1012

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Joint Switch Upgrade and Controller Deployment
in Hybrid Software-Defined Networks

Zehua Guo™, Weikun Chen, Ya-Feng Liu

, Senior Member, IEEE, Yang Xu, Member, IEEE,

and Zhi-Li Zhang, Fellow, IEEE

Abstract—To improve traffic management ability, Internet
Service Providers (ISPs) are gradually upgrading legacy network
devices to programmable devices that support Software-Defined
Networking (SDN). The coexistence of legacy and SDN devices
gives rise to a hybrid SDN. Existing hybrid SDNs do not
consider the potential performance issues introduced by a cen-
tralized SDN controller: flow requests processed by a highly
loaded controller may experience long-tail processing delay;
inappropriate multi-controller deployment could increase the
propagation delay of flow requests. In this paper, we propose
to jointly consider the deployment of SDN switches and their
controllers for hybrid SDNs. We formulate the joint problem as
an optimization problem that maximizes the number of flows that
can be controlled and managed by the SDN and minimizes the
propagation delay of flow requests between SDN controllers and
switches under a given upgrade budget constraint. We show this
problem is NP-hard. To efficiently solve the problem, we propose
some techniques (e.g., strengthening the constraints and adding
additional valid inequalities) to accelerate the global optimization
solver for solving the problem for small networks and an
efficient heuristic algorithm for solving it for large networks.
The simulation results from real network topologies illustrate
the effectiveness of the proposed techniques and show that our
proposed heuristic algorithm uses a small number of controllers
to manage a high amount of flows with good performance.

Index Terms— Complexity analysis, controller deployment,
heuristic algorithm, hybrid software-defined networking (SDN),
switch upgrade, upgrade budget.

I. INTRODUCTION
OFTWARE-DEFINED Networking (SDN) has been

widely studied and gradually adapted for campus

Manuscript received October 10, 2018; revised January 30, 2019 and March
10, 2019; accepted March 13, 2019. Date of publication March 21, 2019;
date of current version April 16, 2019. The work of Z. Guo and Z.-L. Zhang
was supported by NSF under Grants CNS-1411636, CNS-1618339, CNS-
1617729, CNS-1814322, and CNS-1836772. The work of W. Chen and
Y.-F. Liu was supported in part by the National Natural Science Foundation of
China (NSFC) under Grants 11671419, 11571221, 11688101, and 11631013,
and in part by the Beijing Natural Science Foundation under Grant L172020.
(Corresponding author: Ya-Feng Liu.)

Z. Guo is with the School of Automation, Beijing Institute of Technology,
Beijing 100081, China, and also with the Department of Computer Science
and Engineering, University of Minnesota Twin Cities, Minneapolis, MN
55455 USA (e-mail: guolizihao@hotmail.com).

W. Chen and Y.-F. Liu are with the State Key Laboratory of Scientific
and Engineering Computing, Institute of Computational Mathematics and
Scientific/Engineering Computing, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
cwk@lsec.cc.ac.cn; yafliu@lsec.cc.ac.cn).

Y. Xu is with the School of Computer Science, Fudan University, Shanghai
200433, China (e-mail: xuy @fudan.edu.cn).

Z.-L. Zhang is with the Department of Computer Science and Engineering,
University of Minnesota Twin Cities, Minneapolis, MN 55455 USA (e-mail:
zhzhang @cs.umn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2906743

networks [1], data center networks [2], Wide Area Networks
(WAN5s) [3], enterprise networks [4], and Internet exchange
points [5]. Due to the cost and operational considerations,
SDN technology is usually deployed in an incremental fashion.
In particular, at each time of network upgrade, only a set of
selected legacy network devices (i.e., layer-3 routers and layer-
2 switches) are upgraded to SDN switches. AT&T converted
34% of its network to SDN by the end of 2016 and virtualized
55% of its network to software by the end 2017. Its final goal
is to reach 75% softwarization of its network by 2020 [6].
Therefore, the legacy network devices and SDN switches may
coexist for a long time. In this paper, we will refer to such a
network as a hybrid SDN.

A WAN usually consists of many network devices at
geo-distributed locations. A straightforward method to upgrade
legacy network devices in WANs to SDN switches is based
on the locations of network devices, for example, upgrade
a part of WAN with network devices in proximity. The
partial upgraded network can enjoy the benefit of SDN,
but the performance improvement of the entire network is
limited. An efficient solution for network providers is to
spread the benefit of upgraded SDNs in the entire network.
Based on this consideration, existing studies proposed to
upgrade legacy network devices in WANs to SDN switches
for different reasons or with different motivations, such as
traffic engineering [7], [8], flexible routing [9], link failure
recovery [10], power saving [11], [12], and safe update [13].
Essentially, the benefit of SDN is to flexibly control flows.
Once a flow traverses an SDN switch, its forwarding path can
be flexibly controlled. We call such traffic the programmable
traffic. The selection of switches to be upgraded to SDN
switches has a great impact on the network’s programmable
performance. In a WAN, switches tend to have quite different
numbers of flows. If we randomly select some of them to
upgrade, we may not be able to achieve our objective to
maximize the number of programmable flows. Some studies
aim to maximize the amount of programmable traffic under
the constraint of a given upgrade budget [14], [15]. However,
the impact of SDN controller on the network upgrade is not
taken into consideration in these works.

The control plane of SDN has evolved from one single
controller to multiple controllers to circumvent the limited
computational resource of a controller server and avoid single
point of failure. For a large wide-area SDN, multiple distrib-
uted controllers are physically deployed at different locations
to achieve the function of a logically centralized control plane,
and the controllers synchronize with each other to guarantee

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7314-410X
https://orcid.org/0000-0002-9684-9150

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

the consistency of the entire network [16], [17]. To avoid
the single-point-of-failure problem, backup controllers maybe
deployed [18], [19]. If one controller instance crashes, other
active instances will still work without service interruption.
Popular SDN controllers (e.g., ONOS and OpenDayLight)
usually use three controllers to provide resilient service at
one location, and the three controllers communicate with each
other (e.g., using Raft [20]) to guarantee the network state
consistency [21], [22].

Deploying multiple controllers in a hybrid SDN should
take the following two factors into account. First, controllers
should be able to process flow requests from the upgraded
SDN switches in a timely manner. If a controller is over-
loaded, the requests handled by it may suffer from long-tail
latency [23], which might significantly degrade the network
performance [24]. Second, the deployment locations of con-
trollers affect the propagation delay of flow requests and
network state pulling because the propagation delay in WANs
is usually a significant part of the total delay [25], [26].
Existing works [7], [8], [14], [15] for the network upgrade did
not consider the above factors, which may lead to some unde-
sirable performance degradations. We detail the two factors in
Section II.

In this paper, we consider the above two factors and
propose two objectives: (1) maximizing the number of flows
managed by SDN and (2) minimizing the propagation delay
of flow requests from SDN switches with an upgrade budget
constraint. The first objective aims to control as many flows
as possible by upgrading legacy devices to SDN switches,
while the second objective aims to reduce the propagation
delay between the SDN controllers and switches by effectively
deploying a few controllers near SDN switches. Our problem
is to find the locations of upgraded switches, the locations of
deployed controllers, and the mappings between the controllers
and the upgraded switches (i.e., which controllers control
which upgraded SDN switches) to maximize the number
of controlled programmable flows and at the same time
minimize the propagation delay between the controllers and
upgraded switches under individual controllers’ processing
ability and upgrade budget constraints. We first formulate a
two-stage optimization problem that optimizes one objective
at each stage and then transform the two-stage problem
into a one-stage problem to simplify the solution procedure.
We prove that with a careful choice of the parameter the
optimal solution of the one-stage formulation is also the
optimal solution of the two-stage formulation.

It is worth noting that our work is different from the
controller deployment in pure SDNs. In pure SDNs, all
switches are SDN switches, and the controllers’ deployment
only needs to consider two aspects: (1) the controllers’ location
and number and (2) mapping between SDN switches and
controllers. In hybrid SDNs, our problem needs to consider
one more aspect: the location and number of the upgraded
SDN switches. In our problem, the three aspects are related
to each other, and our problem in hybrid SDNs is more
complicated than the controllers’ deployment in pure SDNs.

To efficiently solve the problem, we analyze the problem’s
structure and propose several solutions. For the problem in

1013

small networks, we accelerate the global optimization solver
by proposing a new problem formulation. For the problem
in large networks, to further improve the computational effi-
ciency, we propose a heuristic algorithm named MapFirst,
which first orders the (relaxed) mapping variables between
controllers and upgraded switches according to their impor-
tance/weights (obtained by solving a linear program relax-
ation) and then sequentially determines the (binary) mapping
variables based on their impacts on the objective function.

We conduct simulations using real network topologies from
Topology Zoo [27]. The simulation results on multiple topolo-
gies verify the effectiveness and efficiency of the new prob-
lem formulation. We further compare MapFirst with optimal
solutions and other heuristic algorithms, and the results show
(1) MapFirst outperforms other heuristic algorithms by using
a small number of controllers to facilitate a high amount of
flows from upgraded SDN switches, and (2) compared to the
optimal solution, MapFirst is able to achieve a comparable
performance but enjoys a significantly low complexity.

The contributions of the paper are summarized as follows:

1) Novel Problem Formulation: We identify the impact of
the control plane on the network upgrade and formulate
an optimization problem to guarantee the performance
of the hybrid SDN by jointly upgrading switches and
deploying controllers.

2) Efficient Solutions: We propose efficient exact and
heuristic solutions to solve the problem for both small
and large networks. Our simulation results (on real
network topologies) demonstrate that our exact solution
significantly accelerates the optimization solver, and
our proposed MapFirst is able to return a high-quality
solution with a significant less CPU time.

3) Theoretical Analysis: We provide some analysis on the
problem and the solutions. For the problem, we pro-
vide a rigorous NP-hardness proof and shed a useful
insight that the problem (probably) does not admit
constant-ratio approximation algorithms to only approx-
imate the total delay in our problem. In addition, we also
identify a special case of the problem which is strongly
polynomial time solvable. For the proposed MapFirst,
we analyze its worst-case complexity and prove that it
is able to return the global solution of the problem if
each controller can control at most one SDN switch.

The rest of this paper is organized as follows: Section II
illustrates the motivation of the paper with some exam-
ples. Section III formulates the Joint Switch Upgrade and
Controller Deployment (JSUCD) problem, and Section IV
analyzes the parameter selection and the complexity of the
problem. Section V introduces exact and heuristic solutions
for the JSUCD problem. Section VI presents the simulation
results and analysis. Section VII introduces the related works.
Section VIII concludes the paper and presents our future work.

II. AN EXAMPLE AND MOTIVATION

In this section, we use a motivation example in Fig. 1 to
show how the network upgrade affects the performance of the
hybrid SDN.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

=) 83

(c) With blue switch selec-

(d) With blue switch selec-
tion, deploying one controller tion, deploying three con-
cannot satisfy the flow re- trollers provides much more

controller ability than needed

s2
5 e
«

st 5 S S3 e Mapping between
% N switch and controller
.

Conventional device

Physical connection

SDN switch

SDN controller

green switch selection that has
a higher propagation delay of

flow requests than the one

1014
s2
st %) s3
s6 %) s4
s5
(a) Network composition (b) Three switch selections
(e.g., red, green, and blue) to
maximize the benefit of flexi-
ble flow control from SDN quests from SDN switches
s2 s2
s1 % 7 s3 s1 % 7 s3
s6 E3 %) s4 s6 E3 %) s4 s6] .
c6 E ® ‘K‘E c4 c6 E.."' B3 E c4
s5 s5 s5
(e) The impact of the con- (f) A feasible solution of blue (g) A feasible solution of
troller processing ability on switch selection that maxi-
the switch-controller mapping mizes the number of pro-
of blue switch selection grammable flows and mini-
mizes the propagation delay with the solution in 1(f)
of flow requests with a few
controllers
Fig. 1. A motivation example.

A. Example Background

Fig. 1(a) shows the network composition: the network
has 6 legacy switches s; to sg deployed at six different loca-
tions with uneven interconnection. We assume that the number
of flows in each switch is proportional to the number of its
links, and the total number of flows on a link is normalized
as 1. The number of normalized flows at the six switches are:
fsl = 27f82 = 37f83 = 27fs4 = 57fs5 = 37fsﬁ = 3. The
normalized processing ability of each controller is p. = 6. The
upgrade budget includes switch upgrade cost and controller
deployment cost. In this example, the upgrade budget allows
upgrading at most four legacy devices to SDN switches, and
the cost of an SDN switch is three times of a controller.
In other words, if we upgrade one less switch, we can
deploy three more controllers at three locations.! We assume
that one SDN switch can only be controlled by exactly one
controller, and one controller can potentially control multiple

'At a location, a controller is physically implemented by a controller
instance cluster to prevent single-node-of-failure [18], [19]. We can either
use two instances or three instances for a cluster. However, the odd number
accelerates the primary controller selection in the case of the controller failure,
and the production networks usually use three instances [21], [22]. In the rest
of the paper, we use a controller to represent a controller cluster at a location
since a cluster usually uses one controller to process requests, and the other
two are just backup and thus do not process any requests.

SDN switches. Our problem is to find a feasible solution that
contains a set of upgraded switches, a set of controllers, and
the mappings between the upgraded switches and controllers
to maximize the number of controlled programmable flows and
at the same time minimize the delay between the controllers
and upgraded switches under the constraints of the upgrade
budget and individual controller’s processing ability.

B. Impact of the Network Upgrade on the Hybrid SDN

1) Maximizing the Benefit of SDN by Selecting Upgraded
SDN Switches: 1If a flow traverses one SDN switch, it is a
programmable flow and we can enjoy the benefit of SDN
by flexibly controlling the flow’s forwarding path. Thus, the
benefit of SDN depends on the number of programmable
flows. We use A to denote the total number of programmable
flows from the upgraded SDN switches. Our first goal is
to maximize A, with a given switch upgrade budget. There
are 20 switch combinations for selecting three switches from
six switches to upgrade. Fig. 1(b) shows three switch selection
combinations that control the largest number of flows A; =
3+345 = 11: red = {s2,54,56}, blue = {s4,55,56},
green = {sa, 84, 55 }.

2) Guaranteeing the Processing Performance of Flow
Requests by Considering the Processing Ability of Controllers:

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

We use blue switch selection in the following explanation. The
red and green switch selections follow the similar explana-
tion. We use A. to denote the total processing ability of the
deployed controllers. Existing works show when a controller
processes more requests than its normal processing load, the
processing delay of the requests could be five times longer
than the one under the normal load [23], [24]. To maintain
the processing performance of flow requests, after a network
upgrade, for the entire network, it is necessary to require
As < A, and for controllers, each one should not process
the number of flow requests larger than its normal processing
ability. In Fig. 1(c), deploying one controller can either control
the flows at switch s, or the flows at the other two switches,
and thus deploying one controller is not enough. In Fig. 1(d),
deploying one controller for each switch can satisfy the control
requirement, but the controllers’ processing ability of such a
deployment is much larger than the number of flows from SDN
switches. The extra number of controllers could also bring
extra overhead. If we deploy many controllers, the number
of switches controlled by a controller would be small, and a
controller’s control ability on the network would be reduced.
Thus, after a network upgrade, we prefer to deploy a few
controllers to satisfy the demand of SDN switches. In this
example, we only need two controllers since A, < A, =
Pe*2 =12, fs, < pc, and the load of the other two switches
in red, green, or blue switch selection is less than p.. Thus,
a good solution is to upgrade three switches with the number
of flows 5, 3, and 3 and deploy only two controllers.

3) Maintaining the Good Propagation Performance of Flow
Requests by Considering the Locations of SDN Switches and
Controllers: An SDN switch and a controller interact with
each other in two ways: one SDN switch can send a flow
request to the controller when it does not know how to
process the flow, and a controller can dynamically change the
paths of flows on its controlled SDN switches to improve the
network performance (e.g., when identifying a congestion).
Previous works [25], [26] show that the propagation latency
in WANSs is the dominant factor among all latencies because
the propagation latency bounds the control reactions of a
controller that can be executed at a reasonable speed. A long
propagation latency could limit availability (e.g., link failure
recovery) and convergence time (e.g., network state pulling,
routing convergence). Thus, for WANs, an important factor for
controller placement is to minimize the total propagation delay
among SDN switches and controllers. In WANS, the propaga-
tion delay of a request is proportional to the distance between
a sender and a receiver. To maintain the good propagation
performance of flow requests between the SDN’s control plane
and data plane, we should minimize the propagation delay of
flow requests between SDN switches and controllers, which
motivates us to deploy controllers near the upgraded SDN
switches.

In the example of blue switch selection, the number of
flows in switch s4 is the largest one, and it is very close
to the control capacity of a controller. Hence, we select
switch s; to upgrade and deploy controller ¢4 at location
4 for the switch. The rest two switches are switches s;

1015

and sg, which can be controlled by a controller deployed
at location 5 or 6. We use M, ., to denote the mapping
between switch s; and controller ¢;. Since the delay between
a switch and a controller is minimized when the controller is
deployed at the same place of the switch, we have two can-
didate solutions: blue; = {s4, 5, S, €4, C5, M5, ¢, }, blueg =
{54, 55,56, Ca,C6, Ms,,c, }-

4) Impact of Individual Controller’s Processing Ability
on Controller-Switch Mappings: After selecting upgraded
switches and deployed controllers, we should also map each
upgraded switch to a controller for control. Each SDN switch
can be managed by only one controller, and one controller
could possibly manage multiple switches. Fig. 1(e) and 1(f)
show two switch-controller mappings of the solution blues.
In the two subfigures, switch s4 is mapped to controller c4,
and switch sg is mapped to controller c¢g. However, switch
s5 has different mappings. In Fig. 1(e), switch s5 is mapped
to controller ¢4, and the controller’s load reaches 3 +5 = 8§,
which exceeds its maximum processing ability 6 while the
load of controller cg is only 3. Thus, the mapping between
switch s; and controller ¢4 is not allowed given that s4 is
already mapped to c4. In Fig. 1(f), switch s5’s mapping is
feasible since its mapping to cg keeps cg’s load at 3 4+ 3 = 6,
which does not exceed its maximum processing ability. Thus,
switch-controller mappings without considering the controller
processing ability constraint could also lead to an infeasible
solution.

Fig. 1(g) shows a solution of green switch selection. We use
Dy, s, to denote the distance (e.g., the length of the direct
link or the shortest path) between switches s; and s;. Because
of Dg, s = 2% Dy, s, we have Dy, o, = 2% Dy, s.. One
can check that optimal solutions of blue; and blues switch
selections outperform the optimal solution of green switch
selection in terms of the total propagation delay.

C. Design Criteria of the Network Upgrade

In the above network upgrade, we consider the following
factors to upgrade a legacy network to the hybrid SDN:

1) maximizing the number of programmable flows from the
upgraded SDN switches,

2) guaranteeing the processing performance of flow
requests at controllers, and

3) minimizing the total propagation delay of flow requests
between controllers and SDN switches.

The first factor depends on the upgraded switches. The
second factor relates to the processing ability of individual
controllers. The third factor must take the locations and
mappings of controllers and SDN switches into consideration.
By considering all these factors, an optimal result would
come from a very complicated procedure since the factors
couple with each other. For example, to get a better result,
mapping selection in Section II-B4 could be determined before
or simultaneously when selecting switches to upgrade and
controllers to deploy. In the next section, we will formulate
an optimization problem that takes into account all the above
factors for an efficient network upgrade.

1016

IIT. PROBLEM FORMULATION

In this section, we first introduce constraints and objective
functions and then formulate our optimization problem.

A. System Description

In a network upgrade from a legacy network to a hybrid
SDN, we upgrade some of its switches to SDN switches and
deploy some controllers to manage all SDN switches. The
network consists of [NV switches deployed at N locations. The
number of flows in switch s; is R; > 0 (1 < i < N).
We use homogeneous controllers, and the processing ability
of controller ¢j is A >0 (1 < j < N).

We use z; = 1 to denote that switch s; is upgraded to
the SDN switch; otherwise x; = 0. Similarly, we use y; =
1 to denote that controller ¢; is deployed at location j and
otherwise y; = 0; we use z;; = 1 to denote that an SDN
switch s; is mapped to controller ¢; and otherwise z;; = 0.
The default relationships between x;, 3, and z;; are shown
below:

Equations (1) and (2) imply that a feasible switch-controller

mapping must satisfy two conditions: a switch is upgraded to
an SDN switch, and its mapping controller is deployed.

B. Constraints

1) Controller-Switch Mapping Constraint: 1If switch s; is
upgraded, it must be controlled by only one controller; if
switch s; is not upgraded, it is not controlled by any controller.
Thus, we have

N
zi =Y zj, Vi 3)
j=1

If controller ¢; is not deployed, it does not control any
switches; if controller c; is deployed, it must control at least
one SDN switch. That is:

N
yi <3z, V.)
=1

2) Individual Controller’s Processing Ability Constraints:
An SDN switch will send a flow request to a controller when
it does not know how to process a new flow. The number
of flow requests from an SDN switch equals the number
of flows traversing the switch, and it should not exceed the
controller’s processing ability. This can be mathematically
written as

N
Z(Ri * ik i) <A, Vg,
i=1
Since both x; and z;; are binary variables, we substitute (1)
into the above nonlinear constraints and reformulate them as
the following linear constraints:
N
Z(Ri *2i5) <A, Vg (&)

i=1

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

3) Upgrade Budget Constraint: The upgrade budget is that
the total cost of upgraded switches and deployed controllers is
at most M > 0. The number of upgraded switches is Zi\il Zi,
and the number of deployed controllers is Z;vzl ;. Suppose
that the cost of an SDN switch is v (v > 1) times of the cost
of a controller. Thus, we have

N N
vEY wi+ Y y; <M. (6)
i=1 j=1

C. Objective Functions

There are two objectives in our problem. The first one is
to maximize the total number of flows by updating legacy
switches to SDN switches:

N
obji = Y (R * ;). (7
i=1
The second one is to minimize the total propagation delay
of flow requests between SDN switches and controllers by
deploying the controllers and mapping the SDN switches to the
controllers. We use D;; (D;; > 0) to denote the propagation
delay between SDN switch s; and controller c¢;, which is
proportional to their distance. Thus, we formulate the total
propagation delay as follows:

N N
objs = Z Z(Dij % 2ij). (®)
i=1 j=1

One main reason for upgrading traditional switches to SDN
switches is to enjoy the benefit of programmability to flexibly
select the route path. Many existing works adopt the first
objective as their objectives [14], [15]. The first objective
decides the number and location of SDN switches in a
network. The second objective is typically used to optimize
the network performance for a network with given SDN
switches [25], [26]. In a hybrid SDN, the first objective is

usually (much) more important than the second objective.

D. Problem Formulation

The goal of our problem is to maximize the number of
flows from the SDN switches and minimize the total prop-
agation delay of flow requests between the SDN switches
and controllers by smartly upgrading legacy switches to
SDN switches, deploying controllers, and mapping the SDN
switches to the controllers. In practice, maximizing the
number of programmable flows in our objectives has the
first priority, and minimizing the total delay between the
SDN switches and controllers has the second priority. Hence,
we model the Joint Switch Upgrade and Controller Deploy-
ment (JSUCD) problem as a two-stage problem. In the first
stage, we maximize the total number of programmable flows
without considering the delay objective. This can be done by
solving the following problem:

N
F* = ;n;u; ;RZ%
5.t (2)(3)(4)(5)(6),
xi, Yj, zij € {0,1}, Vi, Vj. (P1)

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

With the maximum number of programmable flows obtained
from problem (P1), we minimize the total delay by solving
the following problem:

min D;iz;
oyt EE ij%ig

11]1

= Z Rizi, (2)(3)(4)(5)(6),

Liy Y5y Zij € {Ovl}a v Z'a V]

s.t. F*

(P2)

The above two-stage problem formulation needs to solve
two problems. An alternative formulation is to combine the
two objectives into one objective as follows:

;n;ué ZR T; —)\ZZD”z”
i=1 i=1 j=1
s.t. (2)(3)(4)(5)(6),

Tiy Yj, Zij S {07 1}) v Z.a v j7 (P)

where A > 0 is a constant number that gives different weights
of the two objective terms. In Section IV, we prove that
by choosing the parameter A\ appropriately problem (P) is
equivalent to the two-stage problem.

IV. PROBLEM ANALYSIS

In this section, we prove that under a certain condition,
problem (P) is equivalent to the two-stage problem, and
analyze the computational complexity of problems (P1),(P2),
and (P).

A. Choice of the Parameter \ in Problem (P)

Notice that if D;; = 0 for all ¢ and j, problem (P) is
equivalent to problem (P2) for any \. In this case, the objective
function in problem (P2) is zero and hence problem (P) is
equivalent to the two-stage problem. In the following, we show
that even though there are ig and jo such that D; ;, # 0,
by appropriately choosing the parameter A, this equivalence
still holds.

Proposition 1: Suppose all R; (1 < i < N) are integers
and there are ig and jo such that D; ;, # 0. Let d be the great-
est common divisor of Ry,..., Ry, i.e., d = max{d | % €
Z,i=1,...,N}. If

(P P | ©)
2 iz maxi<j<n {Dij}

then problem (P) is equivalent to the two-stage problem.

Proof: Notice that SR 1max1d<J<N{D”} > 0 since D;; > 0
for all 4 and j and there exist 7y and jo such Dy, > 0.
In the following, we shall use the contradiction argument to
show that the solution of problem (P) is also the solution of
problems (P1) and (P2).

Let (z*,y*,2*) be an optimal solution of problem (P).
Assume that (z*, y*, z*) is not an optimal solution of problem
(P1). Then there exists an optimal solution (Z, g, Z) of problem

1017

(P1) with Zfil Riz; > Ef\il R;z}. Because R;, Z;, and z}
are all integers, by the choice of d, we have

N N
1=1 =1

Since z; = Z;VZI Zij < 1, it follows E;VZI Dijiij
maxi<j<n{Dij}Zi;, which, together with the choice of
in (9), further implies that

Z Z D’L]’Z’L] § A Z maX1<j<N{Dzj}zz]

=1 j=1

(10)

<
A

N
<A ZmaxlngN{Dij} <d.
i=1
Combining (10) with (11), we obtain

ZR:UZ—)\ZZDM” >ZR$ +d—d

i= 1] 1
N

:ZRix;zZ i —AZZD” 25,

=1 =1 =1 j=1

where the last inequality follows from D;; > 0 for all 7 and j
and A > 0. However, this contradicts the fact that (z*, y*, z*)
is an optimal solution of problem (P). Hence (z*,y*,z*) is
also optimal for problem (P1). Let F'* be the optimal value of
problem (P1). Since adding the constraint F'* = 2211 R;x;
to problem (P) does not change its optimal solution set, then it
follows that the optimal solution of problem (P) is also optimal
for problem (P2). Similarly, one can show that the optimal
solution of problem (P2) is also optimal for problem (P). This
completes our proof. 0

Proposition 1 shows that one-stage problem (P) with A
satisfying the condition in (9) is equivalent to the two-stage
problem, and hence we can solve problem (P) to obtain the
desired result instead of solving two problems (P1) and (P2).

Y

B. Complexity Analysis

In this subsection, we analyze the computational complexity
of problems (P1), (P2), and (P).

Proposition 2: Problems (P1), (P2), and (P) are all strongly
NP-hard.

Proof: We only prove the strong NP-hardness of problem
(P1) since the proof of the other two problems is similar.
This can be done by establishing a polynomial-time reduc-
tion from the 3-partition problem, which is strongly NP-
complete [28], [29]. Next, we first introduce the 3-partition
problem.

Given a finite set S of 3m elements, a bound B e Zy,
and a size a; € Z4 for the i-th element with £ < a; < g
and Ez 1a; = mB, can S be partitioned into m dlS]Olnt sets
Si,...,S,, such that Ezesj =B, 1<j<m?

Given any instance of the 3—partition problem, we construct
an instance of problem (P1) as follows:

set M =4m, A = B, v =1, and N to be any integer
satisfying N > 3m;

1018

set R, = a; for i € {1,...,
ie{3m+1,...,N}.
By construction, the objective function in problem (P1)
reduces to E/ 1 a;wi. Itis easy to see that, for this constructed
instance of problem (P1), there exists an optimal solution
(x,y,2) suchthatx; = 0 fori € {3m+1,...,N}and z;; =0
forie {3m+1,...,N},je{l,...,N}.
Hence the constructed instance of problem (P1) can be
written as

3m
max E Q;T;
T,Y,2 <

s.t. (2)(3)(4),

3m
> aizij <B, 1<j <N,

i=1

3m N

D_mit D yi < dm,
i=1 j=1

Liy Y5y Zij € {07 1};

In the following, we will show that the answer to the given
instance of the 3-partition problem is true if and only if the
optimal value of problem (P1’) is mB.

Suppose that S can be partitioned into m disjoint sets
S1,...,8, such that Ziesj a; = B forall j € {1,...,m}.
We construct a point (Z, 7, Z) by setting

zy=1forie{l,...,3m};

g =1forje{l,...,m}and g; =0 for j € {m +
LN}

Zij =1 fOI‘iGSj,j€ {1,...,

others.

3m} and R; = 0 for

1<i<3m, 1<j<N. (PI")

m} and Z;; = 0 for the

Clearly, (z,9,z) is a fea51ble solution of g)roblem (P1")
with Zz 1a;Z; = mB. As Zz LT < Zz 1a; = mB,
we know the optimal value of problem (P1’) is mB.

Now suppose that the optimal value of problem (Pl)is mB
and the corresponding solution is (Z, 7, Z) Then El 14T =
mB. This, together with the fact that E mB, implies
Z?Wl T = 3m.

Then it must follow

1‘lz

12)

N
> U=
j=1

. 3m N -
Otljlverwme, by 0T+ Y5
>_j—1Yj < m. However, this is impossible since

< 4m, we know

3m 3m N N 3m
IR D SIS ST LRI
i=1 =1 j=1 j=1i=1
where the first equality follows from Z; = E;V 1 Zij in

problem (P1’) and the first inequality follows from z;; < ¥;
and Z 1 a;Z;; < B in problem (P1’). By (12), without loss

of generality, we can assume that §; = 1 for j € {1,...,m}
and §; =0 for j € {m+1,...,N}. We further show

3m

> azj =B, 1<j<m. (13)

i=1

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Otherwise, we have Zf":l a;%;; < B for some j. From yj; = 0
forj e {m+1,...,N} and z;; < g;, we know z;; = 0 for
1 €{l,...,N}, j € {m—+1,...,N}. Using this, we have
— N - ,

Z?;nl a;Tq = Zj:1 Zfﬂ AiZi5 = 271:1 Z?m1 a;zij < mB,
which contradicts the fact that the optimal value of problem
(P1’) is mB. Now, let S; = {i|z;; = 1,1 < i < 3m} for
j€{l,...,m}. Then it follows from (13) that

3m
E a; = E aiiij:B.
=1

€S,
From z; = Z;\f_l Zij, we have S5, NS;, = () for any ji, jo €
{1,.. m} with j1 # jo. Furthermore combining (13) with
B <a; < £, it follows yom) Zij = 3, or equivalently |S;| =
3,1<j g m. This, together with the fact that S1,...,S,
are disjoint, indicates

S U USy ={1,...,3m}.

Hence the answer to the given instance of the 3-partition
problem is true.

Finally, the above transformation can be done in polynomial
time. Since the 3-partition problem is strongly NP-complete,
we conclude that problem (P1) is strongly NP-hard. U

Proposition 2 implies that, unless P=NP, there are no
polynomial time algorithms, which can solve problem (P) to
global optimality. Thus, we should develop efficient algorithms
for approximately solving the problem especially when the
dimension of the problem is large.

C. More Insight Into Intrinsic Difficulty of Problem (P)

In the above subsection, we basically show that the problem
of maximizing the total number of programmable flows is
NP-hard. In this subsection, we study another two special
cases of problem (P), i.e., the problem of minimizing the total
propagation delay between controllers and SDN switches if all
switches can be upgraded to SDN switches and all flows can
be programmable, and show that they are still NP-hard. The
analysis of the second case shows that there probably does not
exist a constant-ratio approximation algorithm for problem (P).
These analysis results provide more insight into the intrinsic
difficulty of problem (P).

To simplify the following analysis, we replace constraint (5)
in problem (P) with the following constraint

N
Z(Ri *z) < Axy;, Vj.

i=1

(14)

Due to the binary nature of variables y and z and constraint (2),
this replacement does not change the solution of the problem.

1) Case 1: In this case, we assume: (i) the processing
capacity of the controller is large enough to control all
switches’ requests, and (ii) the upgrade budget is large enough
to upgrade all switches to SDN switches. Mathematically, the
above two assumptions can be written as (i) A > Efvzl R; and
(ii)) M —~N > 1. Under these two assumptions, we can reduce
problem (P) via the following three steps. First, combining
assumption (i) with constraint (2), we can see that constraint
(14) becomes redundant for problem (P), and thus we can

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

remove it. Second, the above assumptions (i) and (ii) can
guarantee x; = 1 for all ¢ € [1, N] in the optimal solution
of problem (P). Hence, constraint (3) changes into

N
S amp=1, Vi, (15)
j=1
and constraint (6) changes into
N
Yy <M —7N. (16)
j=1

Third, we can remove constraint (4) from problem (P).
We argue this as follows: Let us suppose the optimal solution
of problem (P) without constraint (4) is (z,7, z) with §; >
Zi\;l Z;; for some j € J C [1, N]. By setting g; = 0 for all
7 € J, we obtain a feasible solution for problem (P), which
yields the same objective value as that at (Z, 7, Z). Combining
the above three steps together, we can reduce problem (P) to
the problem of selecting appropriate controllers to control all
the SDN switches to minimize the total propagation delay as
follows:

N N
min E E Dijzij
¥4
Y i=1 j=1

s.t. (2)(15)(16),
Yj, Zij € {0, 1}, v i, V 7.

The above problem is called p-Median Problem and is NP-hard
[30]. Thus, problem (P) in this special case is also NP-hard.
2) Case 2: In the case, we assume: (i) all switches have
the same number of flows and (ii) the upgrade budget is
large enough to upgrade all switches to SDN switches and
to deploy controllers to control all upgraded switches. These
two assumptions can be written as (i) Ry = --- = Ry £ R
and (ii) (M — yN) L%J > N, where |-] is the floor operator.
Substituting assumption (i) into constraint (14), we obtain

gzij < {%Jij v .

It is not difficult to argue that assumptions (i) and (ii) guarantee
that z; = 1 for all ¢ € [1, N] in the optimal solution of (P).
Following steps 2 and 3 of case 1, we can reformulate problem
(P) in this special case as follows:

N N
min E E Dijzij
2
Y i=1 j=1

s.t. (2)(15)(16)(17),
yj, zi; € {0,1}, Vi, Vj.

a7)

The above problem is called Uniform Capacitated p-Median
Problem. 1t is a NP-hard problem, and existing studies do not
find a constant-ratio approximation algorithm for it [31]. Our
problem (P) is more general than the above problem. Based on
the above analysis, we can conclude that there probably does
not exist a good approximation algorithm for our problem (P).

1019

V. PROBLEM SOLUTION

In this section, we propose an exact solution for solving the
problem of small networks and an efficient heuristic algorithm
for solving the problem of large networks.

A. Exact Solution

Typically, we can use existing integer program solvers to
obtain problem (P)’s optimal solution. Here we use GUROBI
solver [32] for solving our problem. GUROBI uses a branch-
and-cut [33] framework and is recognized as one of the fastest
integer program solvers [34]. The branch-and-cut framework
usually uses Linear Programming (LP) relaxation to obtain
an upper bound. However, the LP relaxation is usually very
weak [35], and thus it is difficult for the solver to quickly
solve the integer programming problem. In our experiments,
we also observe the weakness of the LP relaxation of problem
(P). To accelerate the solution process, we propose a better
(re)formulation by strengthening some constraints and adding
some valid inequalities by exploiting problem (P)’s structure.

1) Strengthening Constraints: First, we strengthen con-
straint (5) as (14). Compared to constraint (5), in (14) we use
a tighter upper bound A * y;, which improves the objective
value of the LP relaxation of problem (P) and thus reduces
the solution time of the branch-and-cut algorithm in GUROBI.
The details can be found in [33].

2) Adding Valid Inequalities: Generating efficient cutting
planes is a key step in the branch-and-cut framework. In the
mixed integer problems, one novel technique is to aggregate
multiple constraints together to generate redundant but effi-
cient constraints for the problem. This is because, in the mixed
integer problems, some redundant constraints could be used
as base constraints to generate cuts and may accelerate the
solution process of the branch-and-cut framework [36]. Mod-
ern solvers can generate cuts automatically but usually do not
consider the problem’s structure. By exploiting the structure
of problem (P), below we add some aggregated constraints to
problem (P) to help the solver efficiently generate cuts.

Adding all the constraints in (14) and using the constraints
(3), we obtain

N

N
Z(Ri xx;) < Ax Zyj.

i=1 j=1

(18)

Combining (18) with (6), we obtain the following inequality

N
Z(Ri—i—'yA)*xigA*M.

i=1

19)

The inequalities (18) and (19) are redundant for the LP relax-
ation problem of (P), but they can be used as base constraints
to help the solver to find some knapsack cuts [37] and further
accelerate the solution process. The similar technique has
been used for the problem of single-source capacitated facility
location in [38].

1020

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

TABLE I
NOTATIONS
Notation | Meaning

N the number of switches
M the upgrade budget
A the processing capacity of a controller
i the index of a switch, i € [1, N]
7 the index of a controller, j € [1, N]
0% the cost ratio of an SDN switch to a controller
w the set of weights, W = {{w11, ..., Wijy ooy WIN }y vovy {Wity eoey Wijy eory WiN }y ooy {WNT, ooy WNGy ooy WNN }, 8,5 € [1, N}
R the set of the number of flows in each switch, R = {R;,i € [1, N|}
X the set of updated switches, X = {i € [1, N] | z; = 1}
y the set of deployed controllers, Y = {j € [1, N] | y; = 1}
Z the set of the mapping relationship between upgraded switches and controllers, Z = {(i,5) € [1, N] x [1, N] | z;; = 1}

Substituting (3) into the objective of problem (P), we have

N N N
Ob] = Z Rz Zij —)\ZZ Dijzl-j
7j=1

N

=1 j= i=1 j=1
N N

= Z Z(RZ -)\DZ])Z”
=1 j=1

Based on the above analysis, we reformulate our problem as
the final problem:

N N
max ZZwijzij
PYE Tl =
s.t. (2)3)(@)(6)(14)(18)(19),

Tiy Yj, Zij € {07]-}a Vi, V Jj, @)

where x;, y;, z;; are design variables and

Wiy = RL — /\qu (20)

We will illustrate the effectiveness and efficiency of the new
formulation with simulation results in Section VI-C.

B. Heuristic Algorithm

The new formulation helps the optimization solver to accel-
erate the solution process in small networks. However, it still
requires a very long time or sometimes is impossible for the
solver to find a feasible solution for the problem of large
networks. In this section, we propose a heuristic algorithm
for solving the problem to achieve the tradeoff between the
performance and the time complexity. The heuristic algorithm
is based on formulation (P’).

The intrinsic difficulty of our problem lies in the interrela-
tionship of the selection of switches to upgrade, the selection
of controllers to deploy, and the switch-controller mappings.
Due to the interrelationship complexity of the three variables,
we cannot change them at the same time. Based on our
previous analysis, the mapping variables are more crucial

(than switch update and controller deployment variables) since
one mapping variable potentially can determine the other two
variables. In the following part, we propose the MapFirst algo-
rithm that determines the variables in the order of mappings,
switches, and controllers.

The notations used in the algorithm are listed in Table I.
The idea of our proposed algorithm, MapFirst, is to first
select a switch-controller mapping in the descending order of
their importance/weights and then tests whether building the
mapping will satisfy the upgrade budget constraint: if yes, the
switch and the controller in the mapping is selected; otherwise,
a new mapping is tested. The procedure is terminated until
there is no budget to build any mapping. Details of MapFirst
are summarized in Algorithm 1. In line 1, at the beginning
of the algorithm, the sets X,), and Z are set to be empty
since no switches are upgraded, no controllers are deployed,
and there are no mappings between switches and controllers.
In line 2, we generate vector ZV°¢ = {z/°°,1 € [1, N * N]}.
We first relax the binary variables in problem (P’) to continu-
ous variables in [0,1], and get the LP relaxation solution Z* of
problem (P’). We then sort the solution Z* in the descending
order to get vector Z"““. The sorting operation enables us to
test the mapping variables based on their probabilities. Next,
we use our customized rounding technique to find the result
by sequentially testing each z7°¢ € ZY°“. In line 4, we get
2/'°“’s corresponding switch index ¢ and controller index jo.
Lines 5-7 guarantee that we do not test a switch if it is already
upgraded. In lines 8-18, we test the mapping between switch
54, and controller c;,. If the mapping satisfies the constraints
of problem (P’), we upgrade the switch and deploy the con-
troller at two specific conditions: (1) in lines 9-12, controller
cj, is already deployed, and we only upgrade switch s;, when
the remaining upgrade budget is y or more; (2) in lines 13-
16, controller c¢;, is not deployed, and we upgrade switch s;,
and deploy controller c;, when the remaining upgrade budget
is 7+ 1 or more. If either of the two conditions is satisfied,
we set the mapping between switch s;, and controller c;,.

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

s2 s2
2 o
s1 % =) s3 s1 %) s3
s6 %) s4 s6 %) s4
e E c4 KE c4
sb s5

1021

s2 s2

X X

s6 %] s4 s6

sl o5

“) s3 #) 83

(a) Test mapping M, ., and (b) Test mapping M, ., and (c) Test mapping My, ., and (d) Test mapping M ., and

select it. not select it.

Fig. 2.

Algorithm 1 MapFirst algorithm
Input: N, M, A, v, W, R;
Output: X,), Z;

1:)(:@,3):0,2:@;

2: Generate vector ZV°¢ = {z/°°,1 € [1, N * N|} by solving
the LP relaxation of problem (P’) and sorting the results
in the descending order;

for z/°c € 2V do

vec.

3:

4 find switch index ig and controller index jo of z¢¢;
5. if 19 € X then
6

7

8

continue;
end if
if ZU(io,j0), X Uip, and Y U j satisfy the constraints
in (P’) then
9: if jo € Y and |X| %~ +|Y|++ < M then
10: /I controller c;, is already deployed, just upgrade
switch s;,
11 // map switch s;, to controller c;,
12: X<—XUi0,Z<—ZU(i0,jo);
13: else if jo ¢ YV and |X|*~v+|V|+~v+1 < M then
14: /Il deploy controller c;, and upgrade switch s;,
15: // map switch s;, to controller c;,
16: y<—ij0,X<—XUiQ,ZHZU(iQ,jQ);
17: end if
18: end if
190 if M —~ < |X|*v+)| then
20: break;
21: end if
22: end for

23: return X,), Z;

In lines 19-21, if the remaining budget is less than ~, then
we cannot upgrade any switch, and the algorithm returns the
result and stops.

Fig. 2 shows an example of applying MapFirst to solve
the problem. The mappings are tested in the decreasing order
of the mappings’ weights. In the figure, the mapping M, .,
is first tested. Since the mapping satisfies the constraints in
problem (P’), controller ¢4, switch s4 and the mapping M, .,
are selected. Then, the mapping M ., is tested but is not
selected because the mapping does not satisfy the processing
capacity constraint. Similarly, mappings M, ., and M, ., are
tested one by one. If building one mapping does not violate the

select it.

select it.

An example of applying MapFirst to solve the problem. The weights of the mappings satisfy zs,,c, > Zsg,cq > Zsg,cq > Zsg,c5-

upgrade budget, the related switch, controller, and the mapping
itself are selected.

C. Worst-Case Complexity of MapFirst

As shown in Algorithm 1, MapFirst has two main steps:
step 1 solves the LP relaxation and gets the weights by sorting
the returned solution of the LP relaxation; step 2 generates a
binary solution with a customized rounding technique. An LP
can be solved in O(n® % L) arithmetic operations by the
interior-point methods, where n is the number of variables
and L is the length of the input data of the problem [39]. Our
problem has in total N?+2N variables, and the computational
complexity of solving our LP relaxation is O(N®x L). Sorting
the returned solution of the LP relaxation takes O(N?log N?)
operations, and the customized rounding procedure runs at
most N2 iterations. In summary, the dominant computational
cost of MapFirst is to solve one LP relaxation, and its
worst-case complexity is O(N® % L). In sharp contrast, the
branch-and-cut framework in the worst case needs to solve
an exponential number of LP relaxations. Therefore, the
worst-case complexity of MapFirst is significantly smaller than
that of the branch-and-cut framework.

D. A Polynomial Time Solvable Case

Our analysis in Sections IV-B and IV-C shows that prob-
lem (P) is NP-hard, and there probably does not exist
a constant-ratio approximation algorithm for it. Therefore,
our proposed MapFirst algorithm generally does not have a
(constant-ratio approximation) performance guarantee. In this
subsection, we consider a special case of problem (P), where
each controller can control at most one SDN switch (i.e.,
R; + R; > A for all ¢ # j), and show that MapFirst is
guaranteed to find the optimal solution of problem (P) in this
special case.

Proposition 3: If Ry + R; > A for all i # j, problem
(P) can be solved (to globally optimality) in O(N?), and
MapFirst is guaranteed to find the optimal solution of problem
(P).

Proof: Without loss of generality, we assume 0 < R; <
A for all i € [1,N]. Combining this assumption with the
assumption R; + R; > A for all ¢ # j, constraint (14) reduces

1022

to Zﬁil zi; < y;, which, together with (4), implies

N
vi =z, V. 1)
i=1
By substituting (5) and (21) into (6), we have
N N
M
2 < {—J 22
Sy [@

i=1 j=1

From (21), we can simply remove constraint (2) from problem
(P) and reformulate it as follows:

N N
max E E WijZij
z

i=1 j=1

N N
SUY 2 <1, V4 y 2 <1V
j=1 i=1

(22), z;; € {0,1}, Vi, Vj.

Due to R; > 0 for all i € [1, N], the definition of w;; in (20),
and the selection of X in (9), we know w;; > 0 for all 7, j €
[1, N]. Hence, inequality (22) can be rewritten as an equality,
and problem (23) is a k-cardinality assignment problem. It has
been shown in [40] that the LP relaxation of problem (23) is
tight, i.e., solving the linear relaxation of problem (23) with an
appropriate method (e.g., the simplex method) returns a binary
solution. Furthermore, using the primal algorithm presented
in [40], we can solve problem (23) with O(N?3) complexity.
The proof is completed. O

The above proposition shows that, if each controller can
control at most one SDN switch, after some preprocessing
steps, the LP relaxation in MapFirst is tight, and MapFirst
can return an optimal solution of problem (P).

(23)

VI. SIMULATION RESULTS
A. Simulation Setup

In our simulation, we choose some backbone topologies
from Topology Zoo [27] to evaluate the performance of our
proposed solution. In the topologies, each node has a latitude
and a longitude. Since the propagation delay of a flow request
is usually proportional to the distance from a switch to a
controller, we use the distance between two nodes to represent
the propagation delay between an SDN switch and a controller.
We use M_percent to denote the ratio of the given upgrade
budget to the cost of upgrading all switches in the network.
In our simulation, M _percent changes from 5% to 50%.
We follow the assumption in [14], [15] that the number of
programmable flows in an SDN switch is proportional to the
number of its links. In practice, we can analyze the traffic
history at each switch to get the real traffic statistic. We have
analyzed more than 50 topologies in Topology Zoo and find
that most nodes have two or three links. We set the normalized
processing ability of a controller A = 50, and thus one
controller is able to control at least ten SDN switches on
average. Note that our problem can take into consideration of
heterogeneous controllers by setting the processing abilities of
different controllers with different values. The recommended

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

system requirement of one OpenDayLight controller instance
is 8 Cores, 8G RAM and 64GB storage [41], and the resilient
three-controller deployment requires at least three physical
servers and costs about $2000. One typical SDN switch is
about $8000. Hence, we set the cost ratio between an SDN
switch and one controller v = 4.

B. Compared Algorithms

1) Optimal: the optimal solution of problem (P’) that maxi-
mizes the number of programmable flows and minimizes
the total propagation delay between upgraded SDN
switches and controllers. We solve the problem by using
GUROBI [32].

2) FlowOnly: the optimal solution of problem (P1) that
only maximizes the number of programmable flows.
Problem (P1) is also solved by using GUROBI [32].

3) MapFirst: we first use GUROBI [32] to solve the LP
relaxation of problem (P’), and then use a customized
rounding technique to sequentially determine the vari-
ables in the order of mappings, switches, and controllers.
The details can be found in Section V-B.

4) WeightFirst: this algorithm is similar to MapFirst, but
the key difference is that it greedily tests and picks the
switch-controller mapping in the descending order of
weights {w;;},4,7 € [1, N].

C. Effectiveness of Formulation (P’)

We test the effectiveness of new formulation (P’) under
different topologies from Topology Zoo [27]. We set a time
limit of 3600 seconds for the branch-and-cut algorithm in
GURORBI (i.e., we terminate the algorithm if it does not find
the solution within 3600 seconds) and set M _percent = 50%
for each topology. Table II summarizes the computational
results. We can see from the table that: (1) for the problem
instances Cogentco and Condensed_west_europe, GUROBI
can successfully solve the new formulation (P’) within the
given time limit but fail to solve the original formulation (P);
(2) for the problem instances Colt, GtsCe, and Condensed,
GUROBI can successfully solve both problem formulations
within the given time limit but solving formulation (P’) takes
significantly less time than solving formulation (P). These
simulation results clearly show the effectiveness of formulation
(P’), i.e., the newly added constraints (14), (18), and (19)
indeed work and significantly accelerate the solution process.

D. Performance of CPU Time

In the rest of this section, we focus on three topologies Att,
Cernet, and Cogentco from Topology Zoo [27]. More specifi-
cally, Att is a small topology with 25 nodes and 57 links, Cer-
net is a medium-size topology with 41 nodes and 59 links, and
Cogentco is a large topology with 197 nodes and 245 links.
All of our simulations below are performed on these three
topologies.

We use the ratio of the CPU time of an algorithm to that
of MapFirst as the metric to measure the efficiency of the
algorithm. Fig. 3 shows the results, where y-axis is in the

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

1023

TABLE 1I
COMPUTATIONAL RESULTS OF (A) ORIGINAL FORMULATION (P), AND (B) FORMULATION (P’).

Topology info Elapsed CPU time (seconds)
Topology name
of nodes | # of links (a) (b)

Colt 153 185 2046.46 33.04

GtsCe 150 193 1365.47 89.17
Cogentco 197 245 3600.00 419.49
Condensed_west_europe 278 394 3600.00 576.93
Condensed 463 620 2721.63 1013.31

w
w»

=4~ Optimal solution of P to MapFirst
== Optimal solution of P' to MapFirst

w
=}
IS

N
w»

g
=}
w

g
=}
N

oy

Speedup of processing time (Log10)

Speedup of processing time (Log10)
-
n

=@~ Optimal solution of P to MapFirst
| =W~ Optimal solution of P' to MapFirst

i

=4~ Optimal solution of P to MapFirst
-~ Optimal solution of P' to MapFirst

~
"y -m-a

pe

0.5
Sg- - ’;\
0.0 = - u 04
5 10 15 20 25 30 35 40 45 50 5
M_percent (%)
(a) Att

Fig. 3. Speedup of the CPU time in units of Log10.

Log10 scale. Recall that problem (P) is the original problem,
and problem (P’) is problem (P) with strengthened constraints
and valid inequalities. We can clearly observe from Fig. 3 that
MapFirst is the fastest solution in all cases. More specifically,
MapFirst is 499 and 5828 times faster than directly using
GURORBI to solve problem (P) when M_percent = 45% for Att
and M_percent = 25% for Cernet, respectively. In Fig. 3(c),
we set a time limit of 3600 seconds for solving (P). We only
get the results of M_percent = 10% and 20%, and we use
the CPU time limit 3600 seconds as the CPU time of other
cases of M_percent. In other words, GUROBI failed to solve
problem (P) directly within 3600 seconds. However, for all
cases of M_percent, GUROBI can successfully solve problem
(P’) within the time limit. In fact, from Fig. 3 we can see that
it is much more efficient to solve problem (P’) than problem
(P) in most cases. These simulation results verify that problem
(P’) is indeed a better formulation than problem (P) because
added constraints and inequalities in (P’) are very effective to
speed up the GUROBI solver, and our proposed MapFirst is
effective.

E. Performance of Programmable Flows

Fig. 4 shows the performance of the programmable flows
of different algorithms. In all the three topologies, the per-
formance of the four algorithms increases as M _percent
becomes larger. Optimal and FlowOnly are the optimal solu-
tions to maximize the number of programmable flows. We can
observe from Fig. 4 that WeighFirst’s performance is the worst
and MapFirst’s performance is very close to that of Optimal
and FlowOnly. Recall weight w;; is equal to R; — AD;; in

10 15 20 25 30 35 40 45 50 s
M_percent (%)

(b) Cernet

10 15 20 25 30 35 40 45 50
M_percent (%)

(c) Cogentco

WeightFirst. The maximum value of w;; is I?; when deploying
a controller at the location of a selected switch. Since A is
usually a small value, I?; plays the dominant role in w;; and
thus WeightFirst first greedily tests the switch-controller pair
based on the descending order of the number of flows in
switches. Even though WeightFirst considers the delay in the
later tests, it only focuses on a single switch-controller pair
without the global view of the problem. In sharp contrast,
MapFirst also tests the switch-controller pair but based on
the result of the LP relaxation. The LP relaxation considers
the entire problem to generate its result that reflects the
probability of selecting switch-controller pairs. Therefore, the
testing order of switch-controller pairs in MapFirst is more
efficient than WeightFirst. This is the reason why MapFirst
achieves much better performance than WeightFirst.

E. Performance of Deployed Controllers

Fig. 5 shows the number of controllers deployed by different
algorithms under the three topologies. WeightFirst deploys
more controllers than all the other algorithms since it always
deploys a controller for each upgraded switch. Thus, under
the same upgrade budget, WeightFirst upgrades fewer switches
than all the other algorithms. FlowOnly performs the best since
it does not consider the propagation delay in its objective
function and deploys enough controllers for the upgraded
SDN switches. Optimal deploys more switches than FlowOnly
and MapFirst. Recall the cost ratio of an SDN switch and a
controller is . If the upgrade budget is not enough to upgrade
a switch, the rest budget can also be used to deploy 1 to

1024

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

~4— MapFirst ~4— MapFirst
60 ~#- Optimal 70 -~ Optimal

=+ - WeightFirst =+ - WeightFirst
50 -4+ FlowOnly 6071 . 4. FlowOnly

N
o
w
=}

w
o

N

o

N
o

w

o

Percentage of total flows (%)
Percentage of total flows (%)

[

—
o

N
=]

—@— MapFirst
-~ Optimal
=+ - WeightFirst
=4+ FlowOnly

W N [=3
o =) =) =}

Percentage of total flows (%)
N
o

—
o

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
M_percent (%) M_percent (%) M_percent (%)
(a) Att (b) Cernet (c) Cogentco
Fig. 4. Number of programmable flows. The higher, the better.
10 =@— MapFirst /‘ 12 ~@— MapFirst _/“ —&— MapFirst R
- Optimal ” - Optimal 7 701 _m- optimal 7’
9 g] =+ WeightFirst i 0 12| =+ WeightFirst 7 0 o =+ WeightFirst A
% =4 - FlowOnly Rd % -4 - FlowOnly Ve % -4 FlowOnly Ve
5 £10 - 550 7
< € . c 4
S 6 g R S 40 R
5 5 8 4 5 R
g, g6 o« 30 /./
5 § e | E20 "
3 E -7/ \ & e
2 / / N 101
2{ Attt _ -
0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
M_percent (%) M_percent (%) M_percent (%)
(a) Att (b) Cernet (c) Cogentco
Fig. 5. Number of controllers. The lower, the better.

300 MapFirst Ks MapFirst R
- P . 400 ha P K —@— MapFirst *
=i~ Optimal > -~ Optimal d.; 14000 =~ Optimal R
2509 —. weightFirst K —++ WeightFirst e ptimal .
&+ FlowOnly + ,1;‘ 3004 -4 FlowOnly K 120004 =+* WeightFirst F
& e =<+ FlowOnly e
F 10000 i
3 g . .
3 200 * rgg 8000 ""~
. 6000 ¥
100 4000
2000
0 0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

M_percent (%)

(a) Att

Fig. 6.

v — 1 controllers. In this case, MapFirst and Optimal make
different decisions: MapFirst does not deploy extra controllers
and just stop the program (see lines 19-21 in Algorithm 1),
while Optimal will deploy more controllers to minimize the
propagation delay between SDN switches and controllers.

G. Performance of the Propagation Delay

Fig. 6 shows the propagation delay between SDN switches
and controllers. In all topologies, WeightFirst performs the
best as it deploys one controller at each SDN switch in
most cases. Among all algorithms, FlowOnly performs the
worst because problem formulation (P1) does not consider
the propagation delay between SDN switches and controllers.
In all the three topologies, Optimal and MapFirst’s propagation

M_percent (%)

(b) Cernet

M_percent (%)

(c) Cogentco

Propagation delay between SDN switches and controllers. The lower, the better.

delays increase as M _percent increases, but their increasing
rate is much lower than FlowOnly’s. Compared to MapFirst,
Optimal achieves a better propagation delay performance
since it deploys more controllers to minimize the propagation
delay. From Fig. 5 and 6, we can see that in most cases,
when MapFirst and Optimal deploy the same number of
controllers, they have the same performance, except two cases
M _percent = 50% in Fig. 5(a) and M _percent = 15%
in Fig. 5(b). In these two cases, Optimal performs better
than MapFirst even though they deploy the same number of
controllers.

Fig. 7 shows the propagation delay between controllers.
We do not show the results of WeightFirst because its perfor-
mance is very bad. We can observe, from the figure, Optimal
performs the worst since it does not consider this factor in

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

1025

300
=@— MapFirst " L =@— MapFirst 14000 -
7\ ~@— MapFirst u
~#- Optimal /\ 250 7\ -~ Optimal . !
400 11\ 120004 -#- Optimal]
-4+ FlowOnly /7 \ <4 FlowOnly
I\ \ -4+ FlowOnly /
I\ 200 i \ 10000 r—l /
300 /I \\ 1 \ \
> > 1 \ 8000
& n).l \ 150 I \ z
S 200 S / \ e ! \ & 6000
\ / \ 100 ! \
Ao W~ of \ ! ! 4000
100 \ S0 ! | T TREC SRR PR
L] " I _ 2000
]
0 0 ? 0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
M_percent (%) M_percent (%) M_percent (%)
(a) Att (b) Cernet (c) Cogentco

Fig. 7. Propagation delay between controllers. The lower, the better.

the problem formulation (An interesting future is to consider
the propagation delay in the problem formulation). FlowOnly
performs better than Optimal since it deploys much fewer con-
trollers than Optimal (see Fig. 5), and the deployed controllers
are near to each other. In most cases, MapFirst has the best
performance. This is because MapFirst always deploys the
minimum number of controllers. In our problem formulation,
we use the budget constraint to implicitly limit the number
of controllers. In particular, our objective is to maximize
the number of flows, which is equivalent to maximize the
number of upgraded SDN switches. Given the upgrade budget,

upgrading more switches will reduce the number of controllers
to deploy.

H. Performance of Controller Control Ability on Switches

We use the ratio of the number of switches to the number
of controllers to measure the controller control ability on
switches. If a controller can control many switches, it will
simplify the network control. Fig. 8 shows the controller
control ability performance of all algorithms. In most cases,
MapFirst performs the best since it upgrades the same number
of switches as Optimal but deploys fewer controllers.

1. Summary of Simulation Findings

From our simulation results, we can conclude that the
following two design principles of MapFirst are crucial:
(1) among the three variables (i.e., the selection of upgraded
switches, the selection of deployed controllers, and the map-
pings between SDN switches and controllers), the mapping
variables are more important than the other two variables since
they reflect the interrelationship between the other two vari-
ables, and (2) the solution of the LP relaxation can effectively
reveal the importance of the mappings and thus the solution
structure of the problem. WeightFirst only takes the first
principle into consideration and performs the worst. Optimal
performs the best in terms of the two objectives: maximizing
the number of programmable flows and minimizing the propa-
gation delay between SDN switches and controllers. However,
it will deploy more controllers and has a higher propagation
delay among controllers than MapFirst. More importantly, its
worst-case complexity is significantly larger than MapFirst and
WeightFirst. In summary, compared to Optimal, MapFirst not

only achieves a comparable performance of the two objectives
with significantly lower complexity but also deploys less
number of controllers and thus has a shorter propagation delay
among controllers. Considering all performance metrics, Map-
First achieves the best performance. Therefore, to efficiently
handle a similar problem with interrelated variables, one can
use our design principles.

VII. RELATED WORKS

The evolution from legacy networks to SDN is a long
journey [42]. Considering SDN still being a fast developing
technology, the full deployment of SDN not only requires
a huge upgrade cost but also brings unexpected risks. The
hybrid SDN is a promising alternative option and is receiv-
ing quickly increasing attention from industry and academia.
Vissicchio et al. [43] first analyzed different models of hybrid
SDNs. The research of the hybrid SDN can be categorized into
two classes based on the application scenarios:

A. Layer 2 Hybrid SDN

Panopticon [44] proposed an optimization framework to
determine the partial SDN deployment and assumed that
each flow in the network traverses at least one SDN switch.
HybNET [45] designed a configuration mechanism to auto-
matically translate network configurations between legacy
networks and SDN networks. Telekinesis [46] manipulated
forwarding entries in the legacy switches with a customized
flow control primitive and enabled the forwarding flow on a
user-defined path rather than the path in the spanning tree.
Magneto [4] improved the work in [46] by providing more
fine-grained flow controls and quick and stable user-defined
path establishment.

B. Layer 3 Hybrid SDN

1) Switch Upgrade: Poularakis et al. [14] and Jia et al. [15]
proposed to incrementally upgrade SDN to maximize the
amount of programmable traffic under the given upgrade
budget constraint. Xu et al. [47] compared the performance
of hybrid SDNs by either replacing legacy devices with SDN
devices or adding new SDN devices. Caria et al. [48] exploited
the property of the network topologies and considered the
centrality in the network to update switches in a hybrid SDN.

1026

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

6 .
é") - Mapflrst 5 101 —@— MapFirst 514 —@— MapFirst "’*“.‘_
g | ™ Optimal S | -m- optimal S | -m- Optimal R
S 51 =+ WeightFirst £ g| =+ WeightFirst €121 —- WeightFirst : Pagy
°© +4 - FlowOnly o -4 FlowOnly ° -4+ FlowOnly // \ // \
g 9] @10 .o o s] \.
4 o Q SR N
g 0w 6 " / / w
< g 28
e 2 S \ 7
= 8 s /
£3 E g o |
2 v og n /
5 % s /
= = 4 /
g2 3 g /
£ LS £,
1 z N T S e =z e s e e e]
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
M_percent (%) M_percent (%) M_percent (%)
(a) Att (b) Cernet (c) Cogentco

Fig. 8.

2) Traffic Engineering: Agarwal et al. [7] first formulated
an optimization problem for achieving traffic engineering in
SDN with the partial deployment of SDN devices. Fibbing [9]
introduced a centralized control over distributed IP rout-
ing by injecting crafted routing messages via OSPF and
enhanced the flexibility, diversity, and reliability of L3 routing.
Chu et al. [10] designed an approach to fast recover from
single link failure while maintaining load-balancing perfor-
mance for the post-recovery network. Wang et al. [11] and
Jia et al. [12] explored power saving in Layer 3 hybrid SDN.
Guo et al. [49] proposed to adjust the weights of links and
flow split ratio at the SDN nodes to achieve load balancing in a
given hybrid SDN. Hong et al. [8] proposed to satisfy a variety
of traffic engineering goals in the hybrid SDN. However, all
the above works did not introduce the real deployment of the
SDN control plane and did not consider the impact of the
control plane deployment on the hybrid SDN.

C. Multi-Controller Data Plane

1) Controller Deployment: Controller deployment is an
important issue in multi-controller research. In WAN:S,
the propagation latency is the critical part of the total
latency [25], [26], and some works aim to minimize the prop-
agation latency among controllers and switches [50], [S1].
In data center networks, Wang et al. [52] proposed to
dynamically map switches to controllers to mitigate the load
imbalance among controllers and reduce the response time.
Wang et al. [53] considered the maintenance cost of the con-
troller cluster and assigned controllers to minimize the total
cost of controller response time and maintenance on the cluster
of controllers.

2) Resiliency: Resiliency is a critical concern for design-
ing the multi-controller data plane. Li et al. [54] presented
to manage each SDN device with multiple controllers at
the cloud to resist Byzantine attacks on controllers and the
communication links between controllers and SDN switches.
Hu et al. [55], [56] designed a fault-tolerant multi-controller
control plane that mitigates the performance degradation of
the controller chain failure caused by unreasonable slave con-
troller assignment. MORPH [57] is a multi-controller frame-
work, which is tolerant to unavailability failures of SDN
controllers and Byzantine failures caused by malicious attacks

Ratio of the number of upgraded switches to the number of deployed controllers. The higher, the better.

by efficiently distinguishing and localizing faulty controller
instances and appropriately reconfiguring the control plane.
In the future, we will consider this factor to extend the work
in this paper.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we considered the impact of the control plane
on the hybrid SDN and proposed to deploy the multi-controller
control plane during upgrading a legacy network to a hybrid
SDN. We formulated an optimization problem that jointly
maximizes the number of flows from SDN switches and
minimizes the propagation delay of flow requests between the
SDN’s control plane and data plane under the given upgrade
budget constraint. By carefully analyzing the problem’s struc-
ture, we proposed efficient solutions to solve the problem.
The simulation results based on the real network topologies
show the effectiveness and efficiency of our solutions. In the
future, we will consider other practical factors in our problem
formulation, such as the variation of the traffic pattern, the
queuing delay in controllers, and multiple network upgrades.

REFERENCES

[1] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp- 69-74, Apr. 2008.

[2] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN
be your eyes: Secure forensics in data center networks,” in Proc. NDSS
Workshop Secur. Emerg. Netw. Technol., Feb. 2014, pp. 1-7.

[3] S.Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM Conf., Aug. 2013, pp. 3—-14.

[4] C. Jin, C. Lumezanu, Q. Xu, H. Mekky, Z.-L. Zhang, and G. Jiang,
“Magneto: Unified fine-grained path control in legacy and openflow
hybrid networks,” in Proc. SOSR 17 Symp. SDN Res., Apr. 2017,

. 75-87.

[5] gp Gupta et al., “SDX: A software defined Internet exchange,” ACM

SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 551-562,

Oct. 2014.

As Providers Push NFV/SDN, 3 Key Issues Remain. Accessed:

Apr. 23, 2017. [Online]. Available: https://www.rcrwireless.com/

20170423/opinion/readerforum/reader-forum-n%fv-sdn-issues-tag 10

S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering

in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,

pp- 2211-2219.

[8] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental

deployment of SDN in hybrid enterprise and ISP networks,” in Proc.

Symp. SDN Res., Mar. 2016, p. 1.

S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control

over distributed routing,” in Proc. ACM SIGCOMM Comput. Commun.

Rev., 2015, vol. 45, no. 4, pp. 43-56.

[6

—_

[7

—

[9

—

GUO et al.: JOINT SWITCH UPGRADE AND CONTROLLER DEPLOYMENT IN HYBRID SOFTWARE-DEFINED NETWORKS

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]
[32]
(33]
[34]
[35]

[36]

(371

[38]

[39]

C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-aware single

link failure recovery in hybrid SDN networks,” in Proc. IEEE Conf.

Comput. Commun., May 2015, pp. 1086-1094.

H. Wang, Y. Li, D. Jin, P. Hui, and J. Wu, “Saving energy in partially

deployed software defined networks,” IEEE Trans. Comput., vol. 65,

no. 5, pp. 1578-1592, May 2016.

X. Jia, Y. Jiang, Z. Guo, G. Shen, and L. Wang, “Intelligent path control

for energy-saving in hybrid SDN networks,” Comput. Netw., vol. 131,

pp. 65-76, Feb. 2018.

S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,

“Safe update of hybrid SDN networks,” IEEE/ACM Trans. Netw., vol. 25,

no. 3, pp. 1649-1662, Jun. 2017.

K. Poularakis, G. losifidis, G. Smaragdakis, and L. Tassiulas, “One step

at a time: Optimizing SDN upgrades in ISP networks,” in Proc. IEEE

Conf. Comput. Commun., May 2017, pp. 1-9.

X. Jia, Y. Jiang, and Z. Guo, “Incremental switch deployment for hybrid

software-defined networks,” in Proc. IEEE Conf. Local Comput. Netw.,

Nov. 2016, pp. 571-574.

Z. Guo et al., “Improving the performance of load balancing in software-

defined networks through load variance-based synchronization,” Com-

put. Netw., vol. 68, pp. 95-109, Aug. 2014.

N. Gude et al., “NOX: Towards an operating system for networks,” ACM

SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105-110, 2008.

ONOS Controller. Accessed: Mar. 10, 2019. [Online]. Available:

https://onosproject.org

OpenDayLight Controller. Accessed: Mar. 10, 2019. [Online]. Available:

https://www.opendaylight.org

D. Ongaro and J. Ousterhout, “In search of an understandable consensus

algorithm,” in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305-319.

Setting Up Clustering. Accessed: Mar. 10, 2019. [Online]. Available:

https://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/

common-features/clustering.html

ONOS Clustering. Accessed: Mar. 10, 2019. [Online]. Available:

https://wiki.onosproject.org/pages/viewpage.action?pageld=28836788

J. Xie, D. Guo, X. Li, Y. Shen, and X. Jiang, “Cutting long-tail latency

of routing response in software defined networks,” IEEE J. Sel. Areas

Commun., vol. 36, no. 3, pp. 384-396, Mar. 2018.

A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using

bargaining game for optimal placement of SDN controllers,” in Proc.

IEEE Int. Conf. Commun., May 2016, pp. 1-6.

B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” in Proc. 1st Workshop Hot Topics Softw. Defined Netw.,

Aug. 2012, pp. 7-12.

G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller

placement problem in software defined networks,” IEEE Commun. Lett.,

vol. 18, no. 8, pp. 1339-1342, Aug. 2014.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,

pp. 1765-1775, Oct. 2011.

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide

to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman

& Co., 1979.

M. R. Garey and D. S. Johnson, “‘Strong” NP-completeness results:

Motivation, examples, and implications,” J. ACM, vol. 25, no. 3,

pp. 499-508, Jan. 1978.

O. Kariv and S. L. Hakimi, “An algorithmic approach to network

location problems. I: The p-centers,” SIAM J. Appl. Math., vol. 37, no. 3,

pp. 513-538, Dec. 1979.

S. Li, “On uniform capacitated k-median beyond the natural LP relax-

ation,” ACM Trans. Algorithms, vol. 13, no. 2, p. 22, May 2017.

Gurobi Optimization. (2018). Gurobi Optimizer Optimizer Reference

Manual. [Online]. Available: http://www.gurobi.com

G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization.

Hoboken, NJ, USA: Wiley, 1988.

H. D. Mittelmann. Latest Benchmark Results. Accessed: Nov. 2018.

[Online]. Available: http://plato.asu.edu/talks/informs2018.pdf

T. L. Magnanti, P. Mirchandani, and R. Vachani, “Modeling and solving

the two-facility capacitated network loading problem,” Oper. Res.,

vol. 43, no. 1, pp. 142-157, 1995.

T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger,

“Presolve reductions in mixed integer programming,” ZIB-Rep., 2016,
. 1-70.

%p Crowder, E. L. Johnson, and M. Padberg, “Solving large-scale

zero-one linear programming problems,” Oper. Res., vol. 31, no. 5,

pp- 803-834, Sep./Oct. 1983.

S. L. Gadegaard, A. Klose, and L. R. Nielsen, “An improved cut-

and-solve algorithm for the single-source capacitated facility location

problem,” EURO J. Comput. Optim., vol. 6, no. 1, pp. 1-27, 2018.

J. Renegar, “A polynomial-time algorithm, based on Newton’s method,

for linear programming,” Math. Program., vol. 40, nos. 1-3, pp. 59-93,

1988.

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

1027

M. Dell’Amico and S. Martello, “The k-cardinality assignment prob-
lem,” Discrete Appl. Math., vol. 76, nos. 1-3, pp. 103-121, 1997.
OpenDayLight Basic Operations Guide. Accessed: 2018. [Online].
Available: https://wiki.opendaylight.org/view/File:ODL_Basic_Opera
tions_Guide.pptx
D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.
S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 70-75, Apr. 2014.
D. Levin et al., “Panopticon: Reaping the benefits of incremental SDN
deployment in enterprise networks,” in Proc. USENIX Annu. Tech. Conf.,
Jun. 2014, pp. 333-345.
H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang,
“HybNET: Network manager for a hybrid network infrastructure,”
in Proc. Ind. Track 13th ACM/IFIP/USENIX Int. Middleware Conf.,
Dec. 2013, p. 6.
C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang, “Telekinesis:
Controlling legacy switch routing with openflow in hybrid networks,” in
Proc. 1st ACM SIGCOMM Symp. Softw. Defined Netw. Res., Jun. 2015,
. 20.
pH. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing for a
hybrid SDN,” IEEE/ACM Trans. Netw., vol. 25, no. 3, pp. 1861-1875,
Jun. 2017.
M. Caria, T. Das, A. Jukan, and M. Hoffmann, “Divide and conquer:
Partitioning OSPF networks with SDN,” in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), May 2015, pp. 467-474.
Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering
in SDN/OSPF hybrid network,” in Proc. IEEE 22nd Int. Conf. Netw.
Protocols, Oct. 2014, pp. 563-568.
T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller
based software-defined networking: A survey,” IEEE Access, vol. 6,
pp. 15980-15996, Mar. 2018.
T. Hu, P. Yi, Z. Guo, J. Lan, and J. Zhang, “Bidirectional matching
strategy for multi-controller deployment in distributed software defined
networking,” IEEE Access, vol. 6, pp. 14946-14953, 2018.
T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016,
. 1-9.
’I}PWang, F. Liu, and H. Xu, “An efficient online algorithm for dynamic
SDN controller assignment in data center networks,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 2788-2801, Oct. 2017.
H. Li, P. Li, S. Guo, and A. Nayak, “Byzantine-resilient secure software-
defined networks with multiple controllers in cloud,” IEEE Trans. Cloud
Comput., vol. 2, no. 4, pp. 436447, Oct./Dec. 2014.
T. Hu, Z. Guo, J. Zhang, and J. Lan, “Adaptive slave controller assign-
ment for fault-tolerant control plane in software-defined networking,” in
Proc. IEEE Int. Conf. Commun., May 2018, pp. 1-6.
T. Hu, P. Yi, Z. Guo, J. Lan, and Y. Hu, “Dynamic slave controller
assignment for enhancing control plane robustness in software-defined
networks,” Future Gener. Comput. Syst., vol. 95, pp. 681-693, Jun. 2019.
E. Sakic, N. Peri¢, and W. Kellerer, “MORPH: An adaptive framework
for efficient and Byzantine fault-tolerant SDN control plane,” IEEE
J. Sel. Areas Commun., vol. 36, no. 10, pp. 2158-2174, Oct. 2018.

Zehua Guo received the B.S. degree from North-
western Polytechnical University, the M.S. degree
from Xidian University, and the Ph.D. degree from
Northwestern Polytechnical University. He was a
Research Fellow of the Department of Electrical
and Computer Engineering, New York University
Tandon School of Engineering, New York City, NY,
USA, and a Post-Doctoral Research Associate at the
Department of Computer Science and Engineering,
University of Minnesota Twin Cities, Minneapolis,
MN, USA. His research interests include software-

defined networking, network function virtualization, data center networks,
cloud computing, content delivery networks, network security, green networks,
machine learning, and Internet exchange. He was the Session Chair of
the IEEE International Conference on Communications 2018. He serves as
an Associate Editor for the IEEE ACCESS and the EURASIP Journal on
Wireless Communications and Networking (Springer), an Editor of the KSII
Transactions on Internet and Information Systems, and the Technical Program
Committee of the Computer Communications (Elsevier).

1028

Weikun Chen received the B.Sc. degree in infor-
mation and computing science from Sun Yat-sen
University, China, in 2014. He is currently pursuing
the Ph.D. degree with the Institute of Computational
Mathematics and Scientific/Engineering Computing,
Chinese Academy of Sciences, Beijing, China. His
main research interests include the mixed integer
programming, in particular the cutting planes.

Ya-Feng Liu (M’12-SM’18) received the B.Sc.
degree in applied mathematics from Xidian Univer-
sity, Xi’an, China, in 2007, and the Ph.D. degree in
computational mathematics from the Chinese Acad-
emy of Sciences (CAS), Beijing, China, in 2012.
During his Ph.D. study, he was supported by the
Academy of Mathematics and Systems Science
(AMSS), CAS, to visit Prof. Z.-Q. (Tom) Luo at the
University of Minnesota (Twins Cities), Minneapo-
lis, MN, USA, from 2011 to 2012. In 2012, he joined
the Institute of Computational Mathematics and
Scientific/Engineering Computing, AMSS, CAS, where he is currently an
Associate Professor. His main research interests are nonlinear optimization and
its applications to signal processing, wireless communications, and machine
learning. He is especially interested in designing efficient algorithms for
solving optimization problems arising from the above-mentioned applications.

Dr. Liu received the Best Paper Award from the IEEE International Con-
ference on Communications (ICC) in 2011, the Best Student Paper Award
from the International Symposium on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt) in 2015, the Chen Jingrun Star Award
from the AMSS in 2018, and the Science and Technology Award for Young
Scholars from the Operations Research Society of China in 2018. He has been
serving as a Guest Editor for the Journal of Global Optimization since 2016.

i

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Yang Xu (S’05-M’07) received the B.E. degree
from the Beijing University of Posts and Telecom-
munications in 2001 and the M.Sc. and Ph.D.
degrees in computer science and technology from
Tsinghua University, China, in 2003 and 2007,
respectively. From 2007 to 2019, he was with the
Department of Electrical and Computer Engineering,
New York University Tandon School of Engineering,
New York City, NY, USA, where he has been
a Research Associate Professor since 2013. Since
2019, he has been a Full Professor with the School
of Computer Science, Fudan University, China. He has published more
than 60 journal and conference papers. He holds more than ten U.S. and
international granted patents on various aspects of networking and computing.
His research interests include software-defined networks, data center networks,
network function virtualization, and network security. He served as a TPC
Member for many international conferences, and as an Editor for the Journal
of Network and Computer Applications (Elsevier), the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS—Special Series on Network
Softwarization and Enablers, and Wiley Security and Communication Networks
Journal-Special Issue on Network Security and Management in SDN.

Zhi-Li Zhang (F’12) received the B.S. degree in
computer science from Nanjing University, China,
in 1986, and the M.S. and Ph.D. degrees in com-
puter science from the University of Massachusetts,
Ambherst, MA, USA, in 1992 and 1997, respec-
tively. In 1997, he joined the Computer Science
and Engineering Faculty, University of Minnesota,
Minneapolis, MN, USA, where he is currently a
Qwest Chair Professor and a Distinguished McK-
night University Professor. His research interests lie
broadly in computer communication and networks,
Internet technology, content distribution systems, and cloud computing and
emerging Internet of Things (IoT) applications. He is a member of ACM.
He was a co-recipient of several best paper awards. He has received a
number of other awards. He has co-chaired several conferences/workshops
(as a General or TCP Chair) including IEEE INFOCOM, IEEE ICNP, ACM
CONEXT, and IFIP Networking. He has served on the TPC for numerous
conferences/workshops.

