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ABSTRACT

Inspired by convolutional neural networks on 1D and 2D data, graph
convolutional neural networks (GCNNs) have been developed for
various learning tasks on graph data, and have shown superior
performance on real-world datasets. Despite their success, there
is a dearth of theoretical explorations of GCNN models such as
their generalization properties. In this paper, we take a first step
towards developing a deeper theoretical understanding of GCNN
models by analyzing the stability of single-layer GCNN models and
deriving their generalization guarantees in a semi-supervised graph
learning setting. In particular, we show that the algorithmic stability
of a GCNN model depends upon the largest absolute eigenvalue
of its graph convolution filter. Moreover, to ensure the uniform
stability needed to provide strong generalization guarantees, the
largest absolute eigenvalue must be independent of the graph size.
Our results shed new insights on the design of new & improved
graph convolution filters with guaranteed algorithmic stability.
We evaluate the generalization gap and stability on various real-
world graph datasets and show that the empirical results indeed
support our theoretical findings. To the best of our knowledge, we
are the first to study stability bounds on graph learning in a semi-
supervised setting and derive generalization bounds for GCNN
models.
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1 INTRODUCTION

Building upon the huge success of deep learning in computer vi-
sion (CV) and natural language processing (NLP), Graph Convo-
lutional Neural Networks (GCNNs) [25] have recently been de-
veloped for tackling various learning tasks on graph-structured
datasets. These models have shown superior performance on real-
world datasets from various domains such as node labelling on
social networks [26], link prediction in knowledge graphs [37] and
molecular graph classification in quantum chemistry [19] . Due
to the versatility of graph-structured data representation, GCNN
models have been incorporated in many diverse applications, e.g.,
question-answer systems [39] in NLP and/or image semantic seg-
mentation [36] in CV. While various versions of GCCN models
have been proposed, there is a dearth of theoretical explorations of
GCNN models ([46] is one of few exceptions which explores the
discriminant power of GCNN models)Ðespecially, in terms of their
generalization properties and (algorithmic) stability. The latter is of
particular import, as the stability of a learning algorithm plays a
crucial role in generalization.

The generalization of a learning algorithm can be explored in
several ways. One of the earliest and most popular approach is
VapnikśChervonenkis (VC)-theory [6] which establishes gener-
alization errors in terms VC-dimensions of a learning algorithm.
Unfortunately, VC-theory is not applicable for learning algorithms
with unbounded VC-dimensions such as neural networks. Another
way to show generalization is to perform the Probably Approx-
imately Correct (PAC) [23] analysis, which is generally difficult
to do in practice. The third approach, which we adopt, relies on
deriving stability bounds of a learning algorithm, often known as
algorithmic stability [7]. The idea behind algorithmic stability is to
understand how the learning function changes with small changes
in the input data. Over the past decade, several definitions of al-
gorithmic stability have been developed [1, 2, 7, 17, 32], including
uniform stability, hypothesis stability, pointwise hypothesis stabil-
ity, error stability and cross-validation stability, each yielding either
a tight or loose bound on the generalization errors. For instance,
learning algorithm based on Tikhonov regularization satisfy the
uniform stability criterion (the strongest stability condition among
all existing forms of stability), and thus are generalizable.

In this paper, we take a first step towards developing a deeper the-
oretical understanding of GCNN models by analyzing the (uniform)
stability of GCNN models and thereby deriving their generaliza-
tion guarantees. For simplicity of exposition, we focus on single

layerGCNNmodels in a semi-supervised learning setting. The main
result of this paper is that (single layer) GCNN models with stable

graph convolution filters can satisfy the strong notion of uniform

stability and thus are generalizable. More specifically, we show that
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the stability of a (single layer) GCNN model depends upon the
largest absolute eigenvalue (the eigenvalue with the largest absolute
value) of the graph filter it employs ś or more generally, the largest
singular value if the graph filter is asymmetric ś and that the uni-
form stability criterion is met if the largest absolute eigenvalue (or
singular value) is independent of the graph size, i.e., the number of
nodes in the graph. As a consequence of our analysis, we establish
that (appropriately) normalized graph convolution filters such as
the symmetric normalized graph Laplacian or random walk based
filters are all uniformly stable and thus are generalizable. In con-
trast, graph convolution filters based on the unnormalized graph
Laplacian or adjacency matrix do not enjoy algorithmic stability, as
their largest absolute eigenvalues grow as a function of the graph
size. Empirical evaluations based on real world datasets support our
theoretical findings: the generalization gap and weight parameters
instability in case of unnormalized graph filters are significantly
higher than those of the normalized filters. Our results shed new
insights on the design of new & improved graph convolution filters
with guaranteed algorithmic stability.

We remark that our GCNN generalization bounds obtained from
algorithmic stability are non-asymptotic in nature, i.e., they do not
assume any form of data distribution. Nor do they hinge upon the
complexity of the hypothesis class, unlike the most uniform conver-
gence bounds. We only assume that the activation & loss functions
employed are Lipschitz continuous and smooth functions. These
criteria are readily satisfied by several popular activation functions
such as ELU (holds for α = 1), Sigmoid and/or Tanh. To the best of
our knowledge, we are the first to study stability bounds on graph
learning in a semi-supervised setting and derive generalization
bounds for GCCN models. Our analysis framework remains gen-
eral enough and can be extended to theoretical stability analyses of
GCCN models beyond a semi-supervised learning setting (where
there is a single and fixed underlying graph structure) such as for
the graph classification (where there are multiple graphs).

In summary, the major contributions of our paper are:

• We provide the first generalization bound on single layer
GCNNmodels based on analysis of their algorithmic stability.
We establish that GCNN models which employ graph filters
with bounded eigenvalues that are independent of the graph
size can satisfy the strong notion of uniform stability and
thus are generalizable.

• Consequently, we demonstrate that many existing GCNN
models that employ normalized graph filters satisfy the strong
notion of uniform stability. We also justify the importance
of employing batch-normalization in a GCNN architecture.

• Empirical evaluations of the generalization gap and stability
using real-world datasets support our theoretical findings.

The paper is organized as follows. Section 2 reviews key gen-
eralization results for deep learning as well as regularized graphs
and briefly discusses existing GCNN models. The main result is
presented in Section 3 where we introduce the needed background
and establish the GCNN generalization bounds step by step. In
Section 4, we apply our results to existing graph convolution filters
and GCNN architecture designs. In Section 5 we conduct empirical

studies which complement our theoretical analysis. The paper is
concluded in Section 6 with a brief discussion of future work.

2 RELATEDWORK

Generalization Bounds on Deep Learning: Many theoretical
studies have been devoted to understanding the representational
power of neural networks by analyzing their capability as a univer-
sal function approximator as well as their depth efficiency [9, 13, 16,
31, 42]. In [13] the authors show that the number of hidden units
in a shallow network has to grow exponentially (as opposed to a
linear growth in a deep network) in order to represent the same
function; thus depth yields much more compact representation
of a function than having a wide-breadth. It is shown in [9] that
convolutional neural networks with the ReLU activation function
are universal function approximators with max pooling, but not
with average pooling. The authors of [33] authors explore which
complexity measure is more appropriate for explaining the gener-
alization power of deep learning. The work most closest to ours is
[22] where the authors derive upper bounds on the generalization
errors for stochastic gradient methods. While also utilizing the
notion of uniform stability [7], their analysis is concerned with the
impact of SGD learning rates. More recently, through empirically
evaluations on real-world datasets, it has been argued in [47] that
the traditional measures of model complexity are not sufficient to
explain the generalization ability of neural networks. Likely, in [24]
several open-ended questions are posed regarding the (yet unex-
plained) generalization capability of neural networks, despite their
possible algorithmic instability, non-robustness, and sharp minima.

Generalization Bounds on Regularized Graphs: Another line
of work concerns with generalization bounds on regularized graphs
in transductive settings [3, 5, 10, 41]. Of the most interest to ours
is [5] where the authors provide theoretical guarantees for the gen-
eralization error based on Laplacian regularization, which are also
derived based on the notion of algorithmic stability. Their gener-
alization estimate is inversely proportional to the second smallest
eigenvalue of the graph Laplacian. Unfortunately this estimate may
be not yield desirable guarantee as the second smallest eigenvalue
is dependent on both the graph structure and its size; it is in general
difficult to remove this dependency via normalization. In contrast,
our estimates are directly proportional to the largest absolute eigen-
value (or the largest singular value of an asymmetric graph filter),
and can easily be made independent of the graph size by performing
appropriate Laplacian normalization.

Graph Convolution Neural Networks: Coming from graph sig-
nal processing [38] domain, GCNN is defined as the problem of
learning filter parameters in the graph Fourier transform [8]. Since
then rapid progress has beenmade and GCNNmodel have improved
in many aspects [4, 14, 15, 25, 30, 35, 45]. For instance in [30] pa-
rameterize graph filters using residual Laplacian matrix and in [40]
authors used simply polynomial of adjacency matrix. Random walk
and quantum walk based graph convolutions are also been pro-
posed recently [14, 35, 48]. Similarly, graph convolutional operation
has been generalized with the graph capsule notion in [45]. The
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authors of [21, 44] have also applied graph convolution to large
graphs. Message passing neural networks (MPNNs) are also been
developed [11, 18, 19, 29] which can be viewed as GCNN model
since the notion of graph convolution operation remains the same.
MPNNs can also be break into two step process where edge features
are updated though message passing and then node features are
updates using the information encoded in its nearby edges. This is
similar to Embedding belief propagation message passing algorithm
proposed in [11]. Several attempts have also been made to convert
graph into regular grid structure for straight forwardly applying
standard 2D or 1D CNNs [34, 43]. A very tangential approach was
taken in [27] where authors design covariant neural network based
on group theory for computing graph representation.

3 STABILITY AND GENERALIZATION
GUARANTEES FOR GCNNS

To derive generalization guarantees of GCNNs based on algorithmic
stability analysis, we adopt the strategy devised in [7]. It relies on
bounding the output difference of a loss function due to a single data
point perturbation. As stated earlier, there exist several different
notions of algorithmic stability [7, 32]. In this paper, we focus on
the strong notion of uniform stability (see Definition 1).

3.1 Graph Convolution Neural Networks

Notations: Let G = (V , E,A) be a graph where V is the vertex
set, E the edge set and A the adjacency matrix, with N = |V | the
graph size. We define the standard graph Laplacian L ∈ RN×N as
L = D − A, where D is the degree matrix. We define a graph filter,
д(L) ∈ RN×N as a function of the graph Laplacian L or a normalized
(using D) version of it. Let UΛUT be the eigen decomposition of
L, with Λ = diaд[λi ] the diagonal matrix of L’s eigenvalues. Then

д(L) = Uд(Λ)UT , and its eigenvalues λ
(д)
i = {д(λi ), 1 ≤ i ≤ N }.

We define λmax
G
= maxi {|λ(д)i |}, referred to as the largest absolute

eigenvalue1 of the graph filter д(L). Letm is the number of training
samples depending on N asm ≤ N .

Let X ∈ RN×D be a node feature matrix (D is the input dimen-
sion) and θ ∈ RD be the learning parameters. With a slight abuse
of notation, we will represent both a node (index) in a graphG and
its feature values by x ∈ RD . N (x) denotes a set of the neighbor
indices at most 1−hop distance away from node x (including x).
Here the 1−hop distance neighbors are determined using the д(L)
filter matrix. Finally,Gx represents the ego-graph extracted at node
x from G.

Single Layer GCNN (Full Graph View): Output function of a
single layer GCNN model ś on all graph nodes together ś can be
written in a compact matrix form as follows,

f (X,θ) = σ
(

д(L)Xθ
)

(1)

where д(L) is a graph filter. Some commonly used graph filters are
a linear function of A as д(L) = A + I [46] (here I is the identity
matrix) or a Chebyshev polynomial of L [12].

1This definition is valid for a symmetric graph filter д(L), or the matrix is normal.
More generally, λmax

G
is defined as the largest singular value of д(L).

Single Layer GCNN (Ego-Graph View): We will work with the
notion of ego-graph for each node (extracted fromG) as it contains
the complete information needed for computing the output of a
single layer GCNN model. We can re-write the Equation (1) for a
single node prediction as,

f (x,θ) = σ
(∑

j ∈
N (x)

e ·jxTj θ
)

(2)

where e ·j ∈ R = [д(L)]·j is the weighted edge (value) between node
x and its neighbor xj , j ∈ N (x) if and only e ·j , 0. The size of
an ego-graph depends upon д(L). We assume that the filters are
localized to the 1−hop neighbors, but our analysis is applicable to
k−hop neighbors. For further notational clarity, we will consider

the case D = 1, and thus f (x,θS ) = σ
(
∑

j ∈N (x) e ·jxjθS
)

. Our

analysis holds for the general D−dimensional case.

3.2 Main Result

The main result of the paper is stated in Theorem 1, which provides
a bound on the generalization gap for single layer GCNN models.
This gap is defined as the difference between the generalization
errorR(·) and empirical errorRemp (·) (see definitions in Section 3.3).

Theorem 1. [GCNN Generalization Gap] Let AS be a single

layer GCNN model equipped with the graph convolution filter д(L),
and trained on a dataset S using the SGD algorithm for T iterations.

Let the loss & activation functions be Lipschitz-continuous and smooth.

Then the following expected generalization gap holds with probability

at least 1 − δ , with δ ∈ (0, 1),

Esgd[R(AS ) − Remp (AS )] ≤
1

m
O

(

(λmax
G )2T

)

+

(

O
(

(λmax
G )2T

)

+M
)

√

log 1
δ

2m

where the expectation Esgd is taken over the randomness inherent in

SGD,m is the number of training samples andM a constant depending

on the loss function.

Remarks: Theorem 1 establishes a key connection between the
generalization gap and the graph filter eigenvalues. A GCNNmodel
is uniformly stable if the bound converges to zero asm → ∞. In
particular, we see that if λmax

G
is independent of the graph size,

the generalization gap decays at the rate of O( 1√
m
), yielding the

tightest bound possible. Theorem 1 sheds light on the design of
stable graph filters with generalization guarantees.

Proof Strategy: We need to tackle several technical challenges in
order to obtain the generalization bound in Theorem 1.

(1) Analyzing GCNN Stability w.r.t. Graph Convolution:
We analyze the stability of a graph convolution function
under the single data perturbation. For this purpose, we sep-
arately bound the difference on weight parameters from the
graph convolution operation in the GCNN output function.

(2) Analyzing GCNN Stability w.r.t. SGD algorithm: GC-
NNs employ the randomized stochastic gradient descent al-
gorithm (SGD) for optimizing the weight parameters. Thus,
we need to bound the difference in the expected value over
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the learned weight parameters under single data perturba-
tion and establish stability bounds. For this, we analyze the
uniform stability of SGD in the context of GCNNs. We adopt
the same strategy as in [22] to obtain uniform stability of
GCNN models, but with fewer assumptions compared with
the general case [22].

3.3 Preliminaries

Basic Setup: Let X and Y be a a subset of a Hilbert space and
define Z = X × Y . We define X as the input space and Y as
the output space. Let x ∈ X , y ∈ Y ⊂ R and S be a training set
S = {z1 = (x1,y1), z2 = (x2,y2), ..., zm = (xm,ym )}. We introduce
two more notations below:

Removing ith data point in the set S is represented as,

S\i = {z1, ...., zi−1, zi+1, ....., zm }
Replacing the ith data point in S by z

′
i is represented as,

Si = {z1, ...., zi−1, z
′
i , zi+1, ....., zm }

General Data Sampling Process: Let D denote an unknown dis-
tribution fromwhich {z1, ...., zm } data points are sampled to form a
training set S . Throughout the paper, we assume all samples (includ-
ing the replacement sample) are i.i.d. unless mentioned otherwise.
Let ES [f ] denote the expectation of the function f whenm samples
are drawn from D to form the training set S . Likewise, let Ez [f ]
denote the expectation of the function f when z is sampled accord-
ing to D.

Graph Node Sampling Process: At first it may not be clear on
how to describe the sampling procedure of nodes from a graph G
in the context of GCNNs for performing semi-supervised learning.
For our purpose, we consider ego-graphs formed by the 1−hops
neighbors at each node as a single data point. This ego-graph is
necessary and sufficient to compute the single layer GCNN output
as shown in Equation (2). We assume node data points are sampled
in an i.i.d. fashion by first choosing a node x and then extracting
its neighbors from G to form an ego-graph.

Generalization Error: Let AS be a learning algorithm trained on
dataset S .AS is defined as a function from Zm to (Y)X . For GCNNs,
we set AS = f (x,θS ). Then generalization error or risk R(AS ) with
respect to a loss function ℓ : Zm × Z → R is defined as,

R(AS ) := Ez [ℓ(AS , z)] =
∫

ℓ(AS , z)p(z)dz.

Empirical Error: Empirical risk Remp (AS ) is defined as,

Remp (AS ) :=
1

m

m∑

j=1

ℓ(AS , zj ).

Generalization Gap: When AS is a randomized algorithm, we
consider the expected generalization gap as shown below,

ϵgen := EA[R(AS ) − Remp (AS )].
Here the expectation EA is taken over the inherent randomness
of AS . For instance, most learning algorithms employ Stochastic

Gradient descent (SGD) to learn the weight parameters. SGD in-
troduces randomness due to the random order it uses to choose
samples for batch processing. In our analysis, we only consider ran-
domness in AS due to SGD and ignore the randomness introduced
by parameter initialization. Hence, we will replace EA with Esgd.

Uniform Stability of Randomized Algorithm: For a random-
ized algorithm, uniform stability is defined as follows,

Definition 1. [Uniform Stability] A randomized learning al-

gorithm AS is βm−uniformly stable with respect to a loss function ℓ,

if it satisfies,

sup
S ,z

|EA[ℓ(AS , z)] − EA[ℓ(AS \i , z)]| ≤ βm

For our convenience, we will work with the following definition
of uniform stability,

sup
S ,z

|EA[ℓ(AS , z)] − EA[ℓ(AS i , z)]| ≤ 2βm

which follows immediately from the fact that,

sup
S ,z

|EA[ℓ(AS , z)] − EA[ℓ(AS i , z)]| ≤
(

sup
S ,z

|EA[ℓ(AS , z)]−

EA[ℓ(AS \i , z)]|
)

+

(

sup
S ,z

|EA[ℓ(AS i , z)] − EA[ℓ(AS \i , z)]|
)

Remarks: Uniform stability imposes an upper bound on the differ-
ence in losses due to a removal (or change) of a single data point
from the set (of sizem) for all possible combinations of S, z. Here,
βm is a function ofm (the number of training samples). Note that
there is a subtle difference between Definition 1 above and the
uniform stability of randomized algorithms defined in [17] (see Def-
inition 13 in [17]). The authors in [17] are concerned with random
elements associated with the cost function such as those induced
by bootstrapping, bagging or initialization process. However, we
focus on the randomness due to the learning procedure, i.e., SGD.

Stability Guarantees: A randomized learning algorithm with uni-
form stability yields the following bound on generalization gap:

Theorem 2. [Stability Guarantees] A uniform stable random-

ized algorithm (AS , βm ) with a bounded loss function 0 ≤ ℓ(AS , z) ≤
M , satisfies following generalization bound with probability at-least

1 − δ , over the random draw of S ,z with δ ∈ (0, 1),

EA[R(AS ) − Remp (AS )] ≤ 2βm +
(

4mβm +M
)

√

log 1
δ

2m
.

Proof: The proof for Theorem 2 mirrors that of Theorem 12 (shown
in [7] for deterministic learning algorithms). For the sake of com-
pleteness, we include the proof in Appendix based on our definition
of uniform stability := sup

S ,z
|EA[ℓ(AS , z)] − EA[ℓ(AS i , z)]| ≤ 2βm .

Remarks: The generalization bound is meaningful if the bound
converges to 0 asm → ∞. This occurs when βm decays faster than
O( 1√

m
); otherwise the generalization gap does not approach to

zero asm → ∞. Furthermore, generalization gap produces tightest
bounds when βm decays at O( 1

m ) which is the most stable state
possible for a learning algorithm.
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σ−Lipschitz Continuous and Smooth Activation Function:
Our bounds hold for all activation functions which are Lipschitz-
continuous and smooth. An activation function σ (x) is Lipschitz-
continuous if |∇σ (x)| ≤ ασ , or equivalently, |σ (x)−σ (y)| ≤ ασ |x −
y |. We further require σ (x) to be smooth, namely, |∇σ (x)−∇σ (y)| ≤
νσ |x −y |. This assumption is more strict but necessary for establish-
ing the strong notion of uniform stability. Some common activation
functions satisfying the above conditions are ELU (with α = 1),
Sigmoid, and Tanh.
ℓ−Lipschitz Continuous and Smooth Loss Function: We also
assume that the loss function is Lipschitz-continuous and smooth,

�
�ℓ
(

f (·),y
)

− ℓ
(

f
′(·),y

) �
� ≤ αℓ

�
�f (·) − f

′(·))
�
�,

and
�
�∇ℓ

(

f (·),y
)

− ∇ℓ
(

f
′(·),y

) �
� ≤ νℓ

�
�∇f (·) − ∇f

′(·)
�
�.

Unlike in [22], we define Lipschitz-continuity with respect to the
function argument rather than the weight parameters, a relatively
weak assumption.

3.4 Uniform Stability of GCNN Models

The crux of our main result relies on showing that GCNN models
are uniformly stable as stated in Theorem 3 below.

Theorem 3. [GCNN Uniform Stability] Let the loss & acti-

vation be Lipschitz-continuous and smooth functions. Then a single

layer GCNN model trained using the SGD algorithm for T iterations

is βm−uniformly stable, where

βm ≤
(

ηαℓασνℓ(λmax
G )2

T∑

t=1

(

1 + ηνℓνσ (λmax
G )2

)t−1
)

/m.

Remarks: Plugging the bound on βm in Theorem 2 yields the main
result of our paper.

Before we proceed to prove this theorem, we first explain what
is meant by training a single layer GCNN using SGD on datasets
S and Si which differ in one data point, following the same line
of reasoning as in [22]. Let Z = {z1, . . . , zt , . . . , zT } be a sequence
of samples, where zt is an i.i.d. sample drawn from S at the t th

iteration of SGD during a training run of the GCCN2. Training
the same GCCN using SGD on Si means that we supply the same
sample sequence to the GCCN except that if zt = (xi ,yi ) for some
t (1 ≤ t ≤ T ), we replace it with z

′
t = (x′i ,y

′
i ), where i is the (node)

index at which S and Si differ. We denote this sample sequence by
Z ′. Let {θS ,0 , θS ,1 , . . . , θS ,T } and {θS i ,0, θS i ,1 , . . . , θS i ,T } de-
note the corresponding sequences of the weight parameters learned
by running SGD on S and Si , respectively. Since the parameter ini-
tialization is kept same, θS ,0 = θS i ,0. In addition, if k is the first
time that the sample sequences Z and Z ′ differ, then θS ,t = θS i ,t

at each step t before k , and at the kth and subsequent steps, θS ,t
and θS i ,t diverge. The key in establishing the uniform stability of a
GCNN model is to bound the difference in losses when training the
GCNN using SGD on S vs. Si . As stated earlier in the proof strategy,
we proceed in two steps.

2 One way to generate the sample sequence is to choose a node index it uniformly at
random from the set {1, . . . ,m } at each step t . Alternatively, one can first choose a
random permutation of {1, . . . ,m } and then process the samples accordingly. Our
analysis holds for both cases.

Proof Part I (Single Layer GCNN Bound): We first bound the
expected loss by separating the factors due to the graph convolution
operation vs. the expected difference in the filter weight parameters
learned via SGD on two datasets S and Si .

Let θS and θS i represent the final GCNN filter weights learned
on training set S and Si respectively. Define ∆θ = θS − θS i . Using
the facts that the loss are Lipschitz continuous and also |E[x]| ≤
E[|x |], we have,

|Esgd[ℓ(AS ,y) − ℓ(AS i ,y)]| ≤ αℓEsgd[| f (x,θS ) − f (x,θS i )|]

≤ αℓEsgd

[�
�
�σ

(∑

j ∈
N (x)

e ·jxjθS
)

− σ
(∑

j ∈
N (x)

e ·jxjθS i
)�
�
�

]

Since activation function is also σ−Lipschitz continuous,

≤ αℓEsgd

[�
�
�

∑

j ∈
N (x)

e ·jxjθS −
∑

j ∈
N (x)

e ·jxjθS i
�
�
�

]

≤ αℓEsgd

[�
�
�

∑

j ∈
N (x)

e ·jxj (θS − θS i )
�
�
�

]

≤ αℓEsgd

[�
�
�

∑

j ∈
N (x)

(

e ·jxj
)
�
�
�

(�
�θS − θS i

�
�
)
]

≤ αℓ
�
�

∑

j ∈
N (x)

(

e ·jxj
) �
�
(

Esgd
[�
�∆θ

�
�
] )

≤ αℓgλEsgd
[�
�∆θ

�
�
]

(3)

where gλ is defined as gλ := sup
x

�
�
�

∑

j ∈N (x) e ·jxj
�
�
�. Wewill bound

gλ in terms of the largest absolute eigenvalue of the graph con-
volution filter д(L) later. Note that

∑

j ∈N (x) e ·jxj is nothing but
a graph convolution operation. As such, reducing gλ will be the
contributing factor in improving the generalization performance.

Proof Part II (SGD Based Bounds For GCNN Weights): What
remains is to bound Esgd[|∆θ|] due to the randomness inherent in
SGD. This is proved through a series of three lemmas. We first note
that on a given training set S , a GCNN minimizes the following
objective function,

min
θ

L
(

f (x,θS ),y
)

=

1

m

m∑

i=1

ℓ
(

f (x,θS ),yi
)

(4)

For this, at each iteration t , SGD performs the following update:

θS ,t+1 = θS ,t − η∇ℓ
(

f (xit ,θS ,t ),yit
)

(5)

where η > 0 is the learning rate.
Given two sequences of the weight parameters, {θS ,0 , θS ,1

, . . . , θS ,T } and {θS i ,0, θS i ,1 , . . . , θS i ,T }, learned by the GCCN

running SGD on S and Si , respectively, we first find a bound on
∆θt := |θS ,t − θS i ,t | at each iteration step t of SGD.

There are two scenarios to consider 1) At step t , SGD picks
a sample zt = (x,y) which is identical in Z and Z ′, and occurs
with probability (m − 1)/m. From Equation (5), we have |∆θt+1 | ≤
|∆θt | + η |∇ℓ

(

f (x,θS ,t ),y
)

− ℓ
(

f (x,θS ,t ),y
)

|. We bound this term
in Lemma 1 below 2) At step t , SGD picks the only samples that
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Z and Z ′ differ, zt = (xi ,yi ) and z′t = (x′i ,y
′
i ) which occurs with

probability 1/m. Then |∆θt+1 | ≤ |∆θt | + η |∇ℓ
(

f (xi ,θS ,t ),yi
)

−
ℓ
(

f (x′i ,θS ,t ),y
′
i

)

|. We bound the second term in Lemma 2 below.

Lemma 1. [GCNN Same Sample Loss Stability Bound] The

loss-derivative bound difference of (single-layer) GCNNmodels trained

with SGD algorithm for T iterations on two training datasets S and

Si respectively, with respect to the same sample is given by,
�
�
�∇ℓ

(

f (x,θS ,t ),y
)

− ∇ℓ
(

f (x,θS i ,t ),y
)
�
�
� ≤ νℓνσ g

2
λ
|∆θt |.

Proof: The first order derivative of a single-layer the GCNN output
function, f (x,θ) = σ (∑j ∈N e ·jxjθ), is given by,

∂ f (x,θ)
∂θ

= σ ′
(∑

j ∈
N (x)

e ·jxjθ
) ∑

j ∈
N (x)

e ·jxj , (6)

where ∇σ (·) is the first order derivative of the activation function.
Using Equation (6) and the fact that the loss function is Lipschitz

continuous and smooth, we have,

�
�
�∇ℓ

(

f (x,θS ,t ),y
)

− ∇ℓ
(

f (x,θS i ,t ),y
)
�
�
� ≤

νℓ
�
�∇f (x,θS ,t ) − ∇f (x,θS i ,t )

�
�

≤ νℓ

�
�
�∇σ

(∑

j ∈
N (x)

e ·jxjθS ,t
) ∑

j ∈
N (x)

e ·jxj−

∇σ
(∑

j ∈
N (x)

e ·jxjθS i ,t
) ∑

j ∈
N (x)

e ·jxj
�
�
�

≤ νℓ

(�
�

∑

j ∈
N (x)

e ·jxj
�
�

) �
�
�∇σ

(∑

j ∈
N (x)

e ·jxjθS ,t
)

− ∇σ
(∑

j ∈
N (x)

e ·jxjθS i ,t
)�
�
�

Since the activation function is Lipschitz continuous and smooth,

and plugging
�
�

∑

j ∈
N (x)

e ·jxj
�
� ≤ gλ , we get,

≤ νℓνσ gλ

�
�
�

(∑

j ∈
N (x)

e ·jxjθS ,t
)

−
(∑

j ∈
N (x)

e ·jxjθS i ,t
)�
�
�

≤ νℓνσ gλ

(�
�

∑

j ∈
N (x)

e ·jxj
�
�

)

|θS ,t − θS i ,t |

≤ νℓνσ g
2
λ
|∆θt |

This completes the proof of Lemma 1.

Note: Without the σ−smooth assumption, it would not be possible
to derive the above bound in terms of |∆θt | which is necessary
for showing the uniform stability. Unfortunately, this constraint
excludes RELU activation from our analysis.

Lemma 2. [GCNN Different Sample Loss Stability Bound]

The loss-derivative bound difference of (single-layer) GCNN models

trained with SGD algorithm for T iterations on two training datasets

S and Si respectively, with respect to the different samples is given by,
�
�
�∇ℓ

(

f (xi ,θS ,t ),yi
)

− ∇ℓ
(

f (x′i ,θS i ,t ),y
′
i

)
�
�
� ≤ 2νℓασ gλ .

Proof: Again using Equation (6) and the fact that the loss & activa-
tion function is Lipschitz continuous and smooth, and for any a, b,
|a − b | ≤ |a | + |b |, we have,

�
�
�∇ℓ

(

f (x,θS ,t ),y
)

− ∇ℓ
(

f (x′
,θS i ,t ),y

′ )
�
�
� ≤

νℓ
�
�∇f (x,θS ,t ) − ∇f (x′

,θS i ,t )
�
�

≤ νℓ

�
�
�∇σ

(∑

j ∈
N (x)

e ·jxjθS ,t
) ∑

j ∈
N (x)

e ·jxj − ∇σ
(∑

j ∈
N (x′ )

e ·jx
′
jθS i ,t

) ∑

j ∈
N (x′ )

e ·jx
′
j

�
�
�

≤ νℓ

�
�
�∇σ

(∑

j ∈
N (x)

e ·jxjθS ,t
) ∑

j ∈
N (x)

e ·jxj
�
�
�+

νℓ

�
�
�∇σ

(∑

j ∈
N (x′ )

e ·jx
′
jθS i ,t

) ∑

j ∈
N (x′ )

e ·jx
′
j

�
�
�

Using the fact that the first order derivative is bounded,

≤ 2νℓασ gλ

(7)

This completes the proof of Lemma 2.

Summing over all iteration steps, and taking expectations over
all possible sample sequences Z , Z ′ from S and Si , we have

Lemma 3. [GCNN SGD Stability Bound] Let the loss & acti-

vation functions be Lipschitz-continuous and smooth. Let θS ,T and

θS i ,T denote the graph filter parameters of (single-layer) GCNN mod-

els trained using SGD for T iterations on two training datasets S and

Si , respectively. Then the expected difference in the filter parameters

is bounded by,

Esgd
[�
�∆θS ,T − θS i ,T |

]

≤ 2ηνℓασ gλ
m

T∑

t=1

(

1 + ηνℓνσ g
2
λ

)t−1

Proof: From Equation (5) and taking into account the probabilities
of the two scenarios considered in Lemma 1 and Lemma 2 at step t ,
we have,

Esgd
[�
�∆θt+1 |

]

≤
(

1 − 1

m

)

Esgd

[�
�
�

(

θS ,t − η∇ℓ
(

f (x,θS ,t ),y
)
)

−
(

θS i ,t − η∇ℓ
(

f (x,θS i ,t ),y
)
)�
�
�

]

+

( 1

m

)

Esgd

[�
�
�

(

θS ,t−

η∇ℓ
(

f (x′
,θS ,t ),y

′ ) ) −
(

θS i ,t − η∇ℓ
(

f (x′′
,θS i ,t ),y

′′ ) )
�
�
�

]

≤
(

1 − 1

m

)

Esgd
[

|∆θt |
]

+

(

1 − 1

m

)

ηEsgd

[�
�
�∇ℓ

(

f (x,θS ,t ),y
)

−

∇ℓ
(

f (x,θS i ,t ),y
)
�
�
�

]

+

( 1

m

)

Esgd
[

|∆θt |
]

+

( 1

m

)

ηEsgd

[�
�
�∇ℓ

(

f (x′
,θS ,t ),y

′ ) − ∇ℓ
(

f (x′′
,θS i ,t ),y

′′ )
�
�
�

]

= Esgd
[

|∆θt |
]

+

(

1 − 1

m

)

ηEsgd

[�
�
�∇ℓ

(

f (x,θS ,t ),y
)

− ∇ℓ
(

f (x,θS i ,t ),y
)
�
�
�

]

+

( 1

m

)

ηEsgd

[�
�
�

(

∇ℓ
(

f (x′
,θS ,t ),y

′ ) ) −
(

∇ℓ
(

f (x′′
,θS i ,t ),y

′′ ) )
�
�
�

]

.

(8)
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Plugging the bounds in Lemma 1 and Lemma 2 into Equation (8),
we have,

Esgd
[�
�∆θt+1 |

]

≤ Esgd
[

|∆θt |
]

+

(

1 − 1

m

)

ηνℓνσ g
2
λ
Esgd[|θt |]

+

( 1

m

)

2ηνℓασ gλ

=

(

1 +
(

1 − 1

m

)

ηνℓνσ g
2
λ

)

Esgd[|θt |] +
2ηνℓασ gλ

m

≤
(

1 + ηνℓνσ g
2
λ

)

Esgd[|θt |] +
2ηνℓασ gλ

m
.

Lastly, solving the Esgd
[�
�∆θt |

]

first order recursion yields,

Esgd
[�
�∆θT |

]

≤ 2ηνℓασ gλ
m

T∑

t=1

(

1 + ηνℓνσ g
2
λ

)t−1

This completes the proof of Lemma 3.

Bound on gλ : We now bound gλ in terms of the largest absolute
eigenvalue of the graph filter matrix д(L). We first note that at each
node x, the ego-graph Gx ego-graph can be represented as a sub-
matrix ofд(L). Letдx(L) ∈ Rq×q be the submatrix ofд(L)whose row
and column indices are from the set {j ∈ N (x)}. The ego-graph size
is q = |N (x)|. We use hx ∈ Rq to denote the graph signals (node
features) on the ego-graph Gx. Without loss of generality, we will
assume that node x is represented by index 0 in Gx. Thus, we can
compute

∑

j ∈N (x) e ·jxj = [дx(L)hx]0, a scalar value. Here [·]0 ∈ R
represents the value of a vector at index 0, i.e., corresponding to
node x. Then the following holds (assuming the graph signals are
normalized, i.e., ∥hx∥2 = 1),

|[дx(L)hx]0 | ≤ ∥дx(L)hx∥1 ≤ ∥∥дx(L)∥2∥hx∥2 = λmax
Gx

(9)

where the second inequality follows from CauchyśSchwarz In-
equality, and ∥M ∥2 = sup∥x ∥2=1 ∥Mx ∥2 = σmax (M) is the matrix
operator norm and σmax (M) is the largest singular value of matrix
M . For a normal matrixM (such as a symmetric graph filter д(L)),
σmax (M) = max |λ(M)|, the largest absolute eigenvalue ofM .

Lemma 4. [Ego-Graph Eigenvalue Bound] LetG = (V , E) be
a (un)directed graph with (either symmetric or non-negative) weighted

adjacency matrixд(L) and λmax
G

be the maximum absolute eigenvalue

of д(L). Let Gx be the ego-graph of a node x ∈ V with corresponding

maximum absolute eigenvalue λmax
Gx

. Then the following eigenvalue

(singular value) bound holds ∀x,
λmax
Gx

≤ λmax
G

Proof: Notice that дx(L) is the adjacency matrix of Gx which
also happens to be the principal submatrix of д(L). As a result,
above bound holds from the eigenvalue interlacing theorem for
normal/Hermitian matrices and their principal submatrices [20, 28].

Finally, plugging gλ ≤ λmax
G

and Lemma 3 into Equation (3)
yields the following remaining result,

2βm ≤ αℓλ
max
G Esgd

[�
�∆θ

�
�
]

βm ≤
ηαℓασνℓ(λmax

G
)2 ∑T

t=1

(

1 + ηνℓνσ (λmax
G

)2
)t−1

m

βm ≤ 1

m
O

(

(λmax
G )2T

)

∀T ≥ 1

This completes the full proof of Theorem 3.

4 REVISITING GRAPH CONVOLUTIONAL
NEURAL NETWORK ARCHITECTURE

In this section, we discuss the implication of our results in designing
graph convolution filters and revisit the importance of employing
batch-normalization layers in GCNN network.

Unnormalized Graph Filters: One of the most popular graph
convolution filters is д(L) = A + I [46]. The eigen spectrum of the
unnormalized A is bounded byO(N ). This is concerning as now gλ
is bounded byO(N ) and asm becomes close to N , βm tend towards
O(N c ) complexity with c ≥ 0. As a result, the generalization gap
of such a GCNN model is not guaranteed to converge.

Normalized Graph Filters: Numerical instabilities with the un-
normalized adjacency matrix have already been suspected in [25].
Therefore, the symmetric normalized graph filter has been adopted:
д(L) = D−1/2AD−1/2

+ I . The eigen spectrum of D−1/2AD−1/2 is
bounded between [−1, 1]. As a result, such a GCNN model is uni-
formly stable (assuming that the graph features are also normalized
appropriately, e.g., ∥x∥2 = 1).

RandomWalk Graph Filters: Another graph filter that has been
widely used is based on random walks: д(L) = D−1A + I [35]. The
eigenvalues of D−1A are spread out in the interval [0, 2] and thus
such a GCNN model is uniformly stable.

Importance ofBatch-Normalization inGCNN: Recall that gλ =

sup
x

�
�
�

∑

j ∈N (x) e ·jxj
�
�
� and notice that in Equation (9), we assume

that the graph signals are normalized in order to bound gλ . This
can easily be accomplished by normalizing features during data
pre-processing phase for a single layer GCNN. However, for a multi-
layer GCNN, the intermediate feature outputs are not guaranteed
to be normalized. Thus to ensure stability, it is crucial to employ
batch-normalization layers in GCNN models. This has already been
reported in [46] as an important factor for keeping the GCNN
outputs stable.

5 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the effect of graph filters on
the GCNN stability bounds using four different GCNN filters. We
employ three citation network datasets: Citeseer, Cora and Pubmed
(see [25] for details about the datasets).

Experimental Setup: We extract 1−hop ego-graphs of each node
in a given dataset to create samples and normalize the node graph
features such that ∥x∥2 = 1 in the data pre-processing step. We
run the SGD algorithm with a fixed learning rate η = 1 with the
batch size equal to 1 for 100 epochs on all datasets. We employ ELU
(set α = 1) as the activation function and cross-entropy as the loss
function.
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knowledge, we are the first to study stability bounds on graph learn-
ing in a semi-supervised setting and derive generalization bounds
for GCNN models.

As part of our ongoing and future work, we will extend our
analysis to multi-layer GCNN models. For a multi-layer GCNN, we
need to bound the difference in weights at each layer according to
the back-propagation algorithm. Therefore the main technical chal-
lenge is to study the stability of the full fledged back-propagation
algorithm. Furthermore, we plan to study the stability and general-
ization properties of non-localized convolutional filters designed
based on rational polynomials of the graph Laplacian. We also
plan to generalize our analysis framework beyond semi-supervised
learning to provide generalization guarantees in learning settings
where multiple graphs are present, e.g., for graph classification.
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8 APPENDICES

Proof of Theorem 2: To derive generalization bounds for uniform
stable randomized algorithms, we utilize McDiarmid’s concentra-
tion inequality. Let X be a random variable set and f : Xm → R,
then the inequality is given as,

i f sup
x1, ..,xi , ..,xm ,x

′
i

| f (x1, .., xi , .., xm ) − f (x1, .., x
′
i , .., xm )| ≤ ci

= sup
x1, ..,xi , ..,xm ,x

′
i

| fS − fS i | ≤ ci ,∀i

=⇒ P
(

f (S) − ES [f (S)] ≥ ϵ
)

≤ e
− 2ϵ2

∑m
i=1 c

2
i

(10)

We will derive some expressions that would be helpful to com-
pute variables needed for applying McDiarmid’s inequality.

Since the samples are i.i.d., we have

ES [ℓ(AS , z)] =
∫

ℓ
(

A(z1, ..., zm ), z
)

p(z1, ..., zm )dz1...dzm

=

∫

ℓ
(

A(z1, ..., zm ), z
)

p(z1)...p(zm )dz1...dzm
(11)

Using Equation 11 and renaming the variables, one can show
that

ES [ℓ(AS , zj )] =
∫

ℓ
(

A(z1, .., zj , .., zm ), zj
)

×

p(z1, .., zj , .., zm )dz1...dzm

=

∫

ℓ
(

A(z1, .., zj , .., zm ), zj
)

p(z1)..p(zj )..p(zm )dz1...dzm

=

∫

ℓ
(

A(z1, .., z
′
i , .., zm ), z′i

)

p(z1)..p(z
′
i )..p(zm )dz1..dz

′
i ..dzm

=

∫

ℓ
(

A(z1, .., z
′
i , .., zm ), z′i

)

p(z1, .., z
′
i , .., zm )dz1..dz

′
i ..dzm×

∫

p(zi )dzi

=

∫

ℓ
(

A(z1, .., z
′
i , .., zm ), z′i

)

p(z1, .., zi , z
′
i , .., zm )dz1...dzmdz

′
i

= E
S ,z

′
i
[ℓ(AS i , z

′
i )]

(12)

Using Equation 12 and β−uniform stability, we obtain

ES [EA[R(A)] − EA[Remp (A)]] = ES [Ez [EA[ℓ(AS , z)]]]−

1

m

m∑

j=1

ES [EA[ℓ(AS , zj )]]

= ES [Ez [EA[ℓ(AS , z)]]] − ES [EA[ℓ(AS , zj )]]

= E
S ,z

′
i
[EA[ℓ(AS , z

′
i )]] − E

S ,z
′
i
[EA[ℓ(AS i , z

′
i )]]

= E
S ,z

′
i
[EA[ℓ(AS , z

′
i ) − ℓ(AS i , z

′
i )]]

≤ E
S ,z

′
i
[EA[|ℓ(AS , z

′
i ) − ℓ(AS i , z

′
i )|]]

≤ 2β

(13)

|EA[R(AS ) − R(AS i )]| = |Ez [EA[ℓ(AS , z)]] − Ez [EA[ℓ(AS i , z)]]|
= |Ez [EA[ℓ(AS , z)] − EA[ℓ(AS i , z)]]|
≤ Ez [EA[|ℓ(AS , z)] − EA[ℓ(AS i , z)|]]
≤ Ez [β] = 2β

(14)

|EA[Remp (AS )] − Remp (AS i )]| ≤

| 1
m

m∑

j=1, j,i

(EA[ℓ(AS , zj ) − ℓ(AS i , zj )])|+

| 1
m
(EA[ℓ(AS , zi ) − ℓ(AS i , z

′
i )])|

≤ 2
(m − 1)

m
2β +

M

m

≤ 2β +
M

m

(15)

Let KS := R(AS ) − Remp (AS ).
Using Equation 14 and Equation 15, we have

|EA[KS ] − EA[KS i ]| =
�
�
�EA[

(

R(AS ) − Remp (AS )
)

]

− EA[
(

R(AS i ) − Remp (AS i )
)

]
�
�
�

≤
�
�
�EA[R(AS )] − EA[R(AS i )]

�
�
� +

�
�
�EA[Remp (AS )]

− EA[Remp (AS i )]
�
�
�

≤ 2β + (2β + M

m
)

≤ 4β +
M

m

(16)

Applying McDiarmid’s concentration inequality,

P

(

EA[KS ] − ES [EA[KS ]] ≥ ϵ

)

≤ e
− 2ϵ2

m(4β+Mm )2

︸        ︷︷        ︸

δ

P

(

EA[KS ] ≤ 2β + (4mβ +M)

√

log 1
δ

2m

)

≥ 1 − δ

This complete the proof of Theorem 2.
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