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CHOW MOTIVES ASSOCIATED TO CERTAIN ALGEBRAIC
HECKE CHARACTERS

LAURE FLAPAN AND JACLYN LANG

Abstract. Shimura and Taniyama proved that if A is a potentially CM
abelian variety over a number field F with CM by a field K linearly dis-
joint from F, then there is an algebraic Hecke character λ A of F K such that
L(A/F, s) = L(λ A , s). We consider a certain converse to their result. Namely,
let A be a potentially CM abelian variety appearing as a factor of the Jacobian
of a curve of the form y e = γx f + δ. Fix positive integers a and n such that
n/2 < a ≤ n. Under mild conditions on e, f, γ, δ, we construct a Chow motive
M , defined over F = Q(γ, δ), such that L(M/F, s) and L(λ a

A λn−a
A , s) have the

same Euler factors outside finitely many primes.

1. Introduction

The Langlands philosophy predicts a correspondence between certain automor-
phic representations and Galois representations. Moreover, the Fontaine-Mazur
conjecture and its underlying philosophy specify when these Galois representations
are expected to arise from the ℓ-adic cohomology of a variety or, more generally,
a motive. To each of these objects—automorphic representations, Galois represen-
tations, or motives—one can attach a natural invariant, called an L-function, that
is a meromorphic function on some right-half complex plane. In light of these two
general conjectures, one can ask:given an automorphic representation f , how can
one construct a motive M f yielding an equality of L-functions L(M f , s) = L(f, s)
(or at least an equality of all but finitely many Euler factors)?

In this paper, we explore this question in a very special case, namely that of al-
gebraic Hecke characters and CM motives.In 1961, Shimura and Taniyama proved
that if A is an abelian variety over a number field F with CM by a field K linearly
disjoint from F , then there is an algebraic Hecke character λ A of F K such that
L(A/F, s) = L(λ A , s) [12]. Using more explicit methods, Weil had proved the same
result in 1952 for factors of Jacobians of curves of the form

C : ye = γx f + δ,

for 2 ≤ e ≤ f and γ, δ ∈ Q × [14].
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In this paper we are concerned with a converse question. Fix C as above with
(e, f ) = 1 as well as a primitive e-th (respectively, f -th) root of unity ζ e (respec-
tively, ζ f ). Assume F = Q(γ, δ) is linearly disjoint from Q(ζ e, ζf ) and that C has
an F -rational point. Let λ be the algebraic Hecke character associated to an iso-
typic CM factor of the Jacobian of C. Fix a positive integer n and another integer
n/2 < a ≤ n. We explicitly construct a Chow motive over F for the Hecke character
λn λn−a , where the bar denotes complex conjugation.

More precisely, we define a group action of G = (Z/f Z× Z/eZ)n−1 on the product
Cn that depends on the integer a.There is a Chow motiveM̃ such that any classical
realization of M̃ is given by G-invariants of the corresponding realization of Cn . We
then decomposeM̃ using idempotents coming from the motive h 1(C). To describe
the decomposition, recall that the Jacobian of C is F -isogeneous to a product

(1.1) Jac(C) ∼ F
!

i

A i ,

where each Ai is an isotypic abelian variety defined over F that obtains CM by a
certain cyclotomic field K i upon base change.The idempotent ei that cuts out A i
can be viewed as an idempotent for h1(C), and thus E i = e⊗n

i is an idempotent for
h(C n ). We show that the Chow motive M i := E i (M̃ ) behaves very similarly to A i .

For a finite set of primes S, an (incomplete) L-function L (S) (∗, s) is the Euler
product of the local L-factors in L(∗, s) outside the set S. Let S i denote the set of
primes where the abelian variety Ai has bad reduction. Let λ i : A×

FK i
/F K ×

i → C ×

be the algebraic Hecke character associated to Ai by Weil and Shimura-Taniyama;
that is, L(A i /F, s) = L(λ i , s). Then our main theorem is the following.

Theorem 1.1. Assume C has an F -rational point. Let n be a positive integer and
n/2 < a ≤ n. Assume a = n if F is not totally real. For all i in the decomposition
(1.1), there is an equality of (incomplete) L-functions

L (S i ) (M i /F, s) = L (S i ) (λ a
i λn−a

i , s).

There are a few important notes to make about the history of this problem.
First, the case when C is given by y 2 = x 3 + δ (δ ∈ Q) was treated by Cynk and
Hulek in [2], and our work is very much inspired by their approach.Secondly, given
a number field k and any algebraic Hecke character λ : A×

k /k × → C × , there is
a standard way to construct a numerical motive M (λ) defined over k such that
L (S) (M (λ), s) = L (S) (λ, s) for some finite set of primes S [6, §I.4]. There are
two main advantages to our construction when λ comes from one of Weil’s curves,
which are discussed more precisely in Section 3.4.1.First, our construction yields a
Chow motive, which carries more information than a numerical motive.Second, our
construction shows that the standard motive descends to a smaller field than that
given by the standard construction, in the sense that our motive Mi is defined over
F and, when base-changed to F Ki , coincides with the standard motives. Indeed,
our theorem gives a positive answer to the following question in the case of algebraic
Hecke characters arising from Weil curves.

Question 1.2. Let λ : A×
k /k × → C × be an algebraic Hecke character. Assume

there is a subfield k ′ ⊂k such that the standard motive M (λ) descends to k ′ . For
positive integers n, a as above, does M (λaλn−a ) also descend to k′ ?
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The structure of the paper is as follows. In Section 2 we establish some facts
about the curve C and its Jacobian. The main point is to find a nice basis with
respect to which we can compute the Galois action on the ´etale cohomology of C,
which is done in Proposition 2.4. Then we introduce L-functions and use them
to relate the algebraic Hecke characters in question to the matrices describing the
Galois action with respect to our chosen basis. This relationship is recorded in
Corollary 2.13.

Section 3 is devoted to constructing the relevant Chow motives and calculating
their L-functions. We start with a brief introduction to the language and notation of
motives in Section 3.1.The group action of G on Cn is defined at the start of Section
3.2 and was inspired by similar constructions in [2] and [9]. The main technical
result in the paper is Proposition 3.2, where we compute the Betti realization of
the motive M̃ by computing the G-invariants of the Betti realization of C n . This
was due to Schreieder [9] in the case when C is of the form y2 = x 2g+1 + 1, and our
calculation is a straightforward generalization of his result. Theorem 1.1 is proved
in Proposition 3.4 and Corollary 3.5.

Finally, we briefly discuss the relationship between the motives constructed here
and other motives and varieties in the literature in Section 3.4. In particular, we
discuss the constructions of motives in [6] and [7]. Moreover, we note in Corollary
3.8 that our theorem yields modularity results for a class of smooth projective
varieties constructed in [9], which generalizes the modularity results of [2].

Notation: Throughout the paper we will use ϕ to denote Euler’s totient func-
tion, ϕ(n) = #(Z/nZ) × . For a positive integer n, let ζ n denote a primitive n-th
root of unity. If X is a variety defined over a field F and K is an extension of F ,
we will write X K for the base change X ×F K of X to K. For a field k, we fix an
algebraic closure k and write Gk for the absolute Galois group Gal(k/k).

2. Weil’s curves

In this section we introduce the curves C studied by Weil in [14] and give explicit
descriptions of the deRham, Betti, and ℓ-adic cohomology of C. In particular, the
computation of the ℓ-adic cohomology will be given in terms of some algebraic
Hecke characters,and it is the powers of these Hecke characters to which we will
attach motives in Section 3.

2.1. The curve C. Fix integers 2 ≤ e < f such that (e, f ) = 1. Let γ, δ ∈ Q ×

such that the field F = Q(γ, δ) is linearly disjoint from the field K = Q(ζ e, ζf ).
From a notational point of view, it is easier to assume F = Q, e = 2, and f is prime.
We suggest the reader make these assumptions upon a first reading of the paper.

Let Y be the smooth affine curve over F given by

{y e = γx f + δ}.

Let X be the projective closure of Y , which is usually singular, and let C be the
normalization of X. The curve C then has genus g = (e−1)(f−1)

2 .
After base-change to F K, the curve X FK is equipped with two automorphisms

ψe, ψf of orders e, f , given for projective coordinates [x′ : y′ : z′ ] by

ψf ([x ′ : y′ : z′ ]) = [ζ f x ′ : y′ : z′ ],
ψe([x ′ : y′ : z′ ]) = [x ′ : ζey′ : z′ ].
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The universal property of normalization ensures that these automorphisms extend
uniquely to automorphisms of CFK , which we shall also denote by ψf and ψe.

2.2. The de Rham cohomology of C. We shall often want to consider the
complex points of C. Doing this requires that we base change C to C, which
depends on a choice of embedding F (→ C. We fix such an embedding once and
for all, with the understanding that our computations depend on this choice, and
write C C for the base change of C to C with respect to our fixed embedding.

Let Ω1
CC

be the sheaf of holomorphic differential 1-forms on CC. There are explicit
differential 1-forms on Y given by

ω′
i,j =

x i−1

yj dx,

where 1 ≤ i ≤ f−1
2 , 1 ≤ j ≤ e − 1 if f is odd and 1 ≤ i ≤ f − 1, 1 ≤ j ≤ e−1

2 if f
is even. If ι : Y (→ X is the natural inclusion and N : C → X is the normalization
map, then write ω i,j = N ∗ ι ∗ (ω′

i,j ) ∈ H 0
dR (CC, Ω1

CC
).

Note that the ω i,j are defined over F and thus can be viewed in the algebraic
de Rham cohomology of the curve C. The forms ω i,j are eigenvectors for the
automorphisms ψe and ψf . Indeed, directly from the definitions we calculate

ψ∗
f (ωi,j ) =

(ζf x) i−1

yj d(ζf x) = ζ i
f ωi,j ,

ψ∗
e (ωi,j ) =

x i−1

(ζey) j dx = ζ −j
e ωi,j .

Lemma 2.1. A C-basis for H 0
dR (CC, Ω1

C C
) is given by the set of forms

"
ωi,j | 1 ≤ i ≤

f − 1
2

, 1 ≤ j ≤ e − 1
#

if f is odd,
"

ωi,j | 1 ≤ i ≤ f − 1, 1 ≤ j ≤
e − 1

2
#

if f is even.

Proof. Since (e, f ) = 1, the forms ωi,j are eigenvectors with distinct eigenvalues for
the automorphism ψ ∗

f ψ∗
e of H 0

dR (CC, Ω1
CC

). Hence the ωi,j ’s are linearly indepen-
dent. Since dimC H 0

dR (CC, Ω1
CC

) = g = (e−1)(f−1)
2 , it follows that the ω i,j ’s indeed

form a basis for H 0
dR (CC, Ω1

CC
). !

To simplify notation, let us set

I =

$
f−1

2 f odd,
f − 1 f even

and J =

$
e − 1 f odd,
e−1

2 f even.

Thus IJ = (e−1)(f−1)
2 = g regardless of the parity of f .

2.3. The Betti cohomology and Jacobian of C. In order to understand the
Betti cohomology of the curve C as well as the Jacobian Jac C, we will make use
of some Hodge theoretic terminology, which we introduce here.
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2.3.1. Preliminaries on Hodge theory. A Q-Hodge structure V of weight w is a
finite-dimensional Q-vector space together with a decomposition into linear sub-
spaces VC =

%
p+q=w V p,q , such that V p,q = V q,p , where the bar denotes the action

of complex conjugation. If V is a Q-Hodge structure, then an endomorphism α of
V is a Q-vector space endomorphism of V that preserves the linear subspaces Vp,q

when base changed to C.
A polarization of a Q-Hodge structure V of weight w is a bilinear form ⟨ , ⟩ :

V × V → Q that is alternating if w is odd, symmetric if w is even, and whose
extension to VC satisfies:

(1) ⟨V p,q , Vp′ ,q ′
⟩ = 0 if p ′ = w − p,

(2) i p−q (−1)
w(w− 1)

2 ⟨x, x⟩ > 0 for all nonzero x ∈ V p,q .
For X a smooth complex projective variety, a choice of ample line bundle on X

determines a polarization on the Hodge structure given by the rational cohomology
H w (X, Q). The category of polarizable Q-Hodge structures is a semisimple abelian
category, which we will denote by Q-HS.

A Q-Hodge structure has type {(1, 0) + (0, 1)} if V C = V 1,0 ⊕ V 0,1 . Note that
for X a smooth complex projective variety, the first rational cohomology H 1(X, Q)
is a polarizable Q-Hodge structure of type {(1, 0) + (0, 1)} since H 1(X, Q) ⊗ C =
H 1,0 (X ) ⊕ H 0,1 (X), where H i,j (X) ∼= H j

dR (X, Ω i
X ) and Ω i

X is the sheaf of holo-
morphic i forms on X.

There is an (arrow-reversing) equivalence of categories between the category of
complex abelian varieties up to isogeny and the category of polarizable Q-Hodge
structures of type {(1, 0) + (0, 1)} given by the functor A . → H 1(A, Q).

2.3.2. The Betti cohomology of C. We now return to our discussion of the rational
Betti cohomology H 1

B (C, Q) := H 1(CC(C), Q) of the curve C, which is a Q-Hodge
structure of type {(1, 0) + (0, 1)} by the Betti-de Rham comparison isomorphism
for complex varieties. By abuse of notation, we will consider the differential forms
ωi,j ∈ H 0

dR (CC, Ω1
CC

) as elements in H 1
B (C, Q) ⊗Q C ∼= H 1

B (C, C). Furthermore,
let ωf−i,e−j be the image of ωi,j in H 1

B (C, C). Namely, the involution of complex
conjugation acts on H 1

B (C, C) via ωi,j .→ ωf−i,e−j . Since the Betti-de Rham com-
parison isomorphism is equivariant with respect to the action of End C, and in
particular with respect to ψ e and ψf , it follows that

(2.1) ψ∗
f (ωi,j ) = ζ i

f ωi,j and ψ∗
e (ωi,j ) = ζ −j

e ωi,j

for all 1 ≤ i ≤ f − 1, 1 ≤ j ≤ e − 1 in H 1
B (C, C).

Now the Abel-Jacobi map yields an isomorphism of Q-Hodge structures H1B (C, Q)
∼= H 1

B (Jac C, Q). We will frequently make use of this isomorphism together with
the equivalence of categories discussed above to go back and forth between the
language of cohomology and abelian varieties.

For a field k ⊇ F , let End k (Jac C) denote the algebra of endomorphisms of
(Jac C)k defined over k, and let End 0

k (Jac C) = End k (Jac C) ⊗Z Q. We adopt the
following conventions for the rest of the paper to simplify notation. For a proper
divisor d|f (respectively, d′ |e), write f d (respectively, ed ′ ) for the quotient f /d
(respectively, e/d ′ ). The notation (d, d ′ ) will always mean f ̸= d|f and e ̸ = d ′ |e.
If we take a product or sum over d, d ′ , we mean let d and d ′ run over all proper
divisors of f and e. Furthermore, let K d,d ′ = Q(ζ d

f , ζd ′

e ) and F d,d ′ = FK d,d ′ .
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Lemma 2.2. There is an embedding of Q-algebras
!

d,d ′

K d,d ′ (→ End0
FK (Jac C).

In particular, there is an embedding of Q-algebras
&

d,d ′ Q (→ End0
F (Jac C).

Proof. Since ψe and ψf are endomorphisms of C defined over F K, they induce
endomorphisms ψ∗

e , ψ∗
f ∈ End FK (Jac C). We want to calculate the subalgebra of

End0
FK (Jac C) that they generate. In order to do this, we observe that there is an

injection (depending on our fixed embedding F (→ C or, rather, an extension of
that to F K (→ C)

End0
FK (Jac C) (→ End0

C(Jac C).

So it suffices to calculate the subalgebra of End0
C(Jac C) generated by ψ∗

e and ψ∗
f .

Now, (Jac C)C is a complex abelian variety. Since the category of complex
abelian varieties up to isogeny is equivalent to the category of polarizable Q-Hodge
structures of type {(1, 0) + (0, 1)}, computing End 0

C(Jac C) is the same as com-
puting End Q−HS (H 1

B (Jac C, Q)). Since the Abel-Jacobi map induces an isomor-
phism H 1

B (C, Q) ∼= H 1
B (Jac C, Q) in the category Q-HS, it suffices to compute

EndQ−HS (H 1
B (C, Q)).

By Lemma 2.1, the eigenvalues of ψ∗
e and ψ∗

f acting on H 1
B (C, Q) ⊗Q C are

{ζ j
e : 1 ≤ i ≤ f − 1, 1 ≤ j ≤ e − 1} and {ζ i

f : 1 ≤ i ≤ f − 1, 1 ≤ j ≤ e − 1},

respectively. Thus the characteristic polynomials of ψ∗
e and ψ∗

f acting on H 1(C, Q)
are

e−1!

j=1

(y − ζ j
e ) f =

'
ye − 1
y − 1

( f

and
f−1!

i=1

(x − ζ i
f )e =

'
x f − 1
x − 1

( e

,

respectively. Hence the minimal polynomial of ψ∗
e acting on H 1

B (C, Q) is y e −1
y−1 ,

and the minimal polynomial of ψ ∗
f acting on H 1

B (C, Q) is x f −1
x−1 . It follows that the

subalgebra of EndQ−HS (H 1
B (C, Q)) generated by ψ∗

e is isomorphic to Q[y]/( y e −1
y−1 )

and the subalgebra generated by ψ∗
f is isomorphic to Q[x]/( x f −1

x−1 ). Since (e, f ) =
1, the polynomials T f −1

T −1 and T e −1
T −1 are relatively prime. Thus the subalgebra

of EndQ−HS (H 1
B (C, Q)) generated by ψ ∗

e and ψ∗
f is isomorphic to the Q-algebra

Q[x, y]/( x f −1
x−1 , ye −1

y−1 ). The factorization of cyclotomic polynomials (see, for instance,
[13, Chapter 2]) yields the isomorphism

Q[x, y]/(
x f − 1
x − 1

,
ye − 1
y − 1

) ∼=
!

d,d ′

K d,d ′ .

The last sentence in the statement of the lemma follows from the first since
End0

F (Jac C) = (End 0
FK (Jac C))Gal(F K/K) . !
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Let ed0 ,d ′
0

∈ End 0
F (Jac C) be the image, under the embedding of Lemma 2.2, of

the element in
&

d,d ′ Q that has 1 in the (d 0, d′
0)-component and 0 elsewhere.Then

by Lemma 2.2 we know that {e d,d ′ } d,d ′ is an orthogonal system of idempotents in
End0

F (Jac C). That is,

• e d1 ,d ′
1
ed2 ,d ′

2
=

$
ed1 ,d ′

1
d1 = d 2 and d′

1 = d ′
2,

0 else,
• 1 =

)
d,d ′ ed,d ′ .

Define Ad,d ′ = e d,d ′ (Jac C), which is an abelian variety defined over F . By defini-
tion,

Jac C ∼F
!

d,d ′

Ad,d ′ .

Furthermore, by Lemma 2.2
K d,d ′ (→ ed,d ′ End0

Fd,d ′ (Jac C) = End 0
Fd,d ′ (A d,d ′ ).

Proposition 2.3.
(1) Each A d,d ′ is an isotypic abelian variety over F of dimension gd,d ′ =

ϕ(f d)ϕ(ed′ )/2 such that (A d,d ′ )F d,d ′ has CM by K d,d ′ .
(2) The Betti cohomology of C decomposes as

H 1
B (C, Q) =

*

d,d ′

H 1
B (A d,d ′ , Q),

where a C-basis for H1
B (A d,d ′ , C) is given by

(2.2) Bd,d ′ = {ω i,j : 1 ≤ i ≤ f − 1, 1 ≤ j ≤ e − 1, (i, f ) = d, (j, e) = d ′ }.

Proof. Since Kd,d ′ (→ End0
Fd,d ′ (A d,d ′ ), it follows that [K d,d ′ : Q] ≤ 2 dim A d,d ′ . On

the other hand,
+

d,d ′

2 dim Ad,d ′ = 2 dim Jac C = (e − 1)(f − 1) =
+

d,d ′

[K d,d ′ : Q].

Therefore we must have ϕ(f d)ϕ(ed′ ) = [K d,d ′ : Q] = 2 dim A d,d ′ , which proves the
first statement.

For the last statement, recall that the Abel-Jacobi map induces

H ∗
B (C, Q) = H ∗

B (Jac C, Q) =
*

d,d ′

H ∗
B (A d,d ′ , Q).

Let Φn denote the n-th cyclotomic polynomial. We can identify
K d,d ′ ∼= Q[x, y]/(Φ f d (x), Φed ′ (y))

by sending x to ζ f d and y to ζ ed ′ . But under the embedding

Q[x, y]/
, x f − 1

x − 1
,

ye − 1
y − 1

-
(→ End0

FK (Jac C),

we sent x to ψ∗
f and y to ψ∗

e . Therefore we have Kd,d ′ (→ EndQ−HS (H 1
B (C, Q)) with

ζf d .→ ψ ∗
f |A d,d ′ and ζed ′ .→ ψ ∗

e |A d,d ′ . Since ϕ∗
f |A d,d ′ corresponds to ζf d , it follows

that ϕ ∗
f |A d,d ′ has order f d . Therefore the eigenvalues of ϕ∗

f on H ∗
B (A d,d ′ , C) must

have order equal to fd. Similarly, any eigenvalues of ϕ∗e on H ∗
B (A d,d ′ , C) must have

order equal to ed ′ . Therefore ωi,j ∈ Vd,d ′ if and only if (i, f ) = d and (j, e) = d ′ ,
which proves the last statement. !
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2.4. The ´etale cohomology of C. Let us begin by fixing, once and for all, an
algebraic closure F of F as well as embeddings K (→ F and F (→ C. Let Z /F
be a smooth projective variety. Recall that for a given rational prime ℓ, the fixed
embedding F (→ C yields the identity H ∗

et (Z F , Qℓ ) = H ∗
et (Z C, Qℓ ). Moreover, for a

fixed embedding ιℓ : Q ℓ (→ C, the Betti-´etale comparison isomorphism for complex
varieties yields an isomorphism of complex vector spaces [4, Appendix C, 3.7]:

H 1
et (Z F , Qℓ ) ⊗Qℓ ,ι ℓ C ∼= H 1

B (Z, C).
In particular, it follows from Proposition 2.3 that we have isomorphisms

(2.3)

H 1
et (CF , Qℓ ) ⊗Qℓ ,ι ℓ C

%
d,d ′

H 1
et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C

H 1
B (C, C)

%
d,d ′

H 1
B (A d,d ′ , C),

∼=
∼ =

∼=

∼ =

which respect the decomposition given by the pairs (d, d ′ ). By abuse of notation,
write ω i,j for the image of ωi,j ∈ B d,d ′ in H 1

et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C for 1 ≤ i ≤
f − 1, 1 ≤ j ≤ e − 1 and hence view B d,d ′ as a basis for H 1

et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C
as well. Therefore the involution of complex conjugation on H 1

B (C, C) can be
seen on H1

et (CF , Qℓ ) ⊗Qℓ ,ι ℓ C by ωi,j .→ ωf−i,e−j . Since the isomorphisms in (2.3)
are equivariant with respect to the action of End C, it follows that the ω i,j ∈
H 1

et (CF , Qℓ ) ⊗Qℓ ,ι ℓ C have the eigenvalues calculated in (2.1).
Note that since A d,d ′ is defined over F , its ´etale cohomology inherits an action

of the Galois group G F = Gal(F /F ). This action is unramified away from the
(finitely many) primes of bad reduction for A d,d ′ . Fix a prime p of F where A d,d ′

has good reduction. In particular, it follows that p ! ef . Let q denote the size of
the residue field at p. That is, if O F is the ring of integers of F , then q = #O F /p.

Now fix a rational prime ℓ such that p ! ℓ and an embedding ι ℓ : Qℓ (→ C.
Consider the action of a Frobenius element Frob∗p ∈ G F on H 1

et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C.
We will show in Proposition 2.4 below that the matrix [Frob ∗

p ]B d,d ′ of Frob∗
p with

respect to the basis Bd,d ′ of H 1
et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C is a generalized permutation

matrix, that is, a matrix with exactly one nonzero entry in each row and column.
Given proper divisors d|f and d ′ |e, recall that f d = f/d and e d ′ = e/d ′ . Let

ordf d ·ed ′ q denote the (multiplicative) order of q in (Z/f dZ) × × (Z/e d′ Z)× .

Proposition 2.4. The matrix [Frob ∗
p ]B d,d ′ of Frob∗

p with respect to the basis Bd,d ′

of H 1
et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C is a generalized permutation matrix on 2g d,d ′ letters.

The corresponding permutation ρ is a product of ϕ(f d )ϕ(e d ′ )
ord f d ·e d ′ q disjoint cycles, each of

length ordf d ·ed ′ q.

Proof. Define the set

I d,d ′ = {(i, j) ∈ Z/f Z × Z/eZ | (i, f ) = d, (j, e) = d ′ }.
For s = (i, j) ∈ I d,d ′ , let i(s) := i and j(s) := j. Write the action of Frob∗

p on
H 1

et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C with respect to the basis B d,d ′ as

Frob∗
p(ωt ) =

+

s∈I d,d ′

as,t ωs ,

for some as,t ∈ C.
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A direct calculation shows that we have the following equality on C(F q) for
ν ∈ {e, f }:

Frobp ◦ψν = ψ q
ν ◦ Frobp ,

which implies that
ψ∗

ν ◦ Frob∗
p = Frob ∗

p ◦(ψ∗
ν )q.

We compute both sides of this equality with respect to the basis B d,d ′ :

ψ∗
ν ◦ Frob∗

p(ωt ) =
+

s∈I d,d ′

as,t ψ∗
ν (ωs) =

$ )
s∈I d,d ′

as,t ζ i(s)
f ωs if ν = f,

)
s∈I d,d ′

as,t ζ−j(s)
e ωs if ν = e,

whereas

Frob∗
p ◦(ψ∗

ν )q(ωt ) =

$
Frob∗

p(ζ qi(t)
f ωt ) = ζ qi(t)

f
)

s∈I d,d ′
as,t ωs if ν = f,

Frob∗
p(ζ −qj(t)

e ωt ) = ζ −qj(t)
e

)
s∈I d,d ′

as,t ωs if ν = e.

It follows that for all s, t ∈ I d,d ′ we must have as,t = 0 unless

i(s) ≡ qi(t) mod f and j(t) ≡ qj(t) mod e.

Since s, t ∈ Id,d ′ , the above congruences are equivalent to the conditions

i(s)
d

≡
qi(t)

d
mod f d and

j(s)
d′ ≡

qj(t)
d′ mod ed′ .

Since s
d , t

d ∈ (Z/f dZ) × × (Z/e d ′ Z)× , it follows that s determines t. In other
words, there is a permutation ρ on I d,d ′ such that a s,t = 0 if and only if t = ρ(s).
This proves that [Frob ∗

p]B d,d ′ is a generalized permutation matrix.
For the claim about the structure of ρ, we identify I d,d ′ with (Z/f dZ)× ×

(Z/e d′ Z)× and use the congruence condition
'

i(s)
d

,
j(s)
d′

(
≡ q

'
i(t)
d

,
j(t)
d′

(

in (Z/f dZ)× × (Z/e d ′ Z)× . Indeed, this shows that for any α ∈ (Z/f dZ) × × (Z/e d′ Z) ×

we have
ρ(α) = q −1 α, ρ(q−1 α) = q −2 α, . . . , ρ(αq− ord f d ·e d ′ q) = α.

In the above calculation, q−1 denotes the (multiplicative) inverse of q in (Z/f dZ)× ×
(Z/e d′ Z)× . Therefore ρ indeed has the desired structure. !

The characteristic polynomial of a generalized permutation matrix can be cal-
culated using basic linear algebra (see [5, §1.2] for details).

Lemma 2.5. Let M ∈ GL N (C) be a generalized permutation matrix given by the
data of a permutation ρ and z 1, . . . , zN ∈ C × . Write C 1, . . . , Cn for the supports
of the disjoint cycles of ρ, and let c i = #C i . For 1 ≤ m ≤ n, define the complex
number

Zm :=
!

j∈C m

zj .

Then the characteristic polynomial of M is the polynomial
n!

m=1

(T cm − Z m ).
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As in the proof of Proposition 2.4, let us write the matrix of Frob p with respect
to B d,d ′ as (as,ρ(s) )s∈I d,d ′ for the permutation ρ. Let q−1 denote the (multiplicative)
inverse of q in (Z/fdZ)× × (Z/e d′ Z)× . For a fixed element b ∈ (Z/fdZ)× × (Z/e d ′ Z)× ,
define

(2.4) Zb =
ord f d ·e d ′ q!

i=1

abq− i ,ρ(bq − i ) ,

where we have identified Id,d ′ ∼= (Z/f dZ)× × (Z/e d′ Z)× via (i, j) ↔ (i/d, j/d ′ ). In
other words, Zb is the product over all the nonzero entries in [Frob ∗

p ]B d,d ′ corre-
sponding to the disjoint cycle in ρ containing b.

Corollary 2.6. The characteristic polynomial of Frob∗
p acting on H 1

et (A d,d ′ ,F , Qℓ )
is

ϕ(f d )
ord f d

q!

c=1

ϕ(e d ′ )
ord ed ′ q!

c′ =1

.
T ord f d ·e d ′ q − Z (c,c ′ )

/
.

Proof. This follows directly from Proposition 2.4 and Lemma 2.5 since the charac-
teristic polynomial of Frob ∗

p can be computed after any base change. !

Remark 2.7. Note that while the a s,t ’s may be complex numbers, Corollary 2.6
implies that the Z b’s are algebraic since the characteristic polynomial of Frob∗

p
vanishes at all of the (ord f d ·ed ′ q)-th roots of Z b.

We shall also want to understand the action of complex conjugation on Z b.
Unfortunately, we can only do this when F is totally real. Letting the − symbol
denote complex conjugation, we record the following proposition for later use.

Proposition 2.8. Suppose that F is totally real, and let p be a prime of F where
Ad,d ′ has good reduction. Then for any s, t ∈ I d,d ′ we have as,t = a −s,−t . In
particular, for any b ∈ (Z/f dZ) × × (Z/e d ′ Z)× we have Zb = Z −b .

Proof. Since F is totally real, there is a well-defined complex conjugation c ∈ G F ,
and for p as in the statement of the proposition, we have the relation c ◦ Frobp =
Frobp ◦c. Hence Frob∗

p ◦c∗ = c ∗ ◦ Frob∗
p . We compute both sides of this relation,

making use of the fact that the ´etale-Betti comparison isomorphism under which we
have identified the various incarnations of ωt is equivariant with respect to complex
conjugation. Thus for any t ∈ I d,d ′ , we know that c ∗ (ωt ) = ω t = ω −t . Hence we
have

Frob∗
p ◦c∗ (ωt ) = Frob p(ω−t ) =

+

s∈I d,d ′

as,−t ωs ,

c∗ ◦ Frob∗
p(ωt ) = c ∗

⎛
⎝ +

s∈I d,d ′

as,t ωs

⎞
⎠=

+

s∈I d,d ′

as,t ωs =
+

s∈I d,d ′

a−s,t ωs .

This gives as,−t = a −s,t , as desired. The fact that Z b = Z −b now follows directly
from the definition of Z b. !
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2.5. The L-function of C. Let k and E be number fields. Write O k for the ring of
integers of k. The language of compatible systems of Galois representations is useful
for defining the L-functions of interest. Recall that a d-dimensional compatible
system of Gk -representations V = {V λ } λ is a collection of representations {ρλ :
Gk → GL d(E λ )} λ prime of E such that there is a finite set S of primes of k such
that:

(1) ρ λ is unramified outside S and the primes of k lying over ℓ = λ ∩ Z;
(2) for all primes p of k outside S, there is a polynomial Fp(X) ∈ E[X] such

that, for all primes λ of E such that λ ∩ Z ̸ = p ∩ Z, the characteristic
polynomial ρλ (Frobp) is equal to F p(X), independent of λ.

For example, if Z/k is a smooth projective variety, then {H n
et (Z k , Qℓ )} ℓ is a com-

patible system of Gk -representations with E = Q for any n. If M is a Chow motive
defined over k (see Section 3.1 for the definition), then {H n

et (M k , Qℓ )} ℓ is a system
of G k -representations. It is not known in general whether the system is compat-
ible. However, for the motives we construct, we prove that this system of Galois
representations is compatible in Proposition 3.4.

The L-function of a compatible system V of d-dimensional Gk -representations
is a complex analytic (or meromorphic) function that encodes the data of how the
local Galois groups Gk p (→ Gk act on the Galois representations {Vλ } λ . (Here p is
any prime of k and λ is chosen such that p ∩ Z ̸= λ ∩ Z.) It is defined as an Euler
product with one local factor for each prime of k. It is easiest to define these local
factors when the representation is unramified at p. As these are the only factors
that will concern us, we restrict our definition to that case.

Definition 2.9. Let p be a prime of k at which a d-dimensional compatible system
of Galois representations V is unramified. Choose a prime λ of E such that p ∩
Z ̸ = λ ∩ Z. Let P p(T ) be the characteristic polynomial of Frobp on V (which is
independent of the choice of λ). Let qp = #O k /p. The local L-factor of V at p is

L p(V /k, s) := q −2ds
p Pp(qs

p),

which is a polynomial of degree d in q−s
p .

If Z/k is a variety and V = {H ∗
et (Z k , Qℓ )} ℓ , then we write L p(Z/k, s) and call it

the local L-factor of Z at p. This is the (incomplete) Hasse-Weil zeta function of Z.
If Z = A is an abelian variety, then H r

et (A k , Qℓ ) = Λ r H 1
et (A k , Qℓ ). Therefore we

abuse notation slightly and write L(A/k, s) for the L-function of {H 1
et (A k , Qℓ )} ℓ in

the case of abelian varieties.This should not cause any confusion.
Note that given a local L-factor L p(V /k, s), it is possible to recover P p(T ) by

replacing q−s
p in L p(V /k, s) with a variable T and multiplying the resulting Laurent

polynomial by T d . We shall often switch between local L-factors and characteristic
polynomials in what follows. In particular, we can restate Corollary 2.6 as follows.

Corollary 2.10. If p is a prime of F where A d,d ′ has good reduction, then the local
L-factor at p of A d,d ′ over F is

L p(A d,d ′ /F, s) =

ϕ(f d )
ord f d

q!

c=1

ϕ(e d ′ )
ord ed ′ q!

c′ =1

.
1 − Z (c,c ′ ) q−s ord f d ·e d ′ q

/
.
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Proof. Recall that the compatible system of Galois representations associated to
an abelian variety is ramified at exactly the primes of bad reduction. The result
now follows from Definition 2.9 and Corollary 2.6. !

As we shall only be concerned with the local factors where our representations
are unramified, we shall define the incomplete L-function of a compatible system
V as follows. Let S be the finite set of primes of k at which V is ramified. The
incomplete L-function is

L (S) (V /k, s) :=
!

p̸∈S

L p(V /k, s)−1 .

It is important to note that the L-function defined above depends on the field k; it
will change if we replace k by a larger field k ′ .

Weil proved [14] that the varieties A d,d ′ have algebraic Hecke characters asso-
ciated to them, a fact that was later generalized to all CM abelian varieties by
Shimura and Taniyama [12]. In order to state this correspondence, let us recall
some definitions. For a number field k, write A k for the ring of adeles of k and O v
for the completion of the ring of integers of k at a finite place v. For a place v of
k, write ι v : k×

v (→ A ×
k for the embedding sending x ∈ k×

v to the idele with x in the
v-th component and 1 elsewhere.

Definition 2.11. A Hecke character is a continuous homomorphism λ : A×k /k × →
C× . Such a character is said to be algebraic if for every archimedean place σ of k,
there exists nσ ∈ Z (respectively, nσ , mσ ∈ Z) if σ is real (respectively, complex),
such that λ(ι σ (x)) = x n σ (respectively, λ(ι σ (x)) = x n σ x̄m σ ) for all x ∈ k ×

σ . The
conductor of λ is the largest ideal m of k such that λ is trivial on

&
v 1 + mOv .

Fix a uniformizer ϖ v of Ov for each finite place v of k, and let p v be the corre-
sponding prime ideal of F . Write

λ(pv ) =

$
λ(1, . . . , 1, ϖv , 1, . . . , 1) if pv ! m,
0 otherwise.

Definition 2.12. With notation as in Definition 2.11, let p ! m be a prime of k
with residue degree qp . The local L-factor of λ at p is

L p(λ, s) := 1 − λ(p)q −s
p .

The incomplete L-function of λ is

L (m) (λ, s) :=
!

p!m

L p(λ, s)−1 .

Recall that A d,d ′ is an abelian variety over F such that (A d,d ′ )Fd,d ′ has CM by
K d,d ′ = Q(ζ d

f ζd′

e ). Since F is linearly disjoint from K by assumption, it follows
that Gal(F d,d ′ /F ) ∼= (Z/f dZ × Z/e d′ Z)× acts transitively on the set of embeddings
{ι : K d,d ′ (→ C}. Therefore there is an algebraic Hecke character

λd,d ′ = λ A d,d ′ /F d,d ′ : A×
Fd,d ′

/F ×
d,d ′ → C ×

such that we have an equality of L-functions [11, Theorem 12],
(2.5) L(A d,d ′ /F, s) = L(λ d,d ′ , s).
Furthermore, the support of the conductor of λ d,d ′ is exactly the set of primes of
Fd,d ′ where (Ad,d ′ )Fd,d ′ has bad reduction [10, §7, Corollary 1].
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Recall that for a positive integer n, if p is a prime not dividing n, then p splits
into ϕ(n)/ ord n p distinct primes in Q(ζ n ), each of residue class degree ordn p [13,
Theorem 2.13]. In particular, p splits into ϕ(f d · ed′ )/ ord f d ·ed ′ p primes in K d,d ′ ,
each of residue class degree ordf d ·ed ′ p. Since F is linearly disjoint from K d,d ′ , it
follows that each prime p of F lying over p splits into ϕ(f d · ed ′ )/ ord f d ·ed ′ p primes
in F d,d ′ , each of residue class degree ordf d ·ed ′ p. Let f p be the residue degree of p
over p; that is, q = p f p using the notation introduced just before Proposition 2.4.
Then the local L-factor of L(λ d,d ′ , s) at p is

(2.6)
!

p ′ |p

.
1 − λ d,d ′ (p′ )q−s ord f d ·e d ′ p

/
,

where the product runs over all primes p′ of Fd,d ′ lying over p.
Note that since q = p f p , it follows that ord f d ·ed ′ q divides ordf d ·ed ′ p. Write

ordf d ·ed ′ p = m · ord f d ·ed ′ q.

For each prime p ′ of Fd,d ′ lying over p, fix an m-th root of λd,d ′ (p′ ), and let µ m
denote the group of m-th roots of unity. Then we have the following corollary.

Corollary 2.13. For primes p of F as above, we have an equality of sets of
ϕ(f d )ϕ(e d ′ )
ord f d ·e d ′ q elements:

4
Z (c,c ′ )

5555 1 ≤ c ≤
ϕ(f d)

ordf d q
, 1 ≤ c′ ≤

ϕ(ed′ )
orded ′ q

6
=

4
ζm

m
7

λd,d ′ (p′ )
5555 p′ |p, ζm ∈ µ m

6
,

where in the second set p′ runs over primes of F d,d ′ lying over p. Furthermore, if
F is totally real, then (Z b)m = λ d,d ′ (p′ ) implies that (Z −b )m = λ d,d ′ (p′ ).

Proof. The first statement follows directly from Corollary 2.10 and equations (2.5)
and (2.6). For the second equality, we have λd,d ′ (p′ ) = (Z b)m implies that

λd,d ′ (p′ ) = (Z b)
m

= Z m
−b

by Proposition 2.8. !

3. Constructing a motive attached to powers of λ

Let λ = λ d,d ′ be the Hecke character attached to Ad,d ′ obtained as in the previous
section. Fix a positive integer n and n/2 < a ≤ n. The goal of this section is to
construct a Chow motive M d,d ′ defined over F such that L (S d,d ′ ) (M d,d ′ /F, s) =
L (S d,d ′ ) (λ aλn−a , s). In Section 3.1 we introduce some notation and recall some
background about motives. The key ingredient in the construction of M d,d ′ is a
group action on C n . We describe the action in Section 3.2 and then construct
M d,d ′ using the invariants of the group action and the idempotent e d,d ′ defined
right before Proposition 2.3. Using an explicit calculation of the Betti realization
of M d,d ′ (Corollary 3.3), we compute the L-function of M d,d ′ (Proposition 3.4) and
match it with that of λ a

d,d ′ λ
n−a
d,d ′ (Corollary 3.5). Finally, Section 3.4 summarizes the

relationship between the motives Md,d ′ constructed in this paper and other motives
associated to Hecke characters in the literature, especially the standard motive of
a Hecke character as found in [6, §I.4].
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3.1. Background on motives. Let k be a number field. We begin by briefly
recalling the construction of the category of Chow motives over k, closely following
[1]. Let Vk denote the category of smooth projective varieties over k.To any object
Z in V k , let Z n (Z) denote the group of algebraic cycles in Z of codimension n and
Z n (Z) Q = Z n (Z) ⊗Z Q. If ∼ is an adequate equivalence relation on algebraic cycles
[1, Definition 3.1.1.1], write Z n

∼ (Z) Q = Z n (Z) Q/ ∼ .
For a fixed adequate equivalence relation as above, define a category CV∼

k whose
objects are smooth projective varieties and

HomCV∼
k

(X, Y ) := Z dim X
∼ (X × k Y )Q.

See [1,§3.1.3] for the definition of composition of morphisms. The category CV∼
k

is a tensor category. In particular, it is an additive category with a tensor product
structure that is symmetric. The category of motives M ∼

k is defined to be the
pseudoabelian closure of CV∼k .

Objects in M ∼
k can be represented explicitly as triples (X, p, m), where X is a

smooth projective variety, p ∈ End CV∼
k

(X) such that p 2 = p, and m ∈ Z. Mor-
phisms of motives are given by

HomM ∼
k

((X, p, n), (Y, q, m)) = q ◦ Zdim X−n+m
∼ (X × k Y )Q ◦ p.

Furthermore, there is a natural contravariant functor h : Vk → M k given by h(X) =
(X, ∆ X , 0), where ∆X is the diagonal subvariety of X × k X.

The adequate equivalence relations ∼ that will be of interest for us are rational
∼ rat [1, §3.2.2], homological ∼hom [1, §3.3.4], and numerical ∼num [1, §3.2.7] equiv-
alence, listed here in decreasing order of fineness.The corresponding categories of
motives will be denoted by M rat

k , M hom
k , and M num

k . The objects in M rat
k are

called Chow motives and they are universal in the sense that ∼ rat is the finest
possible adequate equivalence relation [1, Lemme 3.2.2.1].

3.1.1. The motive h 1 of a curve. Let C ∈ V k be a geometrically connected curve,
and assume that C has a k-rational point P . Let p0 be the cycle on C × C given
by {P } × C and p 2 the cycle given by C × {P }. Then p0 and p2 are idempotent
for any choice of adequate equivalence relation. Define p1 = 1 − p 0 − p 2, which is
also idempotent. Let h 1(C) = (C, p 1, 0); that is, h 1(C) is the image of p1. It is well
defined up to unique isomorphism, and we have [8, Proposition 3.3]

EndM ∼
k

(h1(C)) = End 0
k (Jac C).

In particular, End M ∼
k

(h1(C)) is independent of the choice of adequate equivalence
relation ∼ .

Note that since Jac C is isogenous to a product of isotypic abelian varieties,
Jac C ∼

&
i∈I A i , it follows that there is an orthogonal system of idempotents

{e i } i∈I ∈ End M ∼
k

(h1(C)) corresponding to the decomposition of Jac C. For any
positive integer n it follows that {e i 1 ⊗ · · · ⊗ei n : i j ∈ I} is an orthogonal sys-
tem of idempotents in End M ∼

k
(h1(C) ⊗n ). In particular, when C is one of the

Weil curves introduced in Section 2 we have an orthogonal system of idempotents
in End M ∼

F
(h1(C)) corresponding to the e d,d ′ introduced prior to Proposition 2.3.

We continue to write e d,d ′ for the corresponding element of EndM ∼
k

(h1(C)). Fur-
thermore, we can view ed,d ′ as an element in EndM ∼

k
(h(C)) by extending by 0 on

h0(C) := (C, p 0, 0) and h2(C) := (C, p 2, 0).
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3.1.2. Realization functors. There are covariant functors on M rat
k corresponding to

the various classicalWeil cohomology theories. For example, the Betti realization
is a functor

H ∗
B (·, Q) : M rat

k → Q- HS .
For any X ∈ V k we have H∗

B (h(X), Q) = H ∗
B (X, Q). Write k-FVS for the category

of finite-dimensional k-vector spaces with a filtration. The de Rham realization is
a functor

H ∗
dR : M rat

k → k- FVS .
For any X ∈ V k we have H∗

dR (h(X)) = H ∗
dR (X), where H ∗

dR (X) denotes the alge-
braic de Rham cohomology of the k-scheme X. For any rational prime number ℓ,
let RepQℓ

(Gk ) denote the category of continuous representations of Gk on finite-
dimensional Qℓ -vector spaces.The ℓ-adic realization is a functor

H ∗
et (·, Qℓ ): M rat

k → Rep Qℓ
(Gk ).

For any X ∈ V k we have H ∗
et (h(X), Q ℓ ) = H ∗

et (X k , Qℓ ). If this system of ℓ-adic
representations is compatible, then we define the L-function of a Chow motive as
the L-function of its ℓ-adic realizations.

3.1.3. Galois descent. There is a theory of Galois descent for motives. Let k/k ′ be
a finite Galois extension. There is a base change functor − × k ′ k : M ∼

k ′ → M ∼
k

as well as a Weil restriction of scalars functor Resk/k ′ : M ∼
k → M ∼

k ′ . We shall
say that a motive M ∈ M ∼

k descends to k′ if there exists M ′ ∈ M ∼
k ′ such that

M = M ′ × k ′ k. Given M ∈ M ∼
k ′ , the motive M × k ′ k has a natural action of

Gal(k/k ′ ). A submotive N of M × k ′ k descends to k if and only if it is stable under
the action of Gal(k/k ′ ) on M × k ′ k [8, 1.16, Lemma 1.17].

3.1.4. Group actions on varieties. There is a way to construct a motive h(X) G ∈
M rat

k from the action of a finite group G on a smooth projective variety X ∈ V k ,
assuming that the action of G on X is defined over k. Explicitly, this motive can
be written as

(3.1) h(X) G = (X,
1

|G|
+

g∈G

Γg, 0),

where Γg ∈ Z dim X
rat (X × k X) Q is the transpose of the graph of the automorphism g

[3, proof of Proposition 1.2]. In coordinates,

Γg = {(gx, x) ∈ X × k X}.

Thus Γ 1G = ∆ X . Furthermore, this construction behaves well with respect to
realizations in the following sense. Each realization of X inherits an action of
G. Any realization of h(X) G is just the G-invariant vectors in the corresponding
realization of X. Finally, the motive h(X) G descends to a subfield k′ ⊆ k if both
X and the cycle 1

|G|
)

g∈G Γg descend to k′ .

3.2. The group action on C n and the Chow motives. We now return to the
notation from Section 2. Recall that for proper divisors d|f , d′ |e, the abelian variety
Ad,d ′ is defined over F and has CM by K d,d ′ after base change to Fd,d ′ . Consider
the n-fold product C n

F1,1
. Fix another positive integer a such that n/2 < a ≤ n.

Everything that follows will depend on the choice of integers a and n, though this
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will not be reflected in the notation. Consider the subgroup G of Aut C n
F1,1

given
by

G =

$ n!

k=1

ψu k
f ψvk

e

55555
u 1 +···+u a −u a+1 −···−u n ≡ 0 mod f,
v1 +···+v a −v a+1 −···−v n ≡ 0 mod e

8

,

where the k-th factor ψ u k
f ψvk

e in the product
& n

k=1 ψu k
f ψvk

e acts on the k-th factor
in the product C n

F 1,1
. Note that we have an isomorphism of groups G ∼= (Z/fZ ×

Z/eZ) n−1 . Write

ε =
1

|G|
+

g∈G

Γg ∈ End M rat
F 1,1

(h(C n
F1,1

))

for the idempotent cutting out h(C n
F 1,1

)G . We now use Galois descent to produce
a motive defined over the field F instead of F 1,1 .

Lemma 3.1. There is a motive M ∈ M rat
F such that M × F F1,1 = h(C n

F1,1
)G .

Proof. Recall that the motive h(C n
F1,1

)G consists of the data (Cn
F1,1

, ε, 0). Since the
curve C is defined over the field F , it suffices to check that

+

g∈G

Γg ⊂(C n × F Cn ) × F F1,1

is Gal(F1,1 /F )-stable.
Let [a : b : c] be projective coordinates of the curve C. Recall that C is the

normalization of the singular projective curve X given by (y ′ )ez′f−e = γ(x ′ ) f +
δ(z′ ) f . After base change to F 1,1 we have ψf ([x ′ : y′ : z′ ]) = [ζ f x ′ : y′ : z′ ] and
ψe([x ′ : y′ : z′ ]) = [x ′ : ζey′ : z′ ]. Since resolving the singular point [0 : 1 : 0]
of X will result in new coordinates obtained as rational functions in the variables
x ′ , y′ , z′ , both ψ f and ψe will act by powers of ζe and ζ f , respectively, on the
coordinates a, b, and c of CF 1,1 .

Hence there are integers mi , n j for 1 ≤ i, j ≤ 3 such that for any point [a : b : c]
of CF1,1 we have ψf ([a : b : c]) = [ζ m 1

f a : ζ m 2
f b : ζm 3

f c] and ψe([a : b : c]) = [ζ n 1
e a :

ζn 2
e b : ζn 3

e c].
Consider the element g0 =

&
k=1 ψu k

f ψvk
e ∈ G. Then the class Γ g0 ⊂ (C n × F

Cn ) × F F1,1 is given by

Γg0 =

$ n!

k=1

[ζm 1 u k
f ζn 1 vk

e ak : ζm 2 u k
f ζn 2 vk

e bk : ζm 3 u k
f ζn 3 vk

e ck ]

×
n!

k=1

[ak : bk : ck ]

55555[ak : bk : ck ] ∈ CF 1,1

8

.

Let τ ∈ Gal(F 1,1 /F ) ∼= Gal(Q(ζ f , ζe)/Q). Say ζτ
f = ζ i

f and ζ τ
e = ζ j

e . Then for an
element α =

& n
k=1 [ζu k m 1

f ζvk n 1
e ak : ζu k m 2

f ζvk n 2
e bk : ζu k m 3

f ζvk n 3
e ck ]×

& n
k=1 [ak : bk : ck ]

of Γ g0 , we have

ατ =
n!

k=1

[ζu k m 1
f ζvk n 1

e ak : ζu k m 2
f ζvk n 2

e bk : ζu k m 3
f ζvk n 3

e ck ]τ ×
n!

k=1

[ak : bk : ck ]τ

=
n!

k=1

[ζ iu k m 1
f ζ jv k n 1

e aτ
k : ζ iu k m 2

f ζ jv k n 2
e bτ

k : ζ iu k m 3
f ζ jv k n 3

e cτ
k ] ×

n!

k=1

[aτ
k : bτ

k : cτ
k ].
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Namely, we have α τ ∈ Γ g′ , where g′ =
& n

k=1 ψiu k
f ψjv k

e ∈ G. Thus
)

g∈G Γg is
Gal(F1,1 /F )-stable, as desired. !

We can now define the Chow motive associated to λad,d ′ λ
n−a
d,d ′ . Let E d,d ′ = e⊗n

d,d ′ ∈
EndM rat

F
(h(C n )) as in Section 3.1.1. Then by Lemma 3.1 we may compose E d,d ′

with ε in End M rat
F

(h(C n )). Define

M d,d ′ = (E d,d ′ ◦ ε)(h(C n )) ∈ M rat
F ,

and define
(3.2) M̃ =

*

d,d ′

M d,d ′ = (
+

d,d ′

Ed,d ′ ◦ ε)(h(C n )) ∈ M rat
F .

We reiterate that M d,d ′ depends on the choice of a and n even though this is not
reflected in the notation.

3.3. Computing the cohomology of the motives M d,d ′ . We begin by studying
the Betti realization of M. Once we understand this, we will then determine its
decomposition with respect to the idempotents induced by the E d,d ′ . We begin
by establishing some notation. Let πk : Cn → C be the natural projection map
onto the k-th copy of C in C n . Write Ω for the fundamental class of C and
Ωk = π ∗

k (Ω). In particular, Ω represents a nonzero class in H1,1 (C) = H 2
B (C, C)

under the Betti-de Rham comparison isomorphism. Let ωk,i,j = π ∗
k (ωi,j ) for all

1 ≤ i ≤ I, 1 ≤ j ≤ J. For the same range of i, j, define
Σ i,j = ω1,i,j · · · ωa,i,j ω̄a+1,i,j · · · ω̄n,i,j .

As with the ω i,j , for 1 ≤ i ≤ I, 1 ≤ j ≤ J, define

Σ f−i,e−j = Σ i,j = ω̄1,i,j · · · ω̄a,i,j ωa+1,i,j · · · ωn,i,j .
Following the conventions established with ωi,j , we denote by Σi,j the image of Σi,j
under the standard comparison isomorphisms between Betti, deRham, and ℓ-adic
cohomology theories.

The following proposition is due to Schreieder in the case when the curve C is of
the form y2 = x 2g+1 + 1 [9, Lemma 8]. The proof we give below is a straightforward
generalization of his argument.

Proposition 3.2.
(1) The Hodge decomposition of the Q-Hodge structure H∗B (M, Q)=H ∗

B (C n , Q)G
has the form

H ∗ (C n , C)G = V a,n−a ⊕ V n−a,a ⊕

9
n*

p=0

V p,p

:

.

(2) The subspace Vp,p consists of all G-invariant homogeneous polynomials of
degree p in the classes Ω1, . . . , Ωn .

(3) The set {Σ i,j : 1 ≤ i ≤ f −1, 1 ≤ j ≤ e−1} is a C-basis for V a,n−a ⊕V n−a,a .

Proof. Recall that for each 1 ≤ k ≤ n, we have ψ∗f (ωk,i,j ) = ζ i
f ωk,i,j and ψ∗

e (ωk,i,j ) =
ζ−j

e ωk,i,j . Now, the cohomology ring H ∗ (C n , C) is generated by the elements Ωk ,
ωk,i,j , ωk,i,j for 1 ≤ k ≤ n, 1 ≤ i ≤ I, 1 ≤ j ≤ J. Suppose there is a G-invariant
class in H ∗ (C n , C) that contains the monomial

η = Ω l 1 · · · Ωl r ωk1 ,i 1 ,j 1 · · · ωk s ,i s ,j s ωk s+1 ,i s+1 ,j s+1 · · · ωk t ,i t ,j t ,
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where, without loss of generality, we take l 1 ≤ · · · ≤ l r , k1 ≤ · · · ≤ k s , and
ks+1 ≤ · · · ≤ k t .

Observe that the product of any (1, 0) and (0, 1) class of the factor C k lies in
H 1,1 (Ck ) and thus is a multiple of the fundamental class Ωk . Hence we may assume
that the intersection

{k ϵ | 1 ≤ ϵ ≤ s} ∩ {k ϵ | s + 1 ≤ ϵ ≤ t} = ∅.

Since H2,0 (Ck ) = 0 = H 0,2 (Ck ), we may assume that k1, . . . , ks are pairwise disjoint
and the same for k s+1 , . . . , kt , so all of k1, . . . , kt are pairwise distinct. Moreover,
since H2,2 (Ck ) = 0, the elements l 1, . . . , lr are pairwise distinct. Since H2,1 (Ck ) =
0 = H 1,2 (Ck ) we then have

{l 1, . . . , lr } ∩ {k ϵ | 1 ≤ ϵ ≤ t} = ∅.

That is, in the expression for η, all of l1, . . . , lr , k1, . . . , kt are pairwise distinct.
Namely we have l1 < · · · < l r , k1 < · · · < k s , and ks+1 < · · · < k t .

Now note that the element ψ u 1
f ψv1

e × · · · × ψu n
f ψvn

e of the group G acts on the
monomial η by multiplication by the scalar

ζµ u 1 ,··· ,u t
f ζνv 1 ,··· ,v t

e ,

where µu 1 ,...,u t is of the form i 1u1 ± · · · ± i t ut and νv1 ,...,v t is of the form j 1v1 ±
· · · ± jt vt .

First we show that t < n implies that t = 0. Indeed, begin by choosing values
for u 1, . . . , ut and v1, . . . , vt such that µ u 1 ,...,u t ≡ 0 mod f and ν v1 ,...,v t ≡ 0 mod e.
Since t < n, we can still choose ut+1 , . . . , un and vt+1 , . . . , vn such that

u1 + · · · + ua − u a+1 − · · · − un ≡ 0 mod f,
v1 + · · · + va − v a+1 − · · · − vn ≡ 0 mod e.

Namely, the automorphism of Cn
F 1,1

given by ψu 1
f ψv1

e × · · ·× ψu n
f ψvn

e lies in the group
G, but it acts nontrivially on the monomial η when t > 0. Since η is G-invariant,
we must have t = 0 and η = Ω l 1 · · · Ωl r .

Next suppose that t = n. By the pairwise distinctness of l1, . . . , lr , k1, . . . , kt ,
we know r = 0. We now show that in this case, we must have i 1 = · · · = i n ,
j 1 = · · · = j n , and either

{1, . . . , a} = {k1, . . . , ks} or {1, . . . , a} = {ks+1 , . . . , kn }.

Indeed, suppose 1 ≤ ϵ1 < ϵ 2 ≤ s are such that k ϵ1 ≤ a and k ϵ2 > a. Then let
uϵ1 = u ϵ2 = v ϵ1 = v ϵ+2 = 1 and u ϵ = v ϵ = 0 for all other ϵ ̸= ϵ 1, ϵ2. Then the
n-tuples (u 1, . . . , un ) and (v 1, . . . , vn ) give rise to an element in G with µ u 1 ,...,u n =
i ϵ1 + i ϵ2 and νv1 ,...,v n = j ϵ1 + j ϵ2 . But since the monomial η must be G-invariant,
it follows that

(3.3) i ϵ1 + i ϵ2 ≡ 0 mod f,

(3.4) j ϵ1 + j ϵ2 ≡ 0 mod e.

If f is odd, then 1 ≤ i ϵ1 , iϵ2 ≤ f−1
2 , and so (3.3) is impossible. If f is even, then

1 ≤ j ϵ1 , jϵ2 ≤ e−1
2 , and so (3.4) is impossible. Namely, we have shown that there

cannot exist 1 ≤ ϵ1 < ϵ2 ≤ s with the property that k ϵ1 ≤ a and k ϵ2 > a. Similarly,
one checks that we cannot have ϵ1, ϵ2 ∈ {s+1, . . . , n} such that k ϵ1 ≤ a and kϵ2 > a.
This proves that {1, . . . , a} is either {k 1, . . . , ks} or {k s+1 , . . . , kn }.
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It remains to show that i 1 = · · · = i n and j 1 = · · · = j n . For any ϵ ≤ a, let
uϵ = u a+1 = v ϵ = v a+1 = 1 and u ι = v ι = 0 for all ι = , aϵ  + 1. As above,
the n-tuples (u 1, . . . , un ) and (v 1, . . . , vn ) give rise to an element in G such that
i ϵ ≡ i a+1 mod f and j ϵ ≡ j a+1 mod e since η is G-invariant.But since 1 ≤ i ϵ ≤ f −1
and 1 ≤ j ϵ ≤ e − 1, we have iϵ = i a+1 and j ϵ = j a+1 for all 1 ≤ ϵ ≤ a. Similarly,
one checks that i a = i ϵ and j a = j ϵ for all  > aϵ . Therefore i 1 = · · · = i n and
j 1 = · · · = j n , as claimed.

Thus we have shown that the monomial η must take one of the following forms:

Ωl 1 · · · Ωl r ,
Σ i,j := ω 1,i,j · · · ωa,i,j ωa+1,i,j · · · ωn,i,j ,

Σ i,j := ω 1,i,j · · · ωn−a,i,j ωn−a+1,i,j · · · ωn,i,j ,

with 1 ≤ i ≤ I, 1 ≤ j ≤ J. This proves the first two statements of the proposition.
Observe that all three types of forms are G-invariant.Moreover, for any 1 ≤ i ≤ I

and 1 ≤ j ≤ J, the form Σ i,j is of type (a, n − a) and Σ i,j is of type (n − a, a)
in the Hodge decomposition of H ∗

B (C n , C)G . Hence the C-span of {Σ i,j | 1 ≤ i ≤
I, 1 ≤ j ≤ J} defines a G-invariant vector space V a,n−a of classes of type (a, n − a),
and the C-span of {Σ i,j | 1 ≤ i ≤ I, 1 ≤ j ≤ J} defines a G-invariant vector space
V n−a,a of classes of type (n − a, a). The Σ i,j are linearly independent since they
are tensor products of linearly independent elements.Therefore Va,n−a and Vn−a,a

are g-dimensional and conjugate to each other by construction. !

Corollary 3.3. The motive M̃ satisfies H ∗
B (M̃ , Q) ⊗C = V a,n−a ⊕ V n−a,a . Fur-

thermore, a C-basis for H ∗
B (M d,d ′ , Q) ⊗C is

Bd,d ′ := {Σ i,j | 1 ≤ i ≤ f − 1, 1 ≤ j ≤ e − 1, (i, f ) = d, (j, e) = d ′ }.

Proof. The first statement follows from the second, so we just prove the second
statement. Note that H ∗

B (M d,d ′ , Q) consists of the classes in H∗
B (C n , Q)G coming

from (ed,d ′ H 1(C, Q))⊗n = H 1
B (A d,d ′ , Q)⊗n . Since Bd,d ′ is a basis for H1

B (A d,d ′ , Q)⊗
C by Proposition 2.3, it follows that B ⊗n

d,d ′ ∩ (H ∗
B (M d,d ′ , Q) ⊗ C) is a basis for

H ∗
B (M d,d ′ , Q) ⊗C. Proposition 3.2 implies that B d,d ′ = B ⊗n

d,d ′ ∩ (H ∗
B (M d,d ′ , Q) ⊗C),

which completes the proof of the corollary. !

Proposition 3.4. Fix a rational prime ℓ. For pairs (d, d ′ ) such that d|f , d ̸= f
and d′ |e, d ̸= e we have:

(1) Let p ! ℓ be a prime of F where Ad,d ′ has good reduction, and let q = #OF /p.
The characteristic polynomial of Frob∗

p acting on H ∗
et (M d,d ′ , Qℓ ) is

ϕ(f d )
ord f d

q!

c=1

ϕ(e d ′ )
ord ed ′ q!

c′ =1

.
T ord f d ·e d ′ q − (Z (c,c ′ ) )a(Z −(c,c ′ ) )n−a

/
,

where the index of Z (c,c ′ ) is viewed as an element of (Z/f dZ × Z/e d′ Z)× .
In particular, H ∗

et (M d,d ′ , Qℓ ) is a compatible system of GF -representations.
(2) The local L-factor at p of L(H ∗

et (M d,d ′ , Qℓ )/F, s) is
ϕ(f d )

ord f d
q!

c=1

ϕ(e d ′ )
ord ed ′ q!

c′ =1

.
1 − (Z (c,c ′ ) )a (Z −(c,c ′ ) )n−a p−s ord f d ·e d ′ q

/
.
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Proof. We begin by computing the action of Frob∗
p on the basis B d,d ′ . Recall

that in Proposition 2.4 we showed that the matrix [Frob ∗
p]B d,d ′ of Frob∗

p acting
on H 1

et (A d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C with respect to the basis B d,d ′ is a generalized permu-
tation matrix on 2g d,d ′ = ϕ(f d)ϕ(ed′ ) letters with corresponding permutation ρ a
product of ϕ(f d )ϕ(e d ′ )

ord f d ·e d ′ q disjoint cycles, each of length ord f d ·ed ′ q. Recall the nota-
tion I d,d ′ = {(i, j) ∈ Z/f Z × Z/eZ | (i, f ) = d, (j, e) = d ′ }. For s, t ∈ I d,d ′ , the
generalized permutation matrix [Frob ∗

p]B d,d ′ is of the form (a s,t )(s,t)∈I d,d ′ such that

Frob∗
p(ωt ) = a ρ− 1 (t),t ωρ− 1 (t) .

Hence for t ∈ I d,d ′ we have

Frob∗
p(Σ t ) = (a ρ− 1 (t),t ω1,ρ− 1 (t) ) · · · (aρ− 1 (t),t ωa,ρ − 1 (t) )
(aρ− 1 ((e,f )−t),(e,f )−t ωa+1,ρ − 1 ((e,f )−t) ) · · · (aρ− 1 ((e,f )−t),(e,f )−t ωn,ρ − 1 ((e,f )−t) )

= (a ρ− 1 (t),t )a(aρ− 1 ((e,f )−t),(e,f )−t )n−a Σ ρ− 1 (t) .

The above calculation shows that the matrix [Frob∗p ]Bd,d ′ of Frob∗
p with respect to

the basis Bd,d ′ of H ∗
et (M d,d ′ ,F , Qℓ ) ⊗Qℓ ,ι ℓ C is a generalized permutation matrix with

associated permutation ρ. In particular, for 1 ≤ c ≤ ϕ(f d )
ord f d q and 1 ≤ c ′ ≤ ϕ(e d ′ )

ord ed ′ q ,
the product of all the nonzero entries in [Frob ∗

p ]Bd,d ′ corresponding to the (c, c′ )-th
disjoint cycle in ρ is

(Z (c,c ′ ) )a(Z −(c,c ′ ) )n−a .

The result now follows from Lemma 2.5. The second statement is a restatement
of the first using the standard translation between characteristic polynomials and
local L-factors. !

Recall that S d,d ′ is the set of primes of F where A d,d ′ has bad reduction and
S =

;
d,d ′ Sd,d ′ .

Corollary 3.5. Let n ≥ 1 and n/2 < a ≤ n, where we require a = n if F is not
totally real. Then, we have an equality of (incomplete) L-functions:

L (S d,d ′ ) (M d,d ′ /F, s) = L (S d,d ′ ) (λ a
d,d ′ λ

n−a
d,d ′ , s).

Proof. This follows from Corollary 2.13 and Proposition 3.4. !

Therefore using the decomposition ofM̃ given in (3.2) and letting S :=
;

d,d ′ Sd,d ′ ,
we have proven the following theorem.

Theorem 3.6. Let n ≥ 1 and n/2 < a ≤ n, where we require a = n if F is not
totally real. Then we have an equality of (incomplete) L-functions:

L (S) (M̃/F, s) =
!

d,d ′

L (S) (λ a
d,d ′ λ

n−a
d,d ′ , s).

3.4. Relationship to other results in the literature. We now briefly discuss
how the motives constructed in Section 3.2 are related to other constructions of
motives and varieties in the literature.
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3.4.1. Standard motives of algebraic Hecke characters.Given a number field k and
an algebraic Hecke character χ : A×k /k × → C × , there is a standard way to construct
a motive M(χ) ∈ M num

k such that L (S) (M (χ)/k, s) = L (S) (χ, s) for some finite set
of places S of k [6, §I.4]. In fact, let M num,ab

k be the Tannakian subcategory of
M num

k generated by motives of abelian varieties and Artin motives over k. Then
M (χ) is characterized in the category Mnum,ab

k by its L-function [6, Theorem I.5.1].
Note that the construction of the Chow motive M d,d ′ yields that the numerical
realization of M d,d ′ lies in M num,ab

F . Therefore by Corollary 3.5 and [6, Theorem
I.5.1] we have

M d,d ′ × F Fd,d ′ ∼= M(λ a
d,d ′ λ

n−a
d,d ′ ) ∈ M num,ab

Fd,d ′
.

That is, our construction proves that the motives M (λ a
d,d ′ λ

n−a
d,d ′ ) ∈ M num

Fd,d ′ descend
to F and can be realized at the level of Chow motives.

3.4.2. Motives of CM modular forms. Suppose F = Q, K is an imaginary quadratic
field, and χ is an algebraic Hecke character of K. Then one can form the theta
series θ(χ), which is a modular eigenform. Scholl gave a construction attaching a
homological (or Grothendieck ) motive over Q to any given eigenform [7]. In the
very limited circumstances when F = Q and [K d,d ′ : Q] = 2, our construction
proves that Scholl’s motives attached to θ(λ a

d,d ′ λ
n−a
d,d ′ ) can be realized at the level

of Chow motives.

3.4.3. Modularity of Schreieder’s varieties. The original motivation for this project
was to prove that the varieties constructed by Schreieder in [9] are modular in a
sense similar to [2, Theorem 3.3]. Fix a positive integer k ≥ 1 and let e = 2,
f = 3 k , γ = δ = 1 in the Weil curve C introduced in Section 2.1. That is, C has
affine coordinate patches y2 = x 3k + 1, v2 = u 3k +1 + u, and genus g = 3k −1

2 . The
particular case of the group G acting on C n was considered for k = 1 and a = n
by Cynk-Hulek in [2, §3] and for general k and a by Schreieder in [9, §8]. In these
papers they construct, for each k ≥ 1, a smooth model X of the singular quotient
variety C n /G with the property:

Proposition 3.7 ([9, Theorem 17]). For any k ≥ 1 and n/2 < a ≤ n, the Betti
cohomology of the n-dimensionalvariety X is of the form

H ∗
B (X, C) = H ∗

B (C n , C)G ⊕

9 n*

p=0
V p,p

:

,

where all classes in Vp,p are algebraic.

In other words, the “transcendental part” of X, which we denote T (X), is equal
to our motive M̃ in this case. Write A i for the isotypic 3k−i−1 -dimensional abelian
variety defined over Q appearing in the decomposition of (Jac C)K 0 that obtains
CM by K i = Q(ζ 3i

3k ) when base changed to K i . Let S i denote the finite set of
primes of Q where A i has bad reduction, and let λ i be the Hecke character of K i
associated to Ai by Weil. We obtain the following corollary.

Corollary 3.8. For any choices of k ≥ 1 and n ≥ 1 and n/2 < a ≤ n, the n-
dimensional smooth projective variety X is modular. That is, we have an equality
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of (incomplete) L-functions

L (S) (T (h(X))/Q, s) =
k−1!

i=1

L (S) (λ a
i λn−a

i , s).

Proof. The particular decomposition of the Jacobian of C is given by Corollary 2.3,
and the result then follows from Theorem 3.6. !

In particular, when n is odd we obtain

L (S) (H n
et (X Q), s) =

k−1!

i=1

L (S) (λ a
i λn−a

i , s).

Corollary 3.8 was proved by Cynk and Hulek when C is the elliptic curve y2 = x 3 +δ
(δ ∈ Q) and a = n [2, Theorem 3.3].
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