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Abstract
Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary

hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size

(encephalization) have caused alterations to the modern human skull, resulting in a suite of traits

unique among extant primates, including a domed cranial vault, highly flexed cranial base, and

retracted facial skeleton. Most prior studies have used fossil or comparative primate data to estab-

lish correlations between brain size and cranial form, but the mechanistic basis for how changes in

brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and

has only rarely been investigated critically. We argue that understanding how changes in human

skull morphology could have resulted from increased encephalization requires the direct testing of

hypotheses relating to interaction of embryonic development of the bones of the skull and the

brain. Fossil and comparative primate data have thoroughly described the patterns of association

between brain size and skull morphology. Here we suggest complementing such existing datasets

with experiments focused on mechanisms responsible for producing the observed patterns to

more thoroughly understand the role of encephalization in shaping the modern human skull.
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1 | INTRODUCTION

The human head is unique among mammals. The distinctive morphol-

ogy and evolution of the human skull is hypothesized to have been

influenced by:

1. Selective pressures in response to biomechanical forces and ener-

getic requirements related to mastication and respiration

(e.g., Bastir & Rosas, 2013; Holton, Yokley, Froehle, & Southard,

2014; Lieberman, 2008, 2011; Rosas & Bastir, 2002; Yokley, Hol-

ton, Franciscus, & Churchill, 2009); and

2. Development shifts in brain ontogeny and embryonic brain-skull

interactions that led to large-scale shifts in the size and position

of the different cranial skeletal modules (e.g., Bastir et al., 2010;

Bruner, 2004, 2007; Lieberman, 2011; Lieberman, Krovitz, &

McBratney-Owen, 2004; Lieberman, McBratney, & Krovitz, 2002;

Martínez-Abadías, Esparza, et al., 2012; Weidenreich, 1941).

Biomechanical forces related to mastication and respiration are

generally thought to significantly impact the oral, nasal, and

pharyngeal cavities and ultimately the facial skeleton, while changes in

brain growth and size are considered to have more generalized, pro-

found effects on all regions of the skull (Bastir & Rosas, 2016; Lieber-

man, 2011; Moss & Young, 1960). However, acknowledging the

significant influence of the growing brain on skull morphology does

not provide a mechanistic explanation for how the skull changed onto-

genetically or over evolutionary time in response to increases in

brain size.

Increased brain size is a critical feature of human evolution. Esti-

mates of hominin cranial capacities, commonly used as a proxy for

brain size, range from a diminutive 375 cc for Australopithecus afaren-

sis (Holloway, 1995) to the current worldwide average of 1,350 cc in

modern humans (Beals et al., 1984; Lieberman, 2011): a 3.6 fold

increase. Relative to brain size, body size does not appear to have

changed as drastically over the course of hominin evolution. Rather,

current data point away from a gradual increase and toward species-

specific trends in body mass, with Au. afarensis and H. erectus being rela-

tively large-bodied, while Au. africanus, H. habilis, and H. floresiensis

tended to have smaller bodies (Grabowski, Hatala, Jungers, & Richmond,

2015). Varying degrees of sexual dimorphism in body size also contribute

Received: 30 August 2018 Revised: 16 November 2018 Accepted: 21 November 2018

DOI: 10.1002/ajpa.23766

Am J Phys Anthropol. 2019;168:S67:27–46. wileyonlinelibrary.com/journal/ajpa © 2019 American Association of Physical Anthropologists 27

https://orcid.org/0000-0001-9537-5750
https://orcid.org/0000-0002-0239-5822
mailto:kjl5444@psu.edu
mailto:jta10@psu.edu
http://wileyonlinelibrary.com/journal/ajpa


to variation in fossil body size estimates (McHenry, 1992). However,

even using the smallest estimation of body size for Au. afarensis, there

has only been an approximately 2-fold increase in body size for modern

humans (Grabowski et al., 2015; Ruff, Trinkaus, & Holliday, 1997). These

differential increases in brain and body size signal encephalization: an evo-

lutionary increase in the size of the brain relative to an organism's total

body mass. Encephalization results in a contemporary human brain size

that exceeds the anthropoid primate expectation by approximately 3–4

times (Halley & Deacon, 2017) and is a hallmark of hominin evolution

(Jerison, 1979; Lieberman, 2011; Rightmire, 2004).

Along with the dramatic increase in absolute and relative brain size

throughout hominin evolution, the human skull has acquired a suite of

cranial traits that is unique among extant primates, including a domed cra-

nial vault, highly flexed cranial base, and retracted facial skeleton. Indeed,

this suite of traits is believed to be a direct result of encephalization along

the hominin lineage (Bastir, Rosas, Stringer, et al., 2010; Bruner, 2007;

Hallgrímsson & Lieberman, 2008; Lieberman, 2008; Neubauer, Gunz, &

Hublin, 2010). Fossil evidence and comparative primate studies provide

strong links between the radical increase in relative brain size during

hominin evolution and changes in skull morphology (Bastir, Rosas,

Stringer, et al., 2010; Ross & Henneberg, 1995; Ross & Ravosa, 1993;

Spoor, 1997). Countless genetic and environmental factors contribute to

skull growth; however, brain growth appears to be the primary biome-

chanical driver of this process, one with the potential to cause biochemi-

cal changes that affect molecular and cellular dynamics. While we know

that extracellular molecules and mechanical stimuli contribute to the dif-

ferentiation of mesenchymal progenitors into osteochondro progenitor

cells that will form the bones of the skull (Ikegame et al., 2001; Long,

2012; Palomares et al., 2009; Plotkin & Bivi, 2014; Robling, Fuchs, & Burr,

2014; Sato et al., 1999), the mechanistic interactions between the skull

and brain, which produces mechanical forces that contribute to these

chemical signals, are not well understood.

Here we review the evidence for human encephalization and the

current understanding of the association between increased brain size

and changes in skull morphology evident in the hominin fossil record

and across comparative primate data sets. We present a summary of

the embryogenesis of the brain and skull to demonstrate how their

development is linked and provide a foundation for understanding the

importance of early development in producing the human brain and

skull phenotypes. Finally, we stress that the biological basis of evolu-

tionary modifications of the craniofacial skeleton related to encephali-

zation requires investigation beyond comparative primate analyses and

the fossil record. We provide suggestions for how hypotheses about

proposed mechanisms underlying the complex relationship between

the soft and hard tissues of the human head can be tested.

2 | HUMAN ENCEPHALIZATION

Neurologists and paleoneurologists have studied the morphological and

architectural evolution of the human brain by examining salient changes

and proposing hypotheses pertaining to overall brain morphology, rela-

tive size of different neural structures, and modifications to neural com-

position (e.g., Bruner, 2004; Bruner, Manzi, & Arsuaga, 2003; Falk et al.,

2000; Fjell et al., 2013; Geschwind & Rakic, 2013; Holloway, 1995;

Holloway, Broadfield, Yuan, Schwartz, & Tattersall, 2004; Holloway &

De La Costelareymondie, 1982; Rakic, 1995; Teffer et al., 2013;

Teffer & Semendeferi, 2012). Yet, without fossil brains to study, the

nature of these changes and their impact is difficult to gauge. However,

paleoneurologists and paleoanthropologists have found a way to quan-

tify a significant attribute of hominin fossil brains: brain size. Through the

use of endocasts—natural, man-made, or digital representations of the

interior of the neurocranium—cranial capacities can be measured, and

brain sizes of fossil hominins quantified (de Sousa & Wood, 2007; Falk,

1987; Holloway et al., 2004; Neubauer & Hublin, 2012).

Increases in brain size, especially of the cerebral cortex, the larg-

est and most complex component of the mammalian brain, is evident

across the evolution of vertebrates. Humans, nonhuman primates,

cetaceans, and elephants all show tremendous increases in brain size

across evolutionary time scales (O'Leary, Chou, & Sahara, 2007). How-

ever, when controlling for body size, the human brain is extreme

among primates. Strepsirrhines have brains that are approximately

twice as large as similarly-sized rodents, anthropoid primates have

brains that are additionally twice as large as similarly-sized strepsir-

rhines, and human brains are three to four times larger than expected

for a similarly-sized anthropoid primate (Halley & Deacon, 2017).

Brain sizes of fossil hominins have traditionally been estimated

through the use of cranial capacities or endocranial volumes (e.g., Falk,

1987; Holloway et al., 2004; Ruff et al., 1997; Zollikofer & Ponce de

León, 2013) (Figure 1), recognizing that such estimates cannot accu-

rately account for variation in the relative contributions of neural tissue,

meninges, and cerebrospinal fluid (Bruner, 2004; de Sousa & Wood,

2007; Falk, 1987; Neubauer, 2015). Autopsies of modern human

females and males provide average brain size estimates of approxi-

mately 1,290 and 1,450 cm3, respectively (de Sousa & Cunha, 2012;

Dekaban & Sadowsky, 1978). Paleoanthropological studies recognize

that sexual dimorphism and the inability to accurately sex fossil speci-

mens may contribute to variation in the estimates of cranial capacity

(de Sousa & Cunha, 2012; de Sousa & Wood, 2007; Rightmire, 2004).

Absolute brain size has been utilized as a criterion for the inclusion

of fossil specimens within the genus Homo and the splitting of hominin

ancestral species (Leakey, Tobias, & Napier, 1964; Wood, 1992;

Wood & Collard, 1999); however, absolute brain size is rarely used as a

correlate of biological significance based upon Jerison's arguments

regarding brain–body allometry (Jerison, 1977, 1979). Instead, mea-

sures of relative brain size are used. To account for brain–body scaling

expectations, Jerison defined encephalization as the size of the brain

relative to body size (Jerison, 1977, 1979; Ruff et al., 1997), with fossil

hominin body sizes being derived from estimates of body mass that uti-

lize the femur, pelvis, vertebral bodies, or even cranial measurements

(Rightmire, 2004; Ruff et al., 1997). While some scholars continue to

explore the importance of absolute brain size or neural complexity as

significant influences in human evolution (Deaner, Isler, Burkart, & van

Schaik, 2007; Kaas, 2000; Marino, 2006; Roth & Dicke, 2005), the bulk

of modern hominin evolutionary studies, and this review, adopt Jeri-

son's (1977, 1979) definition of encephalization and relative brain size.

Jerison's (1979) work produced a reliable way to quantify ence-

phalization: the encephalization quotient (EQ), based upon the scaled

relationship between brain and body mass estimated across mamma-

lian taxa:
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EQ1 ¼ estimated brainweight= 0:12 × estimatedbodyweight2=3
� �

This formulation was challenged by Martin (1981), who investi-

gated an extended number of placental mammals that provided a

broader data set of both brain and body size. Martin (1981) proposed

a revised equation:

EQ2 ¼ brainmass= 11:22 × bodymass0:76
� �

that many recent studies have adopted (de Sousa & Cunha, 2012;

Holloway et al., 2004; Ruff et al., 1997).

Paleoanthropology has produced a robust record from which the

pattern of encephalization can be traced from fossil hominins to mod-

ern humans. Depending on methodologies used, the average body

size is estimated at 38–39 kg for Australopithecus afarensis and

46–64 kg for modern Homo sapiens (de Sousa & Cunha, 2012;

Grabowski et al., 2015; Ruff et al., 1997). Brain size has increased

from an estimated 375 cc for Au. afarensis to approximately 1,350 cc

for modern Homo sapiens (Beals et al., 1984; Holloway, 1995; Hollo-

way et al., 2004; Lieberman, 2011). These differential increases in

brain size versus body size in the 3.5 million years leading to modern

humans has resulted in an EQ2 for Au. afarensis of 2.50 and an EQ2 of

5.30 for modern humans (de Sousa & Cunha, 2012; Ruff et al., 1997).

Beyond the details added with every new fossil discovery, fossil evi-

dence makes it clear that this increase in hominin brain size did not occur

via a continuous, linear trajectory. Just as our thoughts on the course of

hominin evolution have changed with the addition of new fossils, so has

our understanding of encephalization. The available fossil evidence sug-

gests a period of stasis of hominin evolutionary encephalization between

1.8 million and 600 thousand years before present (Ruff et al., 1997).

Additionally, encephalization may have arisen, been accelerated, or

inhibited due to the same or differing conditions in various hominin

groups. As one example, the modern human and Neanderthal lineages

may have achieved high degrees of encephalization by way of differing

developmental responses to similar evolutionary pressures (Bruner et al.,

2003). As our understanding of the phylogenetic relationships among

various fossil taxa improve, the estimated rates and patterns of encepha-

lization for hominin species will require continual revision.

3 | CRANIOFACIAL SKELETAL CORRELATES
OF ENCEPHALIZATION

Encephalization is hypothesized to be the primary driver of morpho-

logical evolution of the modern human skull, including the suite of

traits unique among extant primates of a highly flexed cranial base,

domed cranial vault, and retracted facial skeleton (Figure 2). While it is

generally acknowledged that increases in relative brain size have

played a significant role in the evolutionary development of these

cranial traits (e.g., Bastir, Rosas, Stringer, et al., 2010; Bruner, 2007;

Bruner, de la Cuétara, Masters, Amano, & Ogihara, 2014; Lieberman,

2011; Lieberman et al., 2004, 2002; McCarthy, 2001; Ross & Henneberg,

1995; Ross, Henneberg, Ravosa, & Richard, 2004; Spoor, 1997), the

exact role that encephalization has played in transforming the hominin

skull to include these attributes is vigorously debated and studied. Here

we discuss three distinct features of skull morphology considered as fea-

tures that characterize human evolutionary change and summarize the

current understanding of the relationship between the evolution of brain

size and the emergence of these osseous features.

3.1 | Cranial base flexion

Building upon the work of Virchow (1857) and Ranke (1892) who

identified an association between an enlarged human brain and cranial
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FIGURE 1 Estimated cranial capacity across hominin species ordered by their estimated geological age. Red and blue circles: Average cranial

capacity for female and male, respectively, modern Homo sapiens. Green and yellow circles: Minimum and maximum cranial capacity estimates for
fossil hominins. Species showing only a green circle indicate that only a single cranial capacity estimate was available in the literature (de Sousa &
Cunha, 2012; Elton, Bishop, & Wood, 2001; Holloway et al., 2004; Rightmire, 2004)
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base morphology, Weidenreich (1941) concluded that the characteris-

tically high degree of flexion in the human cranial base was a direct

consequence of a larger brain. Cranial base flexion refers to the

degree of angulation along the midline of the cranial base (Figure 3).

Biegert (1957, 1963) more formally predicted a correlation between

increasing brain size and decreasing cranial base flexion. Though there

are other ways to increase skull size, these studies are based on a

model of the skull as a closed box with moveable internal parts. An

expanding brain can only continue to grow if more room can be made

inside that box. One way to increase the size of the box is to increase

basicranial flexion. Ross and Ravosa (1993) were the first to refer to

this relationship as a “spatial packing” problem and statistically tested

Biegert's “spatial packing hypothesis” with a comparative study of

nonhuman primate species, finding a significant correlation in haplor-

rhines between a larger brain (relative to basicranial length) and

increased basicranial flexion, but this relationship was not significant

among hominoids. A follow up study of modern humans and fossil

hominins similarly found a lack of significant correlation between rela-

tive brain size and basicranial flexion (Ross & Henneberg, 1995).

While having more highly flexed basicrania than nonhuman pri-

mates, fossil hominins seemed to have attained levels of modern

human basicranial flexion despite wide variations in relative brain sizes

(Bastir & Rosas, 2009; Ross & Henneberg, 1995). Based upon regres-

sion analyses of haplorrhines and primates, Ross and Henneberg

(1995) found that modern humans actually have cranial bases that are

less flexed than expected. Attributing this finding to constraints on

the amount of basicranial flexion physiologically possible below 90�,

Ross and Henneberg (1995) concluded that some other unknown

mechanism for accommodating an enlarged brain must have enabled

continued encephalization along the hominin lineage. However,

depending on exactly how cranial base flexion is quantified, it is possi-

ble that the degree of human basicranial flexion may not be signifi-

cantly different than expected (Lieberman, Ross, & Ravosa, 2000;

McCarthy, 2001; Ross et al., 2004; Spoor, 1997). Estimates of the

amount of variation in primate basicranial flexion that can be

explained by relative brain size range from 36–58% (Bastir, Rosas,

Stringer, et al., 2010; Lieberman, Ross, & Ravosa, 2000; Ross &

Ravosa, 1993), leaving room for additional explanatory mechanisms.

While it has also been proposed that basicranial flexion is evolution-

arily linked with locomotor or postural patterns, this association has

repeatedly been refuted in favor of a correlation between basicranial

flexion and brain size along the hominin lineage (Biegert, 1963;

Lieberman, Ross, & Ravosa, 2000; Ross & Ravosa, 1993; Strait &

Ross, 1999; Villamil, 2017).

Lieberman, Hallgrímsson, Liu, Parsons, and Jamniczky (2008) pro-

vided an expanded “three-dimensional” (3D) spatial packing hypothe-

sis, adding in considerations of the potential effects of widths in the

cranial base, influence of facial length and size on cranial base angle,

and both neural and facial constraints on cranial base flexion. Notably,

multiple predictions based on this 3D spatial packing hypothesis were

experimentally tested utilizing a variety of mouse models, including

the mceph strain with a mutation that produced a significant increase

in brain size. These mceph mutants provided a direct, experimental

test of how a larger brain might affect cranial bone morphology, and

the results confirmed the prediction of a significantly more flexed

adult cranial base (Lieberman et al., 2008).

Studies of prenatal and early postnatal human skull growth to

resolve the questions regarding the effects of human encephalization

on cranial base flexion have produced conflicting results. In contrast

to the previously discussed research on adult extant primate, modern

human, and fossil hominin specimens showing correlations between

increases in brain size and increases in basicranial flexion, data show

that the exponential prenatal and early postnatal growth of the brain

does not result in a progressive increase in cranial base flexion. The

cranial base undergoes temporally dynamic phases of flexion and ret-

roflexion throughout embryonic, fetal, and postnatal development, as

it responds to prenatal and postnatal brain and skull growth (Jeffery &

Spoor, 2002; Lieberman & McCarthy, 1999; Neubauer et al., 2010;

Zollikofer, Bienvenu, & Ponce de León, 2017). Flexion of the cranial

base during early human embryonic growth (Diewert, 1983; Sperber,

Sperber, & Guttmann, 2010) is followed by cranial base retroflexion

during the fetal period, when slow growth of the cranial base relative

to rapid brain growth produces significant increases in relative brain

size (Jeffery & Spoor, 2002; Lieberman, 2011). This finding is attrib-

uted, at least in part, to circumferential growth of the brain enabled

by patent cranial vault sutures during fetal development, reducing

spatial constraints that might otherwise result in basicranial flexion

(Bastir & Rosas, 2009; Jeffery & Spoor, 2002). An alternative hypothe-

sis, that the prenatal retroflexion of the cranial base is related to the

development of the upper airway, has found limited support (Jeffery,

2005; Trenouth & Timms, 1999).

The human cranial base does flex rapidly as the brain continues to

grow during the first several years of postnatal life. This postnatal flex-

ion is hypothesized to be unique to hominin craniofacial development,

FIGURE 2 Representative hominin fossils showing the progressive intensification of neurocranial globularity, facial retraction, and cranial base

flexion with increased encephalization
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as this morphological change is not seen in nonhuman primates

(Lieberman & McCarthy, 1999; Neubauer et al., 2010). The transition

from prenatal cranial base extension or retroflexion to postnatal flex-

ion may reflect the reducing patency of cranial vault sutures and the

sequence of fusion of cranial base synchondroses, the primary sites of

anterior–posterior growth (Figure 4). Of the three cranial base synch-

ondroses in humans, the midsphenoidal synchondrosis fuses first dur-

ing the fetal period (potentially allowing for fetal retroflexion), while

the spheno-ethmoidal synchondrosis remains patent for up to 6 years

allowing for postnatal flexion (Jeffery & Spoor, 2002; Lieberman &

McCarthy, 1999). The spheno-occipital synchondrosis remains patent

through adolescence, permitting further cranial base elongation.

The apparent conflicts between the initial tests of the spatial

packing hypothesis, correlations between brain size and cranial base

flexion, and subsequent studies of prenatal development can be

resolved by considering developmental context. Cranial sutures and

many synchondroses remain patent during prenatal growth when neu-

ral tissues are growing exponentially. Importantly, Bastir and Rosas

(2009) recognized that much of the original work on the spatial pack-

ing hypothesis was premised on the study of adult skulls (Biegert,

1963; Ross et al., 2004; Ross & Henneberg, 1995; Ross & Ravosa,

1993). As growth progresses from prenatal to postnatal, the bones

that border cranial vault sutures begin to oppose each other, reducing

their growth potential, intensifying spatial constraints, and reducing

the degree of accommodation possible for the still-developing

brain (Bastir & Rosas, 2009; Neubauer et al., 2010; Opperman, 2000;

Zollikofer et al., 2017), thereby possibly shifting the burden of accom-

modation to the cranial base. This realization helps align the previ-

ously conflicting studies that considered basicranial flexion by analysis

of prenatal versus postnatal specimens but also serves to change the

focus from postnatal morphology to how prenatal growth might influ-

ence cranial base flexion.

3.2 | Cranial vault globularization

Remarkable accommodation and conformity of the outer surface of

the brain and the endocranial surface of the neurocranium is evident

across living and extinct vertebrates and throughout development of

extant vertebrate species (Richtsmeier & Flaherty, 2013). Evidence for

this tight correspondence is also seen in diseases of the craniofacial

complex (Richtsmeier et al., 2006). Experimentally, Moss and Young

recognized from comparisons of hydrocephalic and microcephalic rats

that an increase in the volume of intracranial contents resulted in a

more domed or globular cranial vault (Moss & Young, 1960). Cranial

vault morphology is likely to result from multiple inputs, including a

relatively larger brain, smaller cranial base, and smaller face

(Lieberman et al., 2002; Zollikofer et al., 2017). Early work on head

form patterns by Enlow found associations between more rounded or

spherical braincases and highly flexed cranial bases (Enlow & Hans,

1996; Enlow & McNamara, 1973). The mechanistic basis for variation

in cranial vault globularity remains to be fully addressed; however,

recent work has suggested that cranial globularity may have played an

important role in the variation of Neandertal and other fossil hominin

cranial forms (Bastir, 2018; Bastir et al., 2010).

In modern humans, the cranial vault has already taken on its

species-specific globular shape by birth. The continuing expansion of

the parietal region and cerebellar fossa relative to other portions of

the skull contribute to the early postnatal “globularization phase”

(Neubauer et al., 2010; Zollikofer et al., 2017). While a globularization

phase has been proposed to be unique to humans (Gunz et al., 2012;

Gunz, Neubauer, Maureille, & Hublin, 2010; Neubauer et al., 2010),

recent ontogenetic and morphological analyses of nonhuman primates

have shown that a pattern of endocranial development that increases

the roundness of the cranial vault may actually be a shared ancestral

feature among great apes that has been retained in humans, gorillas,

and orangutans but lost during Pan evolution (Zollikofer et al., 2017).

Though compared to chimpanzees humans have a smaller brain at

birth relative to adult brain size (DeSilva & Lesnik, 2006), during the

perinatal phase humans already have a flexed cranial base and globular

cranial vault, while chimpanzees have an extended cranial base and

elongated cranial vault (Neubauer et al., 2010).

The globularization of the human skull during perinatal develop-

ment results from changes in the shape of the cranial vault bones

and underlying brain (Bruner, 2004; Bruner et al., 2003; Hofer, 1969;

Lieberman et al., 2002; Neubauer et al., 2010; Weidenreich, 1941).

During the perinatal phase (birth to 1 year), the parietal lobes of the

brain expand relative to the occipital and temporal regions, resulting

in further bossing of the parietal bones and an increasingly globular

neurocranial appearance (Neubauer, Gunz, & Hublin, 2009). An age-

graded ontogenetic comparison of human and chimpanzee endocasts

found that at all postnatal developmental stages, human endocasts

were characterized as being more globular in shape relative to chim-

panzee endocasts, and this difference was presumed to result from

species-specific differences in early brain development when neural

FIGURE 3 Cranial base angle shown on a sagittal section of 3D reconstruction of adult gorilla (left), human neonate (center), and adult human

(right). Though diverse measures have been proposed to estimate cranial base angle (solid red line), we show the angle constructed using the
landmarks basion, sella, and foramen caecum, with sella as the vertex of the angle (black circle), with the angle measured on the ventral side
(dotted yellow line)
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growth rates are high and cranial ossification is incomplete (Neubauer

et al., 2010).

Similar distinctions have been found between modern humans

and fossil hominins. Despite similar brain sizes, Neanderthals and

modern humans differ in neurocranial globularity (Gunz et al., 2010;

Gunz et al., 2012). In archaic and Neanderthal specimens, an enlarging

brain is characterized by a reduction in the occipital lobes, enhance-

ment of vertical development, and a shortening of the parietal chord

(Bruner et al., 2003). Neanderthals also have significantly smaller cere-

bellar regions than modern humans (Kochiyama et al., 2018). In con-

trast, endocasts of anatomically modern humans exhibit parietal lobe

development characterized by a lengthening of the parietal chord and

orthogonal growth of the midsagittal profile, which ultimately

produces a more globular shape (Bruner, 2004, 2008). Recent analyses

have additionally demonstrated that modern human brains have

significantly larger parietal regions compared to Neanderthals

(Kochiyama et al., 2018). While having similar absolute brain sizes at

birth, perinatal Neanderthal specimens are distinct from modern

humans at birth due to a more elongated cranial vault with flatter pari-

etal and occipital bones (Gunz et al., 2012). The additional globulariza-

tion phase occurring after birth that occurs in modern humans further

contributes to the pronounced differences in skull morphology

between adult Neanderthals and modern humans, potentially driven

by species differences in brain growth rates and timing (Gunz et al.,

2010, Gunz et al., 2012).

Another potential explanation for the globular shape of the

human cranial vault has been proposed as part of a “wiring” hypothe-

sis, wherein the shape of the human brain is attributed to the need to

reduce the wiring length (distance between axon and neuron to form

functional circuits), both within the telencephalon and between the

cerebrum and diencephalon (e.g., Bruner, Martin-Loeches, & Colom,

2010; Chklovskii & Stevens, 2000; Hofer, 1969; Lieberman, Ross, &

Ravosa, 2000; Mitchison, 1991; Ross & Henneberg, 1995; Sporns,

Chialvo, Kaiser, & Hilgetag, 2004; Van Essen, 1997). This idea can be

traced to Santiago Ramón y Cajal and is not specific to the explanation

of human brains, as it has been applied across species (Rivera-Alba

et al., 2011; Stevens, 2012). Some scholars have hypothesized that a

more spherical cerebrum would optimize neural connectivity of axons

and dendrites within the evolutionarily expanded hominin neocortex

(Bruner, 2004; Lieberman, Ross, & Ravosa, 2000; Ross & Henneberg,

1995). The location of the cerebellum and brain stem would anatomi-

cally prevent expansion of the neocortex in a posterior or inferior

direction, making anterior expansion the path of the least resistance.

To produce a more balanced spherical shape alongside the anterior

neocortical expansion, the brain necessarily develops a “kink”, or

ventral brain flexion (Lieberman, Ross, & Ravosa, 2000). While neo-

cortical anterior expansion could occur without such brain flexion or

other accommodations, the result would be an unbalanced, antero-

posteriorly longer head (Jerison, 1982). Though detailed maps of

brain circuitry are now available for adults of many species, how the

mechanisms that underlie wiring that occurs early in brain develop-

ment contribute to the production of overall brain shape variation is

not known.

3.3 | Facial skeleton orientation and projection

One of the primary differences between archaic hominins and ana-

tomically modern humans relates to the retraction of the facial

skeleton (Lieberman et al., 2002). However, questions remain

regarding whether retraction of the modern human facial skeleton

is a consequence of (a) encephalization, (b) modifications to the

cranial base, or (c) an independent trend that occurred simulta-

neously with human encephalization and cranial base modifications

(Bastir, 2008). Due to its anatomical location as an architectural

interface between the developing brain and face, the cranial base

is often cited as playing a critical role in the evolution of human

facial morphology, including reduced facial projection and progna-

thism (e.g., Bastir, 2008; Bastir & Rosas, 2016; Enlow, 1990; Lie-

berman, Pearson, & Mowbray, 2000).

One model that combines the influence of encephalization and

cranial base morphology on facial architecture is the “facial block rota-

tion model.” This model links relative increases in brain size along

the human evolutionary trajectory with a concurrent reduction in

mid-facial projection and maxillary prognathism (Bastir & Rosas, 2016;

Lieberman, 2011; Lieberman et al., 2002; Lieberman, Ross, & Ravosa,

2000; McCarthy & Lieberman, 2001). Essentially, a highly flexed cra-

nial base is hypothesized to cause a rotation such that the face

becomes tucked underneath the anterior cranial base, reducing facial
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FIGURE 4 3D reconstruction of computed tomography images of a human neonate (left) showing positioning of cranial base synchondroses

(yellow box). Illustration of a sagittal section (right) of the human cranial base showing individual bones and synchondroses
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projection. While studies of both 2D and 3D morphology provide sup-

port for this hypothesis (McCarthy & Lieberman, 2001; Neaux et al.,

2013), at least one recent analysis suggests that it is the overall orien-

tation of the cranial base, rather than midsagittal flexion, that influ-

ences facial orientation (Bastir & Rosas, 2016). The relationship

between cranial base flexion and facial block rotation appears to be

unique to humans. A study of extant great apes confirmed the positive

correlation between increased cranial base flexion and downward

rotation of the facial block in modern humans, a weaker positive rela-

tionship in Pan, and no significant relationship in Gorilla, resulting in

the characteristic orthognathic face of modern humans (Neaux et al.,

2013). Of note, each of these studies attempting to link either brain

size or cranial base flexion with facial orientation and projection exam-

ines a correlation between these morphologies, rather than providing

a mechanistic explanation.

Additionally, the relationship between midline and lateral cranial

base elements has been hypothesized to play a role in facial retrac-

tion. Bastir and Rosas (2016) found that covariation between both

midline and lateral cranial base features and alveolar prognathism and

facial proportions may represent a shared primitive relationship within

the hominin skull. While Lieberman (1998) proposed that a midline

shortening of the sphenoid contributed to modern human facial

retraction, other evidence challenges this view with findings that the

modern human midline sphenoid is actually longer compared to Nean-

derthals and mid-Pleistocene hominins (Bastir & Rosas, 2016; Spoor,

O'Higgins, Dean, & Lieberman 1999). Instead of relative length, the

positioning of the sphenoidal body relative to the wings appears to be

a significant contributor to the degree of facial projection (Bastir &

Rosas, 2016).

Importantly, multiple studies agree that distinguishing features of

the human facial skeleton are established early in ontogeny, most

likely during prenatal growth. Morphological and ontogenetic studies

have found that features characteristic of Neanderthals and absent in

modern humans, including midfacial projection and prognathism, likely

are a result of differential rates of prenatal growth or changes in early

postnatal osteogenic growth fields of the various cranial components

(Gunz et al., 2012, 2010; Maureille & Bar, 1999; Ponce de León &

Zollikofer, 2001; Ponce de León & Zollikofer, 2006; Zollikofer &

Ponce de León, 2010). Studies comparing humans and nonhuman

primates have similarly established that distinct facial morphologies

and trajectories, including midfacial prognathism, are already in place

at birth (Mitteroecker, Gunz, Bernhard, Schaefer, & Bookstein, 2004;

Zumpano & Richtsmeier, 2003). Taken together, these studies support

not only the uniqueness of the human face, but also the importance

of early developmental processes and prenatal growth in establishing

the morphology and developmental trajectories of these distinctly

human features.

If encephalization impacts skull morphology, ultimately leading to

the evolution of a domed cranial vault, flexed cranial base, and

retracted facial skeleton, then it is critical that we understand the early

development of both the brain and skull. While there is significant

growth during postnatal life, the tissues that form both of these

organs differentiate in close proximity responding to some of the

same gene networks and continuing to interact throughout their

development. Next, we summarize the early developmental dynamics

of the brain and skull to highlight specific aspects of their integration

and to emphasize the significance of prenatal growth in the produc-

tion of human skull morphology.

4 | EARLY DEVELOPMENT OF THE BRAIN
AND SKULL

Most of the studies summarized above represent analyses of formed

or forming skull bones and their hypothesized interaction with the

brain. The brain originates early in development from differentiated

ectoderm that forms a hollow tube and acquires an exceedingly com-

plex shape over embryonic time. Individual cartilaginous and osseous

elements of the skull form on the expanding neural surface from neu-

ral crest- and mesoderm-derived mesenchyme that eventually unite

to form a skull that supports and protects the brain, other cranial soft

tissues, and functioning spaces. As the development of each of these

tissues is incredibly complicated, we focus on those aspects of these

early growth processes that are critical to the formulation of logical

hypotheses about the developmental interaction of brain and skull

that leads to phenotypic variation and potentially to evolutionary

change.

4.1 | Prenatal development of the brain

In humans, brain growth and development begin early during gesta-

tion and continues after birth. Peak brain growth velocity is achieved

just prior to birth (Halley, 2017), with human neonatal brain weights

averaging approximately 360–380 g (Dekaban & Sadowsky, 1978;

DeSilva & Lesnik, 2008; Ho, Roessmann, Hause, & Monroe, 1981).

Brain growth continues postnatally, but follows a decelerating decay

curve (Halley, 2017; Halley & Deacon, 2017). Maximum brain weight

and high rates of synapse formation, myelination, and dendritic devel-

opment are reached during postnatal life, while gradual declines in

weight begin around age 45–50 (de Graaf-Peters & Hadders-Algra,

2006; Dekaban & Sadowsky, 1978). Despite intrauterine growth

accounting for only 25–30% of adult brain weight (DeSilva & Lesnik,

2006), the prenatal development of the brain is the predominant time

for the differentiation of neural tissue and neurogenesis, particularly

within the cerebral cortex.

The brain develops from the neural plate, a thickened portion of

ectoderm located on the dorsal surface of the embryo, the rostral end

of which is most apparent. Neurulation begins when the neural plate

folds longitudinally to form a midline groove along its rostro-caudal

axis (Figure 5a). The neural tube takes shape as the neural folds, ridges

that form on either side of the neural plate, rise up, fold inward, and

begin to fuse at the center, forming a tubular structure (Stiles & Jerni-

gan, 2010). As the neural tube elongates with growth of the embryo,

the tube expands radially due to rapid cell division (see below) and

flexes ventrally, with regions growing at differing rates to create three

obvious bulges at the rostral end. These are the primary vesicles: the

prosencephalon (future forebrain), mesencephalon (future midbrain),

and rhombencephalon (future hindbrain) (Figure 5b). As radial growth

continues, specific areas of the primary vesicles differentiate to take

on regional identities with specific functions. Interestingly, these
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regions are defined before the first axons appear, suggesting that the

regions and the distinct combination of transcription factors and

adhesion molecules that they express contribute to guiding axon con-

nectivity and establishing brain wiring (Chédotal & Richards, 2010).

The alar plate of the prosencephalon expands to form the telenceph-

alon that will form the cerebral hemispheres, while the basal plate

becomes the diencephalon. The diencephalon, mesencephalon, and

rhombencephalon contribute to the brain stem that continues to flex at

the mesencephalon. The rostral portion of the rhombencephalon differ-

entiates into the pons and cerebellum, while the caudal portion forms the

medulla oblongata. By 50 days of gestation (roughly 7 weeks), the rudi-

mentary architecture of the human brain is established (Richtsmeier &

Flaherty, 2013; Stiles & Jernigan, 2010) (Figure 5b).

Once fusion of the neural tube is complete and elongation and

radial expansion of the tube is underway, neuroepithelial cells line the

interior of the neural tube, with the hollow portion eventually contrib-

uting to the ventricular system of the brain (Götz & Huttner, 2005;

Stiles & Jernigan, 2010). As neurogenesis begins, the neuroepithelium

gives rise to radial glial cells and is responsible for the initiation of a spe-

cific radial migration of neurons that results in the formation of a multi-

layered cortex (Götz & Huttner, 2005; Noctor, Martínez-Cerdeño,

Ivic, & Kriegstein, 2004; Stiles & Jernigan, 2010). Signaling factors on

the surface of the radial glia cells guide the migration of neurons pro-

duced in the ventricular zone radially toward the outer surface of the

neural tube in complex waves of unique sets of neurons that result in

cortical layers organized in an “inside-out” fashion (Götz & Huttner,

2005; Kwan, Sestan, & Anton, 2012; Noctor et al., 2004; Stiles &

Jernigan, 2010).

Prior to neurogenesis, the majority of the ventricular zone radial

glial cells undergo symmetrical divisions, producing two intermediate

progenitor cells, thus exponentially increasing the progenitor cell pool

and the potential number of neurons (Kwan et al., 2012; Noctor et al.,

2004; Pinto & Gotz, 2007). Once neurogenesis begins, differing cells

undergo several types of divisions: symmetrical divisions producing

two intermediate progenitor cells, asymmetrical divisions producing

one intermediate progenitor cell and one neuron, and ultimately

terminal symmetrical divisions that produce two neurons (Götz &

Huttner, 2005; Kwan et al., 2012; Noctor et al., 2004; Pinto & Gotz,

2007). Although the development, differentiation, and refinement of

the brain proceeds along a gradual and continuous pathway through-

out the first two decades of postnatal life (Stiles & Jernigan, 2010),

the details of prenatal development of the brain provide the map for

all future development.

Embryonic development of the brain is characterized by dynamic

changes in external appearance (increase in size; flexion/extension

and change in shape of various regions) that corresponds with internal

organogenesis (Huang et al., 2009; Nolte, 2009; Shiraishi et al., 2015).

Magnetic resonance microscopy of 3D dynamics and morphology of

the human embryonic brain have revealed eccentric (without thicken-

ing of brain tissue) and concentric (resulting in brain tissue thickening)

growth dynamics (Shiraishi et al., 2015). Each part of the brain grows

at different rates during the embryonic and fetal periods (Nolte, 2009).

The arrangement of these regions and their disproportionate growth

result in the brain taking on an increasingly flexed morphology by

week 8 (Carnegie stage 23) (Nolte, 2009; Shiraishi et al., 2015). Sur-

face mapping by tissue thickness enabled simultaneous visualization

of surface morphology and internal thickness and demonstrated a cor-

relation between the flexion and extension of the forming brain and

tissue thickness (Shiraishi et al., 2015). Tissue became thicker in the

regions of brain flexion, while it remained thin in the regions of exten-

sion, suggesting that intrinsic growth dynamics contribute to the for-

mation of various brain flexures (Shiraishi et al., 2015).

While the brain continues to grow postnatally, the degree of brain

organization and size achieved prenatally is specific to humans and is
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FIGURE 5 Brain development. (a) Early development of neural tube from neuroectoderm (adapted from Richtsmeier & Flaherty, 2013).

(b) Morphogenesis of brain from neural tube and formation of major brain regions (adapted from Shiraishi et al., 2015). CS = Carnegie stage
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critical to human evolution and encephalization. A newborn chimpan-

zee brain weighs only 150 g, but this already constitutes nearly 40%

of adult chimpanzee brain mass (DeSilva & Lesnik, 2006, 2008). In

comparison, a modern human neonate brain weighs approximately

380 g, more than twice that of a chimpanzee but represents only

28.6% of the average adult human brain mass (Dekaban & Sadowsky,

1978; DeSilva & Lesnik, 2008). Due to a slightly longer gestational

period in humans relative to chimpanzees, at least part of the differ-

ence in absolute neonatal brain size can be attributed to the longer

duration of prenatal brain growth, although the main contributor to

the larger human neonatal brain is a faster prenatal rate of growth

(Neubauer, 2015). Postnatal growth also contributes to the unique

degree of human encephalization, whether through species-specific

differences in postnatal growth grates or an extended duration of

human postnatal brain growth (Halley, 2017; Halley & Deacon, 2017;

Leigh, 2004; Passingham, 1985). However, it is the prenatal growth of

the human brain that provides the foundation for initial skull forma-

tion and growth.

4.2 | Prenatal development of the skull

Evolutionarily and developmentally, there are two skulls; one derived

from the endoskeleton that forms initially, and the other from the exo-

skeleton that forms relatively later during embryogenesis. The cranial

endoskeleton is initially formed in cartilage and, when ossified, is com-

posed primarily of cartilage bone that mineralizes by endochondral ossi-

fication (Kawasaki & Richtsmeier, 2017). The cranial exoskeleton, also

called the dermatocranium, is composed of dentin, enamel, and intra-

membranously forming dermal bone that eventually encases the cranial

endoskeleton in adults (Kawasaki & Richtsmeier, 2017) (Figure 6).

Mesenchymal cells from two sources—neural crest and mesoderm—

serve as osteochondro progenitor cells capable of differentiating into

chondroblasts to form cartilage and/or osteoblasts to form bone,

depending upon the signals they receive and to which they can respond

(Long, 2012). The earliest signs of skull formation occur with the conden-

sations of chondroblasts that secrete matrix ventral to the base of the

brain to form elements of the two major components of the cranial

endoskeleton: the chondrocranium (Kawasaki & Richtsmeier, 2017) and

the pharyngeal skeleton (Frisdal & Trainor, 2014). The chondrocranium is

that part of the endoskeleton that protects the brain and three principal

sense organs (Kawasaki & Richtsmeier, 2017), while the pharyngeal skel-

eton is that part of the endoskeleton that protects the lower aspect of

the oral cavity and neck region, providing support for the organs within.

A multitude of cartilages rapidly form from condensations of chondro-

blasts until a relatively solid series of cartilages make up the chondrocra-

nium. In humans, cartilage formation of the spheno-occipital area of the

brain case floor begins in the 7th–8th gestational week, and most of the

chondrocranial cartilages are established by 9 weeks (Tubbs, Bosmia, &

Cohen-Gadol, 2012). Elements of the chondrocranium include the brain

case floor, lateral wall and roof of the occipital region, lateral wall and

roof of the pre-occipital region, olfactory region, and otic region.

Importantly, cartilage can grow by accretion and interstitially, allow-

ing it to expand in size and rapidly change in shape to accommodate

growing cranial soft tissues and functional spaces. The chondrocranium

ossifies primarily by endochondral ossification, though membrane bone

may have replaced some cartilage bone in certain lineages having sec-

ondarily lost their original cartilaginous stage (Bellairs & Gans, 1983;

Kawasaki & Richtsmeier, 2017). The formation of a cranial skeleton

that responds to continuously changing shapes of the adjacent embry-

onic tissues and spaces seems implausible without an initial cartilaginous

framework that is capable of interstitial growth, but that framework is

rapidly replaced by bone as the organism matures. As portions of the

chondrocranium ossify endochondrally, key areas capable of accelerated

growth remain unmineralized, including several synchondroses, where

growth extends from a central zone of growing cartilage bordered by

endochondral osteogenic fronts (Flaherty, Singh, & Richtsmeier, 2016;

Lieberman, 2011). These include the spheno-ethmoidal, mid-sphenoidal,

and spheno-occipital synchondroses (Figure 4).

Dermal bone of the dermatocranium is not preformed in cartilage

but forms directly through intramembranous ossification involving the

differentiation of osteoblasts and direct secretion and subsequent

mineralization of bone matrix (Kawasaki & Richtsmeier, 2017). Areas

of initial ossification are the result of osteoprogenitor cells migrating

to form condensations in which they proliferate, differentiate into

osteoblasts that secrete osteoid, and subsequently mineralize the

matrix to form an “ossification center.” As bone continues to mineral-

ize at the center, zones of active osteoblast differentiation known as

“osteogenic fronts” define the periphery of developing cranial dermal

bones (Opperman, 2000; Tubbs et al., 2012). Bones of the dermato-

cranium form in specific locations such that postnatally, skull bones

protect specific areas of brain surface anatomy representing func-

tional primary areas of the cortex: the motor area (part of the frontal

cortex) is covered by the frontal bone; the somatosensory area (part

of the parietal cortex) is covered by the parietal bone; and the primary

visual area (visual cortex) is covered by the occipital bone (O'Leary

et al., 2007). Whether this arrangement, which is largely conserved

across mammals, is simply anatomical or is of developmental or func-

tional significance is not known. In humans, the initial ossification

centers for the cranial vault bones begin to appear during the 8th–9th

gestational week on the outer surfaces of edges of some of the

chondrocranial cartilages (Kawasaki & Richtsmeier, 2017; Sperber

et al., 2010).

As cranial vault bones expand, osteogenic fronts that border

areas of mesenchyme that spatially separate the bones approach one

another and eventually form sutures. Cranial sutures are fibrous

joints that consist of two osteogenic bone fronts and an intervening

cellular mass of undifferentiated mitotic mesenchymal cells, all of

which are bounded by the surface of the osteogenic layer (superfi-

cial) and the external surface of the dura mater (deep), and function

as bone growth sites (Flaherty et al., 2016; Opperman, 2000). As the

brain grows, cranial bones are pushed away radially while adding

bone by the differentiation of osteoblasts along the length of the

bone front (Opperman, 2000; Tubbs et al., 2012). Signaling networks

discourage mesenchymal cells in the suture from differentiating into

osteoblasts and maintain suture patency, enabling further growth of

individual bones and of the cranial vault as a whole (Flaherty et al.,

2016; Opperman, 2000; Tubbs et al., 2012). The presence, specific

location, and patency of cranial sutures is thought to be influenced

by the early growth and development of the brain, including signals

emanating from (or mediated through) the dura mater (Opperman,
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2000; Opperman, Passarelli, Morgan, Reintjes, & Ogle, 1995; Opperman,

Sweeney, Redmon, Persing, & Ogle, 1993; Tubbs et al., 2012).

4.3 | Integration of the brain and skull

Evidence exists, both theoretical and experimental, to support the

tightly integrated relationship between the brain and skull throughout

ontogeny (Enlow, 1990; Moss & Young, 1960; Richtsmeier et al.,

2006). The interaction of brain and skull development is facilitated by

biophysical forces and molecular signaling, especially during prenatal

and early postnatal ontogeny, when cranial bones are dynamically

forming, and sutures and synchondroses are still patent and suffi-

ciently flexible to adapt quickly to the exponential growth of neural

tissues. Biophysical forces play a significant role in the early develop-

ment of the brain and skull. Moss and Young (1960) formulated the

“functional matrix hypothesis (FMH)” that proposed a biomechanical

relationship between the meninges, brain, and skull. They observed

that the dura mater is attached to the endocranial surface of the skull

at several points and hypothesized that the growing brain places a

mechanical strain on the dura mater that is transmitted to osteogenic

cells on the endocranial surface, thus influencing skull shape (Moss &

Young, 1960). The FMH remains an important step in the consider-

ation of how strain produced by the growing brain might affect the

developing cranial bones, but these ideas have yet to be tested using

modern technologies capable of more direct measurement of material

properties and mechanical forces of embryonic cells and tissues.

While the FMH produced important insight on the potential

effects of physical interactions of the brain, meninges, and skull, the

mechanism proposed was purely biomechanical as the interplay

between biophysical forces, molecular signaling, and developmental

genetic pathways were not yet realized. Modern experimental

evidence shows that biophysical forces, including those generated by

growing soft tissues, can impact the behavior of molecules and cells

(Chan, Eoh, & Gerecht, 2018; Clause, Liu, & Tobita, 2010; Ikegame

et al., 2001; Maul, Chew, Nieponice, & Vorp, 2011; Palomares et al.,

2009). The brain also acts as an architectural support for components

of the developing face, with the early embryonic positioning of the

facial prominences determined by the position and rate of growth of

the developing neural tube (Marcucio, Hallgrimsson, & Young, 2015;

Marcucio, Young, Hu, & Hallgrimsson, 2011). Moreover, molecular sig-

naling between the brain and facial compartments indicate that the

forebrain may direct species-specific facial ontogenetic trajectories,

potentially through Sonic hedgehog (Shh) signaling between the brain

and ectoderm (Adameyko & Fried, 2016; Marcucio et al., 2015, 2011).

While the number of experiments one can conduct with animal

models is limited, computational modeling provides infinite ways to

explore the role of biomechanics of brain growth in the differentiation

of cells destined to form cranial vault bones and the sutures that form

between them. Lee and coworkers proposed a mechanobiological

model for the formation of cranial vault bones and sutures, coupling

structural mechanics of changing embryonic brain morphology with

reaction–diffusion equations (Turing, 1952) that describe the interac-

tion of two molecules (an activator and an inhibitor) supervising the

differentiation of osteoblasts (Lee, 2018; Lee, Richtsmeier, & Kraft,

2017). The mechanobiological model predicts some key features of

cranial vault bone formation, including the relative location of ossifica-

tion centers of the individual vault bones, the pattern of cranial vault

bone growth over time, and the location of cranial vault sutures (Lee,

2018). Other computational approaches, including anatomical net-

work model analyses, suggest that brain growth contributes more to

morphological changes in the cranial base and vault, while uncon-

strained bone growth and the bony network architecture of the
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human skull alone may be sufficient to explain the formation of

sutures and boundaries between bone in these cranial modules

(Esteve-Altava & Rasskin-Gutman, 2014; Esteve-Altava, Vallès-Català,

Guimerà, Sales-Pardo, & Rasskin-Gutman, 2017). Though much work

remains, the results of these studies suggest that mechanical strain

from the growing brain contributes information to specific aspects of

cranial vault formation and that morphology, specifically change in

morphology due to growth, is a fundamental mechanism of craniofa-

cial development. Future efforts in computational modeling can help

identify and test additional mechanisms underlying shape change of

the skull during development and evolution.

All tissues have distinct intrinsic physical properties that are impor-

tant in their structure, function, and growth. The mechanical properties

of cartilage and bone on the one hand, and neural tissue on the other

hand, exist at two extreme ends of any measure of stiffness. However,

there are several issues to consider when contemplating the influence

of brain growth on the developing skull or whether the characteristics

of skull morphology and growth impact brain shape. First, most mea-

sures of biological tissues are conducted on adult specimens, and it is

well known that material properties of embryonic or immature tissues

are unlike the properties of adult tissues (e.g., Gefen, Gefen, Zhu,

Raghupathi, & Margulies, 2003; Mikic, Isenstein, & Chhabra, 2004;

Tanck et al., 2004), and we are only beginning to develop the technol-

ogy to measure these aspects of embryonic tissues precisely (e.g., Chan

et al., 2018; Pillarisetti et al., 2011). Second, although the brain is clearly

less stiff to the touch relative to cartilage or bone, experiments have

demonstrated that brain tissue is incompressible due to its hydrated

nature (Libertiaux, Pascon, & Cescotto, 2011). For example, the majority

of experimental evidence does not support the idea that folding of the

cerebral cortex is a response to mechanical constraints imposed by the

surrounding meninges and skull (Welker, 1990), but instead lie in

mechanical forces that arise during brain development and originate at

the cellular level (Kroenke & Bayly, 2018). Finally, we stress that the

important interactions that might influence the changing shape of the

growing brain or guide the skull to adapt to the brain's changing shape

occur at the level of the cell. Though beyond the scope of what can be

presented here, physical forces, extracellular matrix properties, and cell-

to-cell contact contribute significantly to cell fate decisions and cellular

responses (Clause et al., 2010), though the mechanisms by which

mechanical signals are transduced are not well known. The influence of

physical and soluble factors do not operate in isolation but are influ-

enced by aspects of systems biology including tissue-specific patterns

of ligand and receptor expression (Discher, Mooney, & Zandstra, 2009).

Morphological integration (Olson & Miller, 1958), assessed by statis-

tical analysis of covariance patterns between phenotypic traits, is a quan-

titative approach to understanding the production of morphological

variation through the study of the modular nature of phenotypes. This

approach has been used to understand how various skull modules

(e.g., cranial vault, base, and facial skeleton of skull; anterior alveolar and

posterior articulating parts of mandible) interact during development and

evolution (e.g., Cheverud, 1982, 1995; Hallgrímsson, Willmore, Dorval, &

Cooper, 2004; Klingenberg, 2010; Klingenberg, Mebus, & Auffray, 2003;

Martínez-Abadías et al., 2011). These studies focus on the skull in isola-

tion from the brain and other soft tissues, in part because most museum

samples consist largely of skeletal (sometimes fossilized) remains, but also

because our concepts of modules are based primarily on adult skulls and

on anatomical categories that conceptualize hard and soft tissues as sepa-

rate systems. To date, few studies have combined differing tissues in the

study of the covariation structure of phenotypes (see below), though

some have considered the integration of modules of the cranial and post-

cranial skeletons (Villamil, 2018).

Modern approaches to the study of development recognize that

intersecting hierarchies of genetic regulatory networks and developmen-

tal processes serve as organizing mechanisms, but only a few have inves-

tigated the effect of genetic variants on the covariation structure of

multiple tissues using controlled experimental data (Martínez-Abadías

et al., 2013; Motch Perrine et al., 2017). As several signaling pathways

contribute to the development of both neural and skeletal tissues

(e.g., fibroblast growth factors [FGF], transforming growth factor [TGFβ],

wingless-related integration site [Wnt] [Richtsmeier & Flaherty, 2013]),

we know that cells destined to become brain and skull respond to many

of the same genetic inputs. Interactions of these signaling systems and

the tissues that they pattern are fundamental to the consistent but labile

functional and structural association of brain and skull conserved over

evolutionary time. However, as cells become further differentiated, even-

tually contributing to either skull or brain, the properties of the cells

change, as does their ability to respond to a detected signal (e.g., by

changing size or shape, further differentiation, death, or division). As a

cell's ability to detect or respond to particular genetic signals changes

with differentiation, the potential integrating properties of these signaling

pathways across tissues may be stronger earlier in development.

Consideration of regulatory processes as the basis for module

organization does not negate the importance of previous studies

focused on covariances among skeletal modules, but adds to the expla-

nation of how and why the covariances (correlations) occur and why

they change during ontogeny. If morphological integration theory is

correct and modules pattern head formation, then it is likely that the

fields specified by module organizers change over developmental time

depending upon a shifting hierarchy of the influence of genetic, ana-

tomic, physiological, and biophysical relationships. Additionally, fields

specified by regulatory processes are more likely to cross tissue bound-

aries earlier in development. As cells differentiate and their functions

become more specific to the organ they occupy, their ability to respond

to signals changes. Consequently, it is likely that brain-skull integration

may be the strongest very early in development, a time that has been

understudied by anthropologists and that is rarely available for study

from fossils. Delineation and confirmation of hybrid-tissue modules that

either function together or respond in tandem to network-based regu-

latory processes (developmental modules) can only be verified by

experimental work.

5 | BEYOND THE FOSSIL RECORD: ANIMAL
MODELS

While the hominin fossil record and comparative primate data have

been used for decades to establish correlations between relative brain

size and cranial morphology, true cause-and-effect linkages can only

be established through experimental evidence. Determination of

cause and effect of these associations requires experimental alteration
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of a few key, controlled variables—approaches that are neither ethi-

cally nor experimentally possible in humans or primates.

A number of experimental model organisms have been used to

understand both brain and skull development. Among mammalian

models, the mouse is a common choice given a relatively short generation

time and low maintenance requirements (Doyle, McGarry, Lee, & Lee,

2012; Perlman, 2016). Despite the evolutionary and genetic distance

between mice and Homo sapiens, studies have repeatedly confirmed the

utility of mouse models in addressing evolutionary and anthropological

questions, including tests of hypotheses regarding hominin encephaliza-

tion (Boughner et al., 2008; Hallgrímsson & Lieberman, 2008; Lieberman

et al., 2008; López, Stock, Taketo, Chenn, & Ravosa, 2008). Based on

knowledge of the differences in ways genes drive or associate with dis-

ease processes in the two species (Perlman, 2016; Seok et al., 2013),

questions have arisen about whether a specific genetic mutation in a

mouse model could accurately represent potential genetic variants that

occurred during human evolution. Though many questions remain, there

is a growing body of evidence that suggests that the effects of certain

genetic variants operate through developmental pathways that are com-

mon across mammals (Hallgrímsson & Lieberman, 2008; Perlman, 2016),

and questions of specific function can always be studied for any genetic

variant. However, when studying the interactions between brain and

skull, we are not interested in the specific function of a gene or conse-

quence of a mutation of that gene. Rather, experimental approaches to

the question of encephalization and the coupled changes in skull mor-

phology are focused largely on the relational principles of organismal

design (Weiss, 2005; Weiss & Buchanan, 2004); generalizations that go

beyond enumerating specific cases and focus instead on higher order

“emergent” results of structure and interaction.

Given the evolutionary importance of encephalization across ver-

tebrates, it is likely that the developmental pathways that structure

the interaction between the developing brain and skull are similar

across mammals (Hallgrímsson et al., 2004; Hallgrímsson & Lieberman,

2008; Hallgrímsson, Lieberman, Liu, Ford-Hutchinson, & Jirik, 2007;

Martínez-Abadías, Mitteroecker, et al., 2012). The specific genetic var-

iants that initiated phenotypic change during human evolution may

differ from a mutation present in a mouse model, but their participa-

tion in conserved developmental pathways ultimately will produce

similar phenotypic outcomes valuable for our understanding of evolu-

tion. For example, a study comparing cranial morphology with respect

to changes in brain size, chondrocranial length, and overall cranial size

concluded that the structure of cranial variation as a result of these

factors was similar in both mice and humans, pointing to similar devel-

opmental processes (Martínez-Abadías, Mitteroecker, et al., 2012).

Additionally, carefully annotated data pertaining to similarities in the

neurodevelopmental sequence of events and patterns of brain

enlargement across mammalian orders reveal a high degree of conser-

vation (Clancy, Darlington, & Finlay, 2001; Finlay & Darlington, 1995;

Workman, Charvet, Clancy, Darlington, & Finlay, 2013), providing fur-

ther support for the use of mouse models in the study of human

encephalization.

One way to gain further understanding of a complex biological

system is to break it using an experimental design that disrupts mor-

phogenesis. In laboratory mice, this is commonly done by disrupting

the function of a gene. Studies of mouse models carrying mutations

that are proposed to disproportionately affect a particular skull mod-

ule have demonstrated the structured nature of cranial integration

and covariation. Mice carrying mutations that contribute to shorter

and wider cranial bases also exhibit wider faces and cranial vaults,

while mice carrying mutations causative for a shorter face phenotype

also have shorter cranial bases (Hallgrímsson et al., 2007). Additional

mouse models have provided support for the spatial packing hypothe-

sis, revealing a significant correlation between increasing basicranial

flexion and cranial capacity relative to overall neurocranial size

(Hallgrímsson et al., 2007; Lieberman et al., 2008). Mouse models with

increased endocranial volumes relative to the cranial base have also

TABLE 1 Selected examples of mouse models with target genes associated with changes in brain size and development

Model name/experimental manipulation Brain characteristics Citation

nestinrtTA/tetbi4D Increased surface area of the cerebral
cortex

(Nonaka-Kinoshita et al., 2013)

In utero electroporation of Trnp1 Expansion of neocortex (Stahl et al., 2013)

In utero electroporation of ARHGAP11B Expansion of neocortex through increased
basal progenitors

(Florio et al., 2015)

SmoM2 causing constitutive activation of
Shh

Increased neocortical growth (Wang, Hou, & Han, 2016)

FGF2 microinjection to cerebral ventricles Increased cortical volume and number of
neurons

(Vaccarino et al., 1999)

In utero electroporation of TBC1D3 Increase in outer radial glial cells and
produces a folded cortex

(Ju et al., 2016)

EIIa;Fgfr3+/K644E Increase in cortical thickness (Inglis-Broadgate et al., 2005)

In utero electroporation of human FoxP2 Increased number of neurogenic
intermediate progenitors

(Tsui, Vessey, Tomita, Kaplan, & Miller,
2013)

BAF170 conditional knock-out Increased volume and surface area of
neocortex

(Tuoc, Narayanan, & Stoykova, 2013)

Mceph/mceph Postnatal brain enlargement (Diez et al., 2003)

Casp-3-/- and casp-9-/- Increased forebrain progenitor population (Haydar, Kuan, Flavell, & Rakic, 1999)

Stablizined β-catenin Increased neuronal production and enlarged
forebrains

(Chenn & Walsh, 2003)

Hs-HARE5::Fzd8 Increased brain size (Boyd et al., 2015)
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shown interesting relationships with cranial base flexion, quantity of

ossified cranial bone, and neurocranial globularity (Lieberman et al.,

2008; López et al., 2008).

While these studies have provided an excellent glimpse into

the potential relationship between encephalization and skull

growth and development, there are aspects of each of these

mouse models that limit their relevance to human evolutionary

questions. Hypotheses regarding human evolutionary encephaliza-

tion propose that cranial morphology changed in response to an

enlarging brain (Bastir, Rosas, Stringer, et al., 2010; Bruner, 2004,

2007; Lieberman, 2011; Lieberman et al., 2004, 2002; Martínez-

Abadías, Esparza, et al., 2012; Weidenreich, 1941). Mouse models

with mutations that directly affect basicranial growth and mor-

phology (e.g., Brachymorph [bm] and Pten mice) (Hallgrímsson

et al., 2007; Hallgrímsson & Lieberman, 2008; Lieberman et al.,

2008) may reveal correlations of these cranial features with

altered brain size or morphology but are based on an experimental

model designed to answer the reverse question: whether primary

changes in cranial growth or morphology can affect brain size. In

order to test the fundamental evolutionary hypothesis, one must

adopt a system that is designed to answer the question of whether

primary changes in brain size are the stimulus for changes in skull

morphology.

Mutations whose primary effect is to directly increase relative

brain size provide a more direct test of human encephalization

hypotheses. However, certain models, like the megencephaly (mceph)

model, do not manifest an enlarged brain phenotype until several

weeks into postnatal growth (Hallgrímsson et al., 2007), well after the

critical time period of cranial ossification and skull growth. The muta-

tion in transgenic mice carrying an altered β-catenin allele effectively

restricts expression of the transgene to neural precursors; however,

the drastic enlargement of the ventricular system and failure of these

mice to reliably survive past birth weaken the impact of any general-

izations that might apply to human encephalization (Chenn & Walsh,

2003; López et al., 2008).

Complete knock-out (KO) mouse models, wherein a gene is

knocked-out ubiquitously so that it cannot function in any tissue, pro-

vide significant experimental insights. However, the fact that many of

the gene regulatory networks operating during early development are

common to brain and skull morphogenesis complicates the use of KO

models in the study of brain and skull interaction. For example, com-

plete KO of a gene known to directly affect brain size cannot be used

to study whether a larger brain causes change in skull morphology, as

the direct contribution of that gene to the development of other tis-

sues, including bone, has also been canceled in a KO model.

One example of a genetic network that simultaneously affects

both brain and bone development is the group of fibroblast growth

factors (FGFs) and their associated receptors (FGFRs) (Ornitz &

Marie, 2002; Su, Jin, & Chen, 2014), but there are many more

(e.g., Richtsmeier & Flaherty, 2013). The importance of the

FGF/FGFR network in skeletal development is evidenced by the

severe skeletal phenotypic dysmorphologies that can arise in many

FGFR-related human skeletal dysplasias, including achondroplasia

and craniosynostosis syndromes. In a number of craniosynostosis

syndromes, FGFR point mutations can result in a broad range of

cranial skeletal phenotypes, including prematurely fused sutures.

However, brain anomalies can also occur in these patients (Camfield,

Camfield, & Cohen Jr., 2000), and FGFs/FGFRs have been implicated

in brain development, contributing to early neurogenesis, glial differ-

entiation, synapse formation, and cerebral cortex size (Ford-Perriss,

Abud, & Murphy, 2001; Ozawa, Uruno, Miyakawa, Seo, & Imamura,

1996; Vaccarino et al., 1999).

Studies have demonstrated that FGF2 null-mutant mice have smal-

ler cerebral cortices (Vaccarino et al., 1999). However, without knowl-

edge of the direct effect of FGF2 on bone development, any observed

changes in skull morphology of FGF2 null-mutant mice could not be

attributed to the observed change in brain size. A proper correction for

that effect cannot be done statistically because we do not yet fully

understand the process. Without detailed knowledge of the basis for

the observed changes, we cannot know whether an observed change in

skull development was caused (a) directly by the same genetic variant

that altered brain morphogenesis, or (b) indirectly as a secondary effect

of the change in brain morphogenesis.

Thus, while a number of mouse models have been developed that

target genes associated with changes in brain size and brain develop-

ment (Table 1), caution must be used in interpreting any morphologi-

cal consequences in the skull, as that genetic change can have a direct

effect on bone development. This requires that interested investiga-

tors expend significant energy conducting rigorous studies of gene

expression during development to better understand the influence of

the proposed genetic variant on all developing tissues so that their

usefulness in understanding the impact of encephalization on skull

morphology is validated and reproducible.

Cre-recombinase technology provides one solution. This technol-

ogy utilizes bacteriophage Cre-recombinase, an enzyme that will

cause recombination between two specific target site nucleotide

sequences, known as loxP sites (Doyle et al., 2012; Nagy, 2000). In its

most simple form, inserting a loxP site on either side of a target gene

will cause the Cre-recombinase to recognize the loxP sites enabling

creation of a transgene through deletion, insertion, translocation, or

inversion at the targeted DNA site. Recent advancement of this site-

specific recombinase technology enables specific cell types or devel-

opmental time points to be precisely targeted or a specific external

stimulus to act as a trigger for the Cre-recombinase activity. Though

some Cre lines have been found to not always behave as expected

TABLE 2 Selected examples of cre-recombinase mouse models

useful for investigating brain growth and development

Model Target tissue Citation

Emx1Cre Cortex and hippocampus (Gorski et al., 2002)

Nestin-Cre Central and peripheral
nervous system

(Yaworsky & Kappen,
1999)

Foxg1-Cre Telencephalon (Hébert & McConnell,
2000)

Gad2-Cre Cortex and cerebellum (Taniguchi et al., 2011)

Scnn1a-Tg3-Cre Cortex, thalamus,
midbrain, cerebellum

(Madisen et al., 2010)

Camk2a-CreERT2 Cortex, hippocampus,
striatum

(Madisen et al., 2010)

Thy1-Cre Postnatal cortex,
hippocampus

(Dewachter et al., 2002)
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(see, e.g., Davey et al., 2012; Matthaei, 2007; Schmidt-Supprian &

Rajewsky, 2007; Smith, 2011; Song & Palmiter, 2018), tissue- and

cell-specific Cre-recombinase lines offer the potential to control the

expression pattern of any transgene in anatomical space and/or devel-

opmental time. Many cre drivers that target aspects of neurogenesis

are available (Table 2).

Skull development occurs through the interaction of genetic net-

works and mechanical forces of brain expansion, but the skull also

influences the directions of brain growth. As noted previously, the

development of neural and skeletal tissue is controlled by many of the

same genetic networks (Richtsmeier & Flaherty, 2013), and much of

evolution occurs by adjustments in developmental programs. Conse-

quently, evolutionary changes in development that arise from modifi-

cations in the operation of regulatory hierarchies may affect brain and

skull developmental patterns simultaneously—sometimes favorably as

in the case of encephalization, and sometimes adversely as in the case

of craniofacial disease. Because current anthropological hypotheses

regarding encephalization posit that the brain directs changes in skull

morphology, and embryonic neural and skeletal tissues respond to

similar molecular cues, a test of the spatial packing hypothesis would

require an experimental model in which one tissue can be modulated

independently to determine the response of the other tissue.

To test the hypothesis that human encephalization is responsible

for changes in skull morphology, experimental studies would ideally

utilize a mouse model that mimics a mechanism believed to have

played a role in human brain evolution. Such an experimental model

would require a system in which a genetic variant: (a) affects only neu-

ral tissue; (b) is active from the onset of neurogenesis, both prior to

the initiation and throughout the duration of cranial bone formation;

and (c) does not affect organismal health or viability so that both pre-

natal and postnatal development may be studied. Such a model would

allow tests of the hypothesis that the development of a relatively

larger brain contributes to changes in skull development, including the

appearance of the human-specific suite of craniofacial characteristics

that remain at the forefront of anthropological investigation: a highly

flexed cranial base, globular cranial vault, and retracted facial skeleton.

Adhering to this type of experimental model has the potential to

reveal how change in brain growth dynamics and morphology could

affect skull development and eventual morphology.

6 | CONCLUSION

Elucidating the genotype–phenotype transition is a major goal of biol-

ogy. Though it is commonly said that phenotypic variation is the prod-

uct of complex interactions between genotype and environment

(Figure 7a), mechanisms and processes that integrate genetic instruc-

tions and environmental factors to produce organized structure are

not well understood. Following others (Carroll, 2008; Hall, 2012), we

propose that developmental interactions among factors at all levels

contain the information needed to explain the production of phe-

nomes from genomes. Contemporary developmental analyses have

focused on genetics to reveal molecular mechanisms underlying phe-

notypic change but have fallen short in determining how phenotypes

are produced because genes do not make structures—developmental

processes make structures (Hall, 2012) through the organization and

function of cells using instructions provided by genes. How cells uti-

lize those instructions and integrate environmental factors, such as

mechanical forces generated by cell proliferation and tissue growth,

remains a central question of biology. The process of encephalization

evident in the fossil record required changes in neural development.

Our biases, as presented in this review, are that (a) answers to ques-

tions posed by the skull's apparent adjustment to encephalization

require the study of development and (b) changing skull shape, like

the changing brain, is a higher order emergent result of the hierarchical

nature of the genetic, cellular, and biomechanically driven coordina-

tion of cells and tissues (Figure 7b).

At this point, it is of value to ask: what is to be gained from under-

standing how the human skull acquired its modern shape, especially
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FIGURE 7 (a) It is commonly accepted that environmental and genetic influences contribute to the production of phenotypic variation. (b) A

developmental perspective accepts the production of phenotypic variation as a higher order emergent result of genetic and environmental
influences. These influences provide information that is used by cells to modify developmental pathways that affect phenotypes and life-history
traits resulting in changes in our interaction with the environment, including human society. To make sense of these complex relationships,
anthropologists must continue to use technologies from other disciplines and expand their collaborative efforts, forming research teams that

focus on all hierarchical levels, from the molecule to populations
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the characters of increased globularity, flexed cranial base, and

retracted facial skeleton? Formation of the brain and skull, and their

close developmental and evolutionary relationship, is a complex physi-

cal phenomenon. Focus on this challenge will reveal whether primacy

of brain or skull in head development is a problem of first cause, or

whether the answer is more complicated. The process by which the

brain has evolved varies across vertebrates, but much is known about

the order and process of the evolution of varying neural systems and

regions (Borrell & Calegari, 2014; Geschwind & Rakic, 2013; Ghosh &

Jessberger, 2013; Striedter, 2005). All regions of the brain did not

evolve at the same pace or at the same time, and changes in certain

parts of the brain may have affected skull shape while others did not.

Our knowledge of the evolution of bone in general and of the verte-

brate skull in particular is equally informed (Donoghue & Sansom,

2002; Hall, 2005; Kardong, 2008; Kawasaki & Weiss, 2003; Shimada

et al., 2013). Vertebrate evolution reveals a general trend of reduced

cranial kinesis through a reduction in the number of bones and the loss

or restriction of certain intracranial joints (sutures) over approximately

150 million years of synapsid history that appears to continue through

the Cenozoic (Sidor, 2001). Regardless of these dramatic changes in

skull morphology, the tight coupling of brain and skull morphology is

invariant across vertebrates. Why and how does this occur? Relatively

little is known of how the interaction of skeletal and neural tissue might

have contributed to their linked evolution, but a study of this relation-

ship is essential for an understanding of the evolution of hominin

encephalization.

Knowledge of brain-skull relationships will have meaning beyond

knowledge of the evolution of the head. Developmental relationships

of brain and skull comprise a complex physical phenomenon that can

inform us more generally of the interaction of skeletal tissues and the

organs and spaces that they support and protect. Depending upon the

approach (computational, experimental, fossil-based), information

gained from understanding brain and skull interaction may be general-

izable to the development of knowledge pertaining to other complex

skeletal-soft tissue systems (e.g., thorax [thoracic viscera & skeleton];

pelvis and perineum [pelvic viscera & skeleton]).

Finally, the evolutionary and developmental relationship between

brain and skull can be a source of important clinical information

pertaining to many human disorders of the brain and skull. Persistent

co-adjustment between brain and skull shape is revealed in the study of

craniofacial and neural tube anomalies like anencephaly and holoprosen-

cephaly, and in less life threatening, but similarly devastating, conditions

like syndromic craniosynostosis. Understanding the processes that

underlie the accommodation of brain and skull in disease involves identi-

fication of a series of subtle, though complicated, events occurring in

time with cumulative, often worsening effects. Knowledge of these rela-

tionships and the potential sequences of developmental events would

contribute to patient care by enabling a more accurate prediction of out-

comes and informed planning of surgical intervention and/or therapy.

The primacy of either brain or skull in head development repre-

sents one of biology's “chicken-and the egg” causality dilemmas. What

is clear is that the unique characteristics of the modern human skull

(globular cranial vault, highly flexed cranial base, retracted facial skele-

ton) could only emerge through changes in developmental programs

directed by genetic instructions, and that these features, like other

evolving phenotypes, are the result of innumerable independent and

incremental developmental changes (Carroll, 2003) originating at the

level of the cell. Fossil evidence provides a morphological map for gen-

eralized changes in the hominin skull that led to the production of a

domed cranial vault, a highly flexed cranial base, and a retracted facial

skeleton. However, a close look at all the evidence across species and

evolutionary time reveals trajectories that are neither direct nor com-

plete. The establishment of these traits and their transmission to the

next generation required changes in development directed by instruc-

tions given by genes and influenced by the many other factors we have

discussed. Genetic mechanisms that propel the appearance of charac-

teristic cranial traits inform developmental programs, but these pro-

grams also use environmental inputs like mechanical forces as

information, enabling viable responses to perturbations that could dis-

rupt normal development or contribute to the capacity to evolve new

forms. Understanding how molecular signaling, cell behavior, and tissue

morphogenesis interact with mechanical forces and other environmen-

tal inputs in the production of form will provide a means for predicting

changing (i.e., evolving, growing, or diseased) phenotypes (Figure 7).

Across evolutionary and developmental time, dynamic changes in

brain size and skull shape track one another so that their integration is

revealed in two structures that fit soundly, regardless of changes in biome-

chanical and physiologic functions (Richtsmeier & Flaherty, 2013). As a dis-

cipline, we have adequately described the patterns of association between

changing brain size and skull morphology as evidenced in the fossil record,

and through the study of sister primate groups we have proposed poten-

tial processes that account for the patterns that we trace. The challenge

for anthropologists is to use the amazing technologies now available in

original and collaborative ways to reveal the mechanism(s) underlying the

processes we propose to account for the observed patterns.
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