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Abstract— To improve traffic management ability, Internet
Service Providers (ISPs) are gradually upgrading legacy network
devices to programmable devices that support Software-Defined
Networking (SDN). The coexistence of legacy and SDN devices
gives rise to a hybrid SDN. Existing hybrid SDNs do not
consider the potential performance issues introduced by a cen-
tralized SDN controller: flow requests processed by a highly
loaded controller may experience long-tail processing delay;
inappropriate multi-controller deployment could increase the
propagation delay of flow requests. In this paper, we propose
to jointly consider the deployment of SDN switches and their
controllers for hybrid SDNs. We formulate the joint problem as
an optimization problem that maximizes the number of flows that
can be controlled and managed by the SDN and minimizes the
propagation delay of flow requests between SDN controllers and
switches under a given upgrade budget constraint. We show this
problem is NP-hard. To efficiently solve the problem, we propose
some techniques (e.g., strengthening the constraints and adding
additional valid inequalities) to accelerate the global optimization
solver for solving the problem for small networks and an
efficient heuristic algorithm for solving it for large networks.
The simulation results from real network topologies illustrate
the effectiveness of the proposed techniques and show that our
proposed heuristic algorithm uses a small number of controllers
to manage a high amount of flows with good performance.

Index Terms— Complexity analysis, controller deployment,
heuristic algorithm, hybrid software-defined networking (SDN),
switch upgrade, upgrade budget.

I. INTRODUCTION

S
OFTWARE-DEFINED Networking (SDN) has been

widely studied and gradually adapted for campus
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networks [1], data center networks [2], Wide Area Networks

(WANs) [3], enterprise networks [4], and Internet exchange

points [5]. Due to the cost and operational considerations,

SDN technology is usually deployed in an incremental fashion.

In particular, at each time of network upgrade, only a set of

selected legacy network devices (i.e., layer-3 routers and layer-

2 switches) are upgraded to SDN switches. AT&T converted

34% of its network to SDN by the end of 2016 and virtualized

55% of its network to software by the end 2017. Its final goal

is to reach 75% softwarization of its network by 2020 [6].

Therefore, the legacy network devices and SDN switches may

coexist for a long time. In this paper, we will refer to such a

network as a hybrid SDN.

A WAN usually consists of many network devices at

geo-distributed locations. A straightforward method to upgrade

legacy network devices in WANs to SDN switches is based

on the locations of network devices, for example, upgrade

a part of WAN with network devices in proximity. The

partial upgraded network can enjoy the benefit of SDN,

but the performance improvement of the entire network is

limited. An efficient solution for network providers is to

spread the benefit of upgraded SDNs in the entire network.

Based on this consideration, existing studies proposed to

upgrade legacy network devices in WANs to SDN switches

for different reasons or with different motivations, such as

traffic engineering [7], [8], flexible routing [9], link failure

recovery [10], power saving [11], [12], and safe update [13].

Essentially, the benefit of SDN is to flexibly control flows.

Once a flow traverses an SDN switch, its forwarding path can

be flexibly controlled. We call such traffic the programmable

traffic. The selection of switches to be upgraded to SDN

switches has a great impact on the network’s programmable

performance. In a WAN, switches tend to have quite different

numbers of flows. If we randomly select some of them to

upgrade, we may not be able to achieve our objective to

maximize the number of programmable flows. Some studies

aim to maximize the amount of programmable traffic under

the constraint of a given upgrade budget [14], [15]. However,

the impact of SDN controller on the network upgrade is not

taken into consideration in these works.

The control plane of SDN has evolved from one single

controller to multiple controllers to circumvent the limited

computational resource of a controller server and avoid single

point of failure. For a large wide-area SDN, multiple distrib-

uted controllers are physically deployed at different locations

to achieve the function of a logically centralized control plane,

and the controllers synchronize with each other to guarantee
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the consistency of the entire network [16], [17]. To avoid

the single-point-of-failure problem, backup controllers maybe

deployed [18], [19]. If one controller instance crashes, other

active instances will still work without service interruption.

Popular SDN controllers (e.g., ONOS and OpenDayLight)

usually use three controllers to provide resilient service at

one location, and the three controllers communicate with each

other (e.g., using Raft [20]) to guarantee the network state

consistency [21], [22].

Deploying multiple controllers in a hybrid SDN should

take the following two factors into account. First, controllers

should be able to process flow requests from the upgraded

SDN switches in a timely manner. If a controller is over-

loaded, the requests handled by it may suffer from long-tail

latency [23], which might significantly degrade the network

performance [24]. Second, the deployment locations of con-

trollers affect the propagation delay of flow requests and

network state pulling because the propagation delay in WANs

is usually a significant part of the total delay [25], [26].

Existing works [7], [8], [14], [15] for the network upgrade did

not consider the above factors, which may lead to some unde-

sirable performance degradations. We detail the two factors in

Section II.

In this paper, we consider the above two factors and

propose two objectives: (1) maximizing the number of flows

managed by SDN and (2) minimizing the propagation delay

of flow requests from SDN switches with an upgrade budget

constraint. The first objective aims to control as many flows

as possible by upgrading legacy devices to SDN switches,

while the second objective aims to reduce the propagation

delay between the SDN controllers and switches by effectively

deploying a few controllers near SDN switches. Our problem

is to find the locations of upgraded switches, the locations of

deployed controllers, and the mappings between the controllers

and the upgraded switches (i.e., which controllers control

which upgraded SDN switches) to maximize the number

of controlled programmable flows and at the same time

minimize the propagation delay between the controllers and

upgraded switches under individual controllers’ processing

ability and upgrade budget constraints. We first formulate a

two-stage optimization problem that optimizes one objective

at each stage and then transform the two-stage problem

into a one-stage problem to simplify the solution procedure.

We prove that with a careful choice of the parameter the

optimal solution of the one-stage formulation is also the

optimal solution of the two-stage formulation.

It is worth noting that our work is different from the

controller deployment in pure SDNs. In pure SDNs, all

switches are SDN switches, and the controllers’ deployment

only needs to consider two aspects: (1) the controllers’ location

and number and (2) mapping between SDN switches and

controllers. In hybrid SDNs, our problem needs to consider

one more aspect: the location and number of the upgraded

SDN switches. In our problem, the three aspects are related

to each other, and our problem in hybrid SDNs is more

complicated than the controllers’ deployment in pure SDNs.

To efficiently solve the problem, we analyze the problem’s

structure and propose several solutions. For the problem in

small networks, we accelerate the global optimization solver

by proposing a new problem formulation. For the problem

in large networks, to further improve the computational effi-

ciency, we propose a heuristic algorithm named MapFirst,

which first orders the (relaxed) mapping variables between

controllers and upgraded switches according to their impor-

tance/weights (obtained by solving a linear program relax-

ation) and then sequentially determines the (binary) mapping

variables based on their impacts on the objective function.

We conduct simulations using real network topologies from

Topology Zoo [27]. The simulation results on multiple topolo-

gies verify the effectiveness and efficiency of the new prob-

lem formulation. We further compare MapFirst with optimal

solutions and other heuristic algorithms, and the results show

(1) MapFirst outperforms other heuristic algorithms by using

a small number of controllers to facilitate a high amount of

flows from upgraded SDN switches, and (2) compared to the

optimal solution, MapFirst is able to achieve a comparable

performance but enjoys a significantly low complexity.

The contributions of the paper are summarized as follows:

1) Novel Problem Formulation: We identify the impact of

the control plane on the network upgrade and formulate

an optimization problem to guarantee the performance

of the hybrid SDN by jointly upgrading switches and

deploying controllers.

2) Efficient Solutions: We propose efficient exact and

heuristic solutions to solve the problem for both small

and large networks. Our simulation results (on real

network topologies) demonstrate that our exact solution

significantly accelerates the optimization solver, and

our proposed MapFirst is able to return a high-quality

solution with a significant less CPU time.

3) Theoretical Analysis: We provide some analysis on the

problem and the solutions. For the problem, we pro-

vide a rigorous NP-hardness proof and shed a useful

insight that the problem (probably) does not admit

constant-ratio approximation algorithms to only approx-

imate the total delay in our problem. In addition, we also

identify a special case of the problem which is strongly

polynomial time solvable. For the proposed MapFirst,

we analyze its worst-case complexity and prove that it

is able to return the global solution of the problem if

each controller can control at most one SDN switch.

The rest of this paper is organized as follows: Section II

illustrates the motivation of the paper with some exam-

ples. Section III formulates the Joint Switch Upgrade and

Controller Deployment (JSUCD) problem, and Section IV

analyzes the parameter selection and the complexity of the

problem. Section V introduces exact and heuristic solutions

for the JSUCD problem. Section VI presents the simulation

results and analysis. Section VII introduces the related works.

Section VIII concludes the paper and presents our future work.

II. AN EXAMPLE AND MOTIVATION

In this section, we use a motivation example in Fig. 1 to

show how the network upgrade affects the performance of the

hybrid SDN.
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Fig. 1. A motivation example.

A. Example Background

Fig. 1(a) shows the network composition: the network

has 6 legacy switches s1 to s6 deployed at six different loca-

tions with uneven interconnection. We assume that the number

of flows in each switch is proportional to the number of its

links, and the total number of flows on a link is normalized

as 1. The number of normalized flows at the six switches are:

fs1 = 2, fs2 = 3, fs3 = 2, fs4 = 5, fs5 = 3, fs6 = 3. The

normalized processing ability of each controller is pc = 6. The

upgrade budget includes switch upgrade cost and controller

deployment cost. In this example, the upgrade budget allows

upgrading at most four legacy devices to SDN switches, and

the cost of an SDN switch is three times of a controller.

In other words, if we upgrade one less switch, we can

deploy three more controllers at three locations.1 We assume

that one SDN switch can only be controlled by exactly one

controller, and one controller can potentially control multiple

1At a location, a controller is physically implemented by a controller
instance cluster to prevent single-node-of-failure [18], [19]. We can either
use two instances or three instances for a cluster. However, the odd number
accelerates the primary controller selection in the case of the controller failure,
and the production networks usually use three instances [21], [22]. In the rest
of the paper, we use a controller to represent a controller cluster at a location
since a cluster usually uses one controller to process requests, and the other
two are just backup and thus do not process any requests.

SDN switches. Our problem is to find a feasible solution that

contains a set of upgraded switches, a set of controllers, and

the mappings between the upgraded switches and controllers

to maximize the number of controlled programmable flows and

at the same time minimize the delay between the controllers

and upgraded switches under the constraints of the upgrade

budget and individual controller’s processing ability.

B. Impact of the Network Upgrade on the Hybrid SDN

1) Maximizing the Benefit of SDN by Selecting Upgraded

SDN Switches: If a flow traverses one SDN switch, it is a

programmable flow and we can enjoy the benefit of SDN

by flexibly controlling the flow’s forwarding path. Thus, the

benefit of SDN depends on the number of programmable

flows. We use As to denote the total number of programmable

flows from the upgraded SDN switches. Our first goal is

to maximize As with a given switch upgrade budget. There

are 20 switch combinations for selecting three switches from

six switches to upgrade. Fig. 1(b) shows three switch selection

combinations that control the largest number of flows As =
3 + 3 + 5 = 11: red = {s2, s4, s6}, blue = {s4, s5, s6},

green = {s2, s4, s5}.

2) Guaranteeing the Processing Performance of Flow

Requests by Considering the Processing Ability of Controllers:
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We use blue switch selection in the following explanation. The

red and green switch selections follow the similar explana-

tion. We use Ac to denote the total processing ability of the

deployed controllers. Existing works show when a controller

processes more requests than its normal processing load, the

processing delay of the requests could be five times longer

than the one under the normal load [23], [24]. To maintain

the processing performance of flow requests, after a network

upgrade, for the entire network, it is necessary to require

As ≤ Ac, and for controllers, each one should not process

the number of flow requests larger than its normal processing

ability. In Fig. 1(c), deploying one controller can either control

the flows at switch s4 or the flows at the other two switches,

and thus deploying one controller is not enough. In Fig. 1(d),

deploying one controller for each switch can satisfy the control

requirement, but the controllers’ processing ability of such a

deployment is much larger than the number of flows from SDN

switches. The extra number of controllers could also bring

extra overhead. If we deploy many controllers, the number

of switches controlled by a controller would be small, and a

controller’s control ability on the network would be reduced.

Thus, after a network upgrade, we prefer to deploy a few

controllers to satisfy the demand of SDN switches. In this

example, we only need two controllers since As < Ac =
pc ∗ 2 = 12, fs4

< pc, and the load of the other two switches

in red, green, or blue switch selection is less than pc. Thus,

a good solution is to upgrade three switches with the number

of flows 5, 3, and 3 and deploy only two controllers.

3) Maintaining the Good Propagation Performance of Flow

Requests by Considering the Locations of SDN Switches and

Controllers: An SDN switch and a controller interact with

each other in two ways: one SDN switch can send a flow

request to the controller when it does not know how to

process the flow, and a controller can dynamically change the

paths of flows on its controlled SDN switches to improve the

network performance (e.g., when identifying a congestion).

Previous works [25], [26] show that the propagation latency

in WANs is the dominant factor among all latencies because

the propagation latency bounds the control reactions of a

controller that can be executed at a reasonable speed. A long

propagation latency could limit availability (e.g., link failure

recovery) and convergence time (e.g., network state pulling,

routing convergence). Thus, for WANs, an important factor for

controller placement is to minimize the total propagation delay

among SDN switches and controllers. In WANs, the propaga-

tion delay of a request is proportional to the distance between

a sender and a receiver. To maintain the good propagation

performance of flow requests between the SDN’s control plane

and data plane, we should minimize the propagation delay of

flow requests between SDN switches and controllers, which

motivates us to deploy controllers near the upgraded SDN

switches.

In the example of blue switch selection, the number of

flows in switch s4 is the largest one, and it is very close

to the control capacity of a controller. Hence, we select

switch s4 to upgrade and deploy controller c4 at location

4 for the switch. The rest two switches are switches s5

and s6, which can be controlled by a controller deployed

at location 5 or 6. We use Msi,cj
to denote the mapping

between switch si and controller cj . Since the delay between

a switch and a controller is minimized when the controller is

deployed at the same place of the switch, we have two can-

didate solutions: blue1 = {s4, s5, s6, c4, c5, Ms4,c4
}, blue2 =

{s4, s5, s6, c4, c6, Ms4,c4
}.

4) Impact of Individual Controller’s Processing Ability

on Controller-Switch Mappings: After selecting upgraded

switches and deployed controllers, we should also map each

upgraded switch to a controller for control. Each SDN switch

can be managed by only one controller, and one controller

could possibly manage multiple switches. Fig. 1(e) and 1(f)

show two switch-controller mappings of the solution blue2.

In the two subfigures, switch s4 is mapped to controller c4,

and switch s6 is mapped to controller c6. However, switch

s5 has different mappings. In Fig. 1(e), switch s5 is mapped

to controller c4, and the controller’s load reaches 3 + 5 = 8,

which exceeds its maximum processing ability 6 while the

load of controller c6 is only 3. Thus, the mapping between

switch s5 and controller c4 is not allowed given that s4 is

already mapped to c4. In Fig. 1(f), switch s5’s mapping is

feasible since its mapping to c6 keeps c6’s load at 3 + 3 = 6,

which does not exceed its maximum processing ability. Thus,

switch-controller mappings without considering the controller

processing ability constraint could also lead to an infeasible

solution.

Fig. 1(g) shows a solution of green switch selection. We use

Dsi,sj
to denote the distance (e.g., the length of the direct

link or the shortest path) between switches si and sj . Because

of Ds2,s5
= 2 ∗ Ds6,s5

, we have Ds5,c2
= 2 ∗ Ds6,s5

. One

can check that optimal solutions of blue1 and blue2 switch

selections outperform the optimal solution of green switch

selection in terms of the total propagation delay.

C. Design Criteria of the Network Upgrade

In the above network upgrade, we consider the following

factors to upgrade a legacy network to the hybrid SDN:

1) maximizing the number of programmable flows from the

upgraded SDN switches,

2) guaranteeing the processing performance of flow

requests at controllers, and

3) minimizing the total propagation delay of flow requests

between controllers and SDN switches.

The first factor depends on the upgraded switches. The

second factor relates to the processing ability of individual

controllers. The third factor must take the locations and

mappings of controllers and SDN switches into consideration.

By considering all these factors, an optimal result would

come from a very complicated procedure since the factors

couple with each other. For example, to get a better result,

mapping selection in Section II-B4 could be determined before

or simultaneously when selecting switches to upgrade and

controllers to deploy. In the next section, we will formulate

an optimization problem that takes into account all the above

factors for an efficient network upgrade.
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III. PROBLEM FORMULATION

In this section, we first introduce constraints and objective

functions and then formulate our optimization problem.

A. System Description

In a network upgrade from a legacy network to a hybrid

SDN, we upgrade some of its switches to SDN switches and

deploy some controllers to manage all SDN switches. The

network consists of N switches deployed at N locations. The

number of flows in switch si is Ri ≥ 0 (1 ≤ i ≤ N).
We use homogeneous controllers, and the processing ability

of controller cj is A > 0 (1 ≤ j ≤ N).
We use xi = 1 to denote that switch si is upgraded to

the SDN switch; otherwise xi = 0. Similarly, we use yj =
1 to denote that controller cj is deployed at location j and

otherwise yj = 0; we use zij = 1 to denote that an SDN

switch si is mapped to controller cj and otherwise zij = 0.

The default relationships between xi, yj , and zij are shown

below:

zij ≤ xi, ∀ i, ∀ j, (1)

zij ≤ yj , ∀ i, ∀ j. (2)

Equations (1) and (2) imply that a feasible switch-controller

mapping must satisfy two conditions: a switch is upgraded to

an SDN switch, and its mapping controller is deployed.

B. Constraints

1) Controller-Switch Mapping Constraint: If switch si is

upgraded, it must be controlled by only one controller; if

switch si is not upgraded, it is not controlled by any controller.

Thus, we have

xi =

N
∑

j=1

zij , ∀ i. (3)

If controller cj is not deployed, it does not control any

switches; if controller cj is deployed, it must control at least

one SDN switch. That is:

yj ≤
N

∑

i=1

zij , ∀ j. (4)

2) Individual Controller’s Processing Ability Constraints:

An SDN switch will send a flow request to a controller when

it does not know how to process a new flow. The number

of flow requests from an SDN switch equals the number

of flows traversing the switch, and it should not exceed the

controller’s processing ability. This can be mathematically

written as
N

∑

i=1

(Ri ∗ xi ∗ zij) ≤ A, ∀ j,

Since both xi and zij are binary variables, we substitute (1)

into the above nonlinear constraints and reformulate them as

the following linear constraints:

N
∑

i=1

(Ri ∗ zij) ≤ A, ∀ j. (5)

3) Upgrade Budget Constraint: The upgrade budget is that

the total cost of upgraded switches and deployed controllers is

at most M > 0. The number of upgraded switches is
∑N

i=1
xi,

and the number of deployed controllers is
∑N

j=1
yj . Suppose

that the cost of an SDN switch is γ (γ ≥ 1) times of the cost

of a controller. Thus, we have

γ ∗
N

∑

i=1

xi +

N
∑

j=1

yj ≤ M. (6)

C. Objective Functions

There are two objectives in our problem. The first one is

to maximize the total number of flows by updating legacy

switches to SDN switches:

obj1 =
N

∑

i=1

(Ri ∗ xi). (7)

The second one is to minimize the total propagation delay

of flow requests between SDN switches and controllers by

deploying the controllers and mapping the SDN switches to the

controllers. We use Dij (Dij ≥ 0) to denote the propagation

delay between SDN switch si and controller cj , which is

proportional to their distance. Thus, we formulate the total

propagation delay as follows:

obj2 =
N

∑

i=1

N
∑

j=1

(Dij ∗ zij). (8)

One main reason for upgrading traditional switches to SDN

switches is to enjoy the benefit of programmability to flexibly

select the route path. Many existing works adopt the first

objective as their objectives [14], [15]. The first objective

decides the number and location of SDN switches in a

network. The second objective is typically used to optimize

the network performance for a network with given SDN

switches [25], [26]. In a hybrid SDN, the first objective is

usually (much) more important than the second objective.

D. Problem Formulation

The goal of our problem is to maximize the number of

flows from the SDN switches and minimize the total prop-

agation delay of flow requests between the SDN switches

and controllers by smartly upgrading legacy switches to

SDN switches, deploying controllers, and mapping the SDN

switches to the controllers. In practice, maximizing the

number of programmable flows in our objectives has the

first priority, and minimizing the total delay between the

SDN switches and controllers has the second priority. Hence,

we model the Joint Switch Upgrade and Controller Deploy-

ment (JSUCD) problem as a two-stage problem. In the first

stage, we maximize the total number of programmable flows

without considering the delay objective. This can be done by

solving the following problem:

F ∗ = max
x,y,z

N
∑

i=1

Rixi

s.t. (2)(3)(4)(5)(6),

xi, yj , zij ∈ {0, 1}, ∀ i, ∀ j. (P1)
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With the maximum number of programmable flows obtained

from problem (P1), we minimize the total delay by solving

the following problem:

min
x,y,z

N
∑

i=1

N
∑

j=1

Dijzij

s.t. F ∗ =

N
∑

i=1

Rixi, (2)(3)(4)(5)(6),

xi, yj , zij ∈ {0, 1}, ∀ i, ∀ j. (P2)

The above two-stage problem formulation needs to solve

two problems. An alternative formulation is to combine the

two objectives into one objective as follows:

max
x,y,z

N
∑

i=1

Rixi − λ

N
∑

i=1

N
∑

j=1

Dijzij

s.t. (2)(3)(4)(5)(6),

xi, yj , zij ∈ {0, 1}, ∀ i, ∀ j, (P)

where λ ≥ 0 is a constant number that gives different weights

of the two objective terms. In Section IV, we prove that

by choosing the parameter λ appropriately problem (P) is

equivalent to the two-stage problem.

IV. PROBLEM ANALYSIS

In this section, we prove that under a certain condition,

problem (P) is equivalent to the two-stage problem, and

analyze the computational complexity of problems (P1),(P2),

and (P).

A. Choice of the Parameter λ in Problem (P)

Notice that if Dij = 0 for all i and j, problem (P) is

equivalent to problem (P2) for any λ. In this case, the objective

function in problem (P2) is zero and hence problem (P) is

equivalent to the two-stage problem. In the following, we show

that even though there are i0 and j0 such that Di0j0 �= 0,

by appropriately choosing the parameter λ, this equivalence

still holds.

Proposition 1: Suppose all Ri (1 ≤ i ≤ N ) are integers

and there are i0 and j0 such that Di0j0 �= 0. Let d be the great-

est common divisor of R1, . . . , RN , i.e., d = max{d̄ | Ri

d̄
∈

Z, i = 1, . . . , N}. If

0 < λ <
d

∑N

i=1
max1≤j≤N{Dij}

, (9)

then problem (P) is equivalent to the two-stage problem.

Proof: Notice that d�
N
i=1

max1≤j≤N{Dij}
> 0 since Dij ≥ 0

for all i and j and there exist i0 and j0 such Di0j0 > 0.

In the following, we shall use the contradiction argument to

show that the solution of problem (P) is also the solution of

problems (P1) and (P2).

Let (x∗, y∗, z∗) be an optimal solution of problem (P).

Assume that (x∗, y∗, z∗) is not an optimal solution of problem

(P1). Then there exists an optimal solution (x̄, ȳ, z̄) of problem

(P1) with
∑N

i=1
Rix̄i >

∑N

i=1
Rix

∗
i . Because Ri, x̄i, and x∗

i

are all integers, by the choice of d, we have

N
∑

i=1

Rix̄i −
N

∑

i=1

Rix
∗
i ≥ d. (10)

Since x̄i =
∑N

j=1
z̄ij ≤ 1, it follows

∑N

j=1
Dij z̄ij ≤

max1≤j≤N{Dij}z̄ij , which, together with the choice of λ
in (9), further implies that

λ

N
∑

i=1

N
∑

j=1

Dij z̄ij ≤ λ

N
∑

i=1

max1≤j≤N{Dij}z̄ij

≤ λ
N

∑

i=1

max1≤j≤N{Dij} < d. (11)

Combining (10) with (11), we obtain

N
∑

i=1

Rix̄i − λ

N
∑

i=1

N
∑

j=1

Dij z̄ij >

N
∑

i=1

Rix
∗
i + d − d

=

N
∑

i=1

Rix
∗
i ≥

N
∑

i=1

Rix
∗
i − λ

N
∑

i=1

N
∑

j=1

Dijz
∗
ij ,

where the last inequality follows from Dij ≥ 0 for all i and j
and λ > 0. However, this contradicts the fact that (x∗, y∗, z∗)
is an optimal solution of problem (P). Hence (x∗, y∗, z∗) is

also optimal for problem (P1). Let F ∗ be the optimal value of

problem (P1). Since adding the constraint F ∗ =
∑m

i=1
Rixi

to problem (P) does not change its optimal solution set, then it

follows that the optimal solution of problem (P) is also optimal

for problem (P2). Similarly, one can show that the optimal

solution of problem (P2) is also optimal for problem (P). This

completes our proof. �

Proposition 1 shows that one-stage problem (P) with λ
satisfying the condition in (9) is equivalent to the two-stage

problem, and hence we can solve problem (P) to obtain the

desired result instead of solving two problems (P1) and (P2).

B. Complexity Analysis

In this subsection, we analyze the computational complexity

of problems (P1), (P2), and (P).

Proposition 2: Problems (P1), (P2), and (P) are all strongly

NP-hard.

Proof: We only prove the strong NP-hardness of problem

(P1) since the proof of the other two problems is similar.

This can be done by establishing a polynomial-time reduc-

tion from the 3-partition problem, which is strongly NP-

complete [28], [29]. Next, we first introduce the 3-partition

problem.

Given a finite set S of 3m elements, a bound B ∈ Z+,

and a size ai ∈ Z+ for the i-th element with B
4

< ai < B
2

and
∑3m

i=1
ai = mB, can S be partitioned into m disjoint sets

S1, . . . ,Sm such that
∑

i∈Sj
ai = B, 1 ≤ j ≤ m?

Given any instance of the 3-partition problem, we construct

an instance of problem (P1) as follows:

set M = 4m, A = B, γ = 1, and N to be any integer

satisfying N ≥ 3m;
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set Ri = ai for i ∈ {1, . . . , 3m} and Ri = 0 for

i ∈ {3m + 1, . . . , N}.

By construction, the objective function in problem (P1)

reduces to
∑3m

i=1
aixi. It is easy to see that, for this constructed

instance of problem (P1), there exists an optimal solution

(x, y, z) such that xi = 0 for i ∈ {3m+1, . . . , N} and zij = 0
for i ∈ {3m + 1, . . . , N}, j ∈ {1, . . . , N}.

Hence the constructed instance of problem (P1) can be

written as

max
x,y,z

3m
∑

i=1

aixi

s.t. (2)(3)(4),
3m
∑

i=1

aizij ≤ B, 1 ≤ j ≤ N,

3m
∑

i=1

xi +

N
∑

j=1

yj ≤ 4m,

xi, yj , zij ∈ {0, 1}, 1 ≤ i ≤ 3m, 1 ≤ j ≤ N. (P1’)

In the following, we will show that the answer to the given

instance of the 3-partition problem is true if and only if the

optimal value of problem (P1’) is mB.

Suppose that S can be partitioned into m disjoint sets

S1, . . . ,Sm such that
∑

i∈Sj
ai = B for all j ∈ {1, . . . , m}.

We construct a point (x̄, ȳ, z̄) by setting

x̄i = 1 for i ∈ {1, . . . , 3m};

ȳj = 1 for j ∈ {1, . . . , m} and ȳj = 0 for j ∈ {m +
1, . . . , N};

z̄ij = 1 for i ∈ Sj , j ∈ {1, . . . , m} and z̄ij = 0 for the

others.

Clearly, (x̄, ȳ, z̄) is a feasible solution of problem (P1’)

with
∑3m

i=1
aix̄i = mB. As

∑3m

i=1
aix̄i ≤

∑3m

i=1
ai = mB,

we know the optimal value of problem (P1’) is mB.

Now suppose that the optimal value of problem (P1’) is mB
and the corresponding solution is (x̄, ȳ, z̄). Then

∑3m

i=1
aix̄i =

mB. This, together with the fact that
∑3m

i=1
ai = mB, implies

∑3m
i=1

x̄i = 3m.

Then it must follow

N
∑

j=1

ȳj = m. (12)

Otherwise, by
∑3m

i=1
x̄i +

∑N
j=1

ȳj ≤ 4m, we know
∑N

j=1
ȳj < m. However, this is impossible since

3m
∑

i=1

aix̄i =

3m
∑

i=1

ai

N
∑

j=1

z̄ij =

N
∑

j=1

3m
∑

i=1

aiz̄ij ≤
N

∑

j=1

ȳjB < mB,

where the first equality follows from x̄i =
∑N

j=1
z̄ij in

problem (P1’) and the first inequality follows from z̄ij ≤ ȳj

and
∑3m

i=1
aiz̄ij ≤ B in problem (P1’). By (12), without loss

of generality, we can assume that ȳj = 1 for j ∈ {1, . . . , m}
and ȳj = 0 for j ∈ {m + 1, . . . , N}. We further show

3m
∑

i=1

aiz̄ij = B, 1 ≤ j ≤ m. (13)

Otherwise, we have
∑3m

i=1
aiz̄ij < B for some j. From ȳj = 0

for j ∈ {m + 1, . . . , N} and z̄ij ≤ ȳj , we know z̄ij = 0 for

i ∈ {1, . . . , N}, j ∈ {m + 1, . . . , N}. Using this, we have
∑3m

i=1
aix̄i =

∑N

j=1

∑3m

i=1
aiz̄ij =

∑m

j=1

∑3m

i=1
aiz̄ij < mB,

which contradicts the fact that the optimal value of problem

(P1’) is mB. Now, let Sj = {i | z̄ij = 1, 1 ≤ i ≤ 3m} for

j ∈ {1, . . . , m}. Then it follows from (13) that

∑

i∈Sj

ai =

3m
∑

i=1

aiz̄ij = B.

From x̄i =
∑N

j=1
z̄ij , we have Sj1 ∩Sj2 = ∅ for any j1, j2 ∈

{1, . . . , m} with j1 �= j2. Furthermore, combining (13) with
B
4

< ai < B
2

, it follows
∑3m

i=1
z̄ij = 3, or equivalently |Sj | =

3, 1 ≤ j ≤ m. This, together with the fact that S1, . . . ,Sm

are disjoint, indicates

S1 ∪ · · · ∪ Sm = {1, . . . , 3m}.

Hence the answer to the given instance of the 3-partition

problem is true.

Finally, the above transformation can be done in polynomial

time. Since the 3-partition problem is strongly NP-complete,

we conclude that problem (P1) is strongly NP-hard. �

Proposition 2 implies that, unless P=NP, there are no

polynomial time algorithms, which can solve problem (P) to

global optimality. Thus, we should develop efficient algorithms

for approximately solving the problem especially when the

dimension of the problem is large.

C. More Insight Into Intrinsic Difficulty of Problem (P)

In the above subsection, we basically show that the problem

of maximizing the total number of programmable flows is

NP-hard. In this subsection, we study another two special

cases of problem (P), i.e., the problem of minimizing the total

propagation delay between controllers and SDN switches if all

switches can be upgraded to SDN switches and all flows can

be programmable, and show that they are still NP-hard. The

analysis of the second case shows that there probably does not

exist a constant-ratio approximation algorithm for problem (P).

These analysis results provide more insight into the intrinsic

difficulty of problem (P).

To simplify the following analysis, we replace constraint (5)

in problem (P) with the following constraint

N
∑

i=1

(Ri ∗ zij) ≤ A ∗ yj, ∀ j. (14)

Due to the binary nature of variables y and z and constraint (2),

this replacement does not change the solution of the problem.

1) Case 1: In this case, we assume: (i) the processing

capacity of the controller is large enough to control all

switches’ requests, and (ii) the upgrade budget is large enough

to upgrade all switches to SDN switches. Mathematically, the

above two assumptions can be written as (i) A >
∑N

i=1
Ri and

(ii) M−γN ≥ 1. Under these two assumptions, we can reduce

problem (P) via the following three steps. First, combining

assumption (i) with constraint (2), we can see that constraint

(14) becomes redundant for problem (P), and thus we can
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remove it. Second, the above assumptions (i) and (ii) can

guarantee xi = 1 for all i ∈ [1, N ] in the optimal solution

of problem (P). Hence, constraint (3) changes into

N
∑

j=1

zij = 1, ∀ i, (15)

and constraint (6) changes into

N
∑

j=1

yj ≤ M − γN. (16)

Third, we can remove constraint (4) from problem (P).

We argue this as follows: Let us suppose the optimal solution

of problem (P) without constraint (4) is (x̄, ȳ, z̄) with ȳj >
∑N

i=1
z̄ij for some j ∈ J ⊆ [1, N ]. By setting ȳj = 0 for all

j ∈ J , we obtain a feasible solution for problem (P), which

yields the same objective value as that at (x̄, ȳ, z̄). Combining

the above three steps together, we can reduce problem (P) to

the problem of selecting appropriate controllers to control all

the SDN switches to minimize the total propagation delay as

follows:

min
y,z

N
∑

i=1

N
∑

j=1

Dijzij

s.t. (2)(15)(16),

yj , zij ∈ {0, 1}, ∀ i, ∀ j.

The above problem is called p-Median Problem and is NP-hard

[30]. Thus, problem (P) in this special case is also NP-hard.

2) Case 2: In the case, we assume: (i) all switches have

the same number of flows and (ii) the upgrade budget is

large enough to upgrade all switches to SDN switches and

to deploy controllers to control all upgraded switches. These

two assumptions can be written as (i) R1 = · · · = RN � R
and (ii) (M − γN)⌊A

R
⌋ ≥ N, where ⌊·⌋ is the floor operator.

Substituting assumption (i) into constraint (14), we obtain

N
∑

i=1

zij ≤
⌊A

R

⌋

yj , ∀ j. (17)

It is not difficult to argue that assumptions (i) and (ii) guarantee

that xi = 1 for all i ∈ [1, N ] in the optimal solution of (P).

Following steps 2 and 3 of case 1, we can reformulate problem

(P) in this special case as follows:

min
y,z

N
∑

i=1

N
∑

j=1

Dijzij

s.t. (2)(15)(16)(17),

yj , zij ∈ {0, 1}, ∀ i, ∀ j.

The above problem is called Uniform Capacitated p-Median

Problem. It is a NP-hard problem, and existing studies do not

find a constant-ratio approximation algorithm for it [31]. Our

problem (P) is more general than the above problem. Based on

the above analysis, we can conclude that there probably does

not exist a good approximation algorithm for our problem (P).

V. PROBLEM SOLUTION

In this section, we propose an exact solution for solving the

problem of small networks and an efficient heuristic algorithm

for solving the problem of large networks.

A. Exact Solution

Typically, we can use existing integer program solvers to

obtain problem (P)’s optimal solution. Here we use GUROBI

solver [32] for solving our problem. GUROBI uses a branch-

and-cut [33] framework and is recognized as one of the fastest

integer program solvers [34]. The branch-and-cut framework

usually uses Linear Programming (LP) relaxation to obtain

an upper bound. However, the LP relaxation is usually very

weak [35], and thus it is difficult for the solver to quickly

solve the integer programming problem. In our experiments,

we also observe the weakness of the LP relaxation of problem

(P). To accelerate the solution process, we propose a better

(re)formulation by strengthening some constraints and adding

some valid inequalities by exploiting problem (P)’s structure.

1) Strengthening Constraints: First, we strengthen con-

straint (5) as (14). Compared to constraint (5), in (14) we use

a tighter upper bound A ∗ yj , which improves the objective

value of the LP relaxation of problem (P) and thus reduces

the solution time of the branch-and-cut algorithm in GUROBI.

The details can be found in [33].

2) Adding Valid Inequalities: Generating efficient cutting

planes is a key step in the branch-and-cut framework. In the

mixed integer problems, one novel technique is to aggregate

multiple constraints together to generate redundant but effi-

cient constraints for the problem. This is because, in the mixed

integer problems, some redundant constraints could be used

as base constraints to generate cuts and may accelerate the

solution process of the branch-and-cut framework [36]. Mod-

ern solvers can generate cuts automatically but usually do not

consider the problem’s structure. By exploiting the structure

of problem (P), below we add some aggregated constraints to

problem (P) to help the solver efficiently generate cuts.

Adding all the constraints in (14) and using the constraints

(3), we obtain

N
∑

i=1

(Ri ∗ xi) ≤ A ∗
N

∑

j=1

yj . (18)

Combining (18) with (6), we obtain the following inequality

N
∑

i=1

(Ri + γA) ∗ xi ≤ A ∗ M. (19)

The inequalities (18) and (19) are redundant for the LP relax-

ation problem of (P), but they can be used as base constraints

to help the solver to find some knapsack cuts [37] and further

accelerate the solution process. The similar technique has

been used for the problem of single-source capacitated facility

location in [38].
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TABLE I

NOTATIONS

Substituting (3) into the objective of problem (P), we have

obj =

N
∑

i=1

Ri

N
∑

j=1

zij − λ

N
∑

i=1

N
∑

j=1

Dijzij

=

N
∑

i=1

N
∑

j=1

(Ri − λDij)zij .

Based on the above analysis, we reformulate our problem as

the final problem:

max
x,y,z

N
∑

i=1

N
∑

j=1

ωijzij

s.t. (2)(3)(4)(6)(14)(18)(19),

xi, yj , zij ∈ {0, 1}, ∀ i, ∀ j, (P’)

where xi, yj , zij are design variables and

ωij = Ri − λDij . (20)

We will illustrate the effectiveness and efficiency of the new

formulation with simulation results in Section VI-C.

B. Heuristic Algorithm

The new formulation helps the optimization solver to accel-

erate the solution process in small networks. However, it still

requires a very long time or sometimes is impossible for the

solver to find a feasible solution for the problem of large

networks. In this section, we propose a heuristic algorithm

for solving the problem to achieve the tradeoff between the

performance and the time complexity. The heuristic algorithm

is based on formulation (P’).

The intrinsic difficulty of our problem lies in the interrela-

tionship of the selection of switches to upgrade, the selection

of controllers to deploy, and the switch-controller mappings.

Due to the interrelationship complexity of the three variables,

we cannot change them at the same time. Based on our

previous analysis, the mapping variables are more crucial

(than switch update and controller deployment variables) since

one mapping variable potentially can determine the other two

variables. In the following part, we propose the MapFirst algo-

rithm that determines the variables in the order of mappings,

switches, and controllers.

The notations used in the algorithm are listed in Table I.

The idea of our proposed algorithm, MapFirst, is to first

select a switch-controller mapping in the descending order of

their importance/weights and then tests whether building the

mapping will satisfy the upgrade budget constraint: if yes, the

switch and the controller in the mapping is selected; otherwise,

a new mapping is tested. The procedure is terminated until

there is no budget to build any mapping. Details of MapFirst

are summarized in Algorithm 1. In line 1, at the beginning

of the algorithm, the sets X , Y , and Z are set to be empty

since no switches are upgraded, no controllers are deployed,

and there are no mappings between switches and controllers.

In line 2, we generate vector Zvec = {zvec
l , l ∈ [1, N ∗ N ]}.

We first relax the binary variables in problem (P’) to continu-

ous variables in [0,1], and get the LP relaxation solution Z∗ of

problem (P’). We then sort the solution Z∗ in the descending

order to get vector Zvec. The sorting operation enables us to

test the mapping variables based on their probabilities. Next,

we use our customized rounding technique to find the result

by sequentially testing each zvec
l ∈ Zvec. In line 4, we get

zvec
l ’s corresponding switch index i0 and controller index j0.

Lines 5-7 guarantee that we do not test a switch if it is already

upgraded. In lines 8-18, we test the mapping between switch

si0 and controller cj0 . If the mapping satisfies the constraints

of problem (P’), we upgrade the switch and deploy the con-

troller at two specific conditions: (1) in lines 9-12, controller

cj0 is already deployed, and we only upgrade switch si0 when

the remaining upgrade budget is γ or more; (2) in lines 13-

16, controller cj0 is not deployed, and we upgrade switch si0

and deploy controller cj0 when the remaining upgrade budget

is γ + 1 or more. If either of the two conditions is satisfied,

we set the mapping between switch si0 and controller cj0 .
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Fig. 2. An example of applying MapFirst to solve the problem. The weights of the mappings satisfy zs4,c4
> zs5,c4

> zs6,c6
> zs6,c5

.

Algorithm 1 MapFirst algorithm

Input: N , M , A, γ, W , R;

Output: X , Y , Z;

1: X = ∅, Y = ∅, Z = ∅;

2: Generate vector Zvec = {zvec
l , l ∈ [1, N ∗ N ]} by solving

the LP relaxation of problem (P’) and sorting the results

in the descending order;

3: for zvec
l ∈ Zvec do

4: find switch index i0 and controller index j0 of zvec
l ;

5: if i0 ∈ X then

6: continue;

7: end if

8: if Z ∪ (i0, j0),X ∪ i0, and Y ∪ j0 satisfy the constraints

in (P’) then

9: if j0 ∈ Y and |X | ∗ γ + |Y| + γ ≤ M then

10: // controller cj0 is already deployed, just upgrade

switch si0

11: // map switch si0 to controller cj0

12: X ← X ∪ i0, Z ← Z ∪ (i0, j0);

13: else if j0 /∈ Y and |X | ∗ γ + |Y| + γ + 1 ≤ M then

14: // deploy controller cj0 and upgrade switch si0

15: // map switch si0 to controller cj0

16: Y ← Y ∪ j0, X ← X ∪ i0, Z ← Z ∪ (i0, j0);
17: end if

18: end if

19: if M − γ < |X | ∗ γ + |Y| then

20: break;

21: end if

22: end for

23: return X ,Y,Z;

In lines 19-21, if the remaining budget is less than γ, then

we cannot upgrade any switch, and the algorithm returns the

result and stops.

Fig. 2 shows an example of applying MapFirst to solve

the problem. The mappings are tested in the decreasing order

of the mappings’ weights. In the figure, the mapping Ms4,c4

is first tested. Since the mapping satisfies the constraints in

problem (P’), controller c4, switch s4 and the mapping Ms4,c4

are selected. Then, the mapping Ms5,c4
is tested but is not

selected because the mapping does not satisfy the processing

capacity constraint. Similarly, mappings Ms6,c6
and Ms5,c6

are

tested one by one. If building one mapping does not violate the

upgrade budget, the related switch, controller, and the mapping

itself are selected.

C. Worst-Case Complexity of MapFirst

As shown in Algorithm 1, MapFirst has two main steps:

step 1 solves the LP relaxation and gets the weights by sorting

the returned solution of the LP relaxation; step 2 generates a

binary solution with a customized rounding technique. An LP

can be solved in O(n3 ∗ L) arithmetic operations by the

interior-point methods, where n is the number of variables

and L is the length of the input data of the problem [39]. Our

problem has in total N2+2N variables, and the computational

complexity of solving our LP relaxation is O(N6∗L). Sorting

the returned solution of the LP relaxation takes O(N2 log N2)
operations, and the customized rounding procedure runs at

most N2 iterations. In summary, the dominant computational

cost of MapFirst is to solve one LP relaxation, and its

worst-case complexity is O(N6 ∗ L). In sharp contrast, the

branch-and-cut framework in the worst case needs to solve

an exponential number of LP relaxations. Therefore, the

worst-case complexity of MapFirst is significantly smaller than

that of the branch-and-cut framework.

D. A Polynomial Time Solvable Case

Our analysis in Sections IV-B and IV-C shows that prob-

lem (P) is NP-hard, and there probably does not exist

a constant-ratio approximation algorithm for it. Therefore,

our proposed MapFirst algorithm generally does not have a

(constant-ratio approximation) performance guarantee. In this

subsection, we consider a special case of problem (P), where

each controller can control at most one SDN switch (i.e.,

Ri + Rj > A for all i �= j), and show that MapFirst is

guaranteed to find the optimal solution of problem (P) in this

special case.

Proposition 3: If Ri + Rj > A for all i �= j, problem

(P) can be solved (to globally optimality) in O(N3), and

MapFirst is guaranteed to find the optimal solution of problem

(P).

Proof: Without loss of generality, we assume 0 < Ri ≤
A for all i ∈ [1, N ]. Combining this assumption with the

assumption Ri +Rj > A for all i �= j, constraint (14) reduces
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to
∑N

i=1
zij ≤ yj , which, together with (4), implies

yj =

N
∑

i=1

zij , ∀ j. (21)

By substituting (5) and (21) into (6), we have

N
∑

i=1

N
∑

j=1

zij ≤
⌊ M

γ + 1

⌋

. (22)

From (21), we can simply remove constraint (2) from problem

(P) and reformulate it as follows:

max
z

N
∑

i=1

N
∑

j=1

ωijzij

s.t.

N
∑

j=1

zij ≤ 1, ∀ i,

N
∑

i=1

zij ≤ 1, ∀ j,

(22), zij ∈ {0, 1}, ∀ i, ∀ j. (23)

Due to Ri > 0 for all i ∈ [1, N ], the definition of wij in (20),

and the selection of λ in (9), we know ωij > 0 for all i, j ∈
[1, N ]. Hence, inequality (22) can be rewritten as an equality,

and problem (23) is a k-cardinality assignment problem. It has

been shown in [40] that the LP relaxation of problem (23) is

tight, i.e., solving the linear relaxation of problem (23) with an

appropriate method (e.g., the simplex method) returns a binary

solution. Furthermore, using the primal algorithm presented

in [40], we can solve problem (23) with O(N3) complexity.

The proof is completed.

The above proposition shows that, if each controller can

control at most one SDN switch, after some preprocessing

steps, the LP relaxation in MapFirst is tight, and MapFirst

can return an optimal solution of problem (P).

VI. SIMULATION RESULTS

A. Simulation Setup

In our simulation, we choose some backbone topologies

from Topology Zoo [27] to evaluate the performance of our

proposed solution. In the topologies, each node has a latitude

and a longitude. Since the propagation delay of a flow request

is usually proportional to the distance from a switch to a

controller, we use the distance between two nodes to represent

the propagation delay between an SDN switch and a controller.

We use M_percent to denote the ratio of the given upgrade

budget to the cost of upgrading all switches in the network.

In our simulation, M_percent changes from 5% to 50%.

We follow the assumption in [14], [15] that the number of

programmable flows in an SDN switch is proportional to the

number of its links. In practice, we can analyze the traffic

history at each switch to get the real traffic statistic. We have

analyzed more than 50 topologies in Topology Zoo and find

that most nodes have two or three links. We set the normalized

processing ability of a controller A = 50, and thus one

controller is able to control at least ten SDN switches on

average. Note that our problem can take into consideration of

heterogeneous controllers by setting the processing abilities of

different controllers with different values. The recommended

system requirement of one OpenDayLight controller instance

is 8 Cores, 8G RAM and 64GB storage [41], and the resilient

three-controller deployment requires at least three physical

servers and costs about $2000. One typical SDN switch is

about $8000. Hence, we set the cost ratio between an SDN

switch and one controller γ = 4.

B. Compared Algorithms

1) Optimal: the optimal solution of problem (P’) that maxi-

mizes the number of programmable flows and minimizes

the total propagation delay between upgraded SDN

switches and controllers. We solve the problem by using

GUROBI [32].

2) FlowOnly: the optimal solution of problem (P1) that

only maximizes the number of programmable flows.

Problem (P1) is also solved by using GUROBI [32].

3) MapFirst: we first use GUROBI [32] to solve the LP

relaxation of problem (P’), and then use a customized

rounding technique to sequentially determine the vari-

ables in the order of mappings, switches, and controllers.

The details can be found in Section V-B.

4) WeightFirst: this algorithm is similar to MapFirst, but

the key difference is that it greedily tests and picks the

switch-controller mapping in the descending order of

weights {wij} , i, j ∈ [1, N ].

C. Effectiveness of Formulation (P’)

We test the effectiveness of new formulation (P’) under

different topologies from Topology Zoo [27]. We set a time

limit of 3600 seconds for the branch-and-cut algorithm in

GUROBI (i.e., we terminate the algorithm if it does not find

the solution within 3600 seconds) and set M_percent = 50%
for each topology. Table II summarizes the computational

results. We can see from the table that: (1) for the problem

instances Cogentco and Condensed_west_europe, GUROBI

can successfully solve the new formulation (P’) within the

given time limit but fail to solve the original formulation (P);

(2) for the problem instances Colt, GtsCe, and Condensed,

GUROBI can successfully solve both problem formulations

within the given time limit but solving formulation (P’) takes

significantly less time than solving formulation (P). These

simulation results clearly show the effectiveness of formulation

(P’), i.e., the newly added constraints (14), (18), and (19)

indeed work and significantly accelerate the solution process.

D. Performance of CPU Time

In the rest of this section, we focus on three topologies Att,

Cernet, and Cogentco from Topology Zoo [27]. More specifi-

cally, Att is a small topology with 25 nodes and 57 links, Cer-

net is a medium-size topology with 41 nodes and 59 links, and

Cogentco is a large topology with 197 nodes and 245 links.

All of our simulations below are performed on these three

topologies.

We use the ratio of the CPU time of an algorithm to that

of MapFirst as the metric to measure the efficiency of the

algorithm. Fig. 3 shows the results, where y-axis is in the
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TABLE II

COMPUTATIONAL RESULTS OF (A) ORIGINAL FORMULATION (P), AND (B) FORMULATION (P’).

Fig. 3. Speedup of the CPU time in units of Log10.

Log10 scale. Recall that problem (P) is the original problem,

and problem (P’) is problem (P) with strengthened constraints

and valid inequalities. We can clearly observe from Fig. 3 that

MapFirst is the fastest solution in all cases. More specifically,

MapFirst is 499 and 5828 times faster than directly using

GUROBI to solve problem (P) when M_percent = 45% for Att

and M_percent = 25% for Cernet, respectively. In Fig. 3(c),

we set a time limit of 3600 seconds for solving (P). We only

get the results of M_percent = 10% and 20%, and we use

the CPU time limit 3600 seconds as the CPU time of other

cases of M_percent. In other words, GUROBI failed to solve

problem (P) directly within 3600 seconds. However, for all

cases of M_percent, GUROBI can successfully solve problem

(P’) within the time limit. In fact, from Fig. 3 we can see that

it is much more efficient to solve problem (P’) than problem

(P) in most cases. These simulation results verify that problem

(P’) is indeed a better formulation than problem (P) because

added constraints and inequalities in (P’) are very effective to

speed up the GUROBI solver, and our proposed MapFirst is

effective.

E. Performance of Programmable Flows

Fig. 4 shows the performance of the programmable flows

of different algorithms. In all the three topologies, the per-

formance of the four algorithms increases as M_percent
becomes larger. Optimal and FlowOnly are the optimal solu-

tions to maximize the number of programmable flows. We can

observe from Fig. 4 that WeighFirst’s performance is the worst

and MapFirst’s performance is very close to that of Optimal

and FlowOnly. Recall weight ωij is equal to Ri − λDij in

WeightFirst. The maximum value of ωij is Ri when deploying

a controller at the location of a selected switch. Since λ is

usually a small value, Ri plays the dominant role in ωij and

thus WeightFirst first greedily tests the switch-controller pair

based on the descending order of the number of flows in

switches. Even though WeightFirst considers the delay in the

later tests, it only focuses on a single switch-controller pair

without the global view of the problem. In sharp contrast,

MapFirst also tests the switch-controller pair but based on

the result of the LP relaxation. The LP relaxation considers

the entire problem to generate its result that reflects the

probability of selecting switch-controller pairs. Therefore, the

testing order of switch-controller pairs in MapFirst is more

efficient than WeightFirst. This is the reason why MapFirst

achieves much better performance than WeightFirst.

F. Performance of Deployed Controllers

Fig. 5 shows the number of controllers deployed by different

algorithms under the three topologies. WeightFirst deploys

more controllers than all the other algorithms since it always

deploys a controller for each upgraded switch. Thus, under

the same upgrade budget, WeightFirst upgrades fewer switches

than all the other algorithms. FlowOnly performs the best since

it does not consider the propagation delay in its objective

function and deploys enough controllers for the upgraded

SDN switches. Optimal deploys more switches than FlowOnly

and MapFirst. Recall the cost ratio of an SDN switch and a

controller is γ. If the upgrade budget is not enough to upgrade

a switch, the rest budget can also be used to deploy 1 to
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Fig. 4. Number of programmable flows. The higher, the better.

Fig. 5. Number of controllers. The lower, the better.

Fig. 6. Propagation delay between SDN switches and controllers. The lower, the better.

γ − 1 controllers. In this case, MapFirst and Optimal make

different decisions: MapFirst does not deploy extra controllers

and just stop the program (see lines 19–21 in Algorithm 1),

while Optimal will deploy more controllers to minimize the

propagation delay between SDN switches and controllers.

G. Performance of the Propagation Delay

Fig. 6 shows the propagation delay between SDN switches

and controllers. In all topologies, WeightFirst performs the

best as it deploys one controller at each SDN switch in

most cases. Among all algorithms, FlowOnly performs the

worst because problem formulation (P1) does not consider

the propagation delay between SDN switches and controllers.

In all the three topologies, Optimal and MapFirst’s propagation

delays increase as M_percent increases, but their increasing

rate is much lower than FlowOnly’s. Compared to MapFirst,

Optimal achieves a better propagation delay performance

since it deploys more controllers to minimize the propagation

delay. From Fig. 5 and 6, we can see that in most cases,

when MapFirst and Optimal deploy the same number of

controllers, they have the same performance, except two cases

M_percent = 50% in Fig. 5(a) and M_percent = 15%
in Fig. 5(b). In these two cases, Optimal performs better

than MapFirst even though they deploy the same number of

controllers.

Fig. 7 shows the propagation delay between controllers.

We do not show the results of WeightFirst because its perfor-

mance is very bad. We can observe, from the figure, Optimal

performs the worst since it does not consider this factor in
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Fig. 7. Propagation delay between controllers. The lower, the better.

the problem formulation (An interesting future is to consider

the propagation delay in the problem formulation). FlowOnly

performs better than Optimal since it deploys much fewer con-

trollers than Optimal (see Fig. 5), and the deployed controllers

are near to each other. In most cases, MapFirst has the best

performance. This is because MapFirst always deploys the

minimum number of controllers. In our problem formulation,

we use the budget constraint to implicitly limit the number

of controllers. In particular, our objective is to maximize

the number of flows, which is equivalent to maximize the

number of upgraded SDN switches. Given the upgrade budget,

upgrading more switches will reduce the number of controllers

to deploy.

H. Performance of Controller Control Ability on Switches

We use the ratio of the number of switches to the number

of controllers to measure the controller control ability on

switches. If a controller can control many switches, it will

simplify the network control. Fig. 8 shows the controller

control ability performance of all algorithms. In most cases,

MapFirst performs the best since it upgrades the same number

of switches as Optimal but deploys fewer controllers.

I. Summary of Simulation Findings

From our simulation results, we can conclude that the

following two design principles of MapFirst are crucial:

(1) among the three variables (i.e., the selection of upgraded

switches, the selection of deployed controllers, and the map-

pings between SDN switches and controllers), the mapping

variables are more important than the other two variables since

they reflect the interrelationship between the other two vari-

ables, and (2) the solution of the LP relaxation can effectively

reveal the importance of the mappings and thus the solution

structure of the problem. WeightFirst only takes the first

principle into consideration and performs the worst. Optimal

performs the best in terms of the two objectives: maximizing

the number of programmable flows and minimizing the propa-

gation delay between SDN switches and controllers. However,

it will deploy more controllers and has a higher propagation

delay among controllers than MapFirst. More importantly, its

worst-case complexity is significantly larger than MapFirst and

WeightFirst. In summary, compared to Optimal, MapFirst not

only achieves a comparable performance of the two objectives

with significantly lower complexity but also deploys less

number of controllers and thus has a shorter propagation delay

among controllers. Considering all performance metrics, Map-

First achieves the best performance. Therefore, to efficiently

handle a similar problem with interrelated variables, one can

use our design principles.

VII. RELATED WORKS

The evolution from legacy networks to SDN is a long

journey [42]. Considering SDN still being a fast developing

technology, the full deployment of SDN not only requires

a huge upgrade cost but also brings unexpected risks. The

hybrid SDN is a promising alternative option and is receiv-

ing quickly increasing attention from industry and academia.

Vissicchio et al. [43] first analyzed different models of hybrid

SDNs. The research of the hybrid SDN can be categorized into

two classes based on the application scenarios:

A. Layer 2 Hybrid SDN

Panopticon [44] proposed an optimization framework to

determine the partial SDN deployment and assumed that

each flow in the network traverses at least one SDN switch.

HybNET [45] designed a configuration mechanism to auto-

matically translate network configurations between legacy

networks and SDN networks. Telekinesis [46] manipulated

forwarding entries in the legacy switches with a customized

flow control primitive and enabled the forwarding flow on a

user-defined path rather than the path in the spanning tree.

Magneto [4] improved the work in [46] by providing more

fine-grained flow controls and quick and stable user-defined

path establishment.

B. Layer 3 Hybrid SDN

1) Switch Upgrade: Poularakis et al. [14] and Jia et al. [15]

proposed to incrementally upgrade SDN to maximize the

amount of programmable traffic under the given upgrade

budget constraint. Xu et al. [47] compared the performance

of hybrid SDNs by either replacing legacy devices with SDN

devices or adding new SDN devices. Caria et al. [48] exploited

the property of the network topologies and considered the

centrality in the network to update switches in a hybrid SDN.
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Fig. 8. Ratio of the number of upgraded switches to the number of deployed controllers. The higher, the better.

2) Traffic Engineering: Agarwal et al. [7] first formulated

an optimization problem for achieving traffic engineering in

SDN with the partial deployment of SDN devices. Fibbing [9]

introduced a centralized control over distributed IP rout-

ing by injecting crafted routing messages via OSPF and

enhanced the flexibility, diversity, and reliability of L3 routing.

Chu et al. [10] designed an approach to fast recover from

single link failure while maintaining load-balancing perfor-

mance for the post-recovery network. Wang et al. [11] and

Jia et al. [12] explored power saving in Layer 3 hybrid SDN.

Guo et al. [49] proposed to adjust the weights of links and

flow split ratio at the SDN nodes to achieve load balancing in a

given hybrid SDN. Hong et al. [8] proposed to satisfy a variety

of traffic engineering goals in the hybrid SDN. However, all

the above works did not introduce the real deployment of the

SDN control plane and did not consider the impact of the

control plane deployment on the hybrid SDN.

C. Multi-Controller Data Plane

1) Controller Deployment: Controller deployment is an

important issue in multi-controller research. In WANs,

the propagation latency is the critical part of the total

latency [25], [26], and some works aim to minimize the prop-

agation latency among controllers and switches [50], [51].

In data center networks, Wang et al. [52] proposed to

dynamically map switches to controllers to mitigate the load

imbalance among controllers and reduce the response time.

Wang et al. [53] considered the maintenance cost of the con-

troller cluster and assigned controllers to minimize the total

cost of controller response time and maintenance on the cluster

of controllers.

2) Resiliency: Resiliency is a critical concern for design-

ing the multi-controller data plane. Li et al. [54] presented

to manage each SDN device with multiple controllers at

the cloud to resist Byzantine attacks on controllers and the

communication links between controllers and SDN switches.

Hu et al. [55], [56] designed a fault-tolerant multi-controller

control plane that mitigates the performance degradation of

the controller chain failure caused by unreasonable slave con-

troller assignment. MORPH [57] is a multi-controller frame-

work, which is tolerant to unavailability failures of SDN

controllers and Byzantine failures caused by malicious attacks

by efficiently distinguishing and localizing faulty controller

instances and appropriately reconfiguring the control plane.

In the future, we will consider this factor to extend the work

in this paper.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we considered the impact of the control plane

on the hybrid SDN and proposed to deploy the multi-controller

control plane during upgrading a legacy network to a hybrid

SDN. We formulated an optimization problem that jointly

maximizes the number of flows from SDN switches and

minimizes the propagation delay of flow requests between the

SDN’s control plane and data plane under the given upgrade

budget constraint. By carefully analyzing the problem’s struc-

ture, we proposed efficient solutions to solve the problem.

The simulation results based on the real network topologies

show the effectiveness and efficiency of our solutions. In the

future, we will consider other practical factors in our problem

formulation, such as the variation of the traffic pattern, the

queuing delay in controllers, and multiple network upgrades.
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