Research Track Paper

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Stability and Generalization of Graph Convolutional Neural
Networks

Saurabh Verma
Department of Computer Science
University of Minnesota, Twin Cities
verma076@umn.edu

ABSTRACT

Inspired by convolutional neural networks on 1D and 2D data, graph
convolutional neural networks (GCNNs) have been developed for
various learning tasks on graph data, and have shown superior
performance on real-world datasets. Despite their success, there
is a dearth of theoretical explorations of GCNN models such as
their generalization properties. In this paper, we take a first step
towards developing a deeper theoretical understanding of GCNN
models by analyzing the stability of single-layer GCNN models and
deriving their generalization guarantees in a semi-supervised graph
learning setting. In particular, we show that the algorithmic stability
of a GCNN model depends upon the largest absolute eigenvalue
of its graph convolution filter. Moreover, to ensure the uniform
stability needed to provide strong generalization guarantees, the
largest absolute eigenvalue must be independent of the graph size.
Our results shed new insights on the design of new & improved
graph convolution filters with guaranteed algorithmic stability.
We evaluate the generalization gap and stability on various real-
world graph datasets and show that the empirical results indeed
support our theoretical findings. To the best of our knowledge, we
are the first to study stability bounds on graph learning in a semi-
supervised setting and derive generalization bounds for GCNN
models.

CCS CONCEPTS

« Computing methodologies — Neural networks; - Theory
of computation — Graph algorithms analysis; Semi-supervised
learning.

KEYWORDS

Deep learning, graph convolutional neural networks, graph mining,
stability, generalization guarantees

ACM Reference Format:

Saurabh Verma and Zhi-Li Zhang. 2019. Stability and Generalization of
Graph Convolutional Neural Networks. In The 25th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’19), August 4-8,
2019, Anchorage, AK, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3292500.3330956

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330956

1539

Zhi-Li Zhang
Department of Computer Science
University of Minnesota, Twin Cities
zhzhang@cs.umn.edu

1 INTRODUCTION

Building upon the huge success of deep learning in computer vi-
sion (CV) and natural language processing (NLP), Graph Convo-
lutional Neural Networks (GCNNs) [25] have recently been de-
veloped for tackling various learning tasks on graph-structured
datasets. These models have shown superior performance on real-
world datasets from various domains such as node labelling on
social networks [26], link prediction in knowledge graphs [37] and
molecular graph classification in quantum chemistry [19] . Due
to the versatility of graph-structured data representation, GCNN
models have been incorporated in many diverse applications, e.g.,
question-answer systems [39] in NLP and/or image semantic seg-
mentation [36] in CV. While various versions of GCCN models
have been proposed, there is a dearth of theoretical explorations of
GCNN models ([46] is one of few exceptions which explores the
discriminant power of GCNN models)—especially, in terms of their
generalization properties and (algorithmic) stability. The latter is of
particular import, as the stability of a learning algorithm plays a
crucial role in generalization.

The generalization of a learning algorithm can be explored in
several ways. One of the earliest and most popular approach is
Vapnik—Chervonenkis (VC)-theory [6] which establishes gener-
alization errors in terms VC-dimensions of a learning algorithm.
Unfortunately, VC-theory is not applicable for learning algorithms
with unbounded VC-dimensions such as neural networks. Another
way to show generalization is to perform the Probably Approx-
imately Correct (PAC) [23] analysis, which is generally difficult
to do in practice. The third approach, which we adopt, relies on
deriving stability bounds of a learning algorithm, often known as
algorithmic stability [7]. The idea behind algorithmic stability is to
understand how the learning function changes with small changes
in the input data. Over the past decade, several definitions of al-
gorithmic stability have been developed [1, 2, 7, 17, 32], including
uniform stability, hypothesis stability, pointwise hypothesis stabil-
ity, error stability and cross-validation stability, each yielding either
a tight or loose bound on the generalization errors. For instance,
learning algorithm based on Tikhonov regularization satisfy the
uniform stability criterion (the strongest stability condition among
all existing forms of stability), and thus are generalizable.

In this paper, we take a first step towards developing a deeper the-
oretical understanding of GCNN models by analyzing the (uniform)
stability of GCNN models and thereby deriving their generaliza-
tion guarantees. For simplicity of exposition, we focus on single
layerGCNN models in a semi-supervised learning setting. The main
result of this paper is that (single layer) GCNN models with stable
graph convolution filters can satisfy the strong notion of uniform
stability and thus are generalizable. More specifically, we show that

Research Track Paper

the stability of a (single layer) GCNN model depends upon the
largest absolute eigenvalue (the eigenvalue with the largest absolute
value) of the graph filter it employs — or more generally, the largest
singular value if the graph filter is asymmetric — and that the uni-
form stability criterion is met if the largest absolute eigenvalue (or
singular value) is independent of the graph size, i.e., the number of
nodes in the graph. As a consequence of our analysis, we establish
that (appropriately) normalized graph convolution filters such as
the symmetric normalized graph Laplacian or random walk based
filters are all uniformly stable and thus are generalizable. In con-
trast, graph convolution filters based on the unnormalized graph
Laplacian or adjacency matrix do not enjoy algorithmic stability, as
their largest absolute eigenvalues grow as a function of the graph
size. Empirical evaluations based on real world datasets support our
theoretical findings: the generalization gap and weight parameters
instability in case of unnormalized graph filters are significantly
higher than those of the normalized filters. Our results shed new
insights on the design of new & improved graph convolution filters
with guaranteed algorithmic stability.

We remark that our GCNN generalization bounds obtained from
algorithmic stability are non-asymptotic in nature, i.e., they do not
assume any form of data distribution. Nor do they hinge upon the
complexity of the hypothesis class, unlike the most uniform conver-
gence bounds. We only assume that the activation & loss functions
employed are Lipschitz continuous and smooth functions. These
criteria are readily satisfied by several popular activation functions
such as ELU (holds for a = 1), Sigmoid and/or Tanh. To the best of
our knowledge, we are the first to study stability bounds on graph
learning in a semi-supervised setting and derive generalization
bounds for GCCN models. Our analysis framework remains gen-
eral enough and can be extended to theoretical stability analyses of
GCCN models beyond a semi-supervised learning setting (where
there is a single and fixed underlying graph structure) such as for
the graph classification (where there are multiple graphs).

In summary, the major contributions of our paper are:

e We provide the first generalization bound on single layer
GCNN models based on analysis of their algorithmic stability.
We establish that GCNN models which employ graph filters
with bounded eigenvalues that are independent of the graph
size can satisfy the strong notion of uniform stability and
thus are generalizable.

o Consequently, we demonstrate that many existing GCNN
models that employ normalized graph filters satisfy the strong
notion of uniform stability. We also justify the importance
of employing batch-normalization in a GCNN architecture.

e Empirical evaluations of the generalization gap and stability
using real-world datasets support our theoretical findings.

The paper is organized as follows. Section 2 reviews key gen-
eralization results for deep learning as well as regularized graphs
and briefly discusses existing GCNN models. The main result is
presented in Section 3 where we introduce the needed background
and establish the GCNN generalization bounds step by step. In
Section 4, we apply our results to existing graph convolution filters
and GCNN architecture designs. In Section 5 we conduct empirical

1540

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

studies which complement our theoretical analysis. The paper is
concluded in Section 6 with a brief discussion of future work.

2 RELATED WORK

Generalization Bounds on Deep Learning: Many theoretical
studies have been devoted to understanding the representational
power of neural networks by analyzing their capability as a univer-
sal function approximator as well as their depth efficiency [9, 13, 16,
31, 42]. In [13] the authors show that the number of hidden units
in a shallow network has to grow exponentially (as opposed to a
linear growth in a deep network) in order to represent the same
function; thus depth yields much more compact representation
of a function than having a wide-breadth. It is shown in [9] that
convolutional neural networks with the ReLU activation function
are universal function approximators with max pooling, but not
with average pooling. The authors of [33] authors explore which
complexity measure is more appropriate for explaining the gener-
alization power of deep learning. The work most closest to ours is
[22] where the authors derive upper bounds on the generalization
errors for stochastic gradient methods. While also utilizing the
notion of uniform stability [7], their analysis is concerned with the
impact of SGD learning rates. More recently, through empirically
evaluations on real-world datasets, it has been argued in [47] that
the traditional measures of model complexity are not sufficient to
explain the generalization ability of neural networks. Likely, in [24]
several open-ended questions are posed regarding the (yet unex-
plained) generalization capability of neural networks, despite their
possible algorithmic instability, non-robustness, and sharp minima.

Generalization Bounds on Regularized Graphs: Another line
of work concerns with generalization bounds on regularized graphs
in transductive settings [3, 5, 10, 41]. Of the most interest to ours
is [5] where the authors provide theoretical guarantees for the gen-
eralization error based on Laplacian regularization, which are also
derived based on the notion of algorithmic stability. Their gener-
alization estimate is inversely proportional to the second smallest
eigenvalue of the graph Laplacian. Unfortunately this estimate may
be not yield desirable guarantee as the second smallest eigenvalue
is dependent on both the graph structure and its size; it is in general
difficult to remove this dependency via normalization. In contrast,
our estimates are directly proportional to the largest absolute eigen-
value (or the largest singular value of an asymmetric graph filter),
and can easily be made independent of the graph size by performing
appropriate Laplacian normalization.

Graph Convolution Neural Networks: Coming from graph sig-
nal processing [38] domain, GCNN is defined as the problem of
learning filter parameters in the graph Fourier transform [8]. Since
then rapid progress has been made and GCNN model have improved
in many aspects [4, 14, 15, 25, 30, 35, 45]. For instance in [30] pa-
rameterize graph filters using residual Laplacian matrix and in [40]
authors used simply polynomial of adjacency matrix. Random walk
and quantum walk based graph convolutions are also been pro-
posed recently [14, 35, 48]. Similarly, graph convolutional operation
has been generalized with the graph capsule notion in [45]. The

Research Track Paper

authors of [21, 44] have also applied graph convolution to large
graphs. Message passing neural networks (MPNNs) are also been
developed [11, 18, 19, 29] which can be viewed as GCNN model
since the notion of graph convolution operation remains the same.
MPNNS s can also be break into two step process where edge features
are updated though message passing and then node features are
updates using the information encoded in its nearby edges. This is
similar to Embedding belief propagation message passing algorithm
proposed in [11]. Several attempts have also been made to convert
graph into regular grid structure for straight forwardly applying
standard 2D or 1D CNNs [34, 43]. A very tangential approach was
taken in [27] where authors design covariant neural network based
on group theory for computing graph representation.

3 STABILITY AND GENERALIZATION
GUARANTEES FOR GCNNS

To derive generalization guarantees of GCNNs based on algorithmic
stability analysis, we adopt the strategy devised in [7]. It relies on
bounding the output difference of aloss function due to a single data
point perturbation. As stated earlier, there exist several different
notions of algorithmic stability [7, 32]. In this paper, we focus on
the strong notion of uniform stability (see Definition 1).

3.1 Graph Convolution Neural Networks

Notations: Let G = (V,E, A) be a graph where V is the vertex
set, E the edge set and A the adjacency matrix, with N = |V| the
graph size. We define the standard graph Laplacian L € RN*N ag
L =D - A, where D is the degree matrix. We define a graph filter,
g(L) € RN*N a5 a function of the graph Laplacian L or a normalized
(using D) version of it. Let UAU” be the eigen decomposition of
L, with A = diag[A;] the diagonal matrix of L’s eigenvalues. Then
g(L) = Ug(A)UT, and its eigenvalues /1(1.9) = {g(1i),1 < i < N}.
We define A3 = maxi{l/l(l.g)|}, referred to as the largest absolute
eigenvalue! of the graph filter g(L). Let m is the number of training
samples depending on N as m < N.

Let X € RNXD be a node feature matrix (D is the input dimen-
sion) and © € RP be the learning parameters. With a slight abuse
of notation, we will represent both a node (index) in a graph G and
its feature values by x € RP. A/(x) denotes a set of the neighbor
indices at most 1-hop distance away from node x (including x).
Here the 1-hop distance neighbors are determined using the g(L)
filter matrix. Finally, Gy represents the ego-graph extracted at node
x from G.

Single Layer GCNN (Full Graph View): Output function of a
single layer GCNN model - on all graph nodes together — can be
written in a compact matrix form as follows,

f(X.0) = o(g(L)X0) 1)

where g(L) is a graph filter. Some commonly used graph filters are
a linear function of A as g(L) = A + I [46] (here I is the identity
matrix) or a Chebyshev polynomial of L [12].

I This definition is valid for a symmetric graph filter g(L), or the matrix is normal.
More generally, ™ is defined as the largest singular value of g(L).

1541

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Single Layer GCNN (Ego-Graph View): We will work with the
notion of ego-graph for each node (extracted from G) as it contains
the complete information needed for computing the output of a
single layer GCNN model. We can re-write the Equation (1) for a
single node prediction as,

f(x,0) = 0'(Z e.jijG)
JjE
N
where e.; € R = [g(L)].; is the weighted edge (value) between node
x and its neighbor x;, j € N(x) if and only e.; # 0. The size of
an ego-graph depends upon g(L). We assume that the filters are
localized to the 1-hop neighbors, but our analysis is applicable to
k—hop neighbors. For further notational clarity, we will consider
the case D = 1, and thus f(x,0g) = O'(ZJ-EN(X) e.ijeg). Our

analysis holds for the general D—dimensional case.

()

3.2 Main Result

The main result of the paper is stated in Theorem 1, which provides
a bound on the generalization gap for single layer GCNN models.
This gap is defined as the difference between the generalization
error R(-) and empirical error Remp(-) (see definitions in Section 3.3).

Theorem 1. [GCNN Generalization Gap] Let As be a single
layer GCNN model equipped with the graph convolution filter g(L),
and trained on a dataset S using the SGD algorithm for T iterations.
Let the loss & activation functions be Lipschitz-continuous and smooth.
Then the following expected generalization gap holds with probability
at least 1 — &, with § € (0,1),

ExcolR(As) ~ Remp(4s)] < - O(BT)+

log %

2m

where the expectation Eggp is taken over the randomness inherent in
SGD, m is the number of training samples and M a constant depending
on the loss function.

(O((AxgaX)ZT) + M)

Remarks: Theorem 1 establishes a key connection between the
generalization gap and the graph filter eigenvalues. A GCNN model
is uniformly stable if the bound converges to zero as m — co. In
particular, we see that if A5* is independent of the graph size,
the generalization gap decays at the rate of (’)(\/%), yielding the

tightest bound possible. Theorem 1 sheds light on the design of
stable graph filters with generalization guarantees.

Proof Strategy: We need to tackle several technical challenges in
order to obtain the generalization bound in Theorem 1.

(1) Analyzing GCNN Stability w.r.t. Graph Convolution:
We analyze the stability of a graph convolution function
under the single data perturbation. For this purpose, we sep-
arately bound the difference on weight parameters from the
graph convolution operation in the GCNN output function.

(2) Analyzing GCNN Stability w.r.t. SGD algorithm: GC-
NNs employ the randomized stochastic gradient descent al-
gorithm (SGD) for optimizing the weight parameters. Thus,
we need to bound the difference in the expected value over

Research Track Paper

the learned weight parameters under single data perturba-
tion and establish stability bounds. For this, we analyze the
uniform stability of SGD in the context of GCNNs. We adopt
the same strategy as in [22] to obtain uniform stability of
GCNN models, but with fewer assumptions compared with
the general case [22].

3.3 Preliminaries

Basic Setup: Let X’ and) be a a subset of a Hilbert space and
define Z = X x). We define X as the input space and) as
the output space. Let x € X,y € Y C R and S be a training set
S={z1 = (x1,91), 22 = (X2, Y2), --» Zm = (Xm, Ym)}. We introduce
two more notations below:

Removing i*" data point in the set S is represented as,

i
SV = {21, e Zim 1y Zit s s 2}

Replacing the i’ h data point in S by z;. is represented as,
St = {21, e 2ic1, 2, Zit 1, oo Zm)

General Data Sampling Process: Let D denote an unknown dis-
tribution from which {z,, z,, } data points are sampled to form a
training set S. Throughout the paper, we assume all samples (includ-
ing the replacement sample) are i.i.d. unless mentioned otherwise.
Let Eg[f] denote the expectation of the function f when m samples
are drawn from D to form the training set S. Likewise, let E;[f]
denote the expectation of the function f when z is sampled accord-
ing to D.

Graph Node Sampling Process: At first it may not be clear on
how to describe the sampling procedure of nodes from a graph G
in the context of GCNNs for performing semi-supervised learning.
For our purpose, we consider ego-graphs formed by the 1-hops
neighbors at each node as a single data point. This ego-graph is
necessary and sufficient to compute the single layer GCNN output
as shown in Equation (2). We assume node data points are sampled
in an i.i.d. fashion by first choosing a node x and then extracting
its neighbors from G to form an ego-graph.

Generalization Error: Let Ag be a learning algorithm trained on
dataset S. Ag is defined as a function from Z™ to ())X. For GCNNs,
we set Ag = f(x, 05). Then generalization error or risk R(Ag) with
respect to a loss function € : Z™ x Z — R is defined as,

R(As) = Ex[{(As.2)] = / {(As. Dp(a)da.

Empirical Error: Empirical risk Remp(As) is defined as,

m

1
R = — i)
emp(As) = — > ((As, 7))
Jj=1
Generalization Gap: When Ag is a randomized algorithm, we
consider the expected generalization gap as shown below,

€gen ‘= EA[R(As) - Remp(AS)]~

Here the expectation E 4 is taken over the inherent randomness
of Ag. For instance, most learning algorithms employ Stochastic

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Gradient descent (SGD) to learn the weight parameters. SGD in-
troduces randomness due to the random order it uses to choose
samples for batch processing. In our analysis, we only consider ran-
domness in Ag due to SGD and ignore the randomness introduced
by parameter initialization. Hence, we will replace E 4 with Eggp.

Uniform Stability of Randomized Algorithm: For a random-
ized algorithm, uniform stability is defined as follows,

Definition 1. [Uniform Stability] A randomized learning al-
gorithm Ag is fmm—uniformly stable with respect to a loss function {,
if it satisfies,

S»SuplEA[f(As,Z)] —Ea[t(Ag\i, 2)]| < fm

For our convenience, we will work with the following definition
of uniform stability,
SSuP|EA[5(A5,Z)] —Eall(Asi,2)]| < 2Bm
,Z
which follows immediately from the fact that,

sup|EA[£(As. 2)] — Ealt(Asi,2)]| < (SUPlEA[f(As,Z)]—

S,z S,z
Ball(4,) + (suplEal(Ase,)] = Ealt(As1. 2]

Remarks: Uniform stability imposes an upper bound on the differ-
ence in losses due to a removal (or change) of a single data point
from the set (of size m) for all possible combinations of S, z. Here,
Pm is a function of m (the number of training samples). Note that
there is a subtle difference between Definition 1 above and the
uniform stability of randomized algorithms defined in [17] (see Def-
inition 13 in [17]). The authors in [17] are concerned with random
elements associated with the cost function such as those induced
by bootstrapping, bagging or initialization process. However, we
focus on the randomness due to the learning procedure, i.e., SGD.

Stability Guarantees: A randomized learning algorithm with uni-
form stability yields the following bound on generalization gap:

Theorem 2. [Stability Guarantees] A uniform stable random-
ized algorithm (As, fm) with a bounded loss function 0 < {(Ag,z) <
M, satisfies following generalization bound with probability at-least
1 -6, over the random draw of S,z with § € (0, 1),

log %
2m

EA[R(As) - Remp(AS)] <2Bm + (4mﬁm + M)

Proof: The proof for Theorem 2 mirrors that of Theorem 12 (shown
in [7] for deterministic learning algorithms). For the sake of com-
pleteness, we include the proof in Appendix based on our definition
of uniform stability := sup|E4[€(As, z)] — Ea[€(Agi, 2)]| < 2Bm.
S,z

Remarks: The generalization bound is meaningful if the bound
converges to 0 as m — oo. This occurs when S, decays faster than
O(\/La); otherwise the generalization gap does not approach to
zero as m — oo. Furthermore, generalization gap produces tightest
bounds when S, decays at O(%) which is the most stable state
possible for a learning algorithm.

Research Track Paper

o—Lipschitz Continuous and Smooth Activation Function:
Our bounds hold for all activation functions which are Lipschitz-
continuous and smooth. An activation function o(x) is Lipschitz-
continuous if |Vo(x)| < a4, or equivalently, |o(x)—o(y)| < ags|x—
y|. We further require o(x) to be smooth, namely, [Vo(x)-Vo(y)| <
Ve |x —y|. This assumption is more strict but necessary for establish-
ing the strong notion of uniform stability. Some common activation
functions satisfying the above conditions are ELU (with a = 1),
Sigmoid, and Tanh.

¢{—Lipschitz Continuous and Smooth Loss Function: We also
assume that the loss function is Lipschitz-continuous and smooth,

lE(FChy) = E(f O y)| < aclfO) = £ O,
and [VE(£()y) = VE(F O y)| < ve| VO = V().

Unlike in [22], we define Lipschitz-continuity with respect to the
function argument rather than the weight parameters, a relatively
weak assumption.

3.4 Uniform Stability of GCNN Models

The crux of our main result relies on showing that GCNN models
are uniformly stable as stated in Theorem 3 below.

Theorem 3. [GCNN Uniform Stability] Let the loss & acti-
vation be Lipschitz-continuous and smooth functions. Then a single
layer GCNN model trained using the SGD algorithm for T iterations
is fm—uniformly stable, where

T
Pm < (r]a[agv(;(lrgax)z Z (1 + UVfl/g(/lrélaX)z)t_l)/m

t=1

Remarks: Plugging the bound on f;, in Theorem 2 yields the main
result of our paper.

Before we proceed to prove this theorem, we first explain what
is meant by training a single layer GCNN using SGD on datasets
S and S* which differ in one data point, following the same line
of reasoning as in [22]. Let Z = {zy, ... ,ZT} be a sequence
of samples, where z; is an i.i.d. sample drawn from S at the !/
iteration of SGD during a training run of the GCCN?. Training
the same GCCN using SGD on S! means that we supply the same
sample sequence to the GCCN except that if z; = (x;, y;) for some
t (1 <t <T), we replace it with th
index at which § and S’ differ. We denote this sample sequence by
Z’'. Let {95’0 S R eS,T} and {951"0, 95,-’1 sy 95,-’7} de-
note the corresponding sequences of the weight parameters learned
by running SGD on S and S’, respectively. Since the parameter ini-
tialization is kept same, 05,9 = Og: . In addition, if k is the first
time that the sample sequences Z and Z” differ, then 85 ; = 0g: ,

s Zpy ...

= (x},y}), where i is the (node)

at each step t before k, and at the kP and subsequent steps, 05 ;
and O: ; diverge. The key in establishing the uniform stability of a
GCNN model is to bound the difference in losses when training the
GCNN using SGD on S vs. S*. As stated earlier in the proof strategy,
we proceed in two steps.

2 One way to generate the sample sequence is to choose a node index i, uniformly at
random from the set {1, . . ., m} at each step ¢. Alternatively, one can first choose a
random permutation of {1, . . ., m} and then process the samples accordingly. Our
analysis holds for both cases.

1543

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Proof Part I (Single Layer GCNN Bound): We first bound the
expected loss by separating the factors due to the graph convolution
operation vs. the expected difference in the filter weight parameters
learned via SGD on two datasets S and S'.

Let O and O4: represent the final GCNN filter weights learned
on training set S and S respectively. Define A® = 85 — 0:. Using
the facts that the loss are Lipschitz continuous and also |E[x]| <
E[|x|], we have,

|[Esep[£(As, y) — K(Asi, Il < agEsopllf(x,05) — f(x, 951')”

O'(Ze.ijes) - O'(Z e.ijGSf)”
JjE JE
N(x) N(x)

Since activation function is also o—Lipschitz continuous,

< a¢Esep [

< a(zESGD[Ze.ijes - Z e.ijesi]
je je
N(x) N(x)
< at’ESGD[Z e.jxj(0s — 951)”
je
.)
< a[ESGD[Z (e.ij)mes - Ogi)]
./\%(ex)
< a| Z e.j%j)|(Esen [|A0]])
N(x)

< a[gAESGD HA@”

where g is defined as g, := sup | 2jeN(x) €-jXj|- We will bound
X

g, in terms of the largest absolute eigenvalue of the graph con-
volution filter g(L) later. Note that 3} ;e Ar(x) €.j%; is nothing but
a graph convolution operation. As such, reducing g, will be the
contributing factor in improving the generalization performance.

Proof Part II (SGD Based Bounds For GCNN Weights): What
remains is to bound Eggp[|AB|] due to the randomness inherent in
SGD. This is proved through a series of three lemmas. We first note
that on a given training set S, a GCNN minimizes the following
objective function,

min £(f(x05).9) = %Zf (f(x. 05).ui) @)

For this, at each iteration ¢, SGD performs the following update:
=05, —nVe(f(xi,, 05,0). Yi,))

where 1 > 0 is the learning rate.

Given two sequences of the weight parameters, {05 , 05,1

., 0s,7}and {Og: o, Ogi 1 ,..., Ogi 1}, learned by the GCCN
running SGD on S and St respectively, we first find a bound on
AO; :=|0s,; — Og: ;| at each iteration step t of SGD.

There are two scenarios to consider 1) At step ¢, SGD picks
a sample z; = (x,y) which is identical in Z and Z’, and occurs
with probability (m — 1)/m. From Equation (5), we have |A8;4+1| <
|AO| +n|VE(f(x, Os,1) y) — €(f(x, O5,¢), y)|. We bound this term
in Lemma 1 below 2) At step t, SGD picks the only samples that

05,141

Research Track Paper

Z and Z’ differ, z; = (x;,y;) and z; = (x},y]) which occurs with
probability 1/m. Then |[AB41] < |AO] + n|VE(f(xi, 0s,1) yi) —
L(f(x},05,¢), yl’) |. We bound the second term in Lemma 2 below.

Lemma 1. [GCNN Same Sample Loss Stability Bound] The
loss-derivative bound difference of (single-layer) GCNN models trained
with SGD algorithm for T iterations on two training datasets S and
St respectively, with respect to the same sample is given by,

‘Vf(f(x, 05.0).y) — VE(F(x, 051 ,), y)(< vpvo 821N, .

Proof: The first order derivative of a single-layer the GCNN output
function, f(x, 0) = o(Xjen €.jx;0), is given by,

af(x,0)
T = o'/(Z e.ijG) Z €.jXj,
je je
N(x) N(x)
where Vo (+) is the first order derivative of the activation function.

Using Equation (6) and the fact that the loss function is Lipschitz
continuous and smooth, we have,

(6)

|w(f(x, 0s.0,5) — VE(f(x B1.,), y)‘ <
ve|VF(x, 05,:) = Vf(x 05 ;)|

< V{|VO'(Z e~ij95,t) Z €jXj—

J€E JE
N(x) N(x)
VO'(Z e.ijGSi,t) Z e.ij‘
Jje Jje
N(x) N(x)
< V[(' Z e.ijl))VO'(Z e.ijes’t) - VO'(Z e.ijesi’t)|
J€ Jje JjE
N(x) N(x) N(x)

Since the activation function is Lipschitz continuous and smooth,

and plugging | Z e.jx]-| < gy, we get,

N
< vmrga)(Z e‘ijes,t) - (Z e‘jxjeSi,t)|
N N
< vevaga (|) esxl) 105, = 051
e
N

< V{;vggilAGtI

This completes the proof of Lemma 1.

Note: Without the o—smooth assumption, it would not be possible
to derive the above bound in terms of |AO,| which is necessary
for showing the uniform stability. Unfortunately, this constraint
excludes RELU activation from our analysis.

Lemma 2. [GCNN Different Sample Loss Stability Bound]
The loss-derivative bound difference of (single-layer) GCNN models
trained with SGD algorithm for T iterations on two training datasets
S and S* respectively, with respect to the different samples is given by,

‘W(f(xz', 05,0).yi) — VE(f(x}, 0i 1), y§)| < 2V g).

1544

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Proof: Again using Equation (6) and the fact that the loss & activa-
tion function is Lipschitz continuous and smooth, and for any a, b,
la —b| < |a| + |b|, we have,

[e(£(x 85,0.9) - VE(FK, 050..9)| <

ve|Vf(x 05,0) = VF(x, 01 ,)|

< V(z‘VO‘(Z e.ijGS,t) Z €.jXj — Vo‘(Z e'jx;‘esi,t) Z e_jx;‘

je JE€ J€ Je
Nx) Nx) NE) NE)
< Vg‘Va(Z e.jxjes,t) Z e-ij‘+
JE j€
V[‘VO'(Z e.jx;-GSi’t) Z e-jX;-|
Jj€ je
N) N

Using the fact that the first order derivative is bounded,
< 2veasg)

This completes the proof of Lemma 2.

Summing over all iteration steps, and taking expectations over
all possible sample sequences Z, Z’ from S and S, we have

Lemma 3. [GCNN SGD Stability Bound] Let the loss & acti-
vation functions be Lipschitz-continuous and smooth. Let ©s T and
Og: T denote the graph filter parameters of (single-layer) GCNN mod-
els trained using SGD for T iterations on two training datasets S and
Si, respectively. Then the expected difference in the filter parameters
is bounded by,

ESGD”ABS,T - 95i77|] < 277\/(,’%&1

T
-1
Z (1+ r]ngggﬁ)
t=1
Proof: From Equation (5) and taking into account the probabilities
of the two scenarios considered in Lemma 1 and Lemma 2 at step ¢,
we have,

Esep [|A9t+1|] < (1 - %)ESGD[(GS,t - UVf(f(X, 05,1 y))_
(0.0 = 1920705 01,0090 || + (- JEscn (05,1~

UVf(f(Xl, 0s,1), yl)) - (esi,t - UVf(f(Xua eSi,t)’ y”))H

< (1 - %)ESGD“Ath] + (1 - %)UESGD[VI(f(x 05,),y)=
V((f(x, GS,—’,), y)H + ()ESGD[lAet|]+

1
1 m (8)
(2

VE(f(x05.0.4) = V(050)5)|
= Esep [|Aet|]+

(1= - B [VE(70x 05,01,) = V(£ 8.0, 9)|

(=) B [(Ve(r6 05.00.4)) = (Ve s 051,06

Research Track Paper

Plugging the bounds in Lemma 1 and Lemma 2 into Equation (8),
we have,

1
Esep HAet+1|] < ESGD[|Aet|] + (1 - ;)UVZVJgiESGD[let”

1
+ (—)ZUVgaggA
m

1 2nvea

= (14 (1= —)nvevog] |EscollOc]) + 2B
2nvea,

< (14 vevogd EscnllO] + 0B,

Lastly, solving the Esgp [lAGt |] first order recursion yields,

T
ESGD”AGT'] = 2UV€+€A Z (1+ qvaogi)t71
t=1

This completes the proof of Lemma 3.

Bound on g;: We now bound g, in terms of the largest absolute
eigenvalue of the graph filter matrix g(L). We first note that at each
node x, the ego-graph Gx ego-graph can be represented as a sub-
matrix of g(L). Let gx (L) € R9%9 be the submatrix of g(L) whose row
and column indices are from the set {j € A/(x)}. The ego-graph size
is ¢ = [N (x)|. We use hy € RY to denote the graph signals (node
features) on the ego-graph Gx. Without loss of generality, we will
assume that node x is represented by index 0 in Gx. Thus, we can
compute 3’ e A/(x) €-j%j = [9x(L)hx]o, a scalar value. Here [-]o € R
represents the value of a vector at index 0, i.e., corresponding to
node x. Then the following holds (assuming the graph signals are
normalized, i.e., ||hx|2 = 1),

lgx(Lhxlo| < llgx@hxll < [lllgx@ll2llbxllz = AGT* (9)

where the second inequality follows from Cauchy-Schwarz In-
equality, and [|M|lz = sup|,,=1 [IMxll2 = omax(M) is the matrix
operator norm and o4 (M) is the largest singular value of matrix
M. For a normal matrix M (such as a symmetric graph filter g(L)),
Omax (M) = max |A(M)], the largest absolute eigenvalue of M.

Lemma 4. [Ego-Graph Eigenvalue Bound]LetG = (V, E) be
a (un)directed graph with (either symmetric or non-negative) weighted
adjacency matrix g(L) and A5** be the maximum absolute eigenvalue
of g(L). Let Gx be the ego-graph of a node x € V with corresponding
maximum absolute eigenvalue A5*. Then the following eigenvalue
(singular value) bound holds Vx,

Argjx <A

Proof: Notice that gx(L) is the adjacency matrix of Gx which
also happens to be the principal submatrix of g(L). As a result,
above bound holds from the eigenvalue interlacing theorem for
normal/Hermitian matrices and their principal submatrices [20, 28].

Finally, plugging g < AZ* and Lemma 3 into Equation (3)
yields the following remaining result,

2Bm < ap A Esep|[|00]]

napaeve(AR)?2 ST (1 + pvpve (ABax2)

Pm

Brm VT > 1

IA

%O ((ArénaX)ZT)

1545

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

This completes the full proof of Theorem 3.

4 REVISITING GRAPH CONVOLUTIONAL
NEURAL NETWORK ARCHITECTURE

In this section, we discuss the implication of our results in designing
graph convolution filters and revisit the importance of employing
batch-normalization layers in GCNN network.

Unnormalized Graph Filters: One of the most popular graph
convolution filters is g(L) = A + I [46]. The eigen spectrum of the
unnormalized A is bounded by O(N). This is concerning as now g,
is bounded by O(N) and as m becomes close to N, i, tend towards
O(N°) complexity with ¢ > 0. As a result, the generalization gap
of such a GCNN model is not guaranteed to converge.

Normalized Graph Filters: Numerical instabilities with the un-
normalized adjacency matrix have already been suspected in [25].
Therefore, the symmetric normalized graph filter has been adopted:
g(L) = D~'/2AD"1/2 4 I . The eigen spectrum of D~1/2AD1/2 s
bounded between [—1, 1]. As a result, such a GCNN model is uni-
formly stable (assuming that the graph features are also normalized
appropriately, e.g., ||x|l2 = 1).

Random Walk Graph Filters: Another graph filter that has been
widely used is based on random walks: g(L) = D™'A + I [35]. The
eigenvalues of D™'A are spread out in the interval [0, 2] and thus
such a GCNN model is uniformly stable.

Importance of Batch-Normalization in GCNN: Recall that g, =

sup |2 jeN(x) €j%j| and notice that in Equation (9), we assume
X

that the graph signals are normalized in order to bound g . This
can easily be accomplished by normalizing features during data
pre-processing phase for a single layer GCNN. However, for a multi-
layer GCNN, the intermediate feature outputs are not guaranteed
to be normalized. Thus to ensure stability, it is crucial to employ
batch-normalization layers in GCNN models. This has already been
reported in [46] as an important factor for keeping the GCNN
outputs stable.

5 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the effect of graph filters on
the GCNN stability bounds using four different GCNN filters. We
employ three citation network datasets: Citeseer, Cora and Pubmed
(see [25] for details about the datasets).

Experimental Setup: We extract 1-hop ego-graphs of each node
in a given dataset to create samples and normalize the node graph
features such that ||x|| = 1 in the data pre-processing step. We
run the SGD algorithm with a fixed learning rate n = 1 with the
batch size equal to 1 for 100 epochs on all datasets. We employ ELU
(set @ = 1) as the activation function and cross-entropy as the loss
function.

Research Track Paper

—A+I
—A+1
o D PAD2 4T *B_KAPI V41
o D'A+I o
T 1.5 © o (1 Ama)A +1
(0] o (1/Amax)A + 1 o |7 (1/Amax) A +
c /\.’_‘—““ c F
S g |~
g —— g |
s | s |
o S o5
[0 [0 f
&os 3]
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

a. Generlization Gap on Citeseer Dataset b. Generlization

Gap on Cora Dataset

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

-
o

©

Generalization Gap
(o)}

—A+I

——D Y2AD V2 +1
DA +I

—o—(1/Amax) A + 1

20 40 60 80 100

Epochs

c. Generlization Gap on Pubmed Dataset

Figure 1. The above figures show the generalziation gap for three datasets. The generlization gap is measured with respect to the loss function,
i.e., |(training error — test error)|. In this experiment, the cross-entropy loss is used.

60 35 200
© —A+I © —A+I © —A+I
€ 50 —— D 2AD 2 41 2 30 —— D V2AD 2 41 2 — D 2AD 2 41
g DA +1 2 | DA +I 2 150 DA +1
£ 40 e (1 Amar)A + 1 25| e (1 Amax) A + 1 £ e (1 Amax)A + 1
a a || a
€ £ 20| =
530 5 | 5 100
z Z 15| z
£ 20 2 2
Q [} Q
£ g 1o g 50
5" 5 5 N :
© & © ©
a O ‘* o

0t 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs Epochs

a. Parameter L2—Norm Diff on Citeseer b. Parameter L2—Norm Diff on Cora c. Parameter L2—Norm Diff on Pubmed

Figure 2. The above figures show the divergence in weight parameters of a single layer GCNN measured using L2—norm on the three datasets.

We surgically alter one sample point at index i = 0 in the training set S to generate S’ and run the SGD algorithm.

Measuring Generalization Gap: In this experiment, we quantita-
tively measure the generalization gap defined as the absolute differ-
ence between the training and test errors. From Figure 1, it is clear
that the unnormalized graph convolution filters such as g(L) = A+I
show a significantly higher generalization gap than the normal-
ized ones such as D™1/2AD"1/2 or random walk g(L)=D'A+1
based graph filters. The results hold consistently across the three
datasets. We note that the generalization gap becomes constant
after a certain number of iterations. While this phenomenon is not
reflected in our bounds, it can plausibly be explained by considering
the variable bounding parameters (as a function of SGD iterations).
This hints at the pessimistic nature of our bounds.

Measuring GCNN Learned Filter-Parameters Stability Based
On SGD Optimizer: In this experiment, we evaluate the difference
between learned weight parameters of two single layer GCNN
models trained on datasets S and S* which differ precisely in one
sample point. We generate S’ by surgically altering one sample
point in S at the node index i = 0. For this experiment, we initialize
the GCNN models on both datasets with the same parameters and
random seeds, and then run the SGD algorithm. After each epoch,
we measure the L2—norm difference between the weight parameters
of the respective models. From Figure 2, it is evident that for the
unnormalized graph convolution filters, the weight parameters

tend to deviate by a large amount and therefore the network is less
stable. While for the normalized graph filters the norm difference
converges quickly to a fixed value. These empirical observations
are reinforced by our stability bounds. However, the decreasing
trend in the norm difference after a certain number of iterations
before convergence, remains unexplained, due to the pessimistic
nature of our bounds.

6 CONCLUSION AND FUTURE WORK

We have taken the first steps towards establishing a deeper theo-
retical understanding of GCNN models by analyzing their stability
and establishing their generalization guarantees. More specifically,
we have shown that the algorithmic stability of GCNN models de-
pends upon the largest absolute eigenvalue of graph convolution
filters. To ensure uniform stability and thereby generalization guar-
antees, the largest absolute eigenvalue must be independent of the
graph size. Our results shed new insights on the design of new
& improved graph convolution filters with guaranteed algorith-
mic stability. Furthermore, applying our results to existing GCNN
models, we provide a theoretical justification for the importance of
employing the batch-normalization process in a GCNN architecture.
We have also conducted empirical evaluations based on real world
datasets which support our theoretical findings. To the best of our

1546

Research Track Paper

knowledge, we are the first to study stability bounds on graph learn-
ing in a semi-supervised setting and derive generalization bounds
for GCNN models.

As part of our ongoing and future work, we will extend our
analysis to multi-layer GCNN models. For a multi-layer GCNN, we
need to bound the difference in weights at each layer according to
the back-propagation algorithm. Therefore the main technical chal-
lenge is to study the stability of the full fledged back-propagation
algorithm. Furthermore, we plan to study the stability and general-
ization properties of non-localized convolutional filters designed
based on rational polynomials of the graph Laplacian. We also
plan to generalize our analysis framework beyond semi-supervised
learning to provide generalization guarantees in learning settings
where multiple graphs are present, e.g., for graph classification.

7 ACKNOWLEDGMENTS

The research was supported in part by US DoD DTRA grant HDTRA1
14-1-0040, and NSF grants CNS 1618339, CNS 1617729, CNS 1814322
and CNS183677.

REFERENCES

[1] Shivani Agarwal and Partha Niyogi. 2005. Stability and generalization of bipartite
ranking algorithms. In International Conference on Computational Learning Theory.
Springer, 32-47.

Shivani Agarwal and Partha Niyogi. 2009. Generalization bounds for ranking
algorithms via algorithmic stability. Journal of Machine Learning Research 10,
Feb (2009), 441-474.

Rie K Ando and Tong Zhang. 2007. Learning on graph with Laplacian regulariza-
tion. In Advances in neural information processing systems. 25-32.

James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.
In Advances in Neural Information Processing Systems. 1993-2001.

Mikhail Belkin, Irina Matveeva, and Partha Niyogi. 2004. Regularization and semi-
supervised learning on large graphs. In International Conference on Computational
Learning Theory. Springer, 624-638.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
1989. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM
(JACM) 36, 4 (1989), 929-965.

Olivier Bousquet and André Elisseeff. 2002. Stability and generalization. Journal
of Machine Learning Research 2, Mar (2002), 499-526.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[9] Nadav Cohen and Amnon Shashua. 2016. Convolutional rectifier networks
as generalized tensor decompositions. In International Conference on Machine
Learning. 955-963.

Corinna Cortes, Mehryar Mohri, Dmitry Pechyony, and Ashish Rastogi. 2008.
Stability of transductive regression algorithms. In Proceedings of the 25th interna-
tional conference on Machine learning. ACM, 176-183.

Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent vari-
able models for structured data. In International Conference on Machine Learning.
2702-2711.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems. 3837-3845.

Olivier Delalleau and Yoshua Bengio. 2011. Shallow vs. deep sum-product net-
works. In Advances in Neural Information Processing Systems. 666—674.

Stefan Dernbach, Arman Mohseni-Kabir, Siddharth Pal, and Don Towsley. 2018.
Quantum Walk Neural Networks for Graph-Structured Data. In International
Workshop on Complex Networks and their Applications. Springer, 182-193.
David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. In Advances in neural
information processing systems. 2224-2232.

Ronen Eldan and Ohad Shamir. 2016. The power of depth for feedforward neural
networks. In Conference on Learning Theory. 907-940.

Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. 2005. Stability
of randomized learning algorithms. Journal of Machine Learning Research 6, Jan
(2005), 55-79.

Alberto Garcia-Duran and Mathias Niepert. 2017. Learning Graph Representa-
tions with Embedding Propagation. arXiv preprint arXiv:1710.03059 (2017).

(2]

[10]

(11

[12]

(13

[14]

[16

[17]

[18

1547

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

Willem H Haemers. 1995. Interlacing eigenvalues and graphs. Linear Algebra
and its applications 226 (1995), 593-616.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024-1034.

Moritz Hardt, Benjamin Recht, and Yoram Singer. 2015. Train faster, generalize
better: Stability of stochastic gradient descent. arXiv preprint arXiv:1509.01240
(2015).

David Haussler. 1990. Probably approximately correct learning. University of
California, Santa Cruz, Computer Research Laboratory.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. 2017. Generalization
in deep learning. arXiv preprint arXiv:1710.05468 (2017).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu
Trivedi. 2018. Covariant Compositional Networks For Learning Graphs. arXiv
preprint arXiv:1801.02144 (2018).

Thomas J Laffey and Helena Smigoc. 2008. Spectra of principal submatrices of
nonnegative matrices. Linear Algebra Appl. 428, 1 (2008), 230-238.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2017. Deriving neural
architectures from sequence and graph kernels. arXiv preprint arXiv:1705.09037
(2017).

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive Graph
Convolutional Neural Networks. arXiv preprint arXiv:1801.03226 (2018).
Hrushikesh N Mhaskar and Tomaso Poggio. 2016. Deep vs. shallow networks:
An approximation theory perspective. Analysis and Applications 14, 06 (2016),
829-848.

Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. 2006. Learning
theory: stability is sufficient for generalization and necessary and sufficient
for consistency of empirical risk minimization. Advances in Computational
Mathematics 25, 1-3 (2006), 161-193.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro.
2017. Exploring generalization in deep learning. In Advances in Neural Information
Processing Systems. 5947-5956.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In Proceedings of the 33rd annual
international conference on machine learning. ACM.

Gilles Puy, Srdan Kitic, and Patrick Pérez. 2017. Unifying local and non-local
signal processing with graph CNNs. arXiv preprint arXiv:1702.07759 (2017).
Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 2017. 3d
graph neural networks for rgbd semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 5199-5208.
Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593-607.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine 30, 3 (2013), 83-98.

Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, and Daniel Gildea.
2018. Exploring graph-structured passage representation for multi-hop reading
comprehension with graph neural networks. arXiv preprint arXiv:1809.02040
(2018).

Felipe Petroski Such, Shagan Sah, Miguel Alexander Dominguez, Suhas Pillai,
Chao Zhang, Andrew Michael, Nathan D Cahill, and Raymond Ptucha. 2017.
Robust spatial filtering with graph convolutional neural networks. IEEE Journal
of Selected Topics in Signal Processing 11, 6 (2017), 884-896.

Shiliang Sun, Zakria Hussain, and John Shawe-Taylor. 2014. Manifold-preserving
graph reduction for sparse semi-supervised learning. Neurocomputing 124 (2014),
13-21.

Matus Telgarsky. 2016. Benefits of depth in neural networks. arXiv preprint
arXiv:1602.04485 (2016).

Antoine J-P Tixier, Giannis Nikolentzos, Polykarpos Meladianos, and Michalis
Vazirgiannis. 2018. Graph Classification with 2D Convolutional Neural Networks.
(2018).

Petar Velickovi¢, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

Saurabh Verma and Zhi-Li Zhang. 2018. Graph Capsule Convolutional Neural
Networks. arXiv preprint arXiv:1805.08090 (2018).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks? arXiv preprint arXiv:1810.00826 (2018).

[20

[21]

[22

(23]
[24]

[25

[26

[27]

[28

[29

[30

[31

[33

[34

[35

[36

[37

[38

[39

[40

N
furg

[42

[43

[44

[45

S
&

Research Track Paper

[47] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2016. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530 (2016).

[48] Zhihong Zhang, Dongdong Chen, Jianjia Wang, Lu Bai, and Edwin R Hancock.
2019. Quantum-based subgraph convolutional neural networks. Pattern Recogni-
tion 88 (2019), 38-49.

8 APPENDICES

Proof of Theorem 2: To derive generalization bounds for uniform
stable randomized algorithms, we utilize McDiarmid’s concentra-
tion inequality. Let X be a random variable set and f : X™ — R,
then the inequality is given as,

sup

X155 Xisees

’
|fCGets o Xiy oy Xm) = 1, o X oo Xm)l < ci
XmaX,

= sup Ifs = fsil <ci ,Vi

X15+5Xise s Xm,X;

262

— P(f)-Eslf$)] 2 €) < e T

(10)

We will derive some expressions that would be helpful to com-
pute variables needed for applying McDiarmid’s inequality.
Since the samples are i.i.d., we have

Es[¢(As, z)] =/K(A(zl,..‘,zm),z)p(zl,...,zm)dzl...dzm
(11
=/f(A(zl,..‘,zm),z)p(zl)...p(zm)dzl‘..dzm

Using Equation 11 and renaming the variables, one can show
that

Es[f(As,Zj)] =/f(A(Zl,‘.,Zj,..,Zm),Zj)X

(21, . Zjy o Zm)dzy...d2Z

= / C(A(z1, .., 2j, . Zm), 2)P(21)..p(2))..p(2m)21 ...dZm

/ €(A(zy, .., z;-, o Zm), zli)p(zl)..p(zli)..p(zm)dzl ..dz;-..dzm

/P(Zi)dzi

, , , ,
O(A(z1, 0 24, - Zm), 2;) P21, -, 2is 24 ooy 2)dZ1 .. dZmd;

(
C(A(zy, .., z;-, o Zm), zli)p(zl, - z/i, - zm)dzl..dz;..dzmx
(

I
!

5.2 [((As1.2))]

(12)

Using Equation 12 and f—uniform stability, we obtain

1548

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

ES[EA[R(A)] — Ea[Remp(A)]] = Es[EZ[Ea[{(As. 2)]]]-

m

L3 Es[EaltAs. 2))]
m =
= Es[E=[EAl((As, 2)]]] - Es[EAl((As,2)]

= Eg ./ [Ea[t(As, z)]] - Eg /[Eall(Asi,)]
= Eg /[EAll(As.2;) ~ {(Agi.z)]]

< EAlCAs) A1

<28

(13)

[EA[R(As) - R(Asi)]| = |Ez[Ea[{(As. 2)]] - Ez[Ea[(Agi, 2)]]|
= [E;[Ea[£(As.2)] - Ea[(Agi, 2)]]|
< E-[EA[|€(As, 2)] - Ea[l(Ag:, 2)]]]

< Ez[ﬁ] = Zﬂ
(14)
|EA[Remp(AS)] - Remp(Asi)]| <
= 3 (©alllAs.z)) - fAsiz)D+
m e
|- EALE(As.70) ~ ((Asi, 7)) (15)
m
<26+ %
Let K := R(As) — Remp(As).
Using Equation 14 and Equation 15, we have
[EAIKs] - EalKs:]| = [EAL(R(As) = Remp(As))]
~ Eal(R(A51) = Remp(As) |
< [BAIR(As)] = BalR(As)]| + [EalRemp(As)]
(16)

_EA[Remp(ASi)]‘
<28+(26+ %)
<4p+ M
m

Applying McDiarmid’s concentration inequality,

___2e?
P|EalKs] - Es[Ea[Ks]] = 6) <e mUpTRL?
—_———
5
log%
P|Ea[Ks] < 28 + (4mpB + M) : S1-5
m

This complete the proof of Theorem 2.

	Abstract
	1 Introduction
	2 Related Work
	3 Stability and Generalization Guarantees For GCNNs
	3.1 Graph Convolution Neural Networks
	3.2 Main Result
	3.3 Preliminaries
	3.4 Uniform Stability of GCNN Models

	4 Revisiting Graph Convolutional Neural Network Architecture
	5 Experimental Evaluation
	6 Conclusion and Future Work
	7 Acknowledgments
	References
	8 Appendices

