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CHOW MOTIVES ASSOCIATED TO CERTAIN ALGEBRAIC
HECKE CHARACTERS

LAURE FLAPAN AND JACLYN LANG

Abstract. Shimura and Taniyama proved that if Alis a potentially CM
abelian variety over a number field F with CM by a field K linearly dis-

joint from F, then there is an algebraic Hecke character A a of F K such that
L(A/F,s)=L(A a,s). We consider a certain converse to their result.  Namely,
let A be a potentially CM abelian variety appearing as a factor of the Jacobian
ofacurve oftheformy € =yx ! +3&. Fix positive integers a and n such that
n/2<a<n. Under mild conditions on e, f, y, ®, we construct a Chow motive

M , defined over F = Q(y, &), such that L(M/F, s) and L(A aha* ,s) have the
same Euler factors outside finitely many primes.

1. Introduction

The Langlands philosophy predicts a correspondence between certain automor-
phic representations and Galois representations. Moreover, the Fontaine-Mazur
conjecture and its underlying philosophy specify when these Galois representations
are expected to arise from the ¢-adic cohomology of a variety or, more generally,
a motive. To each of these objects—automorphic representations, Galois represen-
tations, or motives—one can attach a natural invariant, called an L-function, that
is a meromorphic function on some right-half complex plane. In light of these two
general conjectures, one can askgiven an automorphic representation f, how can
one construct a motive M ¢ yielding an equality of L-functions L(M ¢, s) = L(f, s)
(or at least an equality of all but finitely many Euler factors)?

In this paper, we explore this question in a very special case, namely that of al-
gebraic Hecke characters and CM motivesin 1961, Shimura and Taniyama proved
that if A is an abelian variety over a number field F with CM by a field K linearly
disjoint from F , then there is an algebraic Hecke character A o of F K such that
L(A/F, s) =L(A A, s)[12]. Using more explicit methods, Weil had proved the same
result in 1952 for factors of Jacobians of curves of the form

C:y®=yx’ +5,
for2<es<fandy,8eQ  [14].
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In this paper we are concerned with a converse question. Fix C as above with
(e, f)=1as well as a primitive e-th (respectively, f-th) root of unity { . (respec-
tively, ¢ ). Assume F = Q(y, d) is linearly disjoint from Q({ ¢, ¢ ) and that C has
an F -rational point. Let A be the algebraic Hecke character associated to an iso-
typic CM factor of the Jacobian of C. Fix a positive integer n and another integer
n/2<asn. We explicitly construct a Chow motive over F for the Hecke character

APNT? , where the bar denotes complex conjugation.

More precisely, we define a group action of G = (Z/f Zx Z/eZ)™' on the product
C" that depends on the integer a.There is a Chow motiveM such that any classical
realization of M is given by G-invariants of the corresponding realization of C'. We
then decomposeM using idempotents coming from the motive h '(C). To describe
the decomposition, recall that the Jacobian of C is F -isogeneous to a product

!
(1.1) Jac(C) ~ ¢ Ai,
I
where each A is an isotypic abelian variety defined over F that obtains CM by a
certain cyclotomic field K ; upon base change.The idempotent e; that cuts out A
can be viewed as an idempotent for A(C), and thus E ; = e®" is an idempotent for
h(C"). We show that the Chow motive M; := E ;(M ) behaves very similarly to A;.

For a finite set of primes S, an (incomplete) L-function L ©) (x, s) is the Euler
product of the local L-factors in L(*, s) outside the set S. Let S; denote the set of
primes where the abelian variety A has bad reduction. Let A : Af¢ JFK i -C*
be the algebraic Hecke character associated to Aby Weil and Shimura-Taniyama;
thatis, L(A /F, s) =L(A i, s). Then our main theorem is the following.

Theorem 1.1. Assume C has an F -rational point. Let n be a positive integer and
n/2<a<n. Assumea=nifFisnottotallyreal. Forall iinthe decomposition
(1.1), there is an equality of (incomplete) L-functions

LEOM/F, s) =L COANT | s).

There are a few important notes to make about the history of this problem.
First, the case when C is given by y? = x 3 + 8 (8 € Q) was treated by Cynk and
Hulek in [2], and our work is very much inspired by their approach. Secondly, given
a number field k and any algebraic Hecke character A1 Ag/k* - C ™, thereis
a standard way to construct a numerical motive M (A) defined over k such that
LS (M (A),s) =L ©) (A, s) for some finite set of primes S [6, §l.4]. There are
two main advantages to our construction when A comes from one of Weil’s curves,
which are discussed more precisely in Section 3.4.First, our construction yields a
Chow motive, which carries more information than a numerical motive.Second, our
construction shows that the standard motive descends to a smaller field than that
given by the standard construction, in the sense that our motive M; is defined over
F and, when base-changed to F K, coincides with the standard motives. Indeed,
our theorem gives a positive answer to the following question in the case of algebraic
Hecke characters arising from Weil curves.

Question 1.2.  LetA: A /k* - C ™ be an algebraic Hecke character. Assume
there is a subfield k' ck such that the standard motive M (A) descends tok . For

positive integers n, a as above, does M (?\Xn_a ) also descend to K ?
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The structure of the paper is as follows. In Section 2 we establish some facts
about the curve C and its Jacobian. The main point is to find a nice basis with
respect to which we can compute the Galois action on the "etale cohomology of C,
which is done in Proposition 2.4.  Then we introduce L-functions and use them
to relate the algebraic Hecke characters in question to the matrices describing the
Galois action with respect to our chosen basis.  This relationship is recorded in
Corollary 2.13.

Section 3 is devoted to constructing the relevant Chow motives and calculating
their L-functions. We start with a brief introduction to the language and notation of
motives in Section 3.1.The group action of G on C is defined at the start of Section
3.2 and was inspired by similar constructions in [2] and [9]. The main technical
result in the paper is Proposition 3.2, where we compute the Betti realization of
the motive M by computing the G-invariants of the Betti realization of C ". This
was due to Schreieder [9] in the case when C is of the form?%/= x 29*' + 1, and our
calculation is a straightforward generalization of his result. Theorem 1.1 is proved
in Proposition 3.4 and Corollary 3.5.

Finally, we briefly discuss the relationship between the motives constructed here
and other motives and varieties in the literature in Section 3.4.  In particular, we
discuss the constructions of motives in [6] and [7]. Moreover, we note in Corollary
3.8 that our theorem yields modularity results for a class of smooth projective
varieties constructed in [9], which generalizes the modularity results of [2].

Notation:  Throughout the paper we will use ¢ to denote Euler’s totient func-
tion, ¢(n) =#(Z/nZ) *. For a positive integer n, let {, denote a primitive n-th
root of unity. If X is a variety defined over a field F and K is an extension of F ,
we will write X g for the base change X xg Kof Xto K. For a field k, we fix an
algebraic closure k and write Gy for the absolute Galois group Gal(k/k).

2. Weil’s curves

In this section we introduce the curves C studied by Weil in [14] and give explicit
descriptions of the deRham, Betti, and ¢-adic cohomology of C. In particular, the
computation of the ¢-adic cohomology will be given in terms of some algebraic
Hecke characters,and it is the powers of these Hecke characters to which we will
attach motives in Section 3.

2.1. The curve C.  Fixintegers 2 < e <fsuch that (e, f) =1. Lety, 0 e Q-

such that the field F = Q(y, d) is linearly disjoint from the field K = Q(¢ er G ).

From a notational point of view, it is easier to assume F = Q, e = 2, and f is prime.

We suggest the reader make these assumptions upon a first reading of the paper.
Let Y be the smooth affine curve over F given by

{y®=vyx" +3}
Let X be the projective closure of Y, which is usually singular, and let C be the
normalization of X. The curve C then has genus g = %
After base-change to F K, the curve X g¢ is equipped W|th two automorphisms
We, W of orders e, f, given for projective coordinates [X :y : z] by
W (X iy 1Z])=[Gex 1y 2],
We(lX 1y :Z]) =[x :Gey 2]
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The universal property of normalization ensures that these automorphisms extend
uniquely to automorphisms of Cgx , which we shall also denote by ¢ and ys.

2.2. The de Rham cohomology of C. We shall often want to consider the
complex points of C. Doing this requires that we base change C to C, which
depends on a choice of embedding F (- C. We fix such an embedding once and
for all, with the understanding that our computations depend on this choice, and
write C ¢ for the base change of C to C with respect to our fixed embedding.

Let Qéc be the sheaf of holomorphic differential 1-forms on & There are explicit
differential 1-forms on Y given by

, Xi—1
('q,j - y—dea

where 1<is 5 1<js<e-1iffisoddand1<isf-1,1<js el iff
is even. If 1 : Y (- X is the natural inclusion and N : C - X is the normalization
map, then write wi; =N.1"(w; ) e H §: (Cc, &)

Note that the w j; are defined over F and thus can be viewed in the algebraic
de Rham cohomology of the curve C. The forms w;; are eigenvectors for the

automorphisms Y and yx . Indeed, directly from the definitions we calculate

i1 _

vitay) = SN d@0 =giuy,
*( -)=—Xi_1 dx:(‘j .

Ye va (CeY)J e N,J .

Lemma 2.1. A C-basis for H §; (Cc, &) is given by the set of forms

o f-1 . o
w; [1<is T,1SJSe—1 if f is odd,

#
w; |1sisf-1,15js % if fis even.

Proof. Since (e, f) =1, the forms w; are eigenvectors with distinct eigenvalues for

the automorphism y; y; of H 3R (Cc, Q1CC). Hence the w; ’s are linearly indepen-
dent. Since dimc H3z (Cc, 4 ) =g= EUEY it follows that the w i ’s indeed
form a basis for H; (Cc, ). !

To simplify notation, let us set

Thus J = % = g regardless of the parity of f.

2.3. The Betti  cohomology and Jacobian of C. In order to understand the
Betti cohomology of the curve C as well as the Jacobian Jac C, we will make use
of some Hodge theoretic terminology, which we introduce here.



106 LAURE FLAPAN AND JACLYN LANG

2.3.1. Preliminaries on Hodge theory. A Q-Hodge structure V of weight wis a
finite-dimens&}gnal Q-vector space together with a decomposition into linear sub-
spaces ¥ = o VP49 such that VP9 =V 9P where the bar denotes the action
of complex conjugation. If V is a Q-Hodge structure, then an endomorphism a of
V is a Q-vector space endomorphism of V that preserves the linear subspaces ¥4
when base changed to C.

A polarization of a Q-Hodge structure V of weight w is a bilinear form ¢, >
V x V - Q that is alternating if w is odd, symmetric if w is even, and whose
extension to V¢ satisfies:

(1) (V Pa VP4 )y =0ifp Aw-p,

w(w- 1)

(2)i P9 (-1) —z <, X»>0forall nonzerox e V P9,

For X a smooth complex projective variety, a choice of ample line bundle on X
determines a polarization on the Hodge structure given by the rational cohomology
HY (X, Q). The category of polarizable Q-Hodge structures is a semisimple abelian
category, which we will denote by Q-HS.

A Q-Hodge structure has type {(1, 0) + (0, 1)}ifV ¢ =V "2 @ V%', Note that
for X a smooth complex projective variety, the first rational cohnomology H (X, Q)
is a polarizable Q-Hodge structure of type {(1, 0) + (0, 1)} since H 'X,Q ®C=
H'O(X)® H%(X), where H" (X) = Hlz (X, Q%) and QY is the sheaf of holo-
morphic i forms on X.

There is an (arrow-reversing) equivalence of categories between the category of
complex abelian varieties up to isogeny and the category of polarizable Q-Hodge
structures of type {(1, 0) + (0, 1)} given by the functor A. - H (A, Q).

2.3.2. The Betti cohomology of C. We now return to our discussion of the rational
Betti cohomology H 2 (C, Q) :=H '(C¢(C), Q) of the curve C, which is a Q-Hodge
structure of type {(1, 0) + (0, 1)} by the Betti-de Rham comparison isomorphism
for complex varieties. By abuse of notation, we will consider the differential forms
w; €H §R(Cc, Q) aselementsinH §(C, Q) ® C = H{(C, C). Furthermore,
let wi-je-j  be the image of w;; inH é(C, C). Namely, the involution of complex
conjugation acts on H g (C, C) via wij .- wrje- . Since the Betti-de Rham com-
parison isomorphism is equivariant with respect to the action of End C, andin
particular with respect to y ¢ and yx , it follows that

(2.1) W(wi)=G¢iw; and  wi(wy)=CJ w;

forall1<sisf-1,1<j<se-1inH }(C,C).

Now the Abel-Jacobi map yields an isomorphism of Q-Hodge structuresiHC, Q)
= H{ (Jac C, Q). We will frequently make use of this isomorphism together with
the equivalence of categories discussed above to go back and forth between the
language of cohomology and abelian varieties.

Forafieldk2 F, let End (Jac C) denote the algebra of endomorphisms of
(Jac C), defined over k, and let End ?(Jac C) = End  (Jac C) ® Q. We adopt the
following conventions for the rest of the paper to simplify notation.  For a proper
divisor d|f (respectively, d'|e), write f 4 (respectively, ey ) for the quotient f /d
(respectively, e/d’). The notation (d, d ") will always meanf=d|fande =d |e.
If we take a product or sum over d, d ', we mean letd and d " run over all proper

divisors of f and e. Furthermore, let K 44' = Q(Cfd, Z)andFgq =FK 44
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Lemma 2.2. There is an embedding of Q-algebras
]
Kaa (- Endc (Jac C).
dd’

&
In particular, there is an embedding of Q-algebras 44 Q (- End? (Jac C).

Proof. Since g, and y; are endomorphisms of C defined over F K, they induce
endomorphisms yi, yf € End rx (Jac C). We want to calculate the subalgebra of
EndY (Jac C) that they generate. In order to do this, we observe that there is an
injection (depending on our fixed embedding F (- C or,  rather, an extension of
thatto F K (- C)

EndY (Jac C) (-~ End2(Jac C).

So it suffices to calculate the subalgebra of Encﬁ(Jac C) generated by yL and y .

Now, (Jac C)c is a complex abelian variety.  Since the category of complex
abelian varieties up to isogeny is equivalent to the category of polarizable Q-Hodge
structures of type {(1, 0) + (0, 1)}, computing End 8(Jac C) is the same as com-
puting End q-ns (HZ (Jac C, Q)). Since the Abel-Jacobi map induces an isomor-
phismH 1 (C, Q) = H] (Jac C, Q) in the category Q-HS, it suffices to compute
Enda-ns (Hg (C, Q)).

By Lemma 2.1, the eigenvalues of @ and y; acting on H} (C, Q) ®q C are

{C:1<sisf-1,1<j<e-1} and (¢} :1sisf-1,1<j<e-1},

respectively. Thus the characteristic polynomials of g and y; acting on H(C, Q)
are
¢-1 ' ( f fi-1 ' £ ( e
! ) x' =1
(y-gb)' =

- and  (x-Q{)°= T
= y-1 i=1 x =1

respectively. Hence the minimal polynomial of y; actingonH §(C, Q) is yye_—'ﬂ
and the minimal polynomial of y ; actingon HZ (C, Q) is fo_;1 . It follows that the

subalgebra of Endg-ns (H g (C, Q)) generated by g, is isomorphic to Q[y]/( yye_—"f)

and the subalgebra generated by yf is isomorphic to Q[x)/ Xxf_f ). Since (e, f) =
1, the polynomials TTf_‘f and T2 are relatively prime.  Thus the subalgebra

of Endq-ns (HZ (C, Q)) generated by w ; and y; is isomorphic to the Q-algebra

Q[x, yl/( Xxf_f , yye_f ). The factorization of cyclotomic polynomials (see, for instance,

[13, Chapter 2]) yields the isomorphism
!

)= Kag'-
dd’

x' -1 ye-1
S

The last sentence in the statement of the lemma follows from the first since
End? (Jac C) = (End % (Jac C))GaFKK) !
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Leteg, q, € End 2 (Jac C) be the image, under the embedding of Lemma 2.2, of
the elementin ~ 4 ;- Q that has 1 in the (d o, dy)-component and 0 elsewhere Then
by Lemma 2.2 we know that {e q44'}44' is an orthogonal system of idempotents in
End? (Jac C). That IS

&,q, di=dzandd; =d,,

°*€4,d,€dy,d, =
B 0 else,

o1= ) d,d'edrd"

Define Agq' = €44 (Jac C), which is an abelian variety defined over F . By defini-
tion, ]
Jac C ~F Ad,d' .
dd’
Furthermore, by Lemma 2.2

Kaga (€4 End?, . (Jac C)=End?  (Agg').

Proposition 2.3.
(1) Each A 44' is an isotypic abelian variety over F of dimension ggq4' =
d(f a)d(eq )/2 such that (A 44')F,,- has CM by Kgq'.
(2) The Betti cohomology of C decomposes as
Hg(C,Q =  Hg(Aga, Q)
dd’
where a C-basis for H} (A44', C) is given by
(2.2) Bag ={wi :1sisf-1,1<jse-1,(,f)=d, (,e)=d '}

Proof. Since Kgg' (— Endgd (Agq ), itfollows that [K 44 : Q]<2dimAgg . On

the other hand, ’
+ +

2dimAjq =2dimJacC=(e-1)(f-1) = [Kag :Ql.
dd’ dd’
Therefore we must have ¢(fq)Pp(eq) = [K 44 : Q] =2 dim A 44, Which proves the
first statement.
For the last statement, recall that the AbeI—Jécobi map induces

Hg(C,Q) =Hg(acC, Q)= Hg (Agg, Q).
dd’
Let @, denote the n-th cyclotomic polynomial. We can identify
Kaa = QX yI( P+, (X), Pe, (Y))
by sending x to {r, andy to (e, . But under the embedding

f _ e _1-
Qlx, yI/’ H yy% (> End% (Jac C),
we sent x to yf and y to y;. Therefore we have K4 (= Endq-ns (Hg (C, Q)) with
Gy »Wila,, and e, .~ Wela,, - Since ¢ |a,,. corresponds to ,, it follows
that ¢ ; |a,,. has order f4. Therefore the eigenvalues of ¢ on Hg (Aqq', C) must
have order equal to fq. Similarly, any eigenvalues of ¢ on Hg (Aq4.4', C) must have
order equal to eq. Therefore w; € Vgqq ifandonlyif(i,f)=dand (,e)=d
which proves the last statement. !
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2.4. The ‘etale cohomology of  C. Let us begin by fixing, once and for all, an
algebraic closure F of F as well as embeddings K (-~ F and F (- C. Let Z
be a smooth projective variety. Recall that for a given rational prime ¢, the fixed
embedding F (- C yields the identity H 5 (Z&, Q) =H &(Zc, Q). Moreover, for a
fixed embedding I, : Q, (- C, the Betti-"etale comparison isomorphism for complex
varieties yields an isomorphism of complex vector spaces [4, Appendix C, 3.7]:

HA(Z= Q) ®q,., C= HE (Z, C).

In particular, it follows from Proposition 2.3 that we have isomorphisms

%

H;t(cf’of)®sz|r CE H;t(Ad,d',[?7 O()®Qu|f C
dd’
(2.3) u o U
Hg (C, C) Hg (Aga, C),
dd’

n

which respect the decomposition given by the pairs (d, d'). By abuse of notation,
write w;; for the image of w; €B 4q inH ;t(Ad,d'F, Q) ®q,,, Cfor1<i <
f-1,1<j<e-1andhenceviewB 44 asabasisfor Hi(A 4 = Q) ®q,., C
as well. Therefore the involution of complex conjugation on H } (C, C) can be
seen on H;t(CF—, Q) ®q,,, Cby wij .- uxje . Since the isomorphisms in (2.3)
are equivariant with respect to the action of End C, it follows thatthe w ;; €
HL(Cs Q) ®q,,, C have the eigenvalues calculated in (2.1).

Note that since A 44 is defined over F , its “etale cohomology inherits an action
of the Galois group G ¢ = Gal(F /F ). This action is unramified away from the
(finitely many) primes of bad reduction for A 44'. Fix a prime p of F where A 44
has good reduction. In particular, it follows thatp ! ef. Let g denote the size of
the residue field at p. Thatis, if O ¢ is the ring of integers of F , then g = #0 ¢ /p.

Now fix a rational prime ¢ such thatp! ¢and an embedding! ,: Q, (- C.
Consider the action of a Frobenius element Frqﬁbe Gfr on Hgt (Ad,d'F’ Q) &y,,,C.
We will show in Proposition 2.4 below that the matrix [Frob ;]Bd,d’ of Frob; with
respect to the basis Bgg' of Hg (A4 4 . Q) ®q, ., C is a generalized permutation
matrix, that is, a matrix with exactly one nonzero entry in each row and column.

Given proper divisors d[fandd '|e, recall thatf 4 =f/ldande 4 =e/d . Let
ords e, g denote the (multiplicative) order of q in (Z/If 42)* x (Zle ¢ Z)™ .

Proposition 2.4.  The matrix [Frob ;]ded . of Frob; with respect to the basis B 4
of H, (Agq 7> Q) ®q,,, Cis ageneralized permutation matrix on 2g 44 letters.
The corresponding permutation p is a product of% disjoint cycles, each of
length ords e, Q.
Proof. Define the set

laa ={(,))ezfZx2z/eZ|(i,f)=d, (,e)=d '}

Fors=(i,j)el 44, leti(s) =iandj(s) :=j. Writethe actionof Frob, on
Hgt(Adydr'F—, Q) ®q,,, C with respect to the basis B 44' as
+
Froby (w) = ast U,
sel 447

for some a;; € C.
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A direct calculation shows that we have the following equality on C(F ) for
ve{e f}
Frob, ~w, =y, ° Frob,
which implies that
w, ° Frol, = Frob - (4)".
We compute both sides of this equality with respect to the basis B 44':
+ %) asi{® wy  ifv=f
. * * < , ds, =1
Wy, ° Frol(uw) = st Wy ()= ) ° o "o P
sel 4q° sel 4q° As t Ce w ifv=e,

whereas $
. . . ) )
oo Frobp G w)=¢ " 7 () agw ifv=f,
FrObp ° () Huy) = ? —qi(t) T Sf ad e
Frobp(Ce w)=Ce sel g4 astws ifv=e.

It follows that for all s,te | 44 we must have a; = 0 unless
i(s)=qi(t)ymodf and j(t) = qj(t) mod e.
Since s, t € l44', the above congruences are equivalent to the conditions

i(s) _ qi(t) i(s) _ qi(t)
2 s N7 f -2 = =7
q d mod fq and q q
Since g % € (ZNf 4Z2) x (Zle ¢2)*, it follows that s determines t. In other
words, there is a permutation pon | 44 such thatag; # 0 if and only if t = p(s).
This proves that [Frob;]ded, is a generalized permutation matrix.
For the claim about the structure of p, weidentify | 44 with (Z/f 42) %
(Zle ¢ Z)* and use the congruence condition
" ¢ "o o (
©) 6" o 10 i
d’' d d’ d
in (ZIf 42)" x (Zleq Z)™ . Indeed, this shows that for any a € (Z/f 42)* x (Zle 4 Z)*
we have

mod ey .

p(@)=q~"a,p('a)=qg72aq,...,pag" «es 9) =q.

In the above calculation, ' denotes the (multiplicative) inverse of q in (Z/f4Z)* x
(Zle ¢ Z2)* . Therefore p indeed has the desired structure. !

The characteristic polynomial of a generalized permutation matrix can be cal-
culated using basic linear algebra (see [5, §1.2] for details).

Lemma 2.5. LetM e GL y(C) be a generalized permutation matrix given by the
data of a permutationpandz 41,...,g €C*. Write C4, ..., € for the supports
of the disjoint cycles of p, andletc; =#C ;. For1<m<n, define the complex
number ]

Zn = z.

i€C m

Then the characteristic polynomial of M is the polynomial

In

(T =Z ).

m=1
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As in the proof of Proposition 2.4, let us write the matrix of Frob | with respect
to Bgq' as (& p(s) )sel o, for the permutation p. Let g™" denote the (multiplicative)
inverse of q in (Z/f4Z)* % (Zle ¢ Z)™ . For a fixed element b € (Z/f4Z)* x (Zle 4 Z)™,
define

orded.ed, q

(2.4) Zy = Bpq-i,p(bq= 1)
i=1

where we have identified lgq' = (Z/f 4Z)* % (Zle ¢ Z)* via (i, ]) < (i/d,j/d ). In
other words, Zy, is the product over all the nonzero entries in [Frob ;]Bd.d . corre-
sponding to the disjoint cycle in p containing b.

Corollary 2.6.  The characteristic polynomial of Frob,, acting on H & (Agq 7 Q)
is

of 4) e y4)
orq fgqd ord'ed. q . /
TOI’dfd.ed, q_Z(C’C’)

c=1 c =1

Proof. This follows directly from Proposition 2.4 and Lemma 2.5 since the charac-
teristic polynomial of Frob , can be computed after any base change. !

Remark 2.7. Note that while the a s:’s may be complex numbers, Corollary 2.6
implies that the Z ’s are algebraic since the characteristic polynomial  of Frob;
vanishes at all of the (ords, e, q)-th roots of Z .

We shall also want to understand the action of  complex conjugation on Z .
Unfortunately, we can only do this when F is totally real.  Lettingthe = symbol
denote complex conjugation, we record the following proposition for later use.

Proposition 2.8.  Suppose that F is totally real, and let p be a prime of F where
Aggq has good reduction. Thenforanys,t <l 44 wehaveas; =a -t . In
particular, forany b € (Z/f 4Z)* x (Zle ¢ Z)* we have Z,=Z _,.

Proof. Since F is totally real, there is a well-defined complex conjugation c€ G ¢,
and for p as in the statement of the proposition, we have the relation ¢ - Frolk, =
Froby, °c. Hence Frob, °¢ =c¢” ° Frob,. We compute both sides of this relation,
making use of the fact that the “etale-Betti comparison isomorphism under which we
have identified the various incarnations of w is equivariant with respect to complex
conjugation. Thus foranytel 44, we know thatc”(w)=wt =w- . Hence we
have

+
Frob,, °¢ (u) = Frob p(w-t ) = as -t W,
/ SEI\d,d '
+ + +
¢’ ° Frob,(w)=c" \ aS,tws/ = s tWs = st L.
sel gq° sel 44 sel 4q-
This gives @5 =a-s; , as desired. The factthat Z , =Z -, now follows directly

from the definition of Z . !
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2.5. The L-function of C. Let k and E be number fields. Write O for the ring of
integers of k. The language of compatible systems of Galois representations is useful
for defining the L-functions of interest. Recall that a d-dimensional compatible
system of Gg-representations V ={V ,}, is a collection of representations {p, :
Gk - GL 4(Ea)}aprimeofe  such that there is a finite set S of  primes of k such
that:

(1) pa is unramified outside S and the primes of k lying over¢=An Z;

(2) for all primes p of k outside S, there is a polynomial F,(X) € E[X] such
that, forall primes Aof EsuchthatAnZ =pnZ, the characteristic
polynomial p, (Froby) is equal to F ,(X), independent of A.

For example, if Z/k is a smooth projective variety, then {H &(Z,, Q)}. is a com-
patible system of G¢-representations with E = Q for any n. If M is a Chow motive
defined over k (see Section 3.1 for the definition), then {Hg (M, Q)} . is a system
of G-representations. It is not known in general whether the system is compat-
ible. However, for the motives we construct, we prove that this system of Galois
representations is compatible in Proposition 3.4.

The L-function of a compatible system V of d-dimensional Gi-representations
is a complex analytic (or meromorphic) function that encodes the data of how the
local Galois groups Gy, (= Gk act on the Galois representations {V) } . (Here p is
any prime of k and A is chosen such that pn Z=An Z.) Itis defined as an Euler
product with one local factor for each prime of k. It is easiest to define these local
factors when the representation is unramified at p. As these are the only factors
that will concern us, we restrict our definition to that case.

Definition 2.9.  Let p be a prime of k at which a d-dimensional compatible system
of Galois representations V is unramified. Choose a prime A of E such thatpn
Z=AnZ. LetPy(T)be the characteristic polynomial of Frob, on V (which is
independent of the choice of A). Let q, =#O «/p. The local L-factor of V at p is

Lp(V /K, 8) = q5%% Pp(cp),
which is a polynomial of degree d in q,,° .

If Z/k is avarietyand V={H (Zi, Q)}., then we write L ,(Z/k, s) and call it
the local L-factor of Z at p. This is the (incomplete) Hasse-Weil zeta function of Z.
If Z = Ais an abelian variety, then H [ (Ar, Q)=A "H (A, Q). Therefore we
abuse notation slightly and write L(A/k, s) for the L-function of {H [, (A, Q)}ein
the case of abelian varieties. This should not cause any confusion.

Note that given a local L-factor L ,(V /K, s), it is possible to recover P (T ) by
replacing ¢° in L (V /k, s) with a variable T and multiplying the resulting Laurent
polynomial by T 9. We shall often switch between local L-factors and characteristic
polynomials in what follows. In particular, we can restate Corollary 2.6 as follows.

Corollary 2.10.  If p is a prime of F where A 44 has good reduction, then the local
L-factor at pof A 44 over Fis

of 4) 9 g4)
or1 fgd ord! eq’ d . /
Lp(Ad,d’/F, S) = 1- Z(c’c,)q—sord tgey G

c=1 c =1
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Proof. Recall that the compatible system of Galois representations associated to
an abelian variety is ramified at exactly the primes of bad reduction.  The result
now follows from Definition 2.9 and Corollary 2.6. !

As we shall only be concerned with the local factors where our representations
are unramified, we shall define the incomplete L-function of a compatible system
V as follows. Let S be the finite set of primes of k at which V is ramified. =~ The

incomplete L-function is |

LOW Kk s)=  Ly(V/iks)".
peS
It is important to note that the L-function defined above depends on the field k; it
will change if we replace k by a larger field k .

Weil proved [14] that the varieties A 44 have algebraic Hecke characters asso-
ciated to them, a fact that was later generalized to all CM abelian varieties by
Shimura and Taniyama [12]. In order to state this correspondence, let us recall
some definitions. For a number field k, write A ¢ for the ring of adeles of k and O,
for the completion of the ring of integers of k at a finite place v.  For a place v of
k, write 1 y : ki (- A¢ for the embedding sending x € k to the idele with x in the
v-th component and 1 elsewhere.

Definition 2.11. A Hecke character is a continuous homomorphism A : A /k * -
C* . Such a character is said to be algebraic if for every archimedean place g of k,
there exists ng € Z (respectively, ng, mg € Z) if o is real (respectively, complex),
such that A(1 4(x)) =x "o (respectively, A1 (X)) =x "ex™<) for ay xek 5. The
conductor of A is the largest ideal m of k such that A is trivial on v 1+mO,.

Fix a uniformizer m , of O, for each finite place v of k, and let p , be the corre-
sponding prime ideal of F .$Write
A, . e 1, Difpy Im,

A =
(Pv) 0 otherwise.

Definition 2.12.  With notation as in Definition 2.11, letp! m be a prime of k
with residue degree q. The local L-factor of A at p is

Lo(A,8) =1-Ap)q,°.
The incomplete L-function of A is |
L™, s)=  Lp\s)".
p'm
Recall that A 44 is an abelian variety over F such that (A 44 )ded . has CM by
Kga =Q(C deg'). Since F is linearly disjoint from K by assumption, it follows

that Gal(F 44 /F ) = (Z/f 4Z x Zle ¢ Z)™ acts transitively on the set of embeddings
{1: K 44’ (= C}. Therefore there is an algebraic Hecke character

)\d,d' =AAd,d'/F e :A;d.d'/F c;(,d' -C”~
such that we have an equality of L-functions [11, Theorem 12],
(25) L(A d,d'/Fa S) = L()\ dd’ > S).

Furthermore, the support of the conductor of A 44 is exactly the set of primes of
Faa where (Aqq )r,,. has bad reduction [10, §7, Corollary 1].
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Recall that for a positive integer n, if p is a prime not dividing n, then p splits
into ¢(n)/ ord , p distinct primes in Q(C ), each of residue class degree ordp [13,
Theorem 2.13]. In particular, p splits into ¢(f ¢ - €y )/ ord¢,.e, p primesinK 44,
each of residue class degree org, .., p. Since F is linearly disjoint from K 44', it
follows that each prime p of F lying over p splits into ¢(f 4 - &)/ ord¢ ., p primes
in F 44, each of residue class degree ord e, p. Letf , be the residue degree of p
over p; thatis, q =p'r using the notation introduced just before Proposition 2.4.
Then the local L-factor of L(A 447, S) atpis

- /
(2.6) 1= hgg (p)g S raea P |
P'lp
where the product runs over all primes p' of Fqq4 lying over p.
Note that since q = p e, it follows that ord fq-ey O divides ords e, p. Write

ords,.e, P =m:-ords e, Q.

For each prime p' of Fgqq' lying over p, fix an m-th root of Agqq (p), and let g
denote the group of m-th roots of unity. Then we have the following corollary.

Corollary 2.13. For primes p of F as above, we have an equality of sets of

o(f a)d(e q4') .
ord1ye, elements:

4 7 g 6
= Gm " Mg’ (P) BPIP Gn EMm

6
¢fa) ;oo < PEd)
ordi,@° ~ orde, q

4
Z(C,C') 1<c<

where in the second set p runs over primes of F 44 lying over p. Furthermore, if
F is totally real, then (Z p,)™ = A g4 (p) implies that (Z -,)™ = A g4 (p).

Proof. The first statement follows directly from Corollary 2.10 and equations (2.5)
and (2.6). For the second equality, we have kg (p) = (Z ,)™ implies that

Ao (P)=(Z o) =25
by Proposition 2.8. !

3. Constructing a motive attached to powers of A

Let A =\ 44 be the Hecke character attached to Ay obtained as in the previous
section. Fix a positive integer nand n/2 <a<n. The goal of this section is to
construct a Chow motive M 44 defined over F such that L e ) (Mygq /F, s) =

LGaa )(A2X" % |'s). In Section 3.1 we introduce some notation and recall  some
background about motives. The key ingredient in the construction of Myygq is a
group action on C ". We describe the action in Section 3.2 and then construct

Mgq' using the invariants of the group action and the idempotente 44' defined
right before Proposition 2.3. Using an explicit calculation of the Betti realization
of Mgq' (Corollary 3.3), we compute the L-function of M 44 (Proposition 3.4) and

match it with that of A 3,d,X2;fr (Corollary 3.5). Finally, Section 3.4 summarizes the
relationship between the motives M, 4- constructed in this paper and other motives
associated to Hecke characters in the literature, especially the standard motive of

a Hecke character as found in [6, §l.4].
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3.1. Background on motives. Let k be a number field.  We begin by briefly
recalling the construction of the category of Chow motives over k, closely following
[1]. Let V¢ denote the category of smooth projective varieties over kTo any object
ZinVy, let Z "(Z) denote the group of algebraic cycles in Z of codimension n and
Z"(Z)a =Z "(Z) ®zQ. If ~is an adequate equivalence relation on algebraic cycles
[1, Definition 3.1.1.1], write Z 2 (Z) = Z "(Z) o/ ~ .

For a fixed adequate equivalence relation as above, define a category C\Wvhose
objects are smooth projective varieties and

Homey- (X, Y) =Z 9% (X x Y )a.

See [1,§3.1.3]for the definition of composition of morphisms. The category CV,
is a tensor category. In particular, it is an additive category with a tensor product
structure that is symmetric. ~ The category of motives M | is defined to be the
pseudoabelian closure of CY .

Objects in M | can be represented explicitly as triples (X, p, m), where Xis a
smooth projective variety, p € End cy; (X) such that p 2=p, andmeZ. Mor-
phisms of motives are given by

Homw - (X, p, n), (Y, g, m)) =q = ZI™X™™™ (X x Y )q = p.

Furthermore, there is a natural contravariant functor h : \{ -= M ¢ given by h(X) =
(X, A x, 0), where Ay is the diagonal subvariety of X x  X.

The adequate equivalence relations ~ that will be of interest for us are rational
~at [1, §3.2.2], homological ~om [1, §3.3.4], and numerical ~m [1, §3.2.7] equiv-
alence, listed here in decreasing order of finenessThe corresponding categories of
motives will be denoted by M [2, M °™ "and M U™ . The objects in M 2 are
called Chow motives and they are universal in the sense that ~ 4 is the finest
possible adequate equivalence relation [1, Lemme 3.2.2.1].

3.1.1. The motive h' of a curve. Let C € V ¢ be a geometrically connected curve,
and assume that C has a k-rational point P . Let py be the cycle on C x C given

by {P}x Candp ;, the cycle givenby C x{P}. Then pg and p, are idempotent
for any choice of adequate equivalence relation. Define p1 =1 - p g — p2, which is
also idempotent. Let h'(C) = (C, p 1, 0); that is, h'(C) is the image of p;. It is well

defined up to unique isomorphism, and we have [8, Proposition 3.3]

Endy ; (h'(C)) = End (Jac C).

In particular, End v - (h'(C)) is independent of the choice of adequate equivalence
relation ~ .

Note that since Jac C is isogenous to a product of  isotypic abelian varieties,
JacC~ , A, itfollows thatthere is an orthogonal  system of idempotents
{eitie €Endwm; (h'(C)) corresponding to the decomposition of Jac C. For any
positive integer n it follows that{e |, ® -- - ®¢g, :i; €l}is an orthogonal sys-
tem of idempotents in End  ; (h'(C)®M). In particular, when Cis one of the
Weil curves introduced in Section 2 we have an orthogonal system of idempotents
inEndw - (h'(C)) corresponding to the e 44 introduced prior to Proposition 2.3.
We continue to write e 44 for the corresponding element of Endw ; (h'(C)). Fur-
thermore, we can view eq4' as an element in Endy ; (h(C)) by extending by 0 on
h°(C) :=(C, p o, 0) and h?(C) := (C, p 2, 0).
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3.1.2. Realization functors. There are covariant functors on M{2' corresponding to
the various classical Weil cohomology theories. For example, the Betti realization
is a functor

Hg(, Q) :M& - Q-HS.
Forany X e V ¢ we have H; (h(X), Q) =H g (X, Q). Write k-FVS for the category

of finite-dimensional k-vector spaces with a filtration. The de Rham realization is
a functor

Hir:M @ - k-FVS.
Forany X eV ¢ we have Hig (n(X)) =H jr (X), where H iz (X) denotes the alge-
braic de Rham cohomology of the k-scheme X. For any rational prime number ¢,
let Repq, (Gk) denote the category of continuous representations of G¢ on finite-
dimensional Q -vector spaces.The ¢-adic realization is a functor

He(n Q)M 2 > Rep o (G).

Forany XeV , we have H (h(X), Q) =H 5 (X, Q). If this system of ¢-adic
representations is compatible, then we define the L-function of a Chow motive as
the L-function of its ¢-adic realizations.

3.1.3. Galois descent. There is a theory of Galois descent for motives. Let k/k * be
a finite Galois extension. There is a base change functor - x « k: M - M [
as well as a Weil restriction of scalars functor Resy -: M - M . We shall
say thata motive Me M ; descends to K if there exists M €M . such that
M=M "x, k. GivenMeM «» the motive M x - k has a natural action of
Gal(k/k ). A submotive N of M x | k descends to k if and only if it is stable under

the action of Gal(k/k ') on M x | k [8, 1.16, Lemma 1.17].

3.1.4. Group actions on varieties. There is a way to construct a motive h(X) € e
M 2 from the action of a finite group G on a smooth projective variety X e V.,
assuming that the action of G on X is defined over k.  Explicitly, this motive can
be written as

1 +

G:
(3.1) hX) © = (X,

rg, O)’
geG

where g € Z dMX (X x | X) q is the transpose of the graph of the automorphism g
[3, proof of Proposition 1.2]. In coordinates,

Mg ={(gx, x) e Xx | X}.

Thus 4, =A x. Furthermore, this construction behaves well with respect to
realizations in the following sense.  Each realization of X inherits an action of

G. Any realization of h(X) © is just the G-invariant vectors in the corresponding
realization of X. Firjally, the motive h(X) © descends to a subfield k € k if both

X and the cycle ﬁ gec [ g descend to K.

3.2. The group actionon C " and the Chow motives. We now return to the
notation from Section 2. Recall that for proper divisors d|f , d |e, the abelian variety
Aq4q’ is defined over F and has CM by K 44 after base change to Fy 4. Consider
the n-fold product C Em . Fix another positive integer a such thatn/2 <a <n.
Everything that follows will depend on the choice of integers a and n, though this
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will not be reflected in the notation. Consider the subgroup G of Aut C ’F‘“ given
by $ 8

In _
G= g“;;:::“v e Jucc S
k=1 &
where the k-th factor g {* g« in the product E=1 Wk ek acts on the k-th factor
in the product C £ . Note that we have an isomorphism of groups G = (Z/fZ x

Zlez) "' . Write .\
1
€= @ rg € EndM ?2’1 (h(CE“ ))
geG
for the idempotent cutting out h(C ¢, )¢. We now use Galois descent to produce

a motive defined over the field F instead of F 11-

Lemma 3.1. There is a motive M e M rFat such that M x ¢ F11 =h(C EH )C.

Proof. Recall that the motive h(C EH )€ consists of the data (CE“ , €, 0). Since the
curve C is defined over the field F , it suffices to check that

+
Fg C(C n XE Cn) XE F1'1
geG
is Gal(F 11/F )-stable.

Let[a: b: c] be projective coordinates of the curve C. Recall that C is the
normalization of the singular projective curve X given by (y )¢z =y(x ) +
5(z)". After base changeto F11 wehavey ([x :y :z])=[C¢x :y :Zz]and
We([x 1y :Z])=[x " : &y :Z] Since resolving the singular point[0: 1: 0]
of X will result in new coordinates obtained as rational functions in the variables
x',y,z, bothy; and ye will act by powers of . and {;, respectively, on the
coordinates a, b, and c of G-, .

Hence there are integers m, n; for 1 <1, j < 3 such that for any point [a : b : ¢]
of Cr,, wehave y ([a:b:cl)=[{""a:{{?b:{"*cland ye(la:b:c])=[¢ J'a:

J2b: @3c]. Py

Consider the element go = ., W Wik € G. Thentheclassg, < (C" x¢
C") xg Fq4 is given by

$

In

rgo = [Cfm1uk<21vk ax : fmzukcngkh( :Cfmaukcgst Ck]

k=1 8

!n

x ek b ZCk]g[akit% 1] €Cry,
k=1

LetTe Gal(Fg11/F) = GallQ(¢r, &)/Q). Say g =¢! and (] =§g Then for an

elementa =" [, [¢ My May G MEY 2y 1 G TEQY Mg dx T py [ak b ]

of ['g,, we have

In In

B O A O A N S I R

k=1 k=1

In In
R e R R L R AT

k=1 k=1

T

a
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. & e
Namely, we have a”™ €l ¢, whereg = |, y'*yl'x eG. Thus ) gc Fg i8
Gal(F 1 1/F )-stable, as desired. !

We can now define the Chow motive associated to %Xz_da . LetEggq = e?jgr €
Endy (h(CM)) as in Section 3.1.1. Then by Lemma 3.1 we may compose E 44’
with € in End rat (h(C™)). Define

Mg = (E ga ° €)(h(C"))eM £,
and define . N
(3.2) M= Mga =( Eqg °€)(h(C")eM P
dd’ dd’
We reiterate that M 44 depends on the choice of a and n even though this is not
reflected in the notation.

3.3. Computing the cohomology of the motives M dd'- We begin by studying
the Betti realization of M. Once we understand this, we will then determine its
decomposition with respect to the idempotents induced by the E  44-. We begin
by establishing some notation. Let 1y : C" - C be the natural projection map
onto the k-th copy of CinC ". Write Q for the fundamental class of C and
Q =1 (Q). In particular, Q represents a nonzero class in H"1(C) =H 3(C, C)

under the Betti-de Rham comparison isomorphism.  Let w;; =1 (wi; ) for all
1<islL1<j<J. For the same range of i, j, define
Tij TWaij o Wij Wastij 0 Uhij -
As withthe wi; ,for1<i<l, 1<j<J, define
zf—i,e—j = z_i,j = _(-01,i,j e 'u_>a,i,j Wa+tij " Wij -

Following the conventions established with @ , we denote by %; the image of %j;
under the standard comparison isomorphisms between Betti, deRham, and ¢-adic
cohomology theories.

The following proposition is due to Schreieder in the case when the curve C is of
the form y2 = x 29*" + 1 [9, Lemma 8]. The proof we give below is a straightforward
generalization of his argument.

Proposition 3.2.
(1) The Hodge decomposition of the Q-Hodge structure HM, Q)=H ; (C", Q)°
has the form 9
*n
H*(Cn, C)G =\ an-a 69Vn—a,a D \/ PP
p=0
(2) The subspace VPP consists of all G-invariant homogeneous polynomials of
degreepintheclasses @ ..., Q.
(8) Theset{Z jj :1<isf-1,1<j<e-1}isaC-basisforV 2@ gynaa

Proof. Recall that for each 1 <k < n, we have g(wyij ) =C{wk;j and 4f(uwxij )=
¢} w;j - Now, the cohomology ring H *(C™, C) is generated by the elements €,
Wij ,Okij fort<sksn, 1<i<l, 1<j<J. Suppose thereis a G-invariant
class in H*(C", C) that contains the monomial

N=Qu QWi Waiods Whgr Jiser dsnt Ry
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where, without loss of generality, we takel 1 <--- <I, ky <--- <k g and
Ker1 < - <Kq.

Observe that the product of any (1, 0) and (0, 1) class of the factor C i lies in
H11(Cy) and thus is a multiple of the fundamental class Q. Hence we may assume
that the intersection

{ke|1<e<s}ni{k ¢|s+1<e<t}=0.

Since H2?(Cy) =0 =H 92(Cy), we may assume thatk, . . . , kare pairwise disjoint
and the same for kKg+1, ..., K soall ofky, ..., Kkare pairwise distinct. Moreover,
since H?2(Cy) = 0, the elements | 4, . . . ,,| are pairwise distinct. Since H%'(Cy) =

0 = H "2(Ck) we then have
{1, . Inikel1<esti=0.

Thatis, inthe expressionforn, all of I4,...,l kq, ...,k are pairwise distinct.
Namely we have h <--- <1, ky <---<Kkg,and kgs+1 <---<Kkjy.

Now note that the element y {" gt x - - - x y" y» of the group G acts on the
monomial n by multiplication by the scalar

Huq~u ¢ zVvqy-v ¢
f ze ]

where py, .., is of theformi qus £ - £iu and vy,

v, isof the formj qvq %

...ijtvt_

First we show that t < n implies that t = 0. Indeed, begin by choosing values
forus, ..., uandvs, ... ¥suchthatyy,, . ZOmodfandv , ., #=0mode.
Since t < n, we can still choose Ut+1 , ..., W and Vi1 , . . ., ¥ such that

u1+"'+Ua_Ua+1 -~ Up EOmOdf,
Vit +Va—Vas1 — "=V, =0mode.

Namely, the automorphism of G, given by gyt x - x gl lies in the group
G, but it acts nontrivially on the monomial n whent> 0. Since nis G-invariant,

we musthavet=0andn=Q, --- Q.

Next suppose thatt=n. By the pairwise distinctness of I4,..., L ky, ...,k
we knowr=0. We now show that in this case, we musthaveiq =--- =i ,,
j1="""=]jn,and either

{1,...,a}=4kq,..., & or {1,...,a}={Kss1,..., Kk}

Indeed, suppose 1 <€ <€y <saresuchthatk ¢, <aandk ¢, >a. Then let
Uy, SUg =Ve =Veo =Tandu ¢ =ve=0forall otherg=€4,&. Thenthe
n-tuples (u4, ..., W) and (vq, ..., ¥) giverise to an element in G with p ,, .y, =
ie, +ig, @and vy, v, =j¢ +]je. Butsince the monomial n must be G-invariant,
it follows that

(3.3) i, +ic, =0modf,

(3.4) je ¥ie, =0mode.

Iffisodd, then1<i ¢, ie, < % and so (3.3) is impossible. If fis even, then
1<) ¢,je < % and so (3.4) is impossible. Namely, we have shown that there
cannot exist 1 < €1 < €3 <s with the property thatk ¢, <aand ke, > a. Similarly,
one checks that we cannot havejge € {s+1, . .., n} such that ke, <aand ke, > a.
This proves that {1, ..., a}iseither{kq, ..., K or{k s¢1,..., K}
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It remains to show thati 1 =--- =i, andj1=---=j,. Foranye<a, let
Ue U a41 =V e =Vaq =1andu , =v, =0forall 1 #=€,a+ 1. As above,
the n-tuples (u 1, ..., H)and (v 1, . . ., ¥) give rise to an element in G such that

ic=ia+ modfandje=j a1 mod e since nis G-invariant.But since 1 <i. <f -1
and1<j.<e-1, wehaveic=ia+ andje¢=j a+1 forall 1<e<a. Similarly,

one checks thati, =i ¢andj, =j ¢ forall e >a. Thereforeiq =--- =i, and
j1=+""=]n,as claimed.
Thus we have shown that the monomial n must take one of the following forms:
Qh . Q ,
Zij Twaij Wiy Waerij W
Tij =W Weaij Gheartij Wi
with1<i<sl,1<j<J. This proves the first two statements of the proposition.

Observe that all three types of forms are G-invariantMoreover, forany 1 <i<|
and1<j<J, theformZ j; isof type(a,n-a)and X ;; is of type (n-a, a)
in the Hodge decomposition of H 5 (C", C)®. Hence the C-spanof {£;; |1<i<
I, 1 <j<J}defines a G-invariant vector space V "2 of classes of type (a, n — a),
and the C-span of {Z_i,,- | 1<i<I, 1<]j<J}defines a G-invariant vector space
Va2 of classes of type (n — a, a). The Z;; are linearly independent since they
are tensor products of linearly independent elementsTherefore V"2 and V22
are g-dimensional and conjugate to each other by construction. !

Corollary 3.3.  The motive M satisfies H l§(I\7I , Q) ®@C=Vana gynaa  Fyr-
thermore, a C-basis for Hg (M 44', Q) ®C is

Baa ={Z i |1sisf-1,1<j<e-1,(,f)=d,(,e)=d '}

Proof. The first statement follows from the second, so we just prove the second
statement. Note thatH 5 (Mgq', Q) consists of the classes in H; (C", Q)¢ coming
from (ega'H'(C, Q))®" =H } (Aqa', Q®". Since Byq- is a basis for H (Agq, Q®
C by Proposition 2.3, it follows that B f’g N(HgMgq, Q) ® C)is a basis for
Hg (Mgq', Q) ®C. Proposition 3.2 implies that Bqq = B f’g NHgMgyq, Q) ®C)
which completes the proof of the corollary. !

Proposition 3.4. Fix a rational prime ¢. For pairs (d, d') such thatd|f, d'=f
and d|e, & = e we have:
(1) Let p ! ¢ be a prime of F where Ay 4 has good reduction, and let q = #Q /p.
The characteristic polynomial of Frob; actingon H;(Mggq', Q) is

of 4) e 47)
" a T oy S /
: ’ ord n-a
TOM e Y= (Z (') (Z~cc ) ,
c=1 c =1

where the index of Z(..') is viewed as an element of (Z/f 4Z x Zle 4 Z)*
In particular, H 5 (Mg4q4', Q) is a compatible system of G -representations.
(2) The local L-factorat p of L(H 5 (Mgq', Q)/F,s)is
of 4) 9 4')
ortiqu ord!edrq. /

1= (Z06)?(Zoc )" p = e

c=1 c'=1
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Proof. We begin by computing the action of Frob;, on the basis B 44'. Recall
that in Proposition 2.4 we showed that the matrix [Frob ;]Bd‘d' of Frob; acting
on Hgt(Ad!dr’F—, Q) ®q,,, C with respect to the basis B 44 is a generalized permu-
tation matrix on 2g 44 = ®(f 4)d(eq ) letters with corresponding permutation p a
product of %ﬁ disjoint cycles, each of length ord¢,..,. . Recall the nota-

fgeq d
tionl g4 ={(i,)) edZ/fZ x ZleZ | (i,fy=d,(je)=d '}. Fors,tel 44, the
generalized permutation matrix [Frob;]ded, is of the form (ast)sper ,,- such that

Frob, (wx) =a g1t Wy 1y -

Hence forte l 44 we have

Frob,(Zt) = (a p- 1t Wip-1n) """ (8 19t Wap- 1y )

(@p-1(ef)yth(ef)t  Wartp-1(ef)ty )" (B 1(ef)thef)t  Whp-1(ef)>t )
=@p 1t ) @p (e rted)t )T Zpm g -

The above calculation shows that the matrix [Fl’Oté]ded, of Frob; with respect to
the basis Bj4- of Hy (M dd’ Q) ®q, ., Cis a generalized permutation matrix with
associated permutation p. In particular, for1<c< % and1<c’ < %
the product of all the nonzero entries in [Frob ;]ded . corresponding to the (c, ¢)-th
disjoint cycle in p is

(Z(c,c'))a(z—(c,c ,))n—a
The result now follows from Lemma 2.5. The second statement is a restatement

of the first using the standard translation between characteristic polynomials and
local L-factors. !

Recall that S 44 is the set of primes of F where A 44 has bad reduction and
S= ' dd’ Sd,d'-

Corollary 3.5. Letn=1andn/2<a<n, where we require a = n if F is not
totally real. Then, we have an equality of (incomplete) L-functions:

LSaa )M ad'/F,s)=L (Saq ')()\g‘d,xg‘_; , S).

Proof. This follows from Corollary 2.13 and Proposition 3.4. !

Therefore using the decomposition oM given in (3.2) and letting S ="’ dd’ Sdd’
we have proven the following theorem.

Theorem 3.6. Letn=1andn/2<a<n, where we require a = nif F is not
totally real. Then we have an equality of (incomplete) L-functions:
! -
LO(MF,s)=  L® A3gAgq ,S).
dd’

3.4. Relationship to other results in the literature. We now briefly discuss
how the motives constructed in Section 3.2 are related to other constructions of
motives and varieties in the literature.
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3.4.1. Standard motives of algebraic Hecke charactersGiven a number field k and
an algebraic Hecke character x : A’k * — C ™, there is a standard way to construct
amotive M(x) e M U™ such that LS (M (x)/k, s) =L © (x, s) for some finite set
of places S of k [6, §l.4]. Infact, letM [“™® be the Tannakian subcategory of
M U™ generated by motives of abelian varieties and Artin motives over k. Then
M (x) is characterized in the category M"™®® by its L-function [6, Theorem 1.5.1].
Note that the construction of the Chow motive M 44' yields that the numerical
realization of M 44 lies in M Eum’ab . Therefore by Corollary 3.5 and [6, Theorem
[.5.1] we have

Maga X F Faa = M(A 34 Agq ) €M Ej:iab :

That is, our construction proves that the motives M (A gydvngj yeM E‘;T descend
to F and can be realized at the level of Chow motives. '

3.4.2. Motives of CM modular forms. Suppose F = Q, K is an imaginary quadratic
field, and x is an algebraic Hecke character of K. Then one can form the theta

series 6(X), which is a modular eigenform. Scholl gave a construction attaching a
homological (or Grothendieck ) motive over Q to any given eigenform [7]. In the
very limited circumstances when F=Qand [K 44 : Q] =2, our construction

proves that Scholl’'s motives attached to 6(A g,d,Xij ) can be realized at the level
of Chow motives.

3.4.3. Modularity of Schreieder’s varieties. The original motivation for this project
was to prove that the varieties constructed by Schreieder in [9] are modularin a
sense similar to [2, Theorem 3.3]. Fix a positive integerk = 1 andlete =2,
f=3 k, y=58=1inthe Weil curve C introduced in Section 2.1. Thatis, C has
affine coordinate patches Y2 = x 3“ + 1, v2 = u®*! +u, and genus g = 3’kT‘1 The
particular case of the group G actingon C " was considered fork=1anda=n
by Cynk-Hulek in [2, §3] and for general k and a by Schreieder in [9, §8]. In these
papers they construct, for each k = 1, a smooth model X of the singular quotient
variety C"/G with the property:

Proposition 3.7 ([9, Theorem 17]). Foranyk=1andn/2<a<n, the Betti

cohomology of the n-dimensionalvariety X is of the form
9

*n
Hs(X,C)=H 5(C",C)° @ ver
p=0

where all classes in VPP are algebraic.

In other words, the “transcendental part” of X, which we denote T (X), is equal
to our motive M in this case. Write A; for the isotypic 3~ -dimensional abelian
variety defined over Q appearing in the decomposition of (Jac C)k, that obtains
CMbyK ;i =Q(C g; ) when base changed to K ;. Let S; denote the finite set of
primes of Q where A; has bad reduction, and let A ; be the Hecke character of K
associated to A by Weil. We obtain the following corollary.

Corollary 3.8.  Forany choicesof k= 1andn= 1andn/2<a=<n, the n-
dimensional smooth projective variety X is modular. That is, we have an equality
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of (incomplete) L-functions

H-1
L® (T (hX))/Q, s) = L (A2A 2 s).

I |
i=1

Proof. The particular decomposition of the Jacobian of C is given by Corollary 2.3,
and the result then follows from Theorem 3.6. !

In particular, when n is odd we obtain
LOHL(Xg),8)=  LEO NN ", s).

Corollary 3.8 was proved by Cynk and Hulek when C is the elliptic curve?y= x 3+&
(6 Q)anda=n|2, Theorem 3.3].
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