RetroFlow: Maintaining Control Resiliency and Flow
Programmability for Software-Defined WANSs

Zehua Guo® Wendi Feng Sen Liu
University of Minnesota Twin Cities Beijing University of Posts and Central South University
Beijing Institute of Technology Telecommunications
Wenchao Jiang Yang Xu Zhi-Li Zhang

University of Minnesota Twin Cities

ABSTRACT

Providing resilient network control is a critical concern for deploy-
ing Software-Defined Networking (SDN) into Wide-Area Networks
(WANSs). For performance reasons, a Software-Defined WAN is di-
vided into multiple domains controlled by multiple controllers with
a logically centralized view. Under controller failures, we need to
remap the control of offline switches from failed controllers to other
active controllers. Existing solutions could either overload active
controllers to interrupt their normal operations or degrade network
performance because of increasing the controller-switch communi-
cation overhead. In this paper, we propose RetroFlow to achieve low
communication overhead without interrupting the normal process-
ing of active controllers during controller failures. By intelligently
configuring a set of selected offline switches working under the
legacy routing mode, RetroFlow relieves the active controllers from
controlling the selected offline switches while maintaining the flow
programmability (e.g., the ability to change paths of flows) of SDN.
RetroFlow also smartly transfers the control of offline switches
with the SDN routing mode to active controllers to minimize the
communication overhead from these offline switches to the active
controllers. Simulation results show that compared with the base-
line algorithm, RetroFlow can reduce the communication overhead
up to 52.6% during a moderate controller failure by recovering 100%
flows from offline switches and can reduce the communication
overhead up to 61.2% during a serious controller failure by setting
to recover 90% of flows from offline switches.

CCS CONCEPTS

+ Networks — Programmable networks; Wide area networks;

« Computer systems organization — Maintainability and main-

tenance.

“Corresponding author: Zehua Guo (guolizihao@hotmail.com) affiliated with Beijing
Institute of Technology. This work was done when the first author was a postdoctoral
research associate and the second and third authors were visiting PhD students at the
University of Minnesota.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6778-3/19/06...$15.00
https://doi.org/10.1145/3326285.3329036

Fudan University

University of Minnesota Twin Cities

KEYWORDS

software-defined networking, control plane, resiliency, programma-
bility, wide area networks, hybrid routing

ACM Reference Format:

Zehua Guo, Wendi Feng, Sen Liu, Wenchao Jiang, Yang Xu, and Zhi-Li Zhang.
2019. RetroFlow: Maintaining Control Resiliency and Flow Programmability
for Software-Defined WANSs. In IEEE/ACM International Symposium on
Quality of Service (IWQoS °19), June 24-25, 2019, Phoenix, AZ, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3326285.3329036

1 INTRODUCTION

Software-Defined Networking (SDN) has been deployed in real
networks [1][2]. One critical scenario for the SDN is Wide-Area
Networks (WANs), known as the SD-WANS. For instance, as one of
the world’s largest Internet service provider, AT&T has softwarized
65% of its WAN with programmable devices (e.g., SDN switches)
by 2018 and plans to improve the ratio to 75% by 2020 [3]. In the
future, most of the network infrastructure in WANSs (e.g., switches
and routers) will be replaced by programmable devices.

In SD-WAN:S, the network is usually divided into multiple do-
mains to achieve low latency control given the large scale of a
WAN and the huge number of SDN switches in it [4]. Each domain
usually has an SDN controller that can quickly reply to requests
from all the SDN switches within the domain. The controllers from
different domains are physically distributed, but they can achieve a
logically centralized control by the synchronization among them
to maintain a consistent network view [5].

Control resiliency is a critical concern for SD-WANSs. Essentially,
an SDN controller is a network software installed in a physical
server or a virtual machine. Due to some unexpected issues (e.g.,
hardware/software bugs, power failure), one controller could ac-
cidentally fail, and then all of its connected switches are out of
control, which we refer to as the offline switches. Existing solutions
to maintain the control resiliency of SDN can be categorized into
two classes: (1) controller placement and (2) switch remapping. So-
lutions in the former category carefully choose physical locations
of controllers to optimize the control performance under controller
failures, such as minimizing the latency between backup controllers
and switches [6][7] and/or minimizing the latency among the main
controller, backup controllers, and switches [8]. These solutions
are usually based on some unrealistic assumptions, such as the
same control cost and unlimited capability of controllers, which are
far from practical. In contrast, the switch remapping approaches
propose to dynamically shift the control of offline switches to other

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

active controllers [9]. However, in an almost saturated SDN, con-
trollers almost reach their processing limits. There will be little
room left in active controllers to accept offline switches from the
failed controllers without overloading the active controllers, which
otherwise can degrade the performance (e.g., increasing the com-
munication overhead) or even cause the cascading controller failure
(o](10][11].

In this paper, we present a feature available in existing commer-
cial SDN switches that shed light on this issue. Existing commercial
SDN switches (e.g., Brocade MLX-8 PE [12]) can freely change be-
tween two routing modes, the SDN mode and the legacy mode.
The former relies on the SDN controller’s decision to process flows
while the latter processes flows using its traditional routing table
without consulting the controller. Inspired by the feature in com-
mercial devices, we propose to configure switches in hybrid modes
so that we can enjoy the flow programmability (e.g., the ability to
change the paths of flows) brought by the SDN mode while avoid-
ing the out-of-control disasters coming with the offline switches
during the controller failures.

To get the best of both worlds, we have overcome two main
challenges. First, configuring SDN switches to work in the legacy
mode will decrease the flow programmability of SDN. We carefully
choose a set of offline switches working in the legacy mode to
maximize the number of programmable flows that have at least one
alternative path to forward. Second, the switch-controller mapping
affects the communication overhead from offline switches to active
controllers. For the remaining offline switches that still work in the
SDN mode, we carefully remap them to active controllers, which is
a complex optimization problem restricted to the switches’ control
cost (e.g., the per-flow state pulling [13][14]) and the controller’s
real-time workload. Since these two problems are coherent, we
approach the optimal results with the joint optimization.

In summary, our paper makes the following contributions:

e We formulate the joint optimization problem as the Optimal
Switch Configuration and Mapping (OSCM) problem, which
aims to keep low communication overhead of controllers by
deciding the offline switch control shift based on the switch
and controller states in real time.

e We provide a rigorous proof of the OSCM problem to be
NP-hard and propose a heuristic solution named RetroFlow
to efficiently solve the problem.

o We evaluate the performance of RetroFlow under a real topol-
ogy. Simulation results show that compared with the baseline
algorithm, RetroFlow can reduce the communication over-
head up to 52.6% during a moderate controller failure that
active controllers have enough ability to recover 100% flows
from offline switches, and can reduce the communication
overhead up to 61.2% during a serious controller failure by
setting to recover 90% flows from offline switches.

The rest of the paper is organized as follows. In Section 2, we
introduce the background of SDN and the motivation of this paper.
Section 3 introduces our design considerations, and Section 4 math-
ematically formulates our design as the OSCM problem. Section 5
proves the OSCM problem’s complexity and proposes RetroFlow
to efficiently solve the problem. We evaluate and analyze the per-
formance of RetroFlow in Section 6. Section 7 introduces related
works, and Section 8 concludes this paper.

Zehua Guo, et al.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the background of SDN, analyze the
limitation of SDN under controller failures, and present opportu-
nities to solve the problem using features available in commercial
SDN switches.

2.1 Blessing of the SDN

One big benefit of SDN is to provide flexible control on traffic flows
based on the global state of the network. To achieve this benefit,
the SDN controller can establish forwarding paths for individual
flows reactively when they enter the network for the first time or
proactively before they arrive at the network. During the network
operation, the controller periodically pulls flow state information
from the controlled switches to update its global network view
and dynamically changes some flows’ paths to improve network
performance. These unique features and advantages, called flow
programmability, help SDN to prevail over traditional network tech-
niques. Therefore, many networks start to deploy SDN [1][2][3].

For an SD-WAN that consists of many switches, we usually
divide the WAN into multiple domains with different number of
SDN switches and use a logically centralized control on domains
with distributed controllers [5]. In each domain, its controller can
quickly reply to requests from switches and synchronize with other
controllers to maintain the consistent network view.

2.2 Curse of the SDN

The normal operations of an SD-WAN rely on the controllers’ de-
cision and the communication between controllers and switches
for conducting the decision and pulling flow state information. The
controller becomes the Achilles Heel of SDN. In other words, an
SDN switch will be out of control if its controller fails. In order to
provide a resilient control of the network, an SDN switch usually
connects to a master controller and several backup controllers [15].
When the master controller of a switch crashes, its connection to
the switch becomes inactive, and the switch will request one of its
backup controllers to become its new master controller. We call
the switches previously controlled by failed controllers the offline
switches. The problem of remapping the control of offline switches
to other active controllers is called SDN switch remapping under
controller failures. This switch remapping has two impacts on other
active controllers:

e Overloading controllers: A master controller mainly has
two types of operations on switches: (1) flow entry opera-
tions to establish/update flows’ forwarding paths and (2) flow
state pulling operations to get the network state variation.
Both of the two operations consume the processing ability
of the master controller. Backup controllers only maintain
the connection to their switches without operations until
they become master controllers. Becoming the new master
controller of some switches from remote domains increases
the processing load of a controller, potentially overloading
the controller [9][10]. Existing studies show the switches’
requests handled by an overloaded controller could experi-
ence long-tail latency [16], which could degrade the network
performance significantly.

RetroFlow: Maintaining Control Resiliency and Flow Programmab

-ility for Software-Defined WANs

IWQo0S ’19, June 24-25, 2019, Phoenix, AZ, USA

fl on pl: s21->s20->s22->524
2 on p2: s23->s24->522->520
13 on p3: s20->s21->s23

Available flow state pulling ability:
C1: 10 flows, C3: 5 flows

(b) Flows and paths in domain D,

(c) Controller C;, fails. Switches in D should be controlled
by other active controllers.

(d) Low communication overhead but overwhelming Cs. (e) High communication overhead without overloading

4 domain N active
o34 S controller
sp
ﬁ\ switch with o
NS inactive
SDN mode =)
ntroller N controller
controller.
<--- P> synchmmzalmn
controller-switch overloaded
B connection controller
(f) Legend.

Under C; failure, switches in D, are mapped to their near- active controllers. Under C; failure, switches in D, are

est active controller Cs.

individually mapped to active controllers by considering

the switch-controller propagation delay and the constraint
of controllers’ processing abilities.

Figure 1: A motivation example of switch remapping under the controller failure. Switches in D; are closer to C3 than C;.

¢ Increasing the communication overhead of controllers:

The communication overhead of a controller is proportional
to two factors: (1) the propagation latency between the con-
troller and its controlled switches and (2) the number of
flows in the switches. In WANSs, the propagation latency is
the dominant factor among all latencies because the propaga-
tion latency bounds a controller’s control reactions that can
be executed at a reasonable speed [17][18]. A long propaga-
tion latency could limit convergence time (e.g., routing con-
vergence, network update). Thus, remapping offline switches
to active controllers should consider the propagation latency
among the switches and controllers. Otherwise, the reac-
tion of the controllers to dynamic network changes could be
delayed.

To better illustrate our view, we use a motivation example in
Figure 1 to show that existing solutions under controller failures
suffer from the two impacts. In Figure 1(a), an SDN consists of
three domains, and each domain is controlled by one master con-
troller and connected to two backup controllers. In this example,
we mainly focus on domain D3 and do not show details of the other
two domains. In domain D5, controller C; is the master controller
that controls five SDN switches s20-s24. Controllers C; and Cs are
backup controllers of D,. The three controllers synchronize with
each other to maintain the consistent network information. Both C;
and C3 know that D5 has five switches and the flow information of
D3. We denote the processing ability of a controller as the number
of flows. In this example, without interrupting a controller’s normal
operations, C; can pull the state of ten flows, but C3 can only pull

the state of at most five flows. Figure 1(b) shows the flows in D5
and their paths.

An SDN is vulnerable. In Figure 1(c), controller Cj fails, and the
control of the five switches in Dy should be transferred to active
controllers C; and C3. As summarized above, two problems are
raised in the following cases:

(1) Controller overload: Figure 1(d) shows that remapping switches
in Dy to active controllers only considers the switch-controller
propagation delay. In this figure, the five switches are remapped
to their nearest, active controller Cs. This solution minimizes
the communication overhead of the entire network but con-
troller C3 has to pull the states of eleven flows (i.e., f1, 2,
and f3 from 520, f1 and f3 from s21, f1 and f2 from s22,
f2and f3 from s23, f1 and f2 from s24), which interrupts
its normal operations by introducing queueing delays [16].

(2) High controller communication overhead: Figure 1(e) shows
that remapping switches in D to active controllers consid-
ers the switch-controller propagation delay and controllers’
processing abilities. In this figure, switches $20, s22, and
524 are remapped to controller C3 while switches s21 and
523 are remapped to controller C;. This solution prevents
controllers from being overloaded but incurs higher com-
munication overhead than the solution in Figure 1(d) due
to the long propagation delay among offline switches and
controllers.

The above two examples show that existing solutions either suf-
fer from the controller overload or high communication overhead,

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

_ Master controller Slave controller Controller
connection connection synchronization
el e T o3 cl 2 c3
N2 BERSS R S e
STt X ™ g ¢
X > A N X ~ A N
L ~ | P b ~ P P »
N / - *\ -

s
(b) Under C1 failure, switch s works
under the legacy mode and does not
have a master controller.

(a) Switch s works under the SDN
mode, and its master controller is C1.

Figure 2: Switch routing mode configuration.

and they cannot solve the problem of SDN switch remapping under
controller failures well.

2.3 Opportunities

We note that many commercial SDN switches today are hybrid SDN
switches (e.g., Brocade MLX-8 PE [12]) and support two routing
modes: legacy mode and SDN mode. In the legacy mode, switches
route flows with the destination-based entries in the routing table
generated from legacy routing protocols (e.g., OSPF), whereas in
the SDN mode, they route flows using OpenFlow table managed by
the controller. In other words, a switch with the legacy mode can
work without the controller. Thus, we can reduce the controller’s
processing load by configuring some switches working under the
legacy mode.

A controller can dynamically set the routing mode of a hybrid
SDN switch by sending a control message. Figure 2 shows an ex-
ample of changing the routing mode under a controller failure. In
Figure 2(a), switch s connects to its master controller C; and backup
controllers Cy and Cs. C; sets s to work under the SDN mode, and
the three controllers synchronize with others. In Figure 2(b), when
(4 fails, s identifies its connection to C; become inactive and then
sends a master controller selection request to Cy, C2, and C3. Both
Cy and C3 reply a rejection message to switch s’s request with a
legacy mode configuration, and then s starts to work under the
legacy mode. s can go back to the SDN mode when one controller
wants to become its new master controller. This dynamic routing
mode configuration feature offers us more flexibility to tackle the
problem of switch remapping under controller failures.

3 DESIGN CONSIDERATIONS

In this section, we propose to relieve the controller’s control cost
of offline switches and reduce the communication overhead during
controller failures by introducing the optimal switch configuration
and mapping problem.

3.1 Switch mode configuration problem

Inspired by the hybrid SDN switches available in the market, we
propose to relieve the controller’s control cost of offline switches by
degrading a pure SDN of the offline switches to a hybrid SDN that
consists of switches with the SDN mode and legacy mode. In other
words, we configure a subset of offline switches to run under the
SDN mode and others to run under the legacy mode without the
management of controllers. However, when configuring the routing
mode on switches, we should guarantee the programmability of
flows in the hybrid SDN.

Zehua Guo, et al.

The programmability of flows is an essential feature of SDN
[19][20][21]. Taking the routing problem as an example, the pro-
grammability of a flow is the ability to change the flow’s path.
Existing pure SDN designs realize the network programmability
with a per-hop programmable routing, which enables the controller
to change each flow’s path from any switches! on the flow’s path.
In contrast, by maintaining the basic programmability, we keep
only I-hop programmable routing for flows of offline switches. In
other words, we can still change the path of a flow from offline
switches by controlling one switch on the flow’s path while let-
ting other switches on the flow’s path just forward the flow using
the legacy destination-based routing. Thus, the switches using the
legacy routing do not need to consult the controllers for routing
flows.

Figure 3(a) shows an example that under the same failure case
of Figure 1(c), we achieve the programmablity of flows f1-f3 us-
ing switches with the SDN mode and legacy mode. In this figure,
switches s21 and s23 work under the SDN mode, and switches s20,
522, and s24 work under the legacy mode. Flows f1, 2, and f3’s
forwarding paths can be changed at switches s21, 23, and s21,
respectively.

3.2 Switch remapping problem

With the reduced number of switches under the SDN mode, we have
more freedom to remap these switches to active controllers. The
switch remapping should maintain low communication overhead
between these switches and active controllers without exceeding
the controller’s processing ability. The load of a controller is defined
as the number of flows the controller can control, and it is restricted
to the processing ability of the controller. As explained in Section
2.2, the load consists of two parts: flow entry operations and flow
state pulling operations. The former one has been considered in
many existing works [22], while we argue the latter one is more
important in the WAN scenario. In WANS, each flow’s path is usu-
ally proactively configured since each flow is an aggregated large
flow of multiple flows and always has a traffic rate. Only a limited
number of flow entry operations are conducted to reroute some
flows at some extreme situations (e.g., congestion). However, each
controller conducts the flow state pulling operations periodically
(e.g., every few seconds [23]) to maintain the updated network view.
Per-flow pulling [13][14] are popular state pulling methods. The
controller sends a request to a switch to pull the state of one flow.
The number of flow state pulling requests is proportional to the
number of flows in a switch. Thus, in WANS, the flow state pulling
is a big overhead for the controllers and is our main concern in this
paper.

We name the solution that sequentially solves the above two
problems one by one the two-phase solution, which obtains the
final result by solving the switch mapping problem using the result
of the switch mode configuration problem. Figure 3(a) shows the
result of the two-phase solution under the same failure case of
Figure 1(c). In this figure, switches s21 and s23 work under the SDN
mode and are mapped to controller Cs. C3 pulls the state of flows
f1, f2,and f3 from switches s21, s23, and s21, respectively.

!If a switch cannot reach a flow’s destination through two paths, we will not change
the flow’s path from this switch.

RetroFlow: Maintaining Control Resiliency and Flow Programmab
-ility for Software-Defined WANs

IWQo0S ’19, June 24-25, 2019, Phoenix, AZ, USA

Cl | C2 C3 C1 C2 . C3
N2 L 2 N R o —
> \: :\ x \"\' switch with the switch’s flows:
x| s S x| S /§ ﬁ\. SDN mode |S20:{fL.f3}
-~ retva -~ e vl 21:4f1,13)
e Y e S e Y e switch with the |¢22.¢£] 21
< DI — < D3 L, < DI — < /D3 {112}
—_— - — P ‘/‘. />(/; -~ — v,_,_a\/ 7. X —_ — legacy mode $23:{f2}
2 . 24:{2}
4521’/20 - ;.23 / -J..Slz%zo \ﬁ\/s\ﬁ) s24:{f2}
~ -kaf) 524:..,." /) Nl oa/t —
D02~/ NOPNG I 24

(a) Realizing the programmable ability of D;. Under C;
failure, s20, s22, and s24 are configured with the legacy
mode, and switches s21 and s23 with the SDN mode are
mapped to controller Cs.

(b) Joint realizing the programmable ability of D, and (c) Legend. Note that the last switch on a flow’s for-
reducing the communication overhead. Under C; failure,
RetroFlow configures switches s21, s23, and s24 with the
legacy mode and maps switches $20 and s22 with the SDN

warding path cannot be used to change a flow’s path.

mode to their nearest active controller Cs.

Figure 3: Switch remapping under a controller failure using the SDN and legacy modes. Switches s21 and 523 are much far from

controllers Cs than switches s20, s22, and s24.

3.3 A joint optimization problem

However, it is not enough to consider the above two problems in-
dependently because the two problems are correlated. Recall the
communication overhead of a controller equals to the propagation
latency between the controller and its controlled switches multi-
plied with the number of flows in the switches. Thus, to achieve
the low communication overhead, it may be better to choose more
switches (or switches with more flows) with lower delays than to
choose fewer switches (or switches with fewer flows) with higher
delays.

Figure 3(b) shows the result of RetroFlow under the same failure
case of Figure 1(c). In this figure, RetroFlow remaps switches s20
and s22 to controller C3 and configure switches s21, s23, and s24
under the legacy mode. Flows f1, {2, and f3’s forwarding paths
can be changed at switches s20 and s22, at switch s22, and at switch
520, respectively. Under the given processing ability of controllers,
RetroFlow outperforms the two-phase solution in Figure 3(a) in
two aspects. First, RetroFlow has a higher flow programmablitily
since flow f1 traverses two switches with the SDN mode. Second,
RetroFlow has a lower communication overhead. RetroFlow pulls
flow f1 twice from two switches, but switches s20 and s22 are much
closer to controller C3 than switches s21, s23, and s24. Thus, for the
communication overhead, the significant decrease of propagation
delay compromises the increased number of flows.

Therefore, we should jointly consider the number of flows in
offline switches and the propagation delay among the switches
and active controllers to configure switches’ routing mode and
the controller-switch mapping. We name this problem Optimal
Switch Configuration and Mapping (OSCM) problem and literally
explain it as follows: under controller failures, we need to maintain
the programmability of flows from offline switches with the minimum
communication overhead among offline switches and active controllers
by efficiently configuring each offline switch with a routing mode
and mapping the offline switches with the SDN mode to the active
controllers.

4 PROBLEM FORMULATION

In this section, we introduce how to optimally configure and remap
switches by modeling the system, introducing constraints and the

objective function, and finally formulating an optimization problem.
For simplicity, in the rest of this paper, we use a switch instead of
an offline switch.

4.1 System description

Typically, an SD-WAN consists of H controllers at H locations,
and each controller controls a domain of switches. Controllers
Cm+1, - » Cq fail, and they control N switches in total. The set of
active controllersis C = {Cy, ..., Cj,Cp}, and the set of switches
controlled by the failed controllers are S = {sy, ..., Sj, ..., SN }. We
need to select some switches from S, configure them with the
SDN mode, and map these selected switches to controllers in C;
the rest of switches in S are configured with the legacy mode. If
switch s; € S is configured with the SDN mode, x; = 1; otherwise,
the switch is configured with the legacy mode and does not rely
any controller, and thus x; = 0. We use z;; = 1 to denote that
switch s; € S under the SDN mode is mapped to controller C; € C;
otherwise z;; = 0. Since both x; and z;; are binary variables, and a
feasible switch-controller mapping requires that a switch is under
the SDN mode and mapped to an active controller, we can have
xi * zij = zjj, Vi € [1,N], Vj € [1,M]. (1)
The set of flows from switches S is F = {fl,fz, ...,fl, ...,fL}. If
flow f bg forwarding path traverses switch s;, and s; has at least
two paths to f%’s destination, we have ﬁll = 1, otherwise ,Bll =0.1f

flow f! is a programmable flow, we have 4! = 1, otherwise y' = 0.

4.2 Constraints

4.2.1 Switch-controller mapping constraint. If switch s; is config-
ured with the SDN mode, it must be controlled by only one con-
troller; if switch s; is configured with the legacy mode, it is not

controlled by any controller. Thus, we have
M

Zzij =x;, Vi € [1,N].
j=

@)

4.2.2 Controller processing ability constraint. If some controllers
fail, it is unfair to overload other active controllers to take full
responsibility for the failed controllers to control offline switches.
Active controllers should only try their best to control the offline

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

switches without interrupting their normal operations. The state
pulling operations of a switch equal to the total number of flows
in the switch’s flow table. We measure a controller’s processing
ability as the number of flows that the controller can normally pull
from its controlled switches without introducing extra delays (e.g.,
queueing delay). The processing load of a controller should not
exceed the controller’s processing ability. It can be written as

N L

Z(Z Bl xix zij) < ATV e [1,M],

i=1 [=1
where A’¢? denotes the available processing ability of controller
C;. Bringing (1) into the above inequality and letting g; denote the
number of flows in switch s;

L
gi =) Bl Vie[LN], 3)
I=1

we can reformulate the above nonlinear constraints as the following
linear constraints:

D (gi *zij) < AT,V € [1,M]. @
i=1
4.2.3 Flow programmability constraint. If a switch works under
the SDN mode, the flows in the switch become programmable. The
flow f!’s programmability can be expressed as follows:

N
yl < Z(ﬁf *x;), VI € [1,L]. (5)
i=1

In the above inequality, the equal sign comes when there is only
one offline switch with the SDN mode that contains flow f. If
multiple switches contain this flow, the inequality sign is used.

The flow programmability equals the total number of unique pro-
grammable flows. If we require Q unique flows are programmable,
we have

L
Q< Zyl. (6)
=1

4.3 Objective function

The objective is to minimize the communication overhead of active
controllers to pull flow state from offline switches, which equals
the total propagation delay of programmable flows between the
switches with the SDN mode and their newly mapped controllers.
We use D;j (Djj > 0) to denote the propagation delay between
switch s; and controller C; and formulate the overhead as follows:

M N
obj = Z Z(gi * Djj * Zij).
j=1i=1
If we use wj; to denote controller C;’s communication overhead to
switch s;:
wij = gi * Dij,Vi € [1,N],Vj € [1,M], 7)
we can write the objective function as follows

M N
obj = Z Z(wij * Zjj). (8)
j=1i=1
4.4 Problem formulation

The goal of our problem is to minimize the communication over-
head between active controllers in C and offline switches in S and
provide the programmability for flows in F by smartly configuring

Zehua Guo, et al.

switches in § and mapping switches with the SDN mode to active
controllers in C. Therefore, we formulate the OSCM problem as

follows:
M N
)
Jj=1i=1

st (2Q@(G)X6), (P)

Zij,yl €{0,1},
Vie[1,N],Vj € [1,M],V] € [1,L],
where {w;j}, {gi}, {ﬁf} and {A;e”} are constants, and {z;;} and

{y'} are design variables. In the OSCM problem, the objective func-
tion is linear, and variables are binary integers. Thus, this problem
is an integer programming.

5 SOLUTION

In this section, we first analyze the complexity of the OSCM problem
and then propose our RetroFlow algorithm for solving the problem.

5.1 Complexity analysis

THEOREM 1. For a special case with two conditions: (1) all flows
from offline switches should be programmable, and (2) each flow
traverses only two switches and has different source and destination
switches with others, the OSCM problem is NP-hard.

Proof: We first introduce the Generalized Assignment Problem
(GAP) [24]. The GAP aims to minimize the cost assignment of
n tasks to m agents such that each task is precisely assigned to
one agent subject to capacity restrictions on the agents. A typical
formulation of the r(n}AIZ is shown below:
min Cij * Xij
] ,Zl PICEY
n

s.t. Z;(aij * x3j) < bj, Vj € [1,m],)
=

m
Zx,-j =1,Vie[1,n],
j=1

xij € {0,1},Vi € [1,n],Vj € [1,m],
where c;; is the cost of assigning task i to agent j, a;; is the capacity
of task i when the task is assigned to agent j, and b; is the available
capacity of agent j. Binary variable x;; equals 1 if task i is assigned
to agent j, otherwise it equals 0. It has been proved when assigning
multiple tasks to an agent and ensuring each task is performed
exactly by one agent, the GAP is NP-hard [24].

We then prove for a special case of conditions (1) and (2), problem
(P) and the GAP are equivalent problems. Given condition (1) that
all flows from offline switches should be programmable, we have
Q = L. (6) can be changed to yl =1foralll € [1,L], and (5) can be
rewritten as follows:

N
1< Z(ﬁf xx1),Vl € [1,L]. (10)
i=1

Recall a flow cannot change its path at its destination switch. Given
condition (2) that each flow traverses only two switches and has
different source and destination switches with others, we have that
each offline switch has a unique flow, and the number of offline

RetroFlow: Maintaining Control Resiliency and Flow Programmab
-ility for Software-Defined WANs

Table 1: Notations

Notation| Meaning

S the set of offline switches, S = {s; | i € [1, N]}

W(i) the communication overhead of switch s;, W(i) =
{Wits oo Wijyeees wimh i € [1,N]

C(i) the set of active controllers by sorting C = {Cj | j €
[1, M]} following the ascending order of W (i), i € [1, N]

A the set of the available processing capacity of controllers,
A= {A7e] j e [1L,M]}

G the number of flows in switches, G = {g; | i € [1, N]}

B the set of flow-switch relationship, B =

{Bi,...Bi,..By |i € [LLN]}, Bi = {BL,.... B, ... p}}

the set of offline switches with the SDN mode, X = {i €
[L,N]|x; =1}

Z the set of the mapping relationship between offline
switches with the SDN mode and active controllers,
Z ={G,j) € [, N]X[1,M] | zij = 1}

Y the set of controllable flows, Y = {l € [1,L] | y; = 1}

(o7

a number that indicates the maximum number of flows
that are different from existing programmable flows

switches equals the number of unique flows. That is ,Bl’g =1fora
specific ip € [1, N]. Thus, we can change the above inequality as
the following equation

N
1= Z(ﬁf *X;) = B0 * Xiy = Xiy, Vio € [1,N].
i=1

Bringing the above equation into (2), we have

Zzij:l,ViE[l,N]. 11)
j=1

Following the above two conditions, our OSCM problem can be
reformulated as follows:

M N
min Z Z(Wij * Zij)
j=li=1 ®")
st (4)(11),
zij € {0,1},Vi € [1,N],Vj € [1, M].

Problem (P’) aims to minimize the communication cost of N
switches to M controllers such that each switch is precisely assigned
to one controller subject to processing ability restrictions on the
controllers. We can treat switch s; and controller C; in problem
(P’) as task i and agent j in the GAP. By this construction, it is easy
to prove that there exists the minimum communication cost by
mapping switches in S to controllers C, if and only if there exists
the optimal solution of the GAP by assigning n tasks to m agents.
The construction can be done in polynomial time. In problem (P’),
the mapping between switches and controllers could be many to
one. Since the GAP is NP-hard when multiple tasks are assigned
to an agent, and each task is performed exactly by one agent [24],
problem (P’) is NP-hard. O

Problem (P’) is a special case of the OSCM problem and is NP-
hard. Therefore, we can have the following conclusion:

THEOREM 2. The OSCM problem is NP-hard.

5.2 RetroFlow algorithm

Typically, we can use existing integer program optimization solvers
to obtain the OSCM problem’s optimal solution. However, for the

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

Algorithm 1 RetroFlow
Input: S, C(i), A, G, B;
Output: X, Z, Y;
1 X=0,Z=0Y=0;
2: while True do
3: d =0, ip = NULL, jo = NULL;

4 //find the switch with the maximum number of flows that
are different from existing programmable flows;

5 fors; € Sdo

6 forle {pl =1,1¢€[1L]} do

7: if I € Y then

8 ﬁll =0;

9: end if

10: end for

11: if |25 B!l > 5 then
12 8 =%, Filio =i

13: end if

14: end for

15: //assign switch s;; to controller Cj,, which has the lowest

communication overhead and enough processing ability
16: for C;j € C(ip) do

17: if A;e“ - gi, > 0 then

18: Jo =7, X & X Uiy, Z « Z U (ig,Jo);
. rest _ arest _ .. .

19: Aju = Ajo Jiys

20: forle {fl =1,1¢€[1,L]}do

21: Y — YUl

22: end for

23: break;

24: end if

25: end for

26: S — S\ si;

27: if |S| ==0or |Y| > Q then
28: break;

29: end if

30: end while

31: return X, Z, Y;

problem with a large network, the solver could require a very long
time or sometimes is impossible to find a feasible solution. There-
fore, we propose a heuristic algorithm called RetroFlow for solving
the problem to achieve the trade-off between the performance and
time complexity.

The idea behind RetroFlow is to select and test variables based
on their importance. The first priority of our problem is to enables
many unique flows from offline switches to become programmable
flows. Thus, we first select a switch that has the maximum number
of flows which are different from existing programmable flows.
This switch selection method helps us to efficiently rescue as many
unique flows as possible in each iteration. For this selected switch,
we choose a switch-controller mapping among all mappings in
the ascending order of the communication overhead and then test
whether the mapping satisfies the controller’s processing ability.
If yes, the mapping is selected, and all flows in the switch become
programmable; otherwise, a new mapping is tested. This mapping
selection method effectively reduces the communication overhead.

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

Zehua Guo, et al.

Table 2: Default relationship between controllers, switches, and the number of flows in the switches under ATT topology.

3 2 200 22
1D of failed controllers

5) 6

Controller ID 2 5 13 20 22
Switch ID 2 319 16(4 |5 8 |14|0 |1 (6 |7 | 10| 11| 12| 13 | 15| 19| 20| 17 | 18| 21| 22 | 23| 24
Number of | 127| 71| 121| 57| 49| 153| 53| 61| 81| 49| 77| 93| 65| 59| 71| 225| 67| 49| 61| 133| 49| 67| 111| 49| 57
flows
s @ RetroFlow HEEE Optimal = BEE RetroFlow EEEE Optimal N @ RetroFlow HEBE Optimal o —— RetroFlow (Left)
EL 100 ey S Nearest = == Nearest il - == Nearest 5 Nearest (Middle)
E - = = - = _: - ; = E E | | E E Ll oa —— Optimal (Right) |
""EEEEEE E = CIFEEEE B Eﬁ [DW
B = =8 = — = N = — 2 N = - = I :
é 10 E E E E E E E E é{m E g E | 3
CJEEEEEE E = EEHEEE -
He=5 B = Hi=g e =4 =

[13 | [t 13]

3) 2 20] 22 5] 6
1D of failed controllers

(a) Percentage of programmable flows
from offline switches. The higher, the bet-
ter.

The lower, the better.

(b) Number of recovered offline switches.

(c) Communication overhead. The lower,
the better.

3 2 20] 22 5 6] 13 2 20 |2 5 6]

ID of failed controllers 1D of failed controllers

(d) Processing load of active controllers.
The black dash line indicates the con-
troller’s processing ability.

Figure 4: Results of one controller fail and 100% flows are set to recover.

Details of RetroFlow are summarized in Algorithm 1, and Table
1 shows the notations used in the algorithm. In line 1, the sets X,
Z, and Y are first set to be empty. In line 2, we start iteratively
to find switches and their mappings. In line 3, for each iteration,
we set § to 0, and set iy and jo to NULL. In lines 5-14, we find the
required switch. We first remove the existing programmable flows
from each switch in S (lines 6-10) and find the required switch and
update this switch’s index to io (lines 11-13). In lines 16-25, we test
the mapping between switch s;, and controller C;. If controller C;
has enough ability to control switch s;,, we select the controller as
Cj,, establish the mapping between switch s;, and controller Cj,,
update the processing ability of controller Cj,, and upgrade the set
of programmable flows. In line 26, we remove the tested switch from
the offline switches S. In lines 27-29, if all switches are tested or the
number of programmable flows reaches the flow programmability
requirement, the algorithm jumps out of the iterations. In line 31,
the result returns.

6 SIMULATION
6.1 Simulation setup

We evaluate the performance of RetroFlow with a real backbone
topology named ATT from Topology Zoo [25]. The ATT topology
is a national topology of US with 25 nodes and 112 links. In this
topology, each node is given a unique ID with a latitude and a longi-
tude. We calculate the distance between two nodes using Haversine
formula [26] and use the distance divided by the propagation speed
(i.e., 2x108 m/s) [27] to represent the propagation delay between
the two nodes. In our simulation, each node is an SDN switch, and
some selected nodes are further deployed controllers. Any two
nodes have a traffic flow, and each flow is forwarded on its shortest
path. We set the processing ability of a controller to 500. The default
selection of controllers and default mapping between controllers
and switches are obtained by solving an optimization problem,
which aims to minimize the communication overhead among all
switches and controllers. Table 2 shows the default relationship of
controllers, switches, and the number of flows in the switches.

6.2 Comparison algorithms

(1) Optimal: it is the optimal solution of the OSCM problem
that minimizes the communication overhead between offline
switches and active controllers during controller failures. We
solve the problem using GUROBI solver [28].

(2) Nearest: during controller failures, each offline switch maps
to its nearest controller. This solution can minimize the prop-
agation delay but could overload active controllers.

(3) RetroFlow: this algorithm is shown in Algorithm 1.

6.3 Simulation results

In our simulation, the SDN control plane consists of six controllers.
Many existing works consider only one controller failure [9][10].
RetroFlow can cover a wide range of multiple controller failure
scenarios. We compare RetroFlow with other algorithms under two
scenarios: (1) one controller failure and (2) two controllers failure.
Scenario (1) is a moderate controller failure that active controllers
have enough ability to handle all offline switches. Scenario (2) is
a serious controller failure that active controllers are not able to
handle all offline switches with their given processing abilities. Our
performance metrics are the percentage of programmable flows
from offline switches, communication overhead, and processing
load of active controllers. We use Nearest as the baseline algorithm
and normalize the metric of each algorithm to that of Nearest.

6.3.1 One controller failure. Figure 4 shows the results of three
algorithms when one of the six controllers fail. In Figures 4(a) and
(b), all three algorithms recover 100% flows from offline switches,
and they remap the same number of offline switches to active con-
trollers. However, in Figure 4(c), Optimal and RetroFlow outperform
Nearest in term of the communication overhead. This is because
Optimal and RetroFlow remap offline switches to their closest con-
trollers with enough processing ability, while Nearest only consid-
ers the propagation delay to remap offline switches to controllers
and thus could overload controllers, leading to long queueing delay
for processing flow state pulling. The queueing delay setup fol-
lows the existing work [16]. In Figure 4(c), Optimal performs better
than RetroFlow because of its better switch-controller remapping.

RetroFlow: Maintaining Control Resiliency and Flow Programmab
-ility for Software-Defined WANs

B RetroFlow E== Nearest

Bl Optimal

Recovered flow percentage (%)

[13.20][13,22] [2,13] [2,20] [222] [25] [2.6] [20,22] [5,13] [5.20] [5.22] [5.6] [6,13] [6,20] [6,22]
1D of failed controllers

(a) Percentage of programmable flows from offline switches. The higher, the better.

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

B RetroFlow == Necarost BE##E Optimal

Recovered flow percentage (%)

[1320][13.22] [2.13] [220] [222] [25] [2.6] [2022] [5.13] [5.20] [5.22] [5.6] [6.13] [6.20] [6.22]
ID of failed controllers

(a) Percentage of programmable flows from offline switches. The higher, the better.

@A RetroFlow

5}
&

=== Necarest EEEE Optimal

=]
5

5

Number of recovered switch
& B

o
By

T 3.20[1322] [2,13] [2.20] [2.22] [25] [2.6] [20,22] [5,13] [5,20] [5,22] [5,6] [6,13] [6,20] [6,22]
1D of failed controllers

(b) Number of recovered offline switches. The lower, the better.

B RetroFlow E= Necarest Bl Optimal

R

Percentage to Nearest (%)

32011322 [2.13] 220 [222] [28] [20] [2022] [5.13) (:20] (522 [5.6] (6.13] [6.20] [6,22]
I

D of failed controllers

(c) Communication overhead. The lower, the better.

— Nearest (Middle) —— Optimal (Right)
| 10
T 0 S
T L el B i

SERERRE

[1320][13.22] [2.13] [2.20] [222] [2.3] [2.6] [2022] [5.13] [5.20] [5.22] [5.6] [6,13] [6:20] [6.22]
ID of failed controllers

—— RetroFlow (Left)

]
S

60O

Number of flows
& >
=

(d) Processing load of active controllers. The black dash line indicates the controller’s
processing ability.

Figure 5: Results of two controllers fail and 100% flows are
set to recover. Optimal cannot provide results.

However, compared with Nearest, RetroFlow can reduce the com-
munication overhead up to 52.6%. Figure 4(d) shows the processing
load of controllers. In this figure, Nearest experiences controller
overload at all six cases.

6.3.2 Two controllers failure. Figures 5 and 6 show the results of
three algorithms when two of the six controllers fail. There are 15
combinations of the two controllers failure. In Figure 5, we require
100% flows from offline switches to become programmable. Fig-
ure 5(a) shows the percentage of programmable flows from offline
switches. In this figure, Optimal does not have results. Recall our
problem has a constraint of not interrupting active controllers’ nor-
mal operations. This constraint ensures each controller’s processing
load cannot exceed its processing ability, and under this constraint,
Optimal cannot have a feasible solution even if all controllers reach

E

@ RetroFlow == Necarost BEEE Optimal

Number of recovered
o o om
P

=
5

[13:20][13,22] [2.13] [220] [222] [25] [26] [2022] [5,13] [5.20] [5.22] [5.6] [6.13] [6,:20] [6.22]

1D of failed controllers

(b) Number of recovered offline switches. The lower, the better.

EEA RetroFlow E= Nearest

Bl Optimal

o B

Percentage to Nearest (%)

[2,6] [20,22] [5,13] [5.20] [5,22
D of failed controllers

Cl3201[13.22] 2.13] (220 (222 [25) (5.6 [6,13] [6.20] [6.22
I

(c) Communication overhead. The lower, the better.

gsoo)) 1

Sol L g l - ﬂ;ﬂﬁ# S
Ewo ?I ?ﬁ ‘ B ﬁT i}? ﬁjﬁ E - ﬁ :
2001 —— RetroFlow (Left) —— Nearest (Middle) —— Optimal (Right)

[1320[13,22)[2,13] [2.20] [2,22] [2:5] [2:6] [20.22][5.13] [5,20] [5.22] [5,6] [6.13] [6,20] [6,22]
ID of failed controllers

(d) Processing load of active controllers. The black dash line indicates the controller’s
processing ability.

Figure 6: Results when two controllers fail and 90% flows are
set to recover.

their processing limits. Because RetroFlow is a heuristic algorithm,
it always has a solution. In this figure, RetroFlow recovers flows in
the range of 71 % to 99 %.

We analyze two representative failure cases: (1) the failure of
controllers C2g and Cyg, and (2) the failure of controllers Cg and Cyg.
In case (1), we have eight offline switches s17-s24. In Figure 5(b),
RetroFlow enables 99 % flows to become programmable by recover-
ing six offline switches, and Nearest recovers two more switches
(s18 and s19) than RetroFlow does but only controls 1% more pro-
grammable flows. Because most of the flows in switches s15 and s19
have been recovered by remapping other six switches, remapping
the two switches have only limited benefit. In case (2), we have six
offline switches so, s1, s, 57, S19, and sp¢. In Figure 5(b), RetroFlow
recovers 71 % flows by recovering three offline switches (so, s¢,

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

and s7), and Nearest recovers three more switches than RetroFlow
with an increase of 29% more programmable flows. In this case,
the left ability of controllers Cz, Cs, Ci3, and Cay are only 124, 184,
23, and 35 flows. Thus, under the controller’s processing ability
bound, RetroFlow can only recover three switches, leading to a gap
of programmable flow percentage between Nearest and RetroFlow.
Nearest enables 100% programmable flows recovery at the cost of
high communication overhead and controller overloading. In Fig-
ures 5(c) and (d), Nearest requires 25% to 82% more communication
overhead due to the queueing delay of controller overloading.

If some controllers fail, it is unfair to overload other active con-
trollers to take full responsibility for the failed controllers to control
offline switches. Active controllers should only try their best to con-
trol offline switches. Based on this concern, in Figure 6, we require
90% flows to become programmable. In this figure, Optimal has
results for 12 of 15 cases. By reducing the number of programmable
flows, the communication overhead of RetroFlow reduces. Com-
paring the case of controllers C13 and Cy; failure in Figures 5(c)
and 6(c), RetroFlow’s overhead reduces from 74% to 53% because
it maps five switches, which are three switches less than the sce-
nario of 100% flow recovery. When controllers Czo and Cyy failure,
RetroFlow reduces the communication overhead up to 61.2%.

7 RELATED WORKS

Pareto-based optimal controller-placement [6] minimizes differ-
ent objectives (e.g., the latency between switches and controllers,
latency between controllers) under controller failures. Works in
[7]1[29] try to find the best trade-off between the performance and
cost during the controller failure under several constraints (e.g.,
load balancing and QoS). The solution in [30] proposes a controller
placement model that ensures resiliency against the controller fail-
ure by minimizing the distance from a switch to its i-th closest
controller. Capacitated Next Controller Placement [8] proposes a
controller placement problem that not only considers the capacity
and reliability of master controllers but also plans ahead for the
master controller failure by considering a backup controller for each
master controller. Different from all the aforementioned solutions,
RetroFlow reduces the impact of controller failures by leveraging
the features of hybrid SDN switches to maintain the advantage of
SDN (i.e., flow programmability) and low communication overhead
without overloading the rest active controllers.

8 CONCLUSION

In this paper, we propose RetroFlow to jointly achieve resilient
network control and flow programmablility during controller fail-
ures. RetroFlow maintains active controllers’ normal operations
and programmablility of flows from offline switches while reduc-
ing the controllers’ processing load from the offline switches by
taking advantage of commercial hybrid SDN switches that support
switches working under the legacy mode without controllers. By
jointly considering the propagation delay and controllers’ control
cost in real time, RetroFlow also achieves a low communication
overhead among offline switches and active controllers. We hope
that our work can inspire researchers to creatively utilize exist-
ing features in commercial SDN switches to better solve existing
problems.

Zehua Guo, et al.

9 ACKNOWLEDGMENT

This work was supported by the US NSF under Grants CNS-1618339,
CNS-1617729, CNS-1814322, and CNS-1836772, the National Key Re-
search and Development Program of China under Grant 2018YFB10-
03700, the NSFC under Grant 61836001, and the China Scholarship

Council under Grants 201706370143 and 201806470060.
REFERENCES

[1] “Software-defined infrastructure at uber,” https://www.linuxfoundation.org/blog/

2018/06/software-defined-infrastructure-at-uber/.

S. Jain, A. Kumar, S. Mandal, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,

J. Zhou, and M. Zhu, “B4: Experience with a globally-deployed software defined

WAN,” in ACM SIGCOMM’13.

[3] “First in the u.s. to mobile 5g 4AS whataAZs next? defining at&taAZs network
path in 2019 and beyond,” https://about.att.com/story/2019/2019_and_beyond.
html.

[4] T.Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based software-defined
networking: A survey,” IEEE Access, vol. 6, pp. 15980-15 996, 2018.

[5] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, and H. J. Chao, “Improving
the performance of load balancing in software-defined networks through load
variance-based synchronization,” Computer Networks, vol. 68, pp. 95-109, 2014.

[6] D.Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia, “Pareto-
optimal resilient controller placement in sdn-based core networks,” in IEEE ITC’13.

[7] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through resilient con-
troller placement for software defined networks,” in IEEE GLOBECOM’16.

[8] B.P.R.Killi and S. V. Rao, “Capacitated next controller placement in software
defined networks,” IEEE Transactions on Network and Service Management, vol. 14,
no. 3, pp. 514-527, 2017.

[9] T. Hu, Z. Guo, J. Zhang, and J. Lan, “Adaptive slave controller assignment for
fault-tolerant control plane in software-defined networking,” in IEEE ICC’18.

[10] G.Yao,].Bi, and L. Guo, “On the cascading failures of multi-controllers in software
defined networks,” in IEEE ICNP’13.

[11] T. Hu, P. Yi, Z. Guo, J. Lan, and Y. Hu, “Dynamic slave controller assignment
for enhancing control plane robustness in software-defined networks,” Future
Generation Computer Systems, vol. 95, pp. 681-693, 2019.

[12] “Brocade mlx-8 pe,” https://www.dataswitchworks.com/datasheets/MLX_Series_
DS.pdf.

[13] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network moni-
toring in openflow software-defined networks,” in IEEE NOMS’14.

[14] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix estimator
for openflow networks,” in Springer PAM’10, pp. 201-210.

[15] “Openflow switch specification 1.3, https://www.opennetworking.org/
wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

[16] J. Xie, D. Guo, X. Li, Y. Shen, and X. Jiang, “Cutting long-tail latency of rout-
ing response in software defined networks,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 384-396, 2018.

[17] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,”
in ACM HotSDN’12.

[18] G.Yao,]. Bi, Y. Li, and L. Guo, “On the capacitated controller placement problem
in software defined networks,” IEEE Communications Letters, vol. 18, no. 8, pp.
1339-1342, 2014.

[19] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software
defined networks,” in IEEE INFOCOM’13.

[20] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “One step at a time:

Optimizing SDN upgrades in ISP networks,” in IEEE INFOCOM’17.

Z.Guo, W. Chen, Y. Liu, Y. Xu, and Z. Zhang, “Joint switch upgrade and controller

deployment in hybrid software-defined networks,” IEEE Journal on Selected Areas

in Communications, vol. 37, no. 5, pp. 1012-1028, May 2019.

[22] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller assignment in data
center networks: Stable matching with transfers,” in IEEE INFOCOM’16.

[23] H.Xu, Z. Yu, C. Qian, X.-Y. Li, and Z. Liu, “Minimizing flow statistics collection
cost of sdn using wildcard requests,” in IEEE INFOCOM'17.

[24] M. R. Gary and D. S. Johnson, “Computers and intractability: A guide to the

theory of np-completeness,” 1979.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet

topology zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9,

pp. 1765 ~1775, 2011.

[26] C. C. Robusto, “The cosine-haversine formula,” The American Mathematical
Monthly, vol. 64, no. 1, pp. 38-40, 1957.

[27] “Speed, rates, times, delays: Data link parameters for cse 461,” https://courses.cs.
washington.edu/courses/cse461/99wi/issues/definitions.html.

[28] “Gurobi optimization,” http://www.gurobi.com.

[29] N. Perrot and T. Reynaud, “Optimal placement of controllers in a resilient sdn
architecture,” in IEEE DRCN’16.

[30] A. Alshamrani, S. Guha, S. Pisharody, A. Chowdhary, and D. Huang, “Fault
tolerant controller placement in distributed sdn environments,” in IEEE ICC’18.

[2

[21

&
i

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Blessing of the SDN
	2.2 Curse of the SDN
	2.3 Opportunities

	3 Design Considerations
	3.1 Switch mode configuration problem
	3.2 Switch remapping problem
	3.3 A joint optimization problem

	4 Problem Formulation
	4.1 System description
	4.2 Constraints
	4.3 Objective function
	4.4 Problem formulation

	5 Solution
	5.1 Complexity analysis
	5.2 RetroFlow algorithm

	6 Simulation
	6.1 Simulation setup
	6.2 Comparison algorithms
	6.3 Simulation results

	7 Related Works
	8 Conclusion
	9 Acknowledgment
	References

