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ABSTRACT

Providing resilient network control is a critical concern for deploy-
ing Software-Defined Networking (SDN) into Wide-Area Networks
(WANs). For performance reasons, a Software-Defined WAN is di-
vided into multiple domains controlled by multiple controllers with
a logically centralized view. Under controller failures, we need to
remap the control of offline switches from failed controllers to other
active controllers. Existing solutions could either overload active
controllers to interrupt their normal operations or degrade network
performance because of increasing the controller-switch communi-
cation overhead. In this paper, we propose RetroFlow to achieve low
communication overhead without interrupting the normal process-
ing of active controllers during controller failures. By intelligently
configuring a set of selected offline switches working under the
legacy routing mode, RetroFlow relieves the active controllers from
controlling the selected offline switches while maintaining the flow
programmability (e.g., the ability to change paths of flows) of SDN.
RetroFlow also smartly transfers the control of offline switches
with the SDN routing mode to active controllers to minimize the
communication overhead from these offline switches to the active
controllers. Simulation results show that compared with the base-
line algorithm, RetroFlow can reduce the communication overhead
up to 52.6% during a moderate controller failure by recovering 100%
flows from offline switches and can reduce the communication
overhead up to 61.2% during a serious controller failure by setting
to recover 90% of flows from offline switches.
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1 INTRODUCTION

Software-Defined Networking (SDN) has been deployed in real
networks [1][2]. One critical scenario for the SDN is Wide-Area
Networks (WANs), known as the SD-WANs. For instance, as one of
the world’s largest Internet service provider, AT&T has softwarized
65% of its WAN with programmable devices (e.g., SDN switches)
by 2018 and plans to improve the ratio to 75% by 2020 [3]. In the
future, most of the network infrastructure in WANs (e.g., switches
and routers) will be replaced by programmable devices.

In SD-WANs, the network is usually divided into multiple do-
mains to achieve low latency control given the large scale of a
WAN and the huge number of SDN switches in it [4]. Each domain
usually has an SDN controller that can quickly reply to requests
from all the SDN switches within the domain. The controllers from
different domains are physically distributed, but they can achieve a
logically centralized control by the synchronization among them
to maintain a consistent network view [5].

Control resiliency is a critical concern for SD-WANs. Essentially,
an SDN controller is a network software installed in a physical
server or a virtual machine. Due to some unexpected issues (e.g.,
hardware/software bugs, power failure), one controller could ac-
cidentally fail, and then all of its connected switches are out of
control, which we refer to as the offline switches. Existing solutions
to maintain the control resiliency of SDN can be categorized into
two classes: (1) controller placement and (2) switch remapping. So-
lutions in the former category carefully choose physical locations
of controllers to optimize the control performance under controller
failures, such as minimizing the latency between backup controllers
and switches [6][7] and/or minimizing the latency among the main
controller, backup controllers, and switches [8]. These solutions
are usually based on some unrealistic assumptions, such as the
same control cost and unlimited capability of controllers, which are
far from practical. In contrast, the switch remapping approaches
propose to dynamically shift the control of offline switches to other
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active controllers [9]. However, in an almost saturated SDN, con-
trollers almost reach their processing limits. There will be little
room left in active controllers to accept offline switches from the
failed controllers without overloading the active controllers, which
otherwise can degrade the performance (e.g., increasing the com-
munication overhead) or even cause the cascading controller failure
[9][10][11].

In this paper, we present a feature available in existing commer-
cial SDN switches that shed light on this issue. Existing commercial
SDN switches (e.g., Brocade MLX-8 PE [12]) can freely change be-
tween two routing modes, the SDN mode and the legacy mode.
The former relies on the SDN controller’s decision to process flows
while the latter processes flows using its traditional routing table
without consulting the controller. Inspired by the feature in com-
mercial devices, we propose to configure switches in hybrid modes
so that we can enjoy the flow programmability (e.g., the ability to
change the paths of flows) brought by the SDN mode while avoid-
ing the out-of-control disasters coming with the offline switches
during the controller failures.

To get the best of both worlds, we have overcome two main
challenges. First, configuring SDN switches to work in the legacy
mode will decrease the flow programmability of SDN. We carefully
choose a set of offline switches working in the legacy mode to
maximize the number of programmable flows that have at least one
alternative path to forward. Second, the switch-controller mapping
affects the communication overhead from offline switches to active
controllers. For the remaining offline switches that still work in the
SDN mode, we carefully remap them to active controllers, which is
a complex optimization problem restricted to the switches’ control
cost (e.g., the per-flow state pulling [13][14]) and the controller’s
real-time workload. Since these two problems are coherent, we
approach the optimal results with the joint optimization.

In summary, our paper makes the following contributions:
• We formulate the joint optimization problem as the Optimal

Switch Configuration and Mapping (OSCM) problem, which
aims to keep low communication overhead of controllers by
deciding the offline switch control shift based on the switch
and controller states in real time.
• We provide a rigorous proof of the OSCM problem to be
NP-hard and propose a heuristic solution named RetroFlow

to efficiently solve the problem.
• We evaluate the performance of RetroFlow under a real topol-
ogy. Simulation results show that comparedwith the baseline
algorithm, RetroFlow can reduce the communication over-
head up to 52.6% during a moderate controller failure that
active controllers have enough ability to recover 100% flows
from offline switches, and can reduce the communication
overhead up to 61.2% during a serious controller failure by
setting to recover 90% flows from offline switches.

The rest of the paper is organized as follows. In Section 2, we
introduce the background of SDN and the motivation of this paper.
Section 3 introduces our design considerations, and Section 4 math-
ematically formulates our design as the OSCM problem. Section 5
proves the OSCM problem’s complexity and proposes RetroFlow
to efficiently solve the problem. We evaluate and analyze the per-
formance of RetroFlow in Section 6. Section 7 introduces related
works, and Section 8 concludes this paper.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the background of SDN, analyze the
limitation of SDN under controller failures, and present opportu-
nities to solve the problem using features available in commercial
SDN switches.

2.1 Blessing of the SDN

One big benefit of SDN is to provide flexible control on traffic flows
based on the global state of the network. To achieve this benefit,
the SDN controller can establish forwarding paths for individual
flows reactively when they enter the network for the first time or
proactively before they arrive at the network. During the network
operation, the controller periodically pulls flow state information
from the controlled switches to update its global network view
and dynamically changes some flows’ paths to improve network
performance. These unique features and advantages, called flow

programmability, help SDN to prevail over traditional network tech-
niques. Therefore, many networks start to deploy SDN [1][2][3].

For an SD-WAN that consists of many switches, we usually
divide the WAN into multiple domains with different number of
SDN switches and use a logically centralized control on domains
with distributed controllers [5]. In each domain, its controller can
quickly reply to requests from switches and synchronize with other
controllers to maintain the consistent network view.

2.2 Curse of the SDN

The normal operations of an SD-WAN rely on the controllers’ de-
cision and the communication between controllers and switches
for conducting the decision and pulling flow state information. The
controller becomes the Achilles Heel of SDN. In other words, an
SDN switch will be out of control if its controller fails. In order to
provide a resilient control of the network, an SDN switch usually
connects to a master controller and several backup controllers [15].
When the master controller of a switch crashes, its connection to
the switch becomes inactive, and the switch will request one of its
backup controllers to become its new master controller. We call
the switches previously controlled by failed controllers the offline

switches. The problem of remapping the control of offline switches
to other active controllers is called SDN switch remapping under

controller failures. This switch remapping has two impacts on other
active controllers:

• Overloading controllers: A master controller mainly has
two types of operations on switches: (1) flow entry opera-
tions to establish/update flows’ forwarding paths and (2) flow
state pulling operations to get the network state variation.
Both of the two operations consume the processing ability
of the master controller. Backup controllers only maintain
the connection to their switches without operations until
they become master controllers. Becoming the new master
controller of some switches from remote domains increases
the processing load of a controller, potentially overloading
the controller [9][10]. Existing studies show the switches’
requests handled by an overloaded controller could experi-
ence long-tail latency [16], which could degrade the network
performance significantly.
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switches without interrupting their normal operations. The state
pulling operations of a switch equal to the total number of flows
in the switch’s flow table. We measure a controller’s processing
ability as the number of flows that the controller can normally pull
from its controlled switches without introducing extra delays (e.g.,
queueing delay). The processing load of a controller should not
exceed the controller’s processing ability. It can be written as

N∑

i=1

(

L∑

l=1

βli ∗ xi ∗ zi j ) ≤ Ar estj ,∀j ∈ [1,M],

where Ar estj denotes the available processing ability of controller

Cj . Bringing (1) into the above inequality and letting дi denote the
number of flows in switch si

дi =

L∑

l=1

βli , ∀i ∈ [1,N ], (3)

we can reformulate the above nonlinear constraints as the following
linear constraints:

N∑

i=1

(дi ∗ zi j ) ≤ Ar esj ,∀j ∈ [1,M]. (4)

4.2.3 Flow programmability constraint. If a switch works under
the SDN mode, the flows in the switch become programmable. The
flow f l ’s programmability can be expressed as follows:

yl ≤

N∑

i=1

(βli ∗ xi ),∀l ∈ [1,L]. (5)

In the above inequality, the equal sign comes when there is only
one offline switch with the SDN mode that contains flow f l . If
multiple switches contain this flow, the inequality sign is used.

The flow programmability equals the total number of unique pro-
grammable flows. If we require Q unique flows are programmable,
we have

Q ≤

L∑

l=1

yl . (6)

4.3 Objective function

The objective is to minimize the communication overhead of active
controllers to pull flow state from offline switches, which equals
the total propagation delay of programmable flows between the
switches with the SDN mode and their newly mapped controllers.
We use Di j (Di j ≥ 0) to denote the propagation delay between
switch si and controller Cj and formulate the overhead as follows:

obj =

M∑

j=1

N∑

i=1

(дi ∗ Di j ∗ zi j ).

If we usewi j to denote controller Cj ’s communication overhead to
switch si :

wi j = дi ∗ Di j ,∀i ∈ [1,N ],∀j ∈ [1,M], (7)
we can write the objective function as follows

obj =

M∑

j=1

N∑

i=1

(wi j ∗ zi j ). (8)

4.4 Problem formulation

The goal of our problem is to minimize the communication over-
head between active controllers in C and offline switches in S and
provide the programmability for flows in F by smartly configuring

switches in S and mapping switches with the SDN mode to active
controllers in C. Therefore, we formulate the OSCM problem as
follows:

min
z,y

M∑

j=1

N∑

i=1

(wi j ∗ zi j )

s.t. (2)(4)(5)(6),

zi j ,y
l ∈ {0, 1},

∀i ∈ [1,N ],∀j ∈ [1,M],∀l ∈ [1,L],

(P)

where {wi j }, {дi }, {βli }, and {A
r est
j } are constants, and {zi j } and

{yl } are design variables. In the OSCM problem, the objective func-
tion is linear, and variables are binary integers. Thus, this problem
is an integer programming.

5 SOLUTION

In this section, we first analyze the complexity of the OSCMproblem
and then propose our RetroFlow algorithm for solving the problem.

5.1 Complexity analysis

Theorem 1. For a special case with two conditions: (1) all flows

from offline switches should be programmable, and (2) each flow

traverses only two switches and has different source and destination

switches with others, the OSCM problem is NP-hard.

Proof: We first introduce the Generalized Assignment Problem

(GAP) [24]. The GAP aims to minimize the cost assignment of
n tasks to m agents such that each task is precisely assigned to
one agent subject to capacity restrictions on the agents. A typical
formulation of the GAP is shown below:

min
x

m∑

j=1

n∑

i=1

(ci j ∗ xi j )

s.t.
n∑

i=1

(ai j ∗ xi j ) ≤ bj ,∀j ∈ [1,m],

m∑

j=1

xi j = 1,∀i ∈ [1,n],

xi j ∈ {0, 1},∀i ∈ [1,n],∀j ∈ [1,m],

(9)

where ci j is the cost of assigning task i to agent j , ai j is the capacity
of task i when the task is assigned to agent j , and bj is the available
capacity of agent j . Binary variable xi j equals 1 if task i is assigned
to agent j , otherwise it equals 0. It has been proved when assigning
multiple tasks to an agent and ensuring each task is performed
exactly by one agent, the GAP is NP-hard [24].

We then prove for a special case of conditions (1) and (2), problem
(P) and the GAP are equivalent problems. Given condition (1) that
all flows from offline switches should be programmable, we have
Q = L. (6) can be changed to yl = 1 for all l ∈ [1,L], and (5) can be
rewritten as follows:

1 ≤
N∑

i=1

(βli ∗ xi ),∀l ∈ [1,L]. (10)

Recall a flow cannot change its path at its destination switch. Given
condition (2) that each flow traverses only two switches and has
different source and destination switches with others, we have that
each offline switch has a unique flow, and the number of offline



RetroFlow: Maintaining Control Resiliency and Flow Programmab

-ility for Software-Defined WANs IWQoS ’19, June 24ś25, 2019, Phoenix, AZ, USA

Table 1: Notations

Notation Meaning
S the set of offline switches, S = {si | i ∈ [1,N ]}
W(i) the communication overhead of switch si , W(i) =

{wi1, ...,wi j , ...,wiM }, i ∈ [1,N ]
C(i) the set of active controllers by sorting C = {Cj | j ∈

[1,M]} following the ascending order ofW(i), i ∈ [1,N ]
A the set of the available processing capacity of controllers,

A = {Ar estj | j ∈ [1,M]}

G the number of flows in switches, G = {дi | i ∈ [1,N ]}
B the set of flow-switch relationship, B =

{B1, ...,Bi , ...BN | i ∈ [1,N ]}, Bi = {β
1
i , ..., β

l
i , ..., β

L
i }

X the set of offline switches with the SDN mode, X = {i ∈
[1,N ] | xi = 1}

Z the set of the mapping relationship between offline
switches with the SDN mode and active controllers,
Z = {(i, j) ∈ [1,N ] × [1,M] | zi j = 1}

Y the set of controllable flows, Y = {l ∈ [1,L] | yl = 1}
δ a number that indicates the maximum number of flows

that are different from existing programmable flows

switches equals the number of unique flows. That is βi0i0 = 1 for a
specific i0 ∈ [1,N ]. Thus, we can change the above inequality as
the following equation

1 =
N∑

i=1

(βli ∗ xi ) = β
i0
i0
∗ xi0 = xi0 ,∀i0 ∈ [1,N ].

Bringing the above equation into (2), we have
M∑

j=1

zi j = 1,∀i ∈ [1,N ]. (11)

Following the above two conditions, our OSCM problem can be
reformulated as follows:

min
z

M∑

j=1

N∑

i=1

(wi j ∗ zi j )

s.t. (4)(11),

zi j ∈ {0, 1},∀i ∈ [1,N ],∀j ∈ [1,M].

(P’)

Problem (P’) aims to minimize the communication cost of N
switches toM controllers such that each switch is precisely assigned
to one controller subject to processing ability restrictions on the
controllers. We can treat switch si and controller Cj in problem
(P’) as task i and agent j in the GAP. By this construction, it is easy
to prove that there exists the minimum communication cost by
mapping switches in S to controllers C, if and only if there exists
the optimal solution of the GAP by assigning n tasks tom agents.
The construction can be done in polynomial time. In problem (P’),
the mapping between switches and controllers could be many to
one. Since the GAP is NP-hard when multiple tasks are assigned
to an agent, and each task is performed exactly by one agent [24],
problem (P’) is NP-hard. □

Problem (P’) is a special case of the OSCM problem and is NP-
hard. Therefore, we can have the following conclusion:

Theorem 2. The OSCM problem is NP-hard.

5.2 RetroFlow algorithm

Typically, we can use existing integer program optimization solvers
to obtain the OSCM problem’s optimal solution. However, for the

Algorithm 1 RetroFlow

Input: S, C(i), A, G, B;
Output: X,Z, Y;

1: X = ∅,Z = ∅, Y = ∅;
2: while True do
3: δ = 0, i0 = NULL, j0 = NULL;
4: //find the switch with the maximum number of flows that

are different from existing programmable flows;
5: for si ∈ S do

6: for l ∈ {βli = 1, l ∈ [1,L]} do

7: if l ∈ Y then

8: βli = 0;
9: end if

10: end for

11: if |
∑L
l=1 β

l
i | > δ then

12: δ = |
∑L
l=1 β

l
i |, i0 = i;

13: end if

14: end for

15: //assign switch si0 to controller Cj0 , which has the lowest
communication overhead and enough processing ability

16: for Cj ∈ C(i0) do

17: if Ar estj − дi0 ≥ 0 then

18: j0 = j, X ← X ∪ i0,Z ← Z ∪ (i0, j0);
19: Ar estj0

= Ar estj0
− дi0 ;

20: for l ∈ {βli = 1, l ∈ [1,L]} do
21: Y ← Y ∪ l ;
22: end for

23: break;
24: end if

25: end for

26: S ← S \ si0 ;
27: if |S| == ∅ or |Y| ≥ Q then

28: break;
29: end if

30: end while

31: return X,Z,Y;

problem with a large network, the solver could require a very long
time or sometimes is impossible to find a feasible solution. There-
fore, we propose a heuristic algorithm called RetroFlow for solving
the problem to achieve the trade-off between the performance and
time complexity.

The idea behind RetroFlow is to select and test variables based
on their importance. The first priority of our problem is to enables
many unique flows from offline switches to become programmable
flows. Thus, we first select a switch that has the maximum number
of flows which are different from existing programmable flows.
This switch selection method helps us to efficiently rescue as many
unique flows as possible in each iteration. For this selected switch,
we choose a switch-controller mapping among all mappings in
the ascending order of the communication overhead and then test
whether the mapping satisfies the controller’s processing ability.
If yes, the mapping is selected, and all flows in the switch become
programmable; otherwise, a new mapping is tested. This mapping
selection method effectively reduces the communication overhead.
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and s7), and Nearest recovers three more switches than RetroFlow
with an increase of 29% more programmable flows. In this case,
the left ability of controllers C2, C5, C13, and C22 are only 124, 184,
23, and 35 flows. Thus, under the controller’s processing ability
bound, RetroFlow can only recover three switches, leading to a gap
of programmable flow percentage between Nearest and RetroFlow.
Nearest enables 100% programmable flows recovery at the cost of
high communication overhead and controller overloading. In Fig-
ures 5(c) and (d), Nearest requires 25% to 82% more communication
overhead due to the queueing delay of controller overloading.

If some controllers fail, it is unfair to overload other active con-
trollers to take full responsibility for the failed controllers to control
offline switches. Active controllers should only try their best to con-
trol offline switches. Based on this concern, in Figure 6, we require
90% flows to become programmable. In this figure, Optimal has
results for 12 of 15 cases. By reducing the number of programmable
flows, the communication overhead of RetroFlow reduces. Com-
paring the case of controllers C13 and C22 failure in Figures 5(c)
and 6(c), RetroFlow’s overhead reduces from 74% to 53% because
it maps five switches, which are three switches less than the sce-
nario of 100% flow recovery. When controllers C20 and C22 failure,
RetroFlow reduces the communication overhead up to 61.2%.

7 RELATEDWORKS

Pareto-based optimal controller-placement [6] minimizes differ-
ent objectives (e.g., the latency between switches and controllers,
latency between controllers) under controller failures. Works in
[7][29] try to find the best trade-off between the performance and
cost during the controller failure under several constraints (e.g.,
load balancing and QoS). The solution in [30] proposes a controller
placement model that ensures resiliency against the controller fail-
ure by minimizing the distance from a switch to its i-th closest
controller. Capacitated Next Controller Placement [8] proposes a
controller placement problem that not only considers the capacity
and reliability of master controllers but also plans ahead for the
master controller failure by considering a backup controller for each
master controller. Different from all the aforementioned solutions,
RetroFlow reduces the impact of controller failures by leveraging
the features of hybrid SDN switches to maintain the advantage of
SDN (i.e., flow programmability) and low communication overhead
without overloading the rest active controllers.

8 CONCLUSION

In this paper, we propose RetroFlow to jointly achieve resilient
network control and flow programmablility during controller fail-
ures. RetroFlow maintains active controllers’ normal operations
and programmablility of flows from offline switches while reduc-
ing the controllers’ processing load from the offline switches by
taking advantage of commercial hybrid SDN switches that support
switches working under the legacy mode without controllers. By
jointly considering the propagation delay and controllers’ control
cost in real time, RetroFlow also achieves a low communication
overhead among offline switches and active controllers. We hope
that our work can inspire researchers to creatively utilize exist-
ing features in commercial SDN switches to better solve existing
problems.
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