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Abstract—Device-to-device (D2D) communication has recently
gained much attention for its potential to boost the capacity
of cellular systems. D2D enables direct communication between
devices while bypassing a base station (BS), hence decreasing the
load of BSs and increasing the network throughput via spatial
reuse of radio resources. However, the cellular system is highly
dynamic, an optimal allocation plan of radio resource to D2D
links at one time point can easily become suboptimal when
devices move. Thus, to maximize spatial reuse in cellular systems,
it is crucial to update the resource allocation adaptively to reflect
the current system status. In this paper, we develop the first
adaptive solution framework to the dynamic resource problem
for maximizing spatial reuse. At the core of the framework,
we present the two algorithms for the adaptive set multicover
problem with approximation ratio f and log n respectively, where
f is the frequency of the most frequent element and n is the total
number of elements. Experimental results not only show that
our solutions have a significant improvement in running time,
compared with optimal or approximated offline methods, but
also demonstrate their good performance through the resource
usage, network throughput and other metrics.

Index Terms—Approximation algorithms, Adaptive algo-
rithms, Device-to-device communication.

I. INTRODUCTION

IN recent years, mobile data traffic has been rapidly growing

due to the booming market of mobile devices such as

tablets and smart phones. Globally, mobile data traffic will

increase 6-fold per user between 2016 and 2021 [1], which

exerts great pressure to modern day wireless networks and

therefore draws attention to new technologies that can optimize

the usage of rare radio resources. Particularly, device-to-device

(D2D) communications operated on the licensed spectrum

bands has gained much attention for its potential to boost the

capacity of cellular systems [2]. Equipped with D2D, direct

communication between devices is enabled while bypassing a

base station (BS). D2D underlaying a cellular infrastructure

can provide increase in system throughput, improve energy

efficiency, decrease the load of BSs and guarantee a planned

environment with licensed spectrum [3].

One fundamental problem in D2D communication is the

allocation of spectral resources. In contrast to the conven-

tional cellular network in which resource blocks (RBs) are
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dedicated to the devices, multiple D2D communication links

may spatially reuse an RB. The overall network performance

is thus greatly impacted by the resource allocation scheme.

Therefore, how to optimally allocate the RBs to devices to

maximize spatial reuse becomes an essential problem in D2D

design.

The resource allocation problem has been studied in liter-

ature [4]–[13]. Some of the works assumed that D2D links

cannot share RBs among themselves but only with a cellular

link [4]–[7], which limit the full potential of spatial reuse.

Most of the other works allow more flexible spatial reuse

[8]–[11], however, either they cannot guarantee optimality via

game theoretical approaches [8], [9] or the approaches are

too complicated to be applied directly [10], [11] that pre-

processing [10] or relaxation [11] are required. More impor-

tantly, all the approaches fail to deal with the highly dynamic

mobile network: an allocation may soon become invalid once

a change occurs in the cell. Due to mobility, devices may

enter/leave the cell so that the D2D communication links

requiring RBs can rapidly change overtime.

Therefore, it is natural to pursue a solution that can be

efficiently adapted to the status quo in a practical resource

allocation scenario, as solving the whole problem from scratch

can be costly and resulting in a delayed allocation decision that

may be improper if the devices moved. Among the literature

mentioned above, the approach in [10] has the most potential

to be further developed into an adaptive algorithm, as its core

is a set multicover (SMC) problem, which is much simpler

comparing with other algorithms, despite the complicated

preprocessing process that identifies the maximal interference-

free sets (MIFS). Each MIFS is a subset of D2D links that can

communicate concurrently using the same RB without having

much interference. The MIFSs are used as sets in the SMC

problem while the links corresponds to the elements. Kuhnle

et al. [12] proposed an online algorithm that can partially

handle the scenario when the links are established or ended.

The algorithm guarantees a competitive ratio when links can

only appear at fixed locations (hence the MIFSs are fixed)

and the D2D links appear one-by-one. However, the setting is

still not close to reality as when devices move, the MIFSs can

easily change. Also, the algorithm has no guarantee when the

links are ended.

In order to solve the practical resource allocation problems,

we have to face the challenges resulted from mobility. As

mentioned above, the D2D links and the resource requirements

can change overtime. Thus, in order to apply the SMC based
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approach, the MIFSs must be updated dynamically, which is

complicated as the existing technique [10] requires enumer-

ating all maximal independent sets in the interference graph

based on all devices. If we allow updating the MIFSs with

each change, the time complexity will be too high. However,

if we cannot update the MIFSs, the allocation may not even

be feasible as possibly some D2D links are not considered in

all MIFSs. More importantly, even if the MIFSs are available

after each system change, no solution exists for the dynamic

SMC problem in which both set/elements can arrive/depart

over time.

To tackle all the challenges, we first revisit the creation of

MIFSs and propose an approach that the generated MIFSs

can be kept fixed without impacting the solution quality. This

approach solves the mobility issue related to MIFS generation

and lays a solid foundation for the SMC based resource alloca-

tion approaches. Considering the fact that changes in a cellular

network can be too frequent that we need to handle multiple

changes instead of one when doing reallocation, we propose

an adaptive approximation algorithm with f approximation

ratio for the SMC problem that can deal with batches of

changes, unlike the online algorithms that need to handle

changes iteratively. Our adaptive approach has the merit of

online approaches that only the changes in the system are

required to update the solution, which needs much less running

time than recomputing the whole problem. Also, it is capable

of handling all kinds of dynamics in the system, including

devices entering, leaving and moving within the cell. As an

alternative, we also propose a log n adaptive approximation

algorithm. Both algorithms are the first of their kind.

The contributions of this paper are as follows.

• We provide an adaptive framework for the D2D resource

allocation problem that is able to efficiently update the

resource allocation with batch changes, including devices

entering, leaving and moving within the system.

• We propose an f -adaptive approximation algorithm for

ASMC. To the best of our knowledge, this is the

first adaptive algorithm with f ratio for adaptive set

multicover problem that considers both elements enter-

ing/leaving.

• We propose the first log n-adaptive approximation algo-

rithm for ASMC under the same conditions.

• We run extensive experiments on cellular systems gen-

erated with both actual and simulated mobility traces.

The proposed algorithms are scales of magnitude faster

than the optimal solution. They also have comparable

performance with the optimal solution, in terms of metrics

like number of RBs used and the network throughput.

The rest of this paper is organized as follows. We first

discuss about the related works in Section II. Next, we define

the model of cellular system, discuss D2D interference and

define the adaptive resource allocation problem in Section III.

In Section IV, we propose the solution framework, approaches

to calculate stable MIFSs and our two algorithms to solve

the ASMC problem. The experiment results are shown in

Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

The idea of D2D communication as an underlay of the

cellular network was introduced in [2]. Control of interference

among D2D links within a single cell was studied in [14],

[15]. A resource sharing problem was proposed in [16] and

solved using a game theoretical approach. Resource sharing

problems in D2D or vehicular networks were studied in [17]–

[19] via graph theoretic approaches. In [20], the problem of

maximizing the spatial reuse for D2D communication has

been presented. The problem was formulated in MIP and

solved via a greedy heuristic. The results of [20] were later

improved in [10] by using a greedy set multicover algorithm.

Noticing the dynamic nature of D2D communication, online

algorithms was proposed in [12], [13], which achieved a huge

improvement in running time compared to algorithm in [10]

while maintaining similar performance. However, the existing

set multicover based solutions all assumed a fixed set of

MIFSs, which limits their applicability since the future use

cases of wireless communications in the 5G-era can be of

high mobility [21]–[23].

From the theoretical side, the approximation algorithms for

the set cover related problem were also proposed. An f -

approximation algorithm for the set multicover problem was

presented in [24]. Its approximation ratio was proved by the

primal-dual schema. However, this algorithm was designed

to solve a single SMC instance, but not an online/adaptive

solution that can work under dynamic situation. For the set

cover problem, various online algorithms exist in literature

[25]–[28]. Among the algorithms, [25], [28] considered both

addition and removal of elements while the others focused

on adding elements one by one. Nonetheless, the proposed

algorithms are not readily extended to the SMC problem, nor

the tailored instance in the D2D resource allocation context.

III. MODEL AND PROBLEM DEFINITION

A. The Cellular Network

We study a cellular system with a single BS B and set of

RBs R. To represent the system dynamics and device mobility,

we denote G = (G0,G1, ...,GT ) as the system snapshots, where

Gt
= (V t, Lt,Qt ) with V t, Lt as the set of all devices and the

set of D2D links at time t ∈ [0,T], respectively. The resource

requirements for the links are denoted by Qt : Lt → N
+.1

For each link l ∈ Lt , its resource requirement is Qt (l), the

minimum number of RBs required for the link at time t.

We assume the set V t of devices to serve is determined

by the BS. Further, we assume the knowledge of cmin, the

minimum allowable channel quality indicator (CQI), which in

turn defines the minimum data rate rmin that any D2D link

can gain from an RB. The set Lt and resource requirements

Qt are then determined by the BS based on the location of

the devices, the content requirements/availability and rmin. We

consider V t, Lt and Qt as inputs and the determination of the

devices, links and requirements are beyond the scope of this

paper.

1
N
+ is the set of positive integers.
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Cellular Resources. In this paper, we consider the resource

sharing model discussed in [4], [11], [29]. In the model, the

D2D and cellular links use disjoint portion of the licensed

band. Therefore, interference only exists among D2D links

and we mainly focus on the resource allocation problem for

the D2D links. However, we will also discuss how our model

and approaches can be adapted to solve the problem when

cellular and D2D links can share RBs.

Data Rates. For a D2D link ( j, k) ∈ Lt , we need to

consider interference from other D2D links when calculating

data rate r( j, k). Denote L as the set of D2D links that shares

an RB with ( j, k), we can calculate r( j, k) under distance-

dependent path loss, multipath Rayleigh fading and log-normal

shadowing using (1). Wd is the portion of band assigned to

D2D links and γ( j, k) is the Signal to Interference and Noise

Ratio (SINR). In γ( j, k), djk is the distance between devices

j and k, α is the path loss exponent, |m0 |2 is the fading

component and is a constant within the BSs coverage area

following [11], N0 is the additive white Gaussian noise, ψ

is the log-normal shadowing component and pj, pj′ are the

transmit powers for UEs j, j ′ respectively.

r( j, k) = Wd log2(1 + γ( j, k)) (1)

γ( j, k) =
pjd

−α
jk

|m0 |210ψ/10

∑
(j′,k′)∈L pj′d

−α
j′k |m0 |210ψ/10

+ N0

(2)

If we want to consider resource sharing between cellular

and D2D links (in uplink) and obtain their corresponding data

rates, we can simply add the interference between cellular

and D2D links to the denominator of (2) (and also change

the numerator for cellular link data rate calculation). This

model can also be extended to handle multiple BSs by adding

intercell interference to the denominator part of (2).

B. Problem Definition

There are two major ways to define the resource allocation

problem, 1) minimize number of RBs while satisfying all

resource requirements and 2) maximize network throughput

with a fixed number of RBs. We choose to proceed with the

minimization objective: at each time point t, the BS needs to

determine the allocation of RBs to the D2D links: Ft (l) ⊆
R.∀l ∈ Lt , so that the number of RBs used, | ∩l∈Lt Ft (l)|,
is minimized while all the resource requirements are satisfied:

|Ft (l)| ≥ Qt (l), ∀l ∈ Lt . The main reason for this choice is

our goal to develop an adaptive approach to avoid extensive

recomputing, in response to a highly dynamic environment. If

the objective is maximizing network throughput, at each time

point, all the RBs are allocated to the current D2D links. When

new D2D links arrive, we have to re-allocate the RBs and

likely recomputing from scratch, which is not desirable. Also,

the D2D links will experience huge fluctuation in service.

Instead, with the minimization objective, we satisfy all the

requirements of current D2D links and maintain the largest

number of free RBs that can serve future D2D links. When

new D2D links arrive, we can allocate those RBs to the new

links without having much impact to the service to old D2D

links. The objective also facilitates an adaptive approach. The

solution at time point t should be based on solution at time

point t − 1 and the changes in the network from Gt−1 to

Gt , denoted as ∆t , rather than calculating from scratch. We

assume that R is large enough to accommodate all resource

requirements.

The definition of our problem, Adaptive Mobility-Aware

Resource Allocation (AMARA), is as follows.

Definition 1 (AMARA). Given a dynamic cellular system G =
(G0,G1, ...,GT ) where Gt

= (V t, Lt,Qt ), the set of RBs R, the

problem is to find the allocation Ft (l) ⊆ R.∀l ∈ Lt , so that

|Ft (l) ≥ |Qt (l), ∀l ∈ Lt and the number of used RBs, | ∩l∈Lt

Ft (l)|, is minimized. Also, Ft should be derived adaptively,

using only Ft−1 and ∆t .

IV. SOLUTION

A. Overview

For solving AMARA, based on the previous analysis, seem-

ingly we have to face the two aforementioned challenges:

dynamically updating MIFSs and solving the SMC problem

adaptively, considering element/set arrivals/departures. How-

ever, the challenges are based on the fact that the MIFSs are

generated as in [10], [12], [13]. To deal with this challenge, we

will derive a new approach of generating MIFSs in Sect. IV-B

that major updates are not necessary no matter how the

devices move. Thus, the second challenge is simplified to an

adaptive SMC problem with only element arrivals/departures.

We propose two variations of its approximation solution in

Sect. IV-C and Sect. IV-D respectively, which are first such

algorithms and also completes the solution to AMARA. The

overview of solution to AMARA is as in Alg. 1.

Algorithm 1 Solution to AMARA

Input: G0, ∆t, 0 < t ≤ T

Output: Ft, 0 < t ≤ T

Calculate all MIFSs as discussed in Sect. IV-B, denote the

sets as S.

for t = 0 to T do

Solve the adaptive SMC problem defined in Sect. IV-B to

obtain Ft using the algorithm in Sect. IV-C or Sect. IV-D.

B. Calculation of MIFS

In [10], [12], [13], MIFSs are for the links, defined as

the set of D2D links that can share the same resource block

without introducing much interference. Therefore, whenever a

device moves, the MIFSs must be updated accordingly as the

interference for links in all MIFSs related to the device will

change. As calculating the MIFSs is an enumerative process

hence time-consuming, it is preferable to do it only once. Thus,

we avoid using the links for constructing MIFSs. Instead, we

rely on the stable components of the cell: locations.

The main idea of this approach is to split the area covered

by the BS as grids and place an artificial link at the center

of each grid. Then, we map all links and their requirements

to the grids by proximity and use the corresponding artificial

links to represent the actual links. Each artificial link has both



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2912963, IEEE

Transactions on Wireless Communications

4

its transmitter and receiver located at the center of the grid,

yet the distance between them is a positive constant d0. The

RB requirement of an artificial link is the sum of all RB

requirements of actual links mapped to the grid. To obtain

an MIFS, we can iteratively pick links until the minimum

SINR among those links sharing a single RB is close to γmin,

which we set to 15 dB in this paper. Note that we consider

distance between links, path loss exponent, fading component

and shadowing component in MIFS calculation as we calculate

SINR using equation (2). After the mapping, we can obtain an

altered instance of AMARA that has a fixed universal set of

artificial links. Those links may arrive, depart or have varying

resource requirements overtime, based on the dynamics of the

actual links. The calculated MIFSs are stable as the grids

are fixed. By this approach, it is not necessary to update the

MIFSs, only with a minor overhead of mapping the links to

grids at each time t.

In order to ensure that each actual link can be close to the

center of some grid, we use overlapping grids. Specifically,

denote the maximum D2D distance as d, we introduce square

grids (we also assume a square cell) with size 2d×2d and place

one such grid by its center at coordinates ( pd
2
,
qd

2
), p, q ∈ Z

(and the grids are within the cell). The following lemmas gives

bounds on the approximation from actual links to the artificial

links. Since the results are solely based on the center of each

grid, they can be applied to arbitrary grid shapes.

Lemma 1. For a link whose transmitter and receiver are both

at least d away from the boundary of the cell, the maximum

distance from its midpoint to the center of its assigned grid is

at most
√

2
4

d.

Proof. Despite the boundary grids, each grid will obtain all

links whose midpoints fall into the square with side length d
2

,

centered at the grid center. This is due to the way we select

the grid centers. Hence, the maximum distance is from the

vertex of the square to the center, which is
√

2
4

d. �

Lemma 2. Given two links (t1, r1), (t2, r2) assigned to the same

grid, let dist(t, r) be the distance between the devices, we have

max(dist(t1, r2), dist(t2, r1)) =
√

6

2
d.

Proof. Based on Lemma 1, the two links both fall into the

square with side length d
2

. Hence, the center of the two links

must be at two end points of a diagonal of the square or the

distance cannot be maximum. In order to achieve maximum

distance, the links should both be orthogonal to the diagonal,

as depicted in Fig. 1 and the distance in this case is
√

6
2

d. �

Lemma 3. Given two links (t1, r1), (t2, r2) assigned to two

different grids, we have

min(dist(t1, r2), dist(t2, r1)) ≥ 2d.

when the centers of the two grids are at least (3+
√

2
2
)d away.

Proof. The maximum distance from the center of a grid to

a transmitter/receiver whose link is assigned to the grid is

dm = (
√

2
4
+

1
2
)d, which is achieved when the center of the link

is at one vertex of the square and the link is collinear with

Fig. 1: Example for Lemma 2

Fig. 2: Example for Lemma 3

the diagonal, as in Fig. 2. Hence, to guarantee a minimum

distance of 2d between transmitter and receiver from different

links, the centers of the corresponding grids must be 2d+2×dm
away, which yields the result. �

The Lemmas ensures that using artificial links give a

good approximation of the actual links. Lemma 1 shows the

proximity between the actual and artificial links. Lemma 2

makes sure that the links assigned to the same grid are close

enough so that no resource sharing is possible among them.

From another perspective, Lemma 3 guarantees that the links

assigned to different grids will not be too close, so that there

exists limited impact from interference when we allocate the

same RB to those links. We will illustrate the performance of

link-grid mapping in the experiments, especially in Fig. 7.

Allowing variation in transmit power. In the above

description of MIFS calculation, we assume a fixed transmit

power for all links. Variation in transmit power can be allowed

by adding copies of each artificial link with different transmit

power levels. Then, an MIFS can contain links with different

transmit power. However, the cost is the increased complexity

for enumerating MIFSs.

Resource sharing among cellular links and D2D links.

In order to consider more generalized resource sharing, we

need to calculate the interference at the BS, as we only share

RBs in uplink. If we want to include a cellular link into a

MIFS, we can map the BS as a special grid and map the

cellular transmitters as the D2D links. Then the SINRs can be

calculated accordingly.

For clarity, we also define the adaptive SMC (ASMC)

problem here.

Definition 2 (ASMC). Given a universal set E, a collection

of sets S = {S1, S2, ..., Sm} and a collection of sets of

elements (E0, E1, ..., ET ), where E t ⊆ E contains the elements

having coverage requirements at time point t. The coverage
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requirement of element e ∈ E t is denoted as ke ∈ N+ . The

problem is to adaptively find a set multicover Ct ⊆ S with the

minimum size so as to satisfy all the coverage requirements at

every time point t.

Based on the mapping, each element corresponds to a grid

and each set corresponds to an MIFS. Then, E is to the set of

grids, and S is the set of all MIFSs. Elements in E t are those

grids containing D2D links at time t, the coverage requirement

is the summation of requirements of all links in the grid. We

can use a simple summation as the links grouped into the

same grid are close, they are not able to share RBs due to

high interference. To obtain the allocation Ft , we can assign

an RB to each selected MIFS in Ct and they can be easily

mapped to the links in each grid.

C. f -Approximation to ASMC

Our first approach to solve ASMC is based on the primal-

dual framework, which guarantees an f approximation ratio

for the SMC problem without any changes [24], where f is the

maximum frequency of elements among all sets in S. In order

to solve the problem adaptively, however, we have to carefully

design procedures to handle updates in order to maintain the f

ratio. In the following, we first overview the offline algorithm

for SMC with f ratio and then present our adaptive algorithm.

1) Algorithm for SMC: As we have to solve the whole

problem at time t = 0 since there is no prior information,

we need the algorithm Base Alg for the offline version of

SMC. We can use any existing solutions to SMC for this

base case. However, we want a solution that can pick an

arbitrary element to cover in each iteration, so that the later

snapshots can be solved adaptively. Here we briefly overview

the algorithm in [24]. For notational convenience, we introduce

the IP formulations and also the details of the Base Alg in

Alg. 2.

We denote the selected set multicover be C and let Sj ∈ S
denote an arbitrary set. Denote xj as a binary variable for

each set such that xj = 1 if Sj ∈ C and xj = 0 otherwise.

The IP formulation for SMC is as follows. The objective (3)

makes sure the number of selected sets in the multicover C

is minimized, and constraint (4) ensures each element i is

covered for at least ki times. Constraint (5) guarantees the xjs

are binary.

min
∑m

j=1 xj (3)

s.t.
∑

j:i∈S j
xj ≥ ki ∀i ∈ {1, ..., n} (4)

xj ∈ {0, 1} ∀ j ∈ {1, ...,m} (5)

The corresponding LP relaxation P:

min
∑m

j=1 xj (6)

s.t.
∑

j:i∈S j
xj ≥ ki ∀i ∈ {1, ..., n} (7)

−xj ≥ −1 ∀ j ∈ {1, ...,m} (8)

xj ≥ 0 ∀ j ∈ {1, ...,m} (9)

The dual program D, in which yi corresponds to constraint

(7), zj corresponds to constraint (8).

max
∑n

i=1 kiyi −
∑m

j=1 zj (10)

s.t.
∑

i∈S j
yi − zj ≤ 1 ∀ j ∈ {1, ...,m} (11)

yi ≥ 0 ∀i ∈ {1, ..., n} (12)

zj ≥ 0 ∀ j ∈ {1, ...,m} (13)

The following complementary slackness conditions are nec-

essary for the f -approximation under primal-dual schema.

∀ j ∈ [1,m]: either xj = 0 or
∑

i∈S j

yi − zj = 1 (14)

∀i ∈ [1, n]: either yi = 0 or
∑

j:i∈S j

xj ≤ f (15)

∀ j ∈ [1,m]: either zj = 0 or xj = 1 (16)

Also an additional condition:
∑

j=1,...,m

zj ≤
∑

i=1,...,n

(ki − 1)yi (17)

Lemma 4. [24] The primal solution x is a f-approximation

to SMC if the corresponding dual solution y, z is feasible and

conditions (14)-(17) hold.

We summarize the algorithm in [24] as Base Alg. This

algorithm works as follows. It starts from a dual feasible

solution y, z = 0 and a primal infeasible solution x = 0. Each

time an element ei ∈ E whose coverage requirement is not

met is picked and yi is set to 1. Then zj is modified for all

sets to maintain primal complementary slackness conditions.

All sets that can cover element ei are included in the result

C if they are not included yet. The algorithm stops when all

coverage requirements are satisfied by the set C.

Algorithm 2 Base Alg

Input: E, S
Output: C

1: xj = 0, zj = 0, ∀Sj ∈ S
2: yi = 0, ∀ei ∈ E, A = E
3: while A is not empty do

4: Arbitrarily pick ei ∈ A, Set yi = 1

5: for ∀Sj : i ∈ Sj do

6: if Sj < C then

7: xj = 1, C = C ∪ {Sj}
8: Set zj =

∑
i∈S j

yi − 1

9: for el ∈ Sj do

10: if
∑

j:l∈S j
xj ≥ kl then

11: Remove el from A

Theorem 1. [24] Algorithm 2 is an f -approximation algo-

rithm for SMC.

Theorem 2. Algorithm 2 has a time complexity of O( f |E |2)
where f = maxi |{Sj |i ∈ Sj}|.

Proof. The initialization of Algorithm 2 takes O(|S| + |E |)
time. The while loop in line 3 is executed O(|E |) times. The

for loop in line 5 runs O( f ) times with each element picked
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in line 5. The time for line 9 can go up to O(|E |). The time

complexity follows as |S| = O( f |E |). �

2) The Adaptive Approximation Algorithm: Based on

Lemma 4, if we can maintain a solution that satisfies con-

ditions (14)-(17), the f approximation ratio naturally holds.

Thus, the goal of the adaptive algorithm is then efficiently

update the primal/dual solutions so that the conditions are

satisfied.

We first consider ∆E t , the changes in the system at time

t. The changes can be classified into four categories: addi-

tion/removal of elements and increase/decrease of require-

ments for existing elements. Each change δ ∈ ∆E t is a

tuple δ = (TY PE, e, c). TY PE can be ADD/RM/INC/DEC,

which specifies the four types of changes. e is the element

associated with the change and c is the amount of the change,

c is positive for ADD/INC and negative for RM/DEC. The

changes are handled differently based on their types in the

following algorithm.

Adaptive Alg. (Alg. 3) In this algorithm, we first call

function Remove Elem for removed nodes and update Ct and

∆E t accordingly. Then we call Partial Cover to satisfy all

requirements in ∆E t .

Algorithm 3 Adaptive Alg

Input: ∆E t ,Ct−1, S
Output: Ct

1: Ct
= Ct−1

2: for all δ = (TY PE, e, c) ∈ ∆E t do

3: if TY PE = RM then

4: Ct
= Remove Elem(δ, Ct , ∆E t )

5: Ct
= Partial Cover(∆E t , Ct )

Remove Elem. (Alg. 4) The algorithm only considers the

elements that are removed. For a removed element e, we check

all sets Sj such that e ∈ Sj . If
∑

ei ∈S j
yi− zj = 0, we first try to

recover this complementary slackness condition by decreasing

zj . If zj is already 0, we need to remove Sj from Ct and set

xj = 0. Also, we check all the other elements covered by Sj . If

some elements need more coverage because of removal of Sj ,

we add the change to ∆E t . Notice that we may add multiple

records of the same element to ∆E t . In line 10 of Alg. 4,

we can search for the element in ∆E t before addition. If the

element is already in ∆E t , we can integrate the new change

with the existing one.

Partial Cover. (Alg. 5) This algorithm takes ∆E t and con-

siders only requirement increases. We ensure this by handling

all element removal in Alg. 4 and filter out all requirement

decreases at the beginning of Alg. 5. Then the requirement

increases in ∆E t are transformed to an SMC with smaller size

than the original problem. The remaining structure is similar

to Base Alg.

We are now ready to prove the approximation ratio of

Approx-ASMC.

Lemma 5. Remove Elem keeps dual feasibility as well as

conditions (14)-(17).

Algorithm 4 Remove Elem

Input: δ = (TY PE, e, c), Ct , ∆E t , E t

Output: Ct , ∆E t

1: Remove all records of e from ∆E t

2: if ye = 1 then

3: ye = 0

4: for ∀Sj : e ∈ Sj do

5: if
∑

ei ∈S j
yi − zj = 0 then

6: if zj > 0 then

7: zj = zj − 1

8: else

9: Remove Sj from Ct , xj = 0

10: for all ei ∈ Sj do

11: if
∑

Sp :ei ∈Sp
xp < kei AND ei ∈ E t then

12: Let δ′ = (INC, ei, 1), Add δ′ to ∆E t

Algorithm 5 Partial Cover.

Input: ∆E t , Ct , S
Output: Ct

Let A = ∅
for ∀δ = (TY PE, e, c) ∈ ∆E t do

if TY PE = ADD then

Add e to A, ye = 0

else if TY PE = INC then

Add e to A

while A is not empty do

Arbitrarily pick ei ∈ A, Set yi = 1

for all Sj : i ∈ Sj do

if Sj < Ct then

xj = 1, Ct
= Ct ∪ {Sj}

Set zj =
∑

i∈S j
yi − 1

for all el ∈ Sj do

if
∑

j:l∈S j
xj ≥ kl then

Remove el from A

Proof. It is trivial to remove an element ei with yi = 0. The

dual constraints and the conditions will not change. When we

remove an element ei with yi = 1, notice that changing yi to 0

will not impact dual feasibility. Condition (14) is maintained

by line 5-7 of Alg. 4. Condition (16) is maintained by line

8-9. Condition (15) always holds.

For condition (17), we need a more detailed analysis of how

the difference of rhs and lhs of (17) changes when changing

yi in Alg. 2. We group the collection of sets that can cover

ei into two subcollections, S1
i
,S2

i
where S1

i
is the collection

of sets that ∀S ∈ S1
i
, S ∩ E t

= {ei} (the sets that can only

cover ei in the current set of elements) and S2
i

contains all

the remaining sets that can cover ei . Denote |S1
i
| = a1

i
and

|S2
i
| = a2

i
, we have a1

i
+ a2

i
≥ ki when the problem is feasible.

Clearly, when element i is removed and we set yi = 0, the lhs

of (17) decreases by a2
i

as zj values for those in S1
i

are 0.

When a2
i
≥ ki − 1, (17) trivially holds as the rhs will decrease

by ki−1 ≤ a2
i
. If a2

i
< ki−1, we can write a2

i
= ki−1−bi, bi >

0. Consider the time When yi is set to 1 in Alg. 2 or Alg. 5,

the lhs of (17) is increased by at most ki − 1 − bi and the

rhs is increased by ki − 1. Therefore, the gap between the two
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sides increased by at least bi by this step. When setting yi = 0,

however, the gap between two sides will decrease by bi . Since

the two facts hold for all ei , we can see the bi increase in gap

when setting yi = 1 as the budget to pay the bi decrease

when we set yi = 0. Thus, the feasibility of (17) is always

ensured. �

Lemma 6. Partial Cover yields a primal feasible solution at

any time point t for E t .

Proof. We prove this by induction. At time 0, Theorem 1

shows that Base Alg can give a feasible solution. At time

t, before we call Adaptive Alg, assume SMCt−1 is a feasible

cover for E t−1. After all runs of Remove Element at time

t, we may remove some sets from SMCt−1. The elements

that used to be covered by those sets are added to ∆E t if

more coverages are required. Therefore, what Partial Cover

handles are all elements with unsatisfied coverage require-

ments in E t . Based on the same reasoning as in Theorem

1, Partial Cover can satisfy all those requirements and then

yield a primal feasible solution. �

Theorem 3. At any time point t in the dynamic network, the set

multicover Ct found by Approx-ASMC satisfies Ct ≤ f Ct
opt

where f is the maximum frequency of any elements in S and

Ct
opt is the optimal solution at time t. Thus, Approx-ASMC is

an f-approximation algorithm for ASMC.

Proof. To prove the f -approximation ratio, we need to show

conditions (14)-(17) are maintained in Partial Cover and the

resulting primal/dual solutions are feasible. Based on Lemma

6, the primal solution xj and dual solution yi, zj before running

Partial Cover satisfy all conditions and the dual solution is

feasible. Since the main execution part of Partial Cover is

the same as Base Alg, we can use the same reasoning in

Theorem 1 to show the feasibility of the dual solution and

all conditions hold. From Lemma 6, primal feasibility is also

ensured. Therefore, we get the desired f ratio for Approx-

ASMC based on primal-dual schema. �

In the remaining part of this section, we present the analysis

of time complexity of Approx-ASMC. In Theorem 2, we

already proved the time complexity of Base Alg, which is

O( f |E (0) |2).
The time complexity of Approx-Adaptive can be sepa-

rated to two parts: Remove Elem and Partial Cover. For

Remove Elem, we first consider its worst case complexity:

Lemma 7. The worst case time complexity for Remove Elem

is O( f∆E t |E t |). Where f∆E t is the maximum frequency of all

elements in ∆E t . Also, O(|E t |) elements can be added to ∆E t

in the worst case.

Proof. The worst case happens when we need to remove every

set covers the element e from SMCt and each of the removed

sets are of size O(|E t |). In this case, all the O(|E t |) elements

in those sets will be added to ∆E t . The time complexity for

Alg. 4 is then O( f∆E t |E t |). �

Since the time complexity of Alg. 4 can be as good as

O( f∆E t ) and not adding any elements to ∆E t , we will apply

amortized analysis to better depict the overall behavior of

Alg. 4.

Lemma 8. Alg. 4 has an amortized time complexity of O( f∆E t )
and it adds O( f∆E t ) elements to ∆E t .

Proof. Each time an element e is removed, the zj values of at

most f∆E t sets covering e are checked. Notice that handling

each of the sets Sj needs O(1) time when zj > 0 and O(|Sj |)
time when zj = 0. When the case zj = 0 is met and Sj has to

be removed, there must exist |Sj | −1 operations of complexity

O(1) to decrement zj . Therefore, the amortized time to check

a set is O(1) and O(1) elements are added to ∆E t per check.

Thus the lemma follows as Alg. 4 checks at most f∆E t sets. �

Theorem 4. Algorithm Approx-Adaptive has amortized time

complexity of O( f 3
∆E t |∆E t |2).

Proof. Since we run Alg. 4 O(|∆E t |) times, based on Lemma

8, the total amortized time complexity of all runs of Alg. 4

operations in Alg.3 is O( f∆E t |∆E t |) and the size of ∆E t can

at most change by a factor of f∆E t .

For Alg. 5, the time complexity analysis is the same as

Alg.2. Therefore, setting |E | = f∆E t |∆E t |, Alg. 5 has time

complexity of O( f 3
∆E t |∆E t |2).

Thus the overall time complexity of Alg.3 is O( f 3
∆E t |∆E t |2).

�

Notice that the time complexity of Adaptive Alg does not

include any global parameters such as E t or S, which means

our algorithm to ASMC has a much better time complexity

than offline algorithms.

3) Solution to ASMC: Based on Alg. 2 and 3, we can build

the solution for ASMC as Approx-ASMC in Alg. 6. The

algorithm calls Base Alg in initialization at time t = 0, in

order to get the initial set multicover C(0). At time point t > 0,

Approx-ASMC calls algorithm Adaptive Alg to calculate Ct

based on Ct−1 and ∆E t .

Algorithm 6 Adaptive Approximation Algorithm for ASMC

(Approx-ASMC)

Input: E0, ∆E t, 0 < t ≤ T , S
Output: Ct, 0 ≤ t ≤ T

C0
= Base Alg(E0,S)

for t = 1 to T do

Ct
=Adaptive Alg (∆E t,S,Ct−1)

From Theorem 1 and 3, Alg. 6 keeps an f adaptive

approximation ratio which is one of the best ratios for offline

set multicover problem [30]. Therefore, Alg. 6 can achieve

one of the best ratios with improved time complexity in an

adaptive setting, which is highly desirable.

D. A log n-approximation Algorithm

A recent paper [28] introduced the first O(log n)-competitive

solution to the online set cover problem. In this section, we

briefly recap the existing solution in [28] and discuss how it

can be extended to solve ASMC. Then, we refine the result by

utilizing special features in the problem originated from D2D

resource allocation.
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1) The algorithm for online set cover: In [28], the authors

introduced a log n-competitive algorithm for online set cover,

which has O( f log n) update time per element arrival. The

main idea of the algorithm is to assign each element to a single

set and place the sets in different levels based on the density

of the set, which is defined as cost per covered element. The

algorithm maintains a stable solution as the result. In a stable

solution, the sets cannot be substituted by unselected sets to

obtain lower density.

The approximation ratio of the algorithm is obtained from

the fact that the majority of the density levels falls in the range

of [OPT
n
,COPT], where C is a constant (210 in [28]). Also,

the total cost in each density level is O(OPT). Since the size

of density levels increases exponentially, the total number of

non-trivial density levels is O(log n) and hence the total cost

of all sets is O(log nOPT).

2) Adaptation and new results.: As each element may need

to be covered multiple times, the definition of coverage and

density in [28] no longer holds. In calculating the density of

a collection of sets, instead of using the number of covered

elements, we can use the number of effective covering times.

For density calculation, it is equivalent to creating ke copies

for each element e. Then, total cost of sets in each density

level is still O(OPT). However, in ASMC, the lower bound

on the density level is now OPT∑
e∈E ke

instead of OPT
n

. Thus, the

number of density levels, as well as the approximation ratio,

is O(log(∑e∈E ke)) = O(log n + log f ) and is O(log n) when

all kes are small.

For the update time, in [28], each element carries O(log n)
credits to pay for level changes. In ASMC, however, all ke
copies of each element e may change levels, thus the amount

of credits is now O(ke log n). The complexity for each level

change is still O( f ) and the overall update time is O( f k̄ log n)
where k̄ is the average requirement. When k̄ is O(1), the time

complexity is O( f log n), the same as [28].

3) Refinement of the result.: In [28], the key structures that

contribute to the O(log n) ratio are the O(log n) density levels,

as the possible densities of the sets are lower bounded by OPT
n

and upper bounded by 210OPT . However, the specific ASMC

problem we consider in the D2D context has some intrinsic

features that allows better analysis of the density levels. First

of all, the set costs are uniform and thus we can use any

arbitrary cost c for all the sets. Also, we keep the volume of

each element at 1. Thus, in any solution, the highest possible

density is then c, instead of the unknown value 210OPT .

Similarly, denote the cardinality of the largest set as smax , then

the lowest possible density is c
smax

. Notice that in general smax

is also unknown. However, in the D2D context, this number

denotes the maximum number of devices that can transmit

using the same RB, which can be approximated by the size of

largest MIFS. If we set c = smax , then the range of densities

becomes [1, smax] and the number of levels is log(smax), a

constant. Which means that we can obtain a constant ratio

approximation algorithm under this specific setting.

V. EXPERIMENTS

A. Experimental Settings

1) Algorithms: In the experiments, we compare the per-

formance of the following algorithms. We do not consider

other algorithms as they are not compatible with fully dynamic

resource allocation scenarios.

• f -adaptive: the adaptive algorithm with f approximation

ratio, described in Sect. IV-C.

• f -offline: the algorithm with f approximation ratio but

solves the resource allocation problem from scratch for

each snapshot.

• log n-adaptive: the adaptive algorithm with log n approx-

imation ratio, described in Sect. IV-D.

• log n-offline: the algorithm with log n approximation ratio

but solves the resource allocation problem from scratch

for each snapshot.

• optimal: the algorithm that optimally solves the IP (3) -

(5) for each snapshot.

2) Parameters: We focus on a single square cell in the

experiments and the main network parameters are summarized

in Table I. As we only consider the resource allocation of D2D

links in this paper, we ignore all parameters related to the base

station. Also, we do not limit the number of RBs we may use,

but we set the bandwidth for each RB for data rate calculation.

TABLE I: Main Wireless Network Parameters

Notation Description

Cell dimension 100 x 100 m2

Channel Model Multipath Rayleigh fading
Fading Component 1
Path Loss Exponent 3
Shadowing std. dev. 10 dB
Noise spectral density −174 dBm/Hz
D2D transmit power 23 dBm
Maximum D2D distance 30 m
RB bandwidth 200 kHz

3) Datasets: As we focus on resource allocation problems

overtime, only the datasets with mobility traces are considered

in this paper. We first consider the CRAWDAD datasets [31],

[32] that provides actual [31] and simulated [32] traces in

real sites. We further consider mobility data generated by the

SLAW model [33].

In the datasets, only the traces of the devices are provided,

so we generate the D2D links using the following method. The

steps for generating the links for one snapshot are detailed

in Alg. 7. For each snapshot, we iteratively pick a random

unselected device and construct a D2D link between it and its

nearest unselected neighbor within D2D transmission range.

At most one link is allowed per device at any point of

time, so we mark the two nodes as selected once the link

is established. We will also mark the randomly picked node

if there exists no device within its D2D transmission range.

We stop the generation when the number of generated links

in that snapshot reaches the predefined upper bound B (set to

80 in our experiments), or when all nodes are selected. We

also consider the duration of the D2D links. For each link, we

randomly assign it a duration within 1 to 5 snapshots. We will
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Algorithm 7 Link Generation

Input: V t , Lt−1, B

Output: Lt

Lt
= ∅

for ∀l = (u, v) ∈ Lt−1 do

if l .duration > 1 and distance(u, v) < d then

Add l to Lt with duration l .duration − 1

Mark u, v as selected

count = 0

while count < B and exists some unselected nodes do

Randomly pick an unselected u0 ∈ V t

Find the unselected node v0 ∈ V t nearest to u0.

if Both v0 exists and distance(u0, v0) < d then

Uniformly randomly generate dur within [1, 5]
Add (u0, v0) to Lt with duration dur

Mark v0 as selected

count+ = 1

Mark u0 as selected

bring the link in link set Lt−1 to Lt with one less duration if the

two devices are still within D2D transmission range. This step

is executed prior to new link generations, so it is possible that

we have more links than the upper bound in some snapshots.

The size of the cells in the original datasets may be large.

For illustration purpose, however, we set the cells to be 100×
100 m2 squares and scale the traces correspondingly in order

to increase the number of D2D links we may have, as the

mobility traces in original datasets can be sparse, preventing

us from generating the desired amount of D2D links. We also

normalize the number of snapshots we consider. In the KAIST

dataset, the time between two snapshots is 30 seconds. For the

simulated datasets, the time difference is one second. In the

experiments, we only use the results for the 151th to the 300th

snapshots in all experiments. The first 150 snapshots are used

as a ”warm-up” period to smooth the initial fluctuations. We

summarize the datasets in Table II. In the table, the average is

taken over the 151th to the 300th snapshots and a change can

be adding a new D2D link or removing an old D2D link. (A

link that moves around can be modeled as the combination of

one addition and one removal.)

B. Performance with Actual Mobility

We first consider the results with actual mobility traces in

KAIST campus [31]. This dataset has the least amount of D2D

links and very limited mobility. In Fig. 3, we can observe that

all the algorithms outputs almost the same number of RBs

(hence the results for some algorithms are not visible), demon-

strating the accuracy of the approximation algorithms in this

dataset. As for the running time, all approximation algorithms

are scales of magnitude faster than the optimal solution. When

comparing the adaptive algorithms and their corresponding

offline algorithms, the adaptive ones are generally faster. It

is notable that the f -approximation offline algorithm also has

comparable running time with both adaptive algorithms. This

phenomenon can be due to two reasons: 1) The size of the

offline problem is moderate and it is easier to consider only
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Fig. 3: Performance and running time with actual mobility

traces

the addition of new links. 2) Maintaining the data structures

and performing the link removal operation can be costly for

both approximation algorithms.

C. Performance with Simulated Mobility

In this section, we present the results with three simulated

mobility traces: the subway and downtown scenario from

[32] and one dataset generated by the SLAW model [33]

with default settings. The subway and downtown scenarios

simulates the mobility traces of walkers in a subway station

and in downtown Stockholm respectively, while the SLAW

model simulates traces in common gathering places, so there’s

no restriction to where a walker can move within the range.

In those datasets, the average numbers of D2D links are

higher than that of the KAIST dataset. Also, those datasets

are much more dynamic: they have more changes over time.

Thus, when applying the algorithms, we can observe the

obvious differences among them. In Fig. 4, there exists some

performance gap between the optimal algorithm and the ap-

proximation ones. However, the approximation ratio of all

approximation algorithms at all times are upper bounded by

2.3, demonstrating the good performance of them.

Among the approximation algorithms, The offline algorithm

with log n theoretical approximation ratio constantly performs

the best. The two adaptive algorithms have comparable perfor-

mance, while, interestingly, the offline algorithm with f ratio

uses the most number of RBs. We may conclude from the

result that the two algorithms with log n ratio have more stable

behavior, that starting from scratch grants some advantage in

terms of practical performance (number of selected RBs). The

advantage is from the fact that the offline algorithm only needs

to consider addition of elements. So it solves an easier problem

comparing with the adaptive one, which needs to consider

both addition and removal of elements. On the contrary, the

behavior of the algorithms with f ratio seems controversial,

that the adaptive algorithm works better than the offline one.

Yet, it can be explained as follows. The two primal-dual based

f -ratio algorithms are “coarse” comparing with the log n ratio

ones, in the sense that they consider all requirements of each

element at the same time, while the log n ratio algorithms

considers each unit of requirement separately. The removal of

elements, which only happens with the adaptive algorithms,

not only creates extra complicacy for the algorithm, but also

provides a chance for the f -ratio adaptive approximation
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TABLE II: Summary of the Datasets

Dataset Description Average # of devices Average # of links Average # of Changes

KAIST Actual, KAIST campus [31] 92.0 41.4 1.1

Subway Simulated, subway scenario [32] 114.8 48.0 5.1

Downtown Simulated, downtown scenario [32] 184.3 71.5 8.6

SLAW Simulated, SLAW model [33] 300.0 131.6 7.4
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Fig. 4: Performance and running time of simulated mobility

traces

algorithm to refine its result, resulting in a better performance

than the offline counterpart.

In terms of running time, the f ratio algorithms demonstrate

their advantage of being “coarse”: it is not necessary for them

to consider individual requirements. With more element addi-

tion/removal happening in the cell, this advantage significantly

saves time and both f ratio algorithms are generally faster than

the log n ratio ones. The log n ratio offline algorithm is much

slower than the other approximation algorithms, despite that

it uses the least number of RBs among them.

D. Throughput

In this paper, the resource allocation we obtained cannot

be directly applied to realistic scenarios, since we use the

grids, instead of the individual links as elements in the

algorithms. Therefore, For each RB we selected, the only piece

of information available to us is the set of grids the RB will

be assigned to. In order to have an explicit assignment of RBs

to the links, we use the following heuristic algorithm for each

snapshot.

Algorithm 8 RB Assignment

Input: Rt , Lt, dB0

Output: Ft : Rt− > Lt . Assignment of RBs in Rt to links in

Lt

for ∀r ∈ Rt do

F(r) = ∅
for ∀g ∈ r do:

Arbitrarily pick an unselected link l in Lt from grid g

Let S = F(r) ∪ {l}
Calculate SINR for all links in S when they are sharing

one RB

if The minimum SINR of links in S is smaller than

dB0 then:

break

F(r) = S

Mark l as selected.
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Fig. 5: Throughput

In Alg. 8, we iterate through the selected RBs Rt . For each

set, we iteratively add an unselected link per each grid that

the MIFS can cover. Before each addition, we check for the

interference by calculating the SINR of all previously selected

links and the current addition when they shares an RB. If any

SINR falls below a predefined threshold dB0 (we set the value

to 15dB, the same as the one used for generating MIFSs), we

will not add any more links to this RB. Using the algorithm,

we can obtain the RB assignment to all links and thus can

calculate the network throughput, defined as the sum of the

data rates of all links.

Fig. 5 illustrates the throughput calculated using Alg. 8 for

all algorithms, in the downtown and the SLAW scenarios. In

the downtown scenario, the throughput for all algorithms are

almost identical while the optimal algorithm appears to have a

bit inferior throughput. For the SLAW scenario, however, the

throughput of the optimal algorithm is notably lower than all

other algorithms. The results for the other two scenarios are

similar to the one in the downtown scenario and are omitted

here. The result that the optimal being the worst is of interest

and we will answer it in two steps.
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Fig. 6: Average Throughput per RB
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The first explanation is relatively simple. In the previous

sections, we demonstrated that the optimal algorithm needs

less RBs than the other algorithms. Thus, when we are

assigning the RBs to the links, each RB in the optimal

solution will need to serve more links on average, comparing

with the approximated solutions. When it goes to throughput

calculation, clearly the links will have lower SINR when

they need to share the RB with more other links. This is

the primary reason why the optimal solution tends to have

lower throughput. To reveal the true advantage of the optimal

solution, we calculate the average throughput generated by

each RB in Fig. 6. In this figure, we can observe that each

single RB in the optimal solution is more efficient: it generates

a higher throughput comparing with RBs in approximated

solutions. Again, we omit the result in the other two scenarios

as they are similar. Fig. 5 and Fig. 6 combined imply that

although the approximation algorithms may have a higher

throughput, it is mainly so at the cost of using more RBs.

The second explanation reveals one possible issue in the RB

assignment algorithm Alg. 8. As we discussed in Sect. IV-B,

the way we assign the links to grids is an approximation and

may not always be accurate. Thus, in Alg. 8, it is possible that

some links are not served by any RB at the end. It may happen

in the case that we originally wanted to use an RB to serve

m grids, but it turns out that the links in the grids are closer

than expected and some SINR falls below the threshold. To

support this claim, we calculate the percentage of links served

after running Alg. 8 for each algorithm. It turns out that the

percentage is maintained at 100% for the KAIST, downtown

and subway scenarios. However, as depicted in Fig. 7, the

RBs generated by several algorithms fail to cover all links in

the SLAW model, with the optimal solution having the lowest

coverage percentage. This finding corresponds to the fact that

(a) Downtown (b) SLAW

Fig. 8: Snapshots of typical device/link locations

the optimal solution has a notably lower throughput in the

SLAW model.

Fortunately, the issue in RB assignment can be fixed.

Assigning links to grids and then solve the SMC problem

enables the theoretically efficient algorithms. As we explained,

the resulting RBs will be able to serve all links in the majority

of scenarios (three out of four in our experiments.) When the

number of RBs is not enough, we can simply solve a smaller

version of the resource allocation problem specifically for the

links that are not served. As we can see from Fig. 7, at most

7% of the links are not served and it will be efficient to obtain

a feasible, even optimal resource allocation for those links.

E. Impact of Mobility Patterns

In this section, we would like to analyze how the mobility

patterns, specifically, how the typical locations of links and

devices may impact the performance of the algorithms. As we

already seen in Fig. 4, the approximation algorithms are farther

away from the optimal one in the downtown scenario than in

the SLAW scenario, while the average number of changes in

the two scenarios are not too different. To see this, we plot

the devices and links in the two scenarios, as in Fig. 8. For

each scenario, we pick a typical snapshot, which can be used

as a representative of the device/link locations.

What we can observe from Fig. 8 is a sheer difference be-

tween the two scenarios. For the downtown scenario, the traces

are generated with the consideration of actual restrictions in

a city. Thus, the devices/links are aligned on certain lines,

which corresponds to the roads in the downtown area. For

the SLAW scenario, the devices move more freely yet they

tend to be more clustered. With the figures, we can explain

why the approximation algorithms in the downtown scenario

has inferior performance than those in the SLAW scenario. In

the downtown scenario, the links are more sparse, so that it

is more likely to use one RB to serve multiple links and the

problem is more complicated. In the SLAW scenario, however,

there exists less options to assign the RBs to the links as they

are more clustered. The performance of the approximation

algorithms may move closer to the theoretical approximation

ratio with a harder problem and the gap between them and the

optimal solution will increase.

VI. CONCLUSION

In this paper, we proposed an adaptive solution framework

to the dynamic resource allocation problem in D2D communi-

cation. Within the framework, we first introduced an approach
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that can generate stable MIFSs, which simplified our core

problem ASMC. Then, we proposed two adaptive approxi-

mation algorithms for ASMC, with approximation ratios f

and log n respectively. In the experiments, we used actual

and simulated mobility traces to evaluate the algorithms. The

results demonstrated that the adaptive solutions are much faster

than the optimal or approximated offline methods. Also, the

performance of the adaptive algorithms are still comparable

with the optimal solution, indicating its applicability in real-

istic scenarios.
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