOA, and also served as a reviewer for several journals,
such as the IEEE TRANSACTIONS ON MOBILE COMPUTING, the IEEE
TRANSACTIONS ON NETWORKS SCIENCE AND ENGINEERING, and the
Journal of Combinatorial Optimization.

J. David Smith received the B.Sc. degree from the
University of Kentucky. He is currently pursuing the
Ph.D. degree in computer science with the CISE
Department, University of Florida, USA, under the
supervision of Dr. M. T. Thai. His current research
interests include security on online social networks.

Thang N. Dinh (S’11-M’14) received the Ph.D.
degree in computer engineering from the University
of Florida in 2013. He is currently an Assistant
Professor with the Department of Computer Science,
Virginia Commonwealth University. His research
interests include security and optimization chal-
lenges in complex systems, especially blockchain,
social networks, and critical infrastructures. His
research won several best papers and best paper
nominees from IEEE ICDM, ACM SenSys, and
CSoNet. He served as the PC Co-Chair for the
BlockSEA’18, COCOON’16, and CSoNet’14 and on the TPC for several
conferences, including the IEEE INFOCOM, the ICC, and the GLOBECOM.
He is currently an Associate Editor of the Journal of Computational Social
Science (Springer Nature) and Review Editor of Big Data.

My T. Thai (M’06-SM’16) is a UF Research Foun-
dation Professor with the Computer and Information
Science and Engineering Department, University of
Florida. The results of her work have led to six books
and over 150 articles, including the IEEE MSN
2014 Best Paper Award, the 2017 IEEE ICDM Best
Papers Award, the 2017 IEEE ICDCS Best Paper
Nominee, and the 2018 IEEE/ACM ASONAM Best
Paper Runner up. Her current research interests
include scalable algorithms, big data analysis, cyber-
security, and optimization in network science and
engineering, including communication networks, smart grids, social networks,
and their interdependence.

Dr. Thai has been involved in many professional activities. She has been the
TPC Chair of many IEEE conferences, and has served as an Associate Editor
for the Journal of Combinatorial Optimization, Journal of Discrete Mathemat-
ics, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, and
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING and a
Series Editor of SpringerBriefs in Optimization. She is a the Founding Editor-
in-Chief of the Computational Social Networks Journal. She has received
many research awards, including the UF Provosts Excellence Award for
Assistant Professors, the UFRF Professorship Award, the Department of
Defense Young Investigator Award, and the National Science Foundation
CAREER Award.

