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ABSTRACT

This paper introduces the Fejér-monotone hybrid steepest
descent method (FM-HSDM), a new member to the HSDM fam-
ily of algorithms, for solving affinely constrained minimiza-
tion tasks in real Hilbert spaces, where convex smooth and
non-smooth losses compose the objective function. FM-HSDM
offers sequences of estimates which converge weakly and,
under certain hypotheses, strongly to solutions of the task at
hand. In contrast to its HSDM's precursors, FM-HSDM enjoys
Fejér monotonicity, the step-size parameter stays constant
across iterations to promote convergence speed-ups of the
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sequence of estimates to a minimizer, while only Lipschitzian
continuity, and not strong monotonicity, of the derivative of
the smooth-loss function is needed to ensure convergence.
FM-HSDM utilizes fixed-point theory, variational inequalities
and affine-nonexpansive mappings to accommodate affine
constraints in a more versatile way than state-of-the-art pri-
mal-dual techniques and the alternating direction method of
multipliers do. Recursions can be tuned to score low computa-
tional footprints, well-suited for large-scale optimization tasks,
without compromising convergence guarantees. Results on
the rate of convergence to an optimal point are also presented.
Finally, numerical tests on synthetic data are used to validate
the theoretical findings.

90C25; 65K15

1. Introduction
1.1. Problem and notation

Problem 1.1: This paper considers the following composite convex minimiza-
tion task:

) é’ﬁiiéle (x) + g(x), (1)
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2 K. SLAVAKIS AND I. YAMADA

where X is a real Hilbert space, the loss functions f,g belong to the class I'g(X) of
all convex, proper and lower semicontinuous functions from X to (—oo, +00] [3,
p. 132], f is everywhere (Fréchet) differentiable with L-Lipschitz-continuous
derivative Vf, i.e. there exists an L € R~ such that (s.t.) |[Vf(x;) — Vf(x)| <
Lllx1 — x2||, Vx1,x2 € X, and A is a closed affine subset of X'. Throughout the
manuscript, it is assumed that (1) possesses a solution.

Symbols Z and R stand for sets of all integer and real numbers, respectively.
Moreover, Z~¢ := {1,2,...} C {0,1,2,...} =: Z>¢, while R. ¢ := (0, 400). The
algorithms of this paper are built on a real Hilbert space &, equipped with an
inner product (- | -), with vectors denoted by lower case letters, e.g. x. In the spe-
cial case where X’ is finite dimensional, i.e. Euclidean, vectors of X are denoted by
boldfaced lower case letters, e.g. x, while boldfaced upper case letters are reserved
for matrices, e.g. Q. Symbol Id denotes the identity mapping in X, i.e. Id x = x,
Vx € X. In the special case where & is Euclidean, Id boils down to the identity
matrix, denoted by I. Vector/matrix transposition is denoted by the superscript
T. For g € T'g(X), g denotes the set-valued subdifferential operator which is
defined as x > 3g(x) := {& € X' | g(x) + (¥ — x[&) < g(x¥), VX' € X}.

Let B(X, X’) denote all bounded linear operators from X to X’ [4], and
B(X) :=B(X,X). For Q € B(X,X’), |Q|| < oo stands for the norm of Q.
Mapping Q* € B(X’, X) stands for the adjoint of Q € B (X, X”) [4]. In the case
of matrices, the adjoint of a mapping Q is nothing but the transpose Q" . Mapping
Q € B(X) is called self-adjoint if Q* = Q. In the case of a symmetric matrix Q,
A(Q) denotes an eigenvalue of Q. Furthermore, || Q|| = omax(Q) := AIIT{fX(QTQ)
stands for the (spectral) norm of Q, where oax(-) € R~ denotes the maximum
singular value and Amax(-) the maximum eigenvalue of a matrix.

1.2. Background and contributions

1.2.1. The hybrid steepest descent method
To solve (1), this paper extrapolates the paths established by the hybrid steepest
descent method (HSDM), which was originally introduced to solve a variational-
inequality problem of a strongly monotone operator over the fixed-point set of
a nonexpansive mapping [5] (see also, e.g. [6-8] and references therein, for a
wider applicability of HSDM in other scenarios). In the context of (1), a version
of HSDM solves

min_ f(x), (2)

xeFix T

where f is a strongly convex function and Fix T C X denotes the fixed-point set
of a nonexpansive mapping T : X — X (cf. Section 2). For an arbitrarily fixed
starting point xo, HSDM generates the sequence

Xny1 = Txy — )anf(Txn), (3)
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which strongly converges to the unique minimizer of (2). To secure strong
convergence, the step sizes (Ay)nez., C Rxo satisfy (i) Znez>0 An = +00, (ii)
lim,, o0 Ay = 0 and (iii) ZneZ>0|)‘”+1 — Au| < +00. Furthermore, in the case
where X' is Euclidean, f is not necessarily strongly convex, and T is attract-
ing nonexpansive [9,10] with bounded Fix T, the requirements on (Ay)nez.,
can be relaxed to (i) ZneZ>0 n =400, (i) Y, ez o A% < 400 for achieving
limy,, o0 dx (X5, Argming, rf) = 0, where dy (x,, Argming;, f) stands for the
(metric) distance of point x,, from the set of minimizers of f over Fix T [9].
To speed up HSDM’s convergence rate, conjugate-gradient-based variants were
introduced in [11-13]. For example, for an arbitrarily fixed starting pointxy € X,
and dp := —Vf(xp), the following recursions (i) x,4+1 := T(x, + nAndy); (ii)
dpy1 = —Vf(xp11) + Buy1dn, with u > 0, A, € (0, 1], B, € [0, 00) were intro-
ducedin [11].If . € (0,21/L?),lim,— o0 Bn = O, (Vf(xn))nez., is bounded, and
(i) ZHEZzo An = 400, (ii) limy,— o0 A, = 0, (iii) Znezzol)‘”-i-l — An| < 400, (iv)
An/Ant1 < 0, (0 > 1), then (x,)nez., converges strongly to the unique mini-
mizer of (2). )

1.2.2. Priorart

To demonstrate the connections of (1) with state-of-the-art methods, it is help-
ful to notice that the concise description (1) can be unfolded in several ways to
describe a large variety of convex composite minimization tasks, e.g.

J
xmei;}f(x) + Zgj(Hjx -7, (4)

j=1

where{ﬁ&}}]l-zo arereal Hilbert spaces,f € I'o(20).g; € I'o(Z)), Hj € B(Zo, Z))
and rj € 5&?, je{l,...,]J}. Moreover, Vf is L-Lipschitz continuous and &/
is a closed affine subset of Zy. Indeed, it can be verified that (4) can be
recastas (1) via X 1= 2o x 27 x -+ x 2 = {x:= (xO,x0, ., xD) | x0 ¢
2V € {0,1,...,]}} f(x) :zf(x(o)), g(x) = Z _14i( (x1), and the closed
affine set A:={x e X | x0 ¢ o7, x0) = Hjx(o) —rpVjie (L, ..., ]} Task (4),
in the case where J=2, " = 2y=21, HH=Id, rn=r=0, and & =
2, i.e. minge 9 [f (x) + g1(x) + g2(H2x)], has been already studied, e.g. via the
primal-dual (PD) algorithmic framework [14-17]. Gradient Vf, proximal map-
pings (cf. Definition 2.5) Prox, and Prox s = Id — Proxy, [3, Rem. 14.4, p. 198],
where g5 stands for the (Fenchel) conjugate of g, as well as adjoint H} are uti-
lized in a computationally efficient way to generate a sequence (xy)nez., C £,
which converges weakly (and under certain hypotheses, strongly) to a solu-
tion of the previous minimization task. Moreover, task (4), in the case where
J=2, 2 =Z2y=Z1=2,,HH=H,=Id,rn=r=0and & = X, ie.
minge 2 [f (x) +g1(x) + g2(x)], has also attracted attention in the context of the
‘three-term operator splitting’ framework [18,19]. As in [14-16], V/, Prox,, and
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Proxg, are employed via computationally efficient recursions in [18,19] to gener-
ate a sequence which converges weakly (and under certain hypotheses, strongly)
to a solution of the minimization task at hand. All studies in [14-16,18,19] set
of .= Z .Inthe case of &7 C 2, one can accommodate the affine constraint &7
via the use of the indicator function t 7 [t/ (x) := 0,if x € &/, and (7 (x) := 400,
if x ¢ 27| and the additional loss g3 := (7. According to the previous discus-
sion, such an accommodation entails the use of Prox, , = P/, where P, denotes
the metric projection mapping onto .<#. Mapping P, may become computation-
ally demanding, e.g. in the case where 2" is a Euclidean space and the affine
constraints are described by a matrix of large dimensions (c¢f. Fact A.3), since
computing P, necessitates the costly singular value decomposition of the matrix
under query (cf. Example A.4). Task (1) in the case where X’ is a Euclidean
space and A := {x € X | a'x = 0}, for some a € X \ {0}, was treated, within a
stochastic setting, in [20].

The celebrated alternating direction method of multipliers (ADMM) [21-25]
deals with the task

- L @
min () + g2(x') (5a)
D xDNe21x 2 g1 g

s.to HixD + Hyx® =7, (5b)

where H;j € B(Zj, Z¢) and r € Zp. Again, (5) can be recast as (1) under the
following setting: X := 27 x 25 = {x = M, x@) | xD e 27,x? e 25),
f(x):=0, g(x) :=gl(x(1)) +gz(x(2)), and A := {x € X | HixV + H)x® =r}.
Provided that the inverse mappings (AHTH; + 851)*1 and (AH;H, + 852)*1
exist, the recursive application of (AH}H; + 851)_1 and (A\H;H; + 8g2)_1 gen-
erates a sequence which converges weakly to a solution of (5) [24,25]. ADMM
enjoys extremely wide popularity for minimization problems in Euclidean
spaces [23], at the expense of the computation of (AHTH; + 851)_1 and
(AH3H; + 9g2)!: there may be cases where computing the previous inverse
mappings entails the costly task of solving a convex minimization subproblem.

The motivation for the present paper is the algorithmic solution given in the
distributed minimization context of [26,27]: for a Euclidean 2", and a collection
of loss functions {f;,g; € F'o(2" )}J]-:p where f; is everywhere differentiable with
an L;-Lipschitz continuous Vf;, Vj € {1, ..., ]}, nodes A\ (|| = J), connected by
edges £ within a network/graph G := (A, ‘E), operate in parallel and cooperate
to solve

min Z fi( 9y + Z Ji x9) (6a)

&, xD)e )/]

sto xV=...=x". (6b)

Each node j € AU operates only on the pair (f;,g)) and communicates the
information regarding its updates to its neighbouring nodes to cooperatively
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solve (6), under the consensus constraint of (6b). Once again, (6) can be
seen as a special case of (1) under the following considerations: X :=
27, fxD, . xD) = Z}zlf(x(j)),g(x(l), cooxDy = ij-zlg(x(i)) and A :=
(@D, ,xD) ex|xV =... =xP}. Upon defining the J x J mixing matri-
ces W = [wj], W= [wij], [27] introduced the following recursions to solve (6):
for an arbitrarily fixed starting-point J x dim 2" matrix Xy, as well as
X1/2 :== WXp — AVf(Xp) and X := Prox;¢(Xy,2), repeat for all n € Zxo, (i)
Xn+3/2 = Xn+1/2 + WX, 1 — WX, — )\[Vf(Xn—H) - Vf(Xn)]; (ii) X2 =
Prox;g(Xut3/2). If (i) (1,)) ¢ E = wij = w;; =0, (i) W =W, W' =W, (iii)
ker(W — W) = span 1 C ker(I — W), (iv) W > 0, (v) (1/2)0+ W) = W = W
and (vi) A € (0, 2Amin(W) /max; L;), then the sequence (X,),en converges to a
matrix whose rows provide a solution to (6).

1.2.3. Contributions

Driven by the similarity between the algorithmic solution of [26,27] and HSDM,
and aiming at solving (1), this study introduces a new member to the HSDM fam-
ily of algorithms: the Fejér-monotone (FM-)HSDM. Building around the simple
recursion of (3) and the concept of a nonexpansive mapping, FM-HSDM’s recur-
sions offer sequences which converge weakly and, under certain hypotheses (uni-
form convexity of loss functions), strongly to a solution of (1); ¢f. Theorems 3.1
and 3.6. Fixed-point theory, variational inequalities and affine-nonexpansive
mappings are utilized to accommodate the affine constraint A in a more flex-
ible way (see, e.g. Proposition 2.10 and Example A.4) than the usage of the
indicator function and its associated metric-projection mapping that methods
[15,16,18,19] promote. Such flexibility is combined with the first-order informa-
tion of f and the proximal mapping of g to build recursions of tunable complexity
that can score low-computational complexity footprints, well-suited for large-
scale minimization tasks. FM-HSDM enjoys Fejér monotonicity, and in contrast
to (3) as well as its conjugate gradient-based variants [11-13], only Lipschitzian
continuity, and not strong monotonicity, of the derivative of the smooth-part loss
is needed to establish convergence of the sequence of estimates. Furthermore, a
constant step-size parameter is utilized to effect convergence speed-ups. Finally,
as opposed to [11-13], the advocated scheme needs no boundedness assump-
tions on estimates or gradients to establish weak (or even strong) convergence of
the sequence of estimates to a solution of (1). Results on the rate of convergence
to an optimal point are also presented. Numerical tests on synthetic data are used
to validate the theoretical findings.

2. Affine nonexpansive mappings and variational inequalities

2.1. Nonexpansive mappings and fixed-point sets

Definition 2.1: A self-adjoint mapping Q € B(X) is called positive if (Qx|x) >
0, Vx € X [4, Sec. 9.3]. Moreover, the self-adjoint IT € B(X) is called strongly
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positive if there exists § € Rog s.t. (ITx|x) > §||x||?>, Vx € X. In the context of
matrices, Q is positive iff Q is positive semidefinite, i.e. Q > 0. Moreover, IT
is strongly positive iff IT is positive definite, i.e. IT > 0, and § in the previous
definition can be taken to be Apin (IT).

For a strongly positive IT, (-|-);; stands for the inner product (x|x')y :=
(x|TIx'), Y(x, x') € X2. For a function ¢ : X — R, V¢ and V¢(x) stand for the
(Gateaux/Fréchet) derivative and gradient at x € X, respectively 3, Sec. 2.6,
p. 37]. Given Q € B(X), ker Q stands for the linear subspace ker Q := {x €
X | Qx = 0}. Moreover, ran Q denotes the linear subspace ran Q := Q& :=
{Qx | x € X}. For the case of a matrix Q, ran Q is the linear subspace spanned
by the columns of Q. Finally, the orthogonal complement of a linear subspace is
denoted by the superscript L.

Definition 2.2: The fixed-point set of amapping T : X — X is defined as the set
FixT:={xe X | Tx = x}.

Definition 2.3: Mapping T : X — &’ is called

(i) Nonexpansive, if | Tx — Tx'|| < |lx — x'||, V(x, ) € X2.
(ii) Firmly nonexpansive, if ||Tx — Tx'||* < (x — x| Tx — Tx'), V(x,x) € X2.
Any firmly nonexpansive mapping is nonexpansive [3, Sec. 4.1].
(iii) o-averaged (nonexpansive), if there exist an « € (0,1) and a nonexpansive
mappingR: X - X' st. T = aR+ (1 — «a)Id . It can be easily verified that
T is nonexpansive with Fix R = Fix T.

Fact 2.4 ([3, Cor. 4.15, p. 63]): The fixed-point set Fix T of a nonexpansive
mapping T is closed and convex.

Definition 2.5: Givenf € I'g(X) and y € R. o, the proximal mapping Prox,  is
defined as Prox,s : X — &' : x > argmin . (yf(2) + %Hx —z|?).

Example 2.6:

(i) [3, Prop. 4.8, p. 61] Given a non-empty closed convex set C C &, the met-
ric projection mapping onto C, defined as P¢c : X — C : x — Pcx, with Pex
being the unique minimizer of min,e¢ |lx — z||, is firmly nonexpansive with
Fix Pc = C.

(ii) [3, Prop. 12.27, p. 176] Given f € I'g(X) and y € R., the proximal map-
ping Prox, s is firmly nonexpansive with Fix Prox, ; = argmin f.

(iii) [3, Prop. 4.2, p. 60] T is firmly nonexpansive iffId — T is firmly nonexpan-
sive iff T is (1/2)-averaged iff 2T — Id is nonexpansive.

(iv) [28, Prop. 2.2], [9, Thm. 3(b)]. Let {T}/_, be a finite family (J € Z) of

nonexpansive mappings from X" to X', and {a)j}]]-:1 be real numbers in (0, 1]
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s.t. 2}21 wj = 1.Then, T := Z]]':1 ;T; is nonexpansive. If ﬂjlleix T; # 0,

then Fix T = ﬁjlleix T;. Furthermore, consider real numbers {ozj}}:1 -

0,1) s.t. Tj is ocj—averaged, Vj. Define o := Z}zla)jaj. Then, T is «-
averaged. Hence, if each Tj is firmly nonexpansive, i.e. (1/2)-averaged, then
T is also firmly nonexpansive.

(v) [28, Prop. 2.5], [9, Thm. 3(b)] Let {Tj}JI:1 be a finite family (J € Z~) of
nonexpansive mappings from X’ to X'. Then, mapping T := T1 T --- T} is

nonexpansive. If ﬂ]IZIFix T; # 0, then Fix T = ﬂjj.leix T;. Furthermore,
consider real numbers {otj}]]-:1 C (0,1) s.t. Tj is aj-averaged, Vj. Define

Then, T is «-averaged.

In what follows, function f € I'g(&X) is considered to have an L-Lipschitz
continuous Vf with dom Vf = X. By [3, Prop. 16.3(i), p. 224], the previous con-
dition leads to dom f = X, which further implies by 3, Cor. 16.38(iii), p. 234]
that 9(f + g) = Vf + dg.

2.2. Affine nonexpansive mappings

Definition 2.7 ([3, p. 3]): A mapping T : X — X is called affine if there exist a
linear mapping Q: X - X andamw € Xst. Tx = Qx4+ 7, Vx € X.

Fact 2.8 ([3, Ex. 4.4, p. 72]): Consider the affine mapping Tx = Qx + 7, Vx €
X, with Q being linear and w € &". Then, T is nonexpansive iff || Q| < 1.

Define now the following special class of affine-nonexpansive mappings:

Ix=Qx+mn,Vxe X
T=T: X > X | QeBX)smred : (7)
IQll < 1, Qis positive

As the following proposition highlights, T is nothing but the class of affine
firmly nonexpansive mappings.

Proposition2.9: T € Tiff T = Q + m, where Q € B(X) is self-adjoint, m € X,
and T is firmly nonexpansive.

Proof: First, consider T € T. Since Q is positive, let Q2 be the posi-
tive square root of Q, i.e. the (unique) positive operator which satisfies
QY/2QY? = Q [4, Thm. 9.4-2, p. 476]. The positivity of Q vyields ||Q =
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SUP, e v\ o) [{QXIX) |/ (X|X) = sup, ey 1) (Qx]x) /(x]x), according to [4, Thm. 9.2-
2, p. 466). Then, V(x,x') € &2,

ITx — Tx'||> = |Qx — QX'|I* = |Q(x — %) ||* = (Qx — x)|Q(x — x'))
= (Q"*(x — x)1QQ*(x — ¥)) < IQI(Q*(x—x)|Q"*(x — ')
< (Q"*(x = H|Q*(x — x)) = (x — ¥'|Q(x — ¥))
= (x — x| Tx — Tx')),

which suggests that T is firmly nonexpansive.

Now, let T = Q + 7, for a self-adjoint Q € B(X), m € X. Let also T be
firmly nonexpansive. Then, Vx € &, (x|Qx) = (x — 0|Q(x — 0)) = (x — 0|Tx —
T0)) > || Tx — TO||*> > 0; thus Q is positive. By the fact that a firmly nonex-
pansive mapping is nonexpansive [Definition 2.3(ii)] and Fact 2.8, [|Q|| < 1. In
summary, T € %. |

Proposition 2.10: Let ] € Z~..

(i) Consider a family {Tj}JI:1 of members of T. For any set of weights {a)j}fz1
s.t. wj € (0,1] and Z]Ll wj = 1, mapping Z]'=1 wTix € T.

(i) Consider To := Qo + o € X. Moreover, let the self-adjoint Q; € B(X), with
1QjIl < 1,andmj € X,Vj € {1,...,]}. Let now the family {T; := Qj + J'rj}]-z1
of affine nonexpansive mappings, where each Tj does not necessarily belong to

%, ie. {Qj}]]-=1 might not be positive according to Proposition 2.9. Then, the
composition

T]T],L . .T1 T()Tl. . .T]71T]x = Q]ijl. . .Q1QOQ1. . .Q]71Q]x

J
+ ZQ]QFL ..Q1QoQ1. . .Qj—17;
j=1
J
+ ZQ}Q}—I- .Qmj—1 + 7y, Vxe A,
=1

satisﬁes T]T]_l L WTeTy . .. T]_lT] e T

Proof: The proof of Proposition 2.10(i) follows easily from Example 2.6(iv) and
Proposition 2.9. The formula appearing in Proposition 2.10(ii) can be deduced
by mathematical induction on J. Furthermore, Q;Qj—1...Q1QoQ; ... Q/—1Q;
is self-adjoint, and its positivity follows from the fundamental observation
thatVx € X, (QjQj—1--- Q1QoQ1 - - Q—1Qyx|x) = (Qo(Q1 - Q-1Qx)|Q1 - - -
Qj—1Qjx) > 0, due to the positivity of Qp. Finally, the claim of Proposi-
tion 2.10(ii) is established by ||Qr...Q1QoQ1...Qsll < 1Qoll ]_[}:1
IQjII* < 1. [ |
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Proposition 2.11: Given the closed affine set A C X, define the following family
of mappings:

TA={TeZT|FixT=A}. (8)

Then, X 4 is non-empty.

Proof: The metric projection mapping P 4 onto A is not only firmly nonexpan-
sive with Fix P4 = A [c¢f. Example 2.6(i)] but also affine, according also to [3,
Cor. 3.20(ii), p. 48]. Hence, by virtue of Proposition 2.9, P4 € T 4 # 0. |

It can be verified that the fixed-point set Fix T of an affine mapping T is affine.
However, more can be said about the members of ¥ 4.

Proposition 2.12: Forany T € T 4,
A =Fix T = ker(Id — Q) + wy = ker U + w,,

where wy is any vector of A and U is the positive square root of Id — Q, i.e. the
(unique) positive operator which satisfies U> = 1d — Q [4, Thm. 9.4-2, p. 476].

Proof: Since ||Q|l = sup,c o) |(Qxlx)|/lx]I? [4, Thm. 9.2-2, p. 466] and || Q|| <
1, it can be easily verified that Vx € X, ((Id — Q)x|x) = |lx||*> — (Qx|x) >
lxl%2 = QI - IIxl1? = llxlI> — ||x]|*> = 0, ie.Id — Qis positive. Interestingly, the
positivity of Q suggests that Vx € X, (Id — Q)x|x) = lx]12 — (Qx|x) < |Ix]I%
which implies, via [4, Thm. 9.2-2, p. 466], that || Id — Q|| < 1. Moreover, by the
definition of T, it follows that for any arbitrarily fixed w, € Fix T,

FixT={x|Tx=x} ={x| (Id - T)x = 0}
={x|(Id —Qx=n}={x|(Id —Qx=(Id — Qwy}
={x|(Id —Qx—w) =0} ={x' +w, | 1d —Qx" =0}
= ker(Id — Q) + wx.
Finally, the characterization Fix T' = ker U + w, follows from the previous argu-
mentsandx’ eker(ld —Q) <& (Id — QX =0=U*'=0= U*Ux¥' =0 =
(X|U*UX) = (UX|Ux) = |UX|?P=0=Ux¥' =0 x ekerU= Ux' =0

= (Id —Qx' =04 x' eker(Id — Q), which establishes ker(Id — Q) =
ker U. u

Several examples of T 4 members playing important roles in convex minimiza-
tion tasks can be found in Appendix 1.
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2.3. Variational-inequality problems

Definition 2.13 (Variational-inequality problem): For a nonexpansive map-
ping T: X — X, point x, € Fix T is said to solve the variational-inequality
problem VIP(Vf + 0g,Fix T) if there exists & € dg(xy) s.t. Vy € Fix T, (y —
x*IVf(x*) +&) = 0.

Fact 2.14 ([3, Prop. 26.5(vi), p. 383]): Consider a mapping T € T 4 (recall
Fix T = A), and assume that one of the following holds:

(1) 0 e sri(A — domain(f + g)) ([cf.]Prop. 6.19, p. 95] [3] for special cases);
(2) & is Euclidean and A Nri[dom (f + g)] # @.

Then, point x, solves VIP(Vf + dg,Fix T) ift x4, € argmin, g, +[f(x) +
g1

Proposition 2.15: Given the closed affine set A C X, consider any T € T 4
(cf. Proposition 2.12). If U stands for the square root of the linear operator Id — Q
in the description of T (cf. Definition 2.7), let tan’ U denote the closure (in the strong
topology) of the range of U. Then,

Xy solves VIP(Vf + dg, Fix T)
& xy € Ay :i={xe FixT | [Vf(x) + ag(x)] NrangeU # #}.  (9a)

Moreover, for an arbitrarily fixed A € R\ {0}, define the subset
T = {(x,v) € FixTx X | — LUv € Vf(x) + dg(x)} . (9b)
Then,
(x4, V) € T = x, solves VIP(Vf + dg, Fix T) . (9¢)

Furthermore, in the case where X is finite dimensional,

X solves VIP(Vf + 0¢,Fix T) < v, € X s.t. (X, Vi) € TLM . (9d)

Proof: First, recall that (ker U)! =tan U* =tan U [3, Fact 2.18(iii), p- 32].
According to Definition 2.13,

x« solves VIP(Vf + 9g, Fix T)
& x4 € Fix Tand 3§, € 9g(xy) s.t. Vy € Fix T, (y — x| Vf(xs) + &) > 0
& xy € Fix T and 3§, € 9g(xy) s.t. Vz € ker U, (z|Vf(xy) + &) >0 (10a)

& xy € Fix T and 3&, € 9g(xy) s.t. Vz € ker U, (z|Vf(xy) + &) <0 (10b)
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& xy € Fix T and 3§, € 0g(x4) s.t. Vz € ker U, (z|Vf(xx) +&«) =0

& x, € Fix Tand 3, € 9g(x,) s.t. VI(xy) + &, € (ker U)t =Tan U

& x4 € Fix Tand [Vf(x,) + 0g(x,) ] NTan U # 0

& x4 € Ay, (10¢)
which establishes (9a). Notice that Proposition 2.12 is used in (10a) and z €
ker U <& —z € ker U in (10b).

Moreover,

(x ) € T
& x, € Fix Tand U (—%) € Vf(x) + 9g(xs)
& x4 € Fix Tand Jv), € X s.t. Uv), € [Vf(x,) +0g(x)]Nran U (v, = =%
& x4 € Fix T and [Vf(x*) + ag(x*)] Nran U #£ @
= x. € Fix Tand [Vf(x,) + 0g(x,) ] NTan U # @ (11a)

& x4 € Ay,

which establishes (9¢) via (9a).
In the case where X" is Euclidean, (9d) is established by the well-known fact
ran U = ran U [4, Thm. 2.4-3, p. 74], which turns ‘="’ into * <= ’in(11a). B

3. Algorithm and convergence analysis

Forany T € ¥ 4 and any o € (0, 1), define the @-averaged mapping
Tex:= [T+ (1 — o)Id |x = Qux + a, (12)
where Qy == aQ + (1 — a)Id.

Theorem 3.1: Consider f,g € I'g(X), with L being the Lipschitz-continuity con-
stant of Vf. Moreover, given the closed affine set A, consider any T € T 4. For
A € Roo, an arbitrarily fixed xo € X, and for alln € Z=, the FM-HSDM is stated
as follows:

X1/2 = Taxo - )\.Vf(x()), (13a)
x1 := Prox;g(x1,2), (13b)
Xn+3/2 1= Xn41/2 — [Taxn - )\Vf(xn)] + [Txn—i-l - )\Vf(xn—l-l)] > (13¢c)

Xn+2 = Prox,g(xn+3/2) - (13d)

Consider alsoa € [0.5,1) and A € (0,2(1 — «)/L). Then, the following hold true.
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(i) There exist a sequence (Vn)nez., C X and a strongly positive operator
O:X* > X?% st sequence (yy := (Xn> Vn))nez-o\(1) is Fejér monotone [3,
Def. 5.1, p. 75] w.r.t. T® of Proposition 2.15 in the Hilbert space (X2, {-|-)o),
ie.

1Gont 15 Unt1) = G v ll@ < 1[G 0) — (s v los Yo v4) € T

(ii) Sequence (xn)nez., of (13) converges weakly to a point that solves VIP(Vf +
0g, Fix T).

Proof: (i) By (13c¢),
Xn13/2 — Xni1/2 = Tt — Taxn — A [Vf Gy — V)] . (14)
Since z = Prox;¢(y) < (3¢ € dg(2) s.t. z + A& = y), then
Fnt2 € 0g(xXn42) (15)

S.t. Xpt3/2 = Xny2 + Aépg2 and thus 3§11 € 0g(xur1) St Xpy12 = Xpp1 +
A&py1. Incorporating the previous equations in (14) yields that Vi € Z>o,

x1 = Toxo — A[Vf(x0) + &1,
Xnt+2 — Xnt+1 = Txpp1 — Taxy — A [Vf(xn+l) + ‘i:n+2] + A [Vf(xn) + §n+1] .
(16)
Moreover, adding consecutive equations of (16) results into the following fact:

n—1

Xnt1 = Txn — Y (T — Dxy — A [VF () + Enp1]
v=1

n+1
= Tx, — Z(Ta —Dxy + (Ty — Dxy + (T — T)Xpp1
v=1

—A [Vf(xn) + Sn—i—l]
n+1
= 2Toxnt1 — Txp1 + (Taxn — TaXny1) — Z(Ta — T)xy

v=1
= A[VfGon) + Ena ],
where the last equality holds true Vn € Z~. Consequently,
(d + T — 2To)xp+1 + (Taxnt1 — Taxn)

= (1 —2a)(T — Id )xpp1 + Qu(Xns1 — Xp)
n+1

==Y (To = Dxy — A[Vf(xn) + Ent1] (17)

v=1

where the first equation is due to (12).
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Choose arbitrarily a wy € Fix T, i.e. Id — T)w, = 0. Then,

(T — T)xy = (1 —a)(Id — T)x,
=1 —0a)[(d—Tx, — (Id — T)w,]
=1 —-a)Id—Q)(xy — wy).

Define also
n+1
Vg1 = (=) D Ulx, — ws).
v=1
Point v,41 does not depend on the choice of the fixed point w,. Indeed, by
Proposition 2.12, it can be verified that for any ws € Fix T, wy — w, € ker U,
and that

n—+1
Upt1 = (1 —a) Z Ulxy — wg + wy — wy)
v=1
n+1
=(1—a) ) [Ulx, — we) + Ulws — wy)]
v=1
n+1
=1—a)) Ulx, —ws). (18)
v=1
Moreover,
n+1 n
Vpt —Un=(1—0) Y Ulxy —we) — (1 —a) Y Ulx, — )
v=1 v=1
=1 —-—a)Ulxysr1 — wy), VYw, € FixT, (19)
and
n—+1 n+1
Y (Ta=Dxy=—(1—a) Yy (1d— Q)(xy — )
v=1 v=1
n+1
=-U(l-a) Z Ulxy — wy)
v=1
= —Uvpy . (20)

Under the previous considerations, (17) becomes

(1 - 20‘)(T —1d )xn—H + Qa(xn-‘rl - xn) + UUn—H ==X [Vf(xn) + Sn—H] .
(21)
Recall now Proposition 2.15, and consider any (x,vs) € . By the
definition of Ti)‘), (Id — T)x, =0 and there exists &, € 0g(xy) s.t. Uvy +



14 K. SLAVAKIS AND I. YAMADA

AVf(xx) + &«] = 0. These arguments, (21) and (T — Id )x,41 — (T — Id )x, =
(Q—1d)(xp41 — x4) Yield
)\[vf(xn) - Vf(x*)] + Anr1 — &)

= —(1 = 2)(Q = Id ) (xp41 — %) — Qu(Xpt1 — Xp) — U(vpg1 — vs) .
(22)

The Baillon-Haddad theorem [29], [3, Cor. 18.16, p. 270] states that the L-
Lipschitz continuous Vf is (1/L)-inverse strongly monotone, i.e. V(x,x') € X 2
(x — X |Vf(x) — VF(x)) > (1/L)|IVf(x) — VF(x)||>. This property, the fact that
dg is monotone [3, Example 20.3, p. 294], i.e. Vx,x',&,& s.t. € € dg(x) and
g € 9g(x'), (x — x'|& — &’) > 0, and the fact that U is self-adjoint imply

2V (xn) = V@I
< 2A{xn — x| Vf (xn) — Vf(x))
< 20 {xn+1 — X Vf (xn) — VI (x0)) + 20 {xn — Xn1| VS (xn) — VS (x))
+ 220 (xnt+1 — XxlEnv1 — &s)
= 2(xpt1 — XA [Vf (xn) — V()] + AEnt1 — E2))
+ 20 (xn — xp11|1Vf (x0) — Vf (x5))
= —2(1 — 20) (xp+1 — % [(Q — Id ) (xp1 — X))
— 2(xn4+1 — X4|Qu (X1 — Xxn))
— 2(xp41 — x| U(Un1 — v)) + 22(x0 — Xn+1|Vf (xn) — Vf(x4)) (23a)
= —2(1 = 2a) (xn+1 — % [(Q — Id ) (xn1 — X))
— 2(xnt1 — X4| Qo (X1 — Xn))
— 2{U(xnt1 — %) [Vnt1 — Vi) + 24xn — Xn1| VS (xn) — VS (x))
< =2(1 = 2a) (xp41 — %[ (Q — Id ) (11 — X))
— 2(xn1 — %l Qu (X1 — %)) — 725 (Vnp1 — VnlVngr — V)
+ 52 = x|+ Z 1V () = VI, (23b)
where (22) is used in (23a), and (19) as well as

Y(a,b) € X2,¥n € Roy,

V strongly positive IT € B(X), (24)

21V b)m < Half + nlbl, {

with n:=2/L, a := x, — xy41, b := Vf(x,) — Vf(x4), and IT := Id, were used
in (23b).
Recall (12) to verify that the positivity of Q implies that for any x € X,

(Quxlx) = @(Qxlx) + (1 — o) |Ix]|I* > (1 — ) |x]1%, (25)

ie. Qq is strongly positive. Hence, upon defining the linear mapping © :
X2 = X% (x,v) > (Qux,v/(1 —a)), it can be easily seen that © is strongly
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positive, under the standard inner product ((x,v)|(x,v)) := (x]x") + (v|V'),
Y(x,v), (', v") € X2, due to the fact that both Q, and Id /(1 — «) are strongly
positive. Consequently, (X2, (-|-)g) can be considered to be a Hilbert space
equipped with the inner product (-|-) .
Notation y := (x,v), @ > 1/2 as well as the positivity of Id — Q in (23) yield
0 < 2((xp41 = Xn> V1 — V) | O(Xs — Xnt-15 Vs — Unp1))
= 2Q2a — D{xpg1 — x4[(Id — Q) (xp11 — x4))
+ Al — 1|12
=2(Ynt1 = YnlO s — ynt1)) — 2Qa — D{xp41 — X [(Id — Q) (xp1 — x4))
+ Al — 1|12
< 2{ynt1 = Yulys = yur1do + B lxn — xp1 |1
= lyn = sl = Iynsr = yeliey = Iynr1 = yally + 5120 = Xl

Hence,

lyn = ylle = 1yne1 — yell® = 17ns1 — yulle — ZEl%n — xagall®. (26)
Since A < 2(1 — «)/L, choose any { € (AL/[2(1 — «)], 1). Then, by (25), Vy :=
(x,v),

A xl? < ¢ (1 = o llxll® < £ (x1Qux) < £ (x]Qux) 4+ ¢ 2z IV]1* = ¢ lIyl&,
and by (26),

2 2 2 AL 2

lyn _}/*”@ — lyns1 _)/*”@ = ||)’n+1 _)/n”@ -3 |%0 — Xns1l
2 2

> ||)’n+1 _)’n“® - §||)’n+1 _yn”@

=1 = Olynt1 — yulley (27)

i.e. sequence (yn)nez., C (X 2 (-]V)e) is Fejér monotone w.r.t. TLA) of Proposi-
tion 2.15. )

(ii) Due to Fejér monotonicity, sequence (y,), is bounded [as well as (x,), and
(Vn)n] [3, Prop. 5.4(i), p. 76] and possesses a non-empty set of weakly sequential
cluster points 20[(y,)x] [3, Lem. 2.37, p. 36]. Moreover, it can be verified by (27)
that Vn € Z>o,

n
A= Mot = wlld < ly2 = yelld — llynsr — IS < ly2 — 13

v=2

and hence there exist C', C € R s.t. for any ,

n
Yl —pld < & =G (28)

v=0
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which leads to lim, . |[yn4+1 — ynlle = 0, and which further implies that
lim (xy41 —x,) =0, lim (vy,41 —vy) =0. (29)
n— oo n— oo
Adding the following equations, which result from (21),
—3(1 = 20)(T — 1d)xp11 — 3 Qo Xnt1 — %) — 3 Uvpg1 — VF(xn) = Enpr
$(1 = 20)(T = 1d )xp + 3 Qo (xn — Xn—1) + 3 Uvy + Vf(Xp—1) = —&p

(30)

yields

Epy1 — En = 524(T — 1d) (% — Xn41) + 3 Qo (n — Xp—1) — + Qu(Xps1 — Xn)

+ 2Un — Vas1) + [V (1) — V()] (31)

By applying lim,_, », to the previous equality, and by using the Lipschitz con-
tinuity of Vf, ie. ||Vf(x,) — Vf(xu—1) || < Lllxn — xn—1ll, (29), as well as the
continuity of Id — T, Qq and U, it can be verified that

nli)ngo(gn-i-l — &) =0. (32)
Now, by (16),

Xn+2 — Xn+1
= Txpy1 — Taxut1 + Taxni1 — Taxn — A[Vf(Xp11)
— Vf(xn)] = Ant2 — &nal
= (T = Ta)xn41 + Qu (Xnt1 — xn) — A[VSf (xnt1)
— Vf(xn)] — Aént2 — Ent1l,

which leads to

(1 —a)(Id — Txp = (xn — Xpt1) + Qu(xn — Xp—1)
- )‘[Vf(xn) - Vf(xn—l)] - )‘[‘i“n-}-l —&,]. (33)

Choose any y := (x,v) € W[(Yn)nez-o] # ¥, i.e. there exists a subsequence
U = K> Vg )k St Xy —k—o00 X and vy, =k o0 V. Furthermore, by (29),
(32), (33), and the Lipschitz continuity of Vf,
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lim sup [|(1d — T)xul < 25 Hm [lxs — %1 + lim 2511 Qu (i — xu—1)
n— 00 k—o0 k—o0

+ & Jim ([ VfGen) = Vf G|
+ g lim 61 = &l

1Qql

l—«o

1 . .
=~ 1= lim |lx, — xp41ll + lim % — xn—1l
k—o00 k— o0
+ 25 lim e, — xu1ll + 25 lim &1 — &all
¥ k>0 ¥ k>o0
=0. (34)

Hence, due to x,, —k—oo X, limg_,oo(Id — T)x,, = 0, and the demiclosedness
property of the nonexpansive mapping T [3, Thm. 4.17, p. 63], it follows that

xeFixT. (35)

Fix arbitrarily an x4 € &' Since (x,), is bounded, there exist C”, Cyy € R~
s.t. for any n,

IVF )l < IV (xn) — VExa) L + VS ()l
< Llixy — x4l + IVl
< Lllxnll + llxz1D) + 1V Cea)
< L(IC" + |lx¢])) + IV (x) || < Cyy. (36)
Now, according to the Baillon-Haddad theorem [29], [3, Cor. 18.16, p. 270],

VS () — V@I
< 20 {xn, — X|Vf (X)) — V(X))
= 2A (X1 — X Vf (xn;))
= 20 (xm+1 — XIVF(X)) + 20 (xn, — Xt 11 VS (xn) — V(X))
= —2M{xp 41 — XI&n1) — 2(xnr1 — X[ Uvp41)
= 2(xp 41 — X|Qu (X1 — %)) — (1 — 20) (xp 41 — X|(T — Id )xy 41)
= 20M{xpt1 — XIVF(X)) + 20 (xn, — Xnr11Vf (x4) — V(X)) (37a)
<21 [g(®) — gxnmer1)] — 2(UKns1 — X)[Ungs1)
= 2{xnr1 — X|Qu (X1 — X)) — (1 = 200) (X1 — X[(T — Id )y 41)
= 2A (X1 — XIVF (X)) + 20 (X, — X111V (X)) — V() (37b)
<21 [g(®) — gGom1)] — g (Vmet1 — Vgl Vnt1)
= 2(xp 41 — X|Qu (X1 — %)) — (1 — 20) (xp 41 — X|(T — Id )xy 1)
— 20 {xp41 — XIVF(X)) + 24 (Cys + IVFEN) 1%n, — Xns1l5 (37¢)
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where (21) is used in (47a), the convexity of g, (15) and the self-adjointness
of U in (37b), and finally (19) and (36) in (37c). Since limy_, oo (xn, —
Xn+1) = 0 by (29), the continuity of Q, implies limy_, oo Qu(Xp+1 — X)) =
0, and (34) yields limy_,oo(T —1Id )x, 41 = 0. Notice again by (29) that
limy_, o (V41 — vy,) = 0. Furthermore, (29), together with (x,, — %) =0
0, yields (x4, 41 — X) —k— o0 0. Similarly, (v, 11 — V) —k— 0 0 can be deduced
from (29) and (vy;, — V) —k—oo 0. Due to [3, Lem. 2.41(iii), p. 37], all of the
previous arguments result in limy_, oo (V11 — Vg [V 1) = 0, limy o0 (X 41 —

X|Qq (X1 — %)) =0, limy oo (xp 41 — X|(T —1d xp 1) =0, limy_ oo
(X 41 — XIVf(x)) = 0 and limy_, oo ||X, — X411l = 0. Hence, the application
of lim sup;_, ., onto both sides of (37¢) yields

lim sup | Vf(xn,) — VF®)II* < lim sup L[g(x) — g(xn+1)]

k— o0 k— o0
=1L |:g(5c) — lim inf g(xnkH)] <0,
k—o00

where the last inequality is deduced from the fact that g € I'g(X) turns out to
be also weakly sequentially lower semicontinuous [3, Thm. 9.1, p. 129]. In other
words,

lim VfGen) = VI @), (38)

Since vy 11 —k V,1.e.Vz € X, limy_, oo (2|Up 1) = (2]0), it can be easily seen
that Vz € X, limy_, oo (2| Uvpy 41) = limy—, oo (Uz|vy 41) = (Uz|v) = (2]UD), i.e.
Uvy+1 —k Uv. Hence, having this result and (38) plugged into (30) yields that

Enetl —kooo § 1= —3UD — Vf(@). (39)
Using (21) once again,
(X1 — XlEpr1) = — (X1 — XV (Xn)) — 3 Xner1 — X Uvpyg1)

— F (X1 — %] Qo (Xnt1 — Xny))
— +(1 = 2a) (X1 — XI(T — 1d )y 41)

= — (Xmt1 — XV X)) — 3 (UGmeg1 — %) |41
— 3 (X1 — X[ Qu (1 — X))
— +(1 = 20) (xp 1 — X(T = Id )xp41)

= —(xpt1 — X|IVf (X)) — ﬁ(vnk—‘rl — Un [vm+1)
— 3 X1 — Xl Qu (o1 — X))

— (1 = 20) (1 — X[(T — Id )y 11), (40)

where (19) is used in (40). Since (x;, 41 — X) = 0 and vy, 11 —¢ v, and due
to (29), (34) and (38), as well as the continuity of the linear mapping Q, it turns



OPTIMIZATION 19

out by [3, Lem. 2.41(iii), p. 37] and (40) that limj_, o (Xp; 41 — X|&4,41) = 0. In
other words,

lim (xp41l6mt1) = Hm (a1 — XlEpr1) + (XlEn41))
k— o0 k— 00

= lim (xp 41 — X|&m+1) + lim (x|Ep41)
k— 00 k—o0

(Xl&n1) = (XIE) . (41)

= lim
k— o0
Now, by (X, +1,&n,+1) € gradg, the maximal monotonicity of 9g [3, Thm. 20.40,
p- 304] and the property manifested in (41), [3, Cor. 20.49(ii), p. 306] suggests that
(%, &) e gradg < £ dg(x). Hence, accordingalso to (39), —U(v/A) € Vf(x) +
dg(x), which together with (35) imply (x,v) € Tg) . Since (X, v) was arbitrarily
chosen within 20[(y,),], it follows that 20[(y,),] C T,,E)”). Adding also to that
the Fejér monotonicity property (27) of (Vn)nez=y WL.L. T,,EM yields that (y,),
converges weakly to a point in Tg‘) [3, Thm. 5.5, p. 76]. According to (9¢c), the
weak limit of (x,), solves VIP(Vf + g, Fix T). [ |

Definition 3.2 ([3, (10.2), p. 144]): A proper convex function h: X —
(—00, +-00] is called uniformly convex on a non-empty subset S of dom h, if there
exists an increasing function ¢s : [0, +00] — [0, +00], which vanishes only at
0,s.t.Vx,x' € SandVu € (0,1),

h(ux + (1 — wx) + (1 — wes(lx — x| < ph(x) + (1 — ph(x').

In the case where S := dom h and ¢s := (Bs/2)(-)?, for some Bs € Ry,
then h is called strongly convex with constant Bs. Moreover, ‘strong convexity’
= ‘uniform convexity’ = ‘strict convexity "

Assumption 3.3: (i) Function f is uniformly convex on every non-empty
bounded subset of X

(ii) Function g is uniformly convex on every non-empty bounded subset of
dom ag.

Lemma 3.4: In addition to the setting of Theorem 3.1, if either Assumption 3.3(i)
or Assumption 3.3(ii) holds true, then sequence (x,) nez.., of (13) converges strongly
to a point that solves VIP(Vf + dg, Fix T).

Proof: As part (ii) of the proof of Theorem 3.1 has demonstrated, sequences
(xn)n and (Uv,), converge weakly to x and Uv, respectively. Consequently, (29),
the continuity of Qq, (30), (34), (38) and (39) suggest that (§,),, converges weakly
to E
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Let Assumption 3.3(i) holds true. Then, according to [3, Ex. 22.3(iii), p. 324],
given a bounded set B C &, there exists an increasing function ¢z : [0, +00) —
[0, +00], which vanishes only at 0, s.t. Vx, x" € B,

(x = & |Vf(x) = VI()) = 205 (Ilx = 1) - (42)

Define B := (x,), U {x} (recall that (x,), is bounded). Set x := x,, and x" := x
in (42) to obtain

(xn = XIVf(xn) = V(X)) = 295 (|x, — XI), Vn. (43)

Since x;, —=;—o00 X and lim, . Vf(x,) = Vf(x) by (38), the application of
lim,_, » to (43) and [3, Lem. 2.41(iii), p. 37] suggest that lim,_, o ¢B([lx, —
x|) =0, and thus lim,|x,—X|| =0, due to the properties
of DB

Let now Assumption 3.3(ii) holds true. Then, according to [3, Ex. 22.3(iii),
p. 324], given abounded set B C dom dg, there exists an increasing function ¢z :
[0, +00) — [0, +00], which vanishes only at 0, s.t. Vx,x" € B, and V& € 9g(x),
V' € 0g(¥),

(x— x| &) = 205 (Ilx =) . (44)

According to (15), x, € dom dg, Vn. Moreover, as the discussion after (41)
demonstrated, x € dom dg. Define thus the bounded set B := (x,), U {x} C
dom g, and set x := x,, x' := X, & := £, and & := & in (44) to obtain

(xn — XI5 — &) = 295 (lxn — XI),  Vn. (45)

Similarly to (41), it can be verified that lim,,_, o (x,|&,) = (X|€). Thus

lim (x, — &gx — &) = lim (xsl) — lim (x,[E) — lim (%18,) + (%[E)

= (X[€) — (X[€) — (XI€) + (x[€) = 0.

Hence, the application of lim,_, o, to (45) yields lim,_, o ¢5(|/[x, — X||) = 0, and
thus lim,,_, o ||x, — X|| = 0. |
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Corollary 3.5: Consider again the setting of Theorem 3.1. In the case where the
non-smooth part of the composite loss becomes zero, i.e. g: =0, then (13) takes the
special form

xl/z = Tax() — AVf(xO), (46a)
X1 i= X125 (46b)
Xn+3/2 ‘= Xn+1/2 — [Taxn - )\Vf(xn)] + [Txn-i-l - )\vf(xn-i—l)] > (46¢)

Xnt2 = Xnt3/2 - (46d)

Consider a € [0.5,1) and A € (0,2(1 — ) /L). Then the following hold true.

(i) For sequence (xp)nez., of (46), there exist a sequence (Vu)nez., C
X and a strongly positive operator @ : X? — X? s.t. sequence (y, :=
(%n> Vn))nez-o\(1} is Fejér monotone [3, Def. 5.1, p. 75] w.r.t. T? of Propo-
sition 2.15 (under g=0) in the Hilbert space (X2, (-])e).

(ii) Sequence (Xp)nez., of (46) converges weakly to a point that solves
VIP(Vf,Fix T).

In the case where f: = 0, the FM-HSDM recursions take the form

x1/2 = TgXo, (47a)

x1 := Prox;¢(x1,2), (47b)

Xn3/2 = Xnt1/2 — TaXn + Txntt, (47¢)
Xn+2 = Prox,g(xn+3/2) - (47d)

Consider a € [0.5,1) and A € R.. Then the following hold true.

(i) For sequence (xp)nez., of (47), there exist a sequence (Vu)nez., C
X and a strongly positive operator @ : X? — X? s.t. sequence (y,:=
(Xn> Vn))nez-o\(1) is Fejér monotone [3, Def. 5.1, p. 75] w.r.t. TLA) of Propo-
sition 2.15 (under f=0) in the Hilbert space (X2, (-|-)o).

(i) Sequence (xn)nez., of (47) converges weakly to a point that solves
VIP(dg, Fix T).

Proof: The proof becomes a special case of the one of Theorem 3.1, after set-
ting f:=0 or g:=0. With regards to the reason behind the relaxation of A
offered by (47), notice that any A € R. ¢ can serve as the Lipschitz constant of
Vf =0. [ |
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The following theorem draws even stronger links with the original form of
HSDM.

Theorem 3.6: Consider f € I'g(X), with L being the Lipschitz-continuity constant
of Vf. Moreover, given the closed affine set A, consider any T € X 4, and for A €
R~.o, an arbitrarily fixed xo € X, and for all n € Z= form the iterations:

x1/2 = TO{X() — )qu(Taxo), (48a)
X1 1= X1/2 (48b)
Xnt3/2 = Xng1/2 — [ TaXn — AV (Taxn) | + [Txnr1 — AV (Taxni1)], (480)

Xnt2 = Xn43/2 (48d)

where Ty is defined in (12). Consider also o € [0.5,1) and A € (0,2(1 — a)?/L).
Then, the following hold true.

(i) There exist a sequence (Vy)necz., C X and a strongly positive operator
Y X2 > X2t sequence (¥ = (%n> Vn))nez-o\ (1) is Fejér monotone [3,
Def. 5.1, p. 75] w.r.t. Ti}‘) of Proposition 2.15 (under g=0) in the Hilbert
space (X2, (-|-) 7).
(ii) Sequence (xp), of (48) converges weakly to a point that solves VIP(Vf, Fix T).
(iii) If Assumption 3.3(i) also holds true, then (x,), of (48) converges strongly to a
point that solves VIP(Vf,Fix T).

Proof: (i) Proposition 2.15 takes the following special form in the present
context: if v, € X s.t.

(o v) € TV = {(x,v) € Fix T x X | — LUv = Vf(»)}, (49)

then x, solves VIP(Vf,Fix T).
By following the same steps which start from the beginning of the proof of
Theorem 3.1 till (20), it can be verified that

— (1 =20)(T = Id)xp+1 — Qu(xnt1 — xn) — Uvpy1 = AVSf(Taxn), (50)
and by considering any (x,, vy) € Tg),

)\[Vf(Taxn) - Vf(Tax*)]

= —(1 = 2)(Q — Id ) (xp41 — %4) — Qu(Xpt1 — X)) — U(vpg1 — vs) .
(51)
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As in the proof of Theorem 3.1, the Baillon-Haddad theorem [29], [3, Cor. 18.16,
p. 270] suggests that

22\ Vf (Taxn) — V(Tax)I?

< 20M(Tuxn — TaXs| VS (Taxn) — VI (Tax:))

= 2(Qu (xn — %) |V (TaXn) — Vf(Taxs))

= 20(xn — x| Qu [Vf (Taxn) — Vf (Texi)])

= 20 (%11 — Xl Qu [V (Taxn) — VF(Tax)])
+ 2 (%0 — X4 11Qu [V (Taxn) — VF(Tax)])

= —2(1 — 200) (xn41 — %1 Qu(Q — Id ) (xtnp1 — X))
— 2{xn41 — %4 Q2 (Xng1 — Xn)) — 2(Xnp1 — %l Qu U(Wn1 — v4))
+ 2 (% — X411 Qu [V (Taxn) — VF(Tax)])

= —2(1 — 200) (xn41 — %1 Qu(Q — Id ) (xn41 — X))
— 2(xn1 — % Q4 (ng1 — X)) — 2{UCxtng1 — %) | Qo (Vg1 — V)
+ 2 (%0 — X4 11Qu [V (Taxn) — VF (Tax)])

< —2(1 = 20) (xp41 — %] Qe (Q — Id ) (41 — x4))
— 2(xn1 — % Q (nt1 — X)) — 725 (Unt1 — Vnl Qo (Vng1 — )
+ Elloen — Xnp1 1P 4+ 2 1Qu[Vf (xn) — Vf(x)]I1?

< —2Q2a — D){xp41 — %] Qu(Id — Q) (g1 — X))
— 2(xn1 — %4 Q} (ng1 — X)) — 725 (U1 — Vnl Qo (Vng1 — )
+ ELixy — xpa1 12 4 22NV (Taxn) — V(Tax)|?

< 2(x — %11 Q% (nt1 — %)) + 2= (Vg1 — Vnl Qu (Vs — Vpg1))

+ 2lxy — xpg1 12 4+ 2N VF(Taxn) — VF(Tax) |12 (52)

Mapping Q2 is strongly positive: indeed, if U, denotes the square root of
the strongly positive Qy [cf. (29)], then Vx € A, (Q§x|x) = (UyQq Uyx|x) =
(QuUax|Ugx) > (1 — a)(Upx|Ugx) = (1 — ) {Qux|x) > (1 — &)?|Ix||*. Define
now the mapping T : X2 — X2 : (x,v) (ng, [1/(1 — «)]Quv). Mapping
Y turns out to be strongly positive, w.r.t. the standard inner product of X2
(6, 0) (6, V")) = (x]x) + (v|V'), Y(x, ), (', V") € X2, due to the strong posi-
tivity of Qé and [1/(1 — @)]Qg. Consequently, one can consider (X2, (-|-)v) as
a Hilbert space equipped with the inner product ((x, v)|(x, v"))y := (x|Q3x') +
[1/(1 —a)]{(v|QaV'), Y(x,v), (X, V) € X2. As such, (52) becomes

0 <241 — Yul TOx = yus)) + ELllxn — x|



24 K. SLAVAKIS AND I. YAMADA

=2(Yn+1 = Ynlysx — ynr)y + %H-xn - xn—H”z

= lyn =yl = Iynsr — yelld = Iyner =yl + 2200 — %01l (53)

Choose, now, any ¢’ with AL/[2(1 — a)?] < ¢’ < 1. Then, for any y = (x,v) €
X2,

A xl? < ¢'(1— )?|Ixl* < ¢ (xQ%x)

< ¢ (x]Q%x) + &' = (wlQuv) = ¢ lIyl%

This argument together with (53) yield

2 2 2 AL 2

||)’n _)’*”T - ”}’n+1 _}’*”'r = ”}’n+1 _)’n”“r - THxn — Xpt1ll
2 2

= “}’n-i—l _}’n”T - f/”)’n-l-l _)’n”T

= (1= lynt1 — yul}s (54)

i.e. sequence (Yn)nez., C (X2, (-]")y) is Fejér monotone w.r.t. Tik) of (49).

(ii) Due to Fejér monotonicity, (y,) is bounded [3, Prop. 5.4(i), p. 76] and pos-
sesses a non-empty set of weakly sequential cluster points 20[(y,),] [3, Lem. 2.37,
p. 36]. Moreover, it can be readily verified, as in (29), that lim,—, oo (Vn+1 — yn) =
0, limy,— oo (Xp41 — x4) = 0 and lim,,—, oo (Vy41 — vy,) = 0. The rest of the proof
follows steps similar to those after (29) in the proof of Theorem 3.1, but with
the following twist: Vf(xy,) is replaced by Vf(Tyx,, ), where all the asymp-
totic results of the proof of Theorem 3.1 continue to hold due to the Lipschitz
continuity of Vf and the nonexpansiveness of Ty, e.g. Vx,x' € X,

IV (Tax) = Vf(Tax)|| < LI Tex — ToX'|| < Lix — X'||.

(iii) Part (ii) of this proof has demonstrated that sequences (x,), and (Uvy,),
converge weakly to X and Uv, respectively. Consequently, in a way similar to
part (ii) of the proof of Theorem 3.1, it can be shown also here that (§,),
converges weakly to &.

Let Assumption 3.3(i) holds true. Then, according to [3, Ex. 22.3(iii), p. 324],
given a bounded set B C &, there exists an increasing function ¢z : [0, +00) —
[0, +00], which vanishes only at 0, s.t. x,x" € B,

(x = X' |Vf(x) = V(X)) = 205 (Ilx — £l . (55)

Due to the nonexpansiveness of T, and the boundedness of (x;,),, by part (i)
of the proof, it turns out that (Tyx,), is also bounded: ||Tyx,| < ||Toxy —
ToX|| 4+ I Tl < llxn — X[ + %]l < llxall + 2[1%[| < C” + 2||%]|, for some C” €
R.¢ (recall that x € Fix T, = Fix T). Define, thus, the bounded set B :=
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(Toyxn)n U {x}. As such, (55) yields

(To — Id)xp| Vf (Toxn) — V(X)) + (xn — X|Vf(Taxn) — Vf ()
= (Toxn — 3_C|Vf(Taxn) - vf(-@) > 205 (| Texn — xI1), Vn. (56)

Part (i) of this proof has already showed that lim, (T —Id )x, =
0. As such, lim,_oo(Ty —Id )x, = alim,_oo(T —Id )x, = 0. Moreover,
note that x, ;00 X and lim,_ o Vf(Tax,) = Vf(x). Hence, due also
to [3, Lem. 2.41(iii), p. 37], an application of lim, .. to both sides
of (56) results in limy,— o (|| Tex, — x||) = 0, and thus lim,— o Tex, =
X. Using lim, oo (Ty — Id )x, = 0, one can easily verify that lim,_, x, =
lim,oo(Id — Ty)x, + lim,— oo Tyxy, = X, which establishes part (iii) of
Theorem 3.6. [ |

The following theorems present convergence rates on the sequence of FM-
HSDM estimates.

Theorem 3.7: For sequence (xu)nez., of (13), there exists &, € dg(xp), Vn, s.t. for
any x4 € Fix T,

T D (g1 — %l (1d — Qs — %)) = O, (57a)
v=0
A S U+ ALY () + Sl = O, (57b)
v=0
L37Ad — Dxall? = 0G, (570)
v=0

where the big-oh notation a, = O(by), b, > 0, means limsup,_, . |a,|/b, <
+00. Regarding sequence (xn)nez., of (46), (57a)-(57¢) still hold true, but &,
is set equal to 0 in (57b). Similarly, for sequence (xn)nez., of (48), (57a), (57¢) as
well as

n
A S U1+ AVF(Tax) I = OGAD)
v=0

hold true.

Proof: First, notice by (25), Proposition A.5 and ||Qy || < 1 that Qo_l1 exists and
it is strongly positive with

11 = 55 A —olxl® < {5 RIxl* < (Q'xlx), VxeX. (58)

Then, going back to the discussion following (25),

2
||)’n+1 _)’n”@
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= |Xns1 — %ullg, + 75 [Vns1 — vall® (59a)
= 11Qu (tnt1 — %) 11 + 125 11— ) Ung1 — %) (59b)
= | Uvnt1 + AIVS Gn) + Enga] = (1= 200(1d = Dl

+ =11 = ) Ungr — x| (59)

= 1Uvns1 + AVF ) + Enalligr + (1= 20)°[1(0d = Dty [
= 2(Uvpg1 + AVS () + Ena]l (1 = 200 (1d = Tt 41) g
+ 2511 = ) Ul — x|

> LUt + 20 (o) + Gt 1121 — S525501(0d = T 12,

+ 11— ) Uxpgr — x| (59d)

= LU0+ AVf () + ]I — S22 = D

— (d = Tl + (1= @) (s — x*|<1d — Qnt1 — %)

= LUvs1 + AVFCon) + a1l — S25010d = Q) (a1 — 21
+ (1= @) fonet = %2/ (1d — Q) (1 — x*>>

= S 10V + AVFCon) + &l
— U201 — 2, (1 — QQy (1 — Q) (gt — )
+ (1= @) fone1 = %/ (1d = Q) (a1 — %)

> 10V + AVF () + ]l (59%)

2
— ey (1 — Xl (1d — Q) (Xnp1 — X))

+ (1 — @) (xpt1 — x[(Id — Q) (xXp41 — X)) (591)
= S 1Uvn1 + ALV @) + Ena] g + 0 (np — %l (1d — Qg1 — X))
(59g)
> D) Uvyg1 4+ AV () + Enp1 ]P0 (1 — %l (1d — Q) (g1 — x0)),
(59h)
= 52| Ut + AV @) + Enpt ]2 46(1 = )= Q)1 — x0) [
(59i)
= S5 Uvngr + AV Gn) + Ena ]2 + 01— ) (0d = Tl
(59))

> D Uvppr + AV () + Enpr]IIP + 01— )?1(0d = Dxpr 1%,
(59k)
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where the definition of Y, given after (52), is used in (59a), (19) in (59b), (21)
in (59¢), (24) with n := p/(p — 1), a := Uvpy1 + A[Vf(xn) + Ept1], b= (1 —
20)(Id — T)xyq1 and I := Q;l, aswell as p > 11in (59d), and

(Xnp1 — % (1d — QQ, ' (Id — Q) (xny1 — %))
= (Xnp1 — % UQ, U (g1 — X))
= (Uxns1 — %) (UQy ' U) Ulxps1 — x4))
< 1 UQ, ' U (U(xns1 — %) U (np1 — %)) (60a)
= |UQ, Ul (xnt1 — x4/ (Id — Q) (ps1 — %))
< NUIPNQL M (g1 — x4l (Id — Q) (Xng1 — X))
= [11d — QIIQ " | (Xns1 — X4l (Id — Q) (Xnp1 — x4))
2z (1 — x| (Id — Q) (xnp1 — X)) (60b)

A

with (58) and || Id — Q|| < 1 in (59f). Note that [4, Thm. 9.2-2, p. 466] is used
in (60a). Moreover, 6 := (1 — a) — 2a — 1)?/[(1 — a)(p — 1)] becomes posi-
tive for any p > 1 + 2a — 1)2/(1 — &)? in (59g), (58) in (59h), (60b) in (59i),
the fact (Id — Q)(xy4r1 — x4) = (Id — Dxpy1 — Ad — Txe = (Id — T)xpa1
in (59j), and (58) in (59Kk).

Due to (28), the previous considerations suggest that there exists C € R-g
s.t. Vn,

n

C 1 2
v=0

n
> Lo N Uviga + AVA@) + &I
v=0

+ 55 Y g — %] (d = Qg1 — X))
v=0

n n
_ 2
> o D MUvus1 + AV + En P+ 2585 Y IAd—D)x 1l
v=0 v=0

which establishes the claim of Theorem 3.7 regarding the sequence of (13).
The proof of the claim with regards to the sequence of (47) follows the same
steps as the previous one, but with the twist of replacing Vf(x,) by Vf(Tyx,)
and g=0. |
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Theorem 3.8: For the sequence (x,)nen of (47), there exists &, € 0g(x,), Vn,
s.t. for any x, € Fix T,

(Xnt1 = % (1d = Q) (1 — X)) = OGiy)»

1Uvn11 + At 1> = OG),

10d = T)xup1ll® = OGy) -

Proof: Define here Axy, := X1 — Xp, AV 1= Vp—1 — U, Ayp = (Axp, Avy)
and A&, := &,_1 — &,, Vn. Under these definitions and in the case of f =0, (31)
yields
(I =20)(Q—1d)(x, — Xnt1) + Qo [(Xn — Xnt1) — (Xp—1 — xp)]
= —Un — vut1) — AEn — §nt1)
& (1 —-2a)(Q—1d)Axpy1 + Qu(Axpy1 — Axy) = —UAvyy — AAE
& M1 = —UAvpt1 — Qu(Axpt1 — Axy) — (1 — 20)(Q — Id ) Axpy g
(61)
Moreover, (19) suggests that —Av,+; = (1 — @)U (x,41 — X4), and thus
=5 (Avnt1 — Avy) = UAxpp1 . (62)

The monotonicity of dg(-), (61), (62), and the definition of ®, introduced
after (25), imply that
0 < (Axpt1lAAEp41)

& 0 = (Axpp1] = UAvpgr — Qu(Axppr — Axy) — 2 — D(Id — QAxyp1)

< (2o — D{Axp41|(Id — Q) Axpy1)

< —(UAxpt11Avpgr) — (Axp1| Qo (Axpg1 — Axp))

< (2o — D{Axp41|(Id — Q) Axptr)

< — 1 (Avpp1 — Avg|Avpgr) — (Axnp1]Qu(Axyp1 — Axy))

< Qo — D{Axp41|(dd — Q) Axpt1) < (Aynt1lAyn — Aynti)e

& 2o — D(Axu1](1d = QAxp11) < 5 (1 A7alIE — I Ayus1lE

— I Ayn = Ayniallp)
& 2o — 1){Ax,11](0d — QAXpp1) + |1AYn — Aynpalify
< 1AYnlE = 1Ay 15 (63)

and due to o > 1/2 as well as the positive-definiteness of Id — Q, (63) yields

ynt1 — yulley < lyn — yn-1llsy,  Vn. (64)
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Now, (28) and (64) imply that there exists C > 0 s.t. for any n,

n
(4 Dllynrr = yaly < Y Iy = nlly < G
v=0

and thus ||y,+1 —yn||é) < C/(n + 1). This result applied to (59h) and (59k)
establishes the claim of Theorem 3.8. |

4. Numerical tests

To validate the previous theoretical findings, tests are conducted on a simple sce-
nario which is motivated by [13, Prob. 4.1]. More elaborate tests, involving noisy
real data, are deferred to an upcoming publication where FM-HSDM is extended
to a stochastic setting.

Given dimension d € Z-, the real Euclidean space 2 := R4 is considered.
Upon defining the closed ball Blu,r] ;== {u e 2y | [[u—uc|l2 < r}, for cen-
tre uc € 2y and radius r € R., let By := Bluc, 1] := B[2e1,1] and B; :=
Bluc, r2] := B[0, 2], where e; stands for the first column of the d x d identity
matrix I;. In all tests, d:=10,000. Let also P denote a d x d diagonal positive-
definite matrix, whose unique smallest entry [P]; < 1 is fixed at position (1, 1),
and its largest entry, placed at position (d, d), is set to be equal to 10. This setting
is fixed across all experiments. Each experiment in the sequel randomly draws
numbers from the interval ([P];;, 10), under the uniform distribution, and places
them in the remaining d—2 entries of the diagonal of P. Moreover, in all scenar-
ios, parameter o of FM-HSDM is set equal to 0.5, since this value produced the
best performance among all theoretically supported values taken from [0.5, 1).

Along the lines of [13, Prob. 4.1], the following constrained quadratic mini-
mization task is considered:

min u' Pu= min %X(I)TPX(I) + 15, (X(Z)) + 15, (x(3))
ueBiNB; x::(x(l),X(z),x(f‘))e%g::)(
s.toxP = x@ = x®, (65)

where x := (x(1,x® x®)) .= [x(DT x@DT xOT]T ¢ %”03, and X = %”03 with
inner product defined as the standard Euclidean dot-vector product. The
definition of the indicator functions ¢z, (3, can be found in Section 1.2. Since
P > 0 and the smallest entry of P is located at the (1, 1) position, the unique
solution to (65) is x, := (e;, e}, e;). There are several ways of viewing (65) as a
special case of (1). For example, f(x) := (1/2)x® Tpx™ and g(x) := 13, x®) +
LB, (x(3)), for any x = (x(l),x(2),x(3)). The Lipschitz coeflicient of Vf is the
largest entry of P, i.e. L=10, and Prox;,(x) = (x(l),PB1 (x(z)),PB2 (x®))). For
any A € R. ¢, the proximal mapping of (5, becomes ProxMBi = Ppg;, where Pp,
denotes the metric projection mapping onto the ball B;, given by Pg;(u) =
u. + (u — ug)r;/ max{||u — ugl|, r;}, for any u € 2. Furthermore, A := {x =
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—— HSDM HCGM HTCGM - AHCGM 4+ ADMM
~~ PD-C -PD-C II -~ PD-CP -A-FM-HSDM —&- FM-HSDM II
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Figure 1. Deviation of the estimate x, from the unique minimizer x, of (65) and deviation of
the loss-function value (f 4+ g) (xp) from the optimal (f + g)(x.) vs iteration index n, in the case
where [P]17 := 1 and thus the condition number of P equals 10.

&, x@, x3) e X | xV = xP =xP} is a closed linear subspace and thus an
affine set. According to Example A.1, a nonexpansive mapping T with T € T 4 is
the metric projection mapping P4(x) = (1/3)(35_,; x?, 377 x®, 3> x®),
Vx = (x(l),x(z),x(3)) e X.

Under the previous view of (65) as a special case of (1), FM-HSDM is
compared with other HSDM family members such as the original HSDM [5],
the hybrid conjugate gradient method (HCGM) [11], the hybrid three-term
conjugate gradient method (HTCGM) [12] and the accelerated hybrid con-
jugate gradient method (AHCGM) [13]. Other competing methods include
ADMM ([21,22,24,25] in the standard ‘scaled form’ [23, §3.1.1], and the PD
methods of ‘CP-C’ [15] and ‘PD-CP’ [14]. Due to the strongly convex nature
of XV TPx(D, the accelerated Alg. 2 of [14] with adaptive step sizes is used in
‘PD-CP’

To test (47) and address also the case where [P]1; € R.g is close to zero
(cf. Figure 2), i.e. P is ‘nearly’ singular, f and g can be considered in a different
way than the previous setting: f:=0 and g(x) := 1/2)xDTpx™M 4 LB x®) +
LB, (x®)). Results that associate with this take on (65) as a special case of (1)
and with FM-HSDM are shown in the subsequent figures under the tag ‘FM-
HSDM 1II > The PD method of [15] is also adjusted to accommodate this view
of (65), and the associated results are shown in Figures 1 and 2 under the tag of
‘PD-CII" It is worth stressing here that for this specific g, the proximal mapping
Prox;g(x) = (I + AP)~'xM), Pg (x@), Pg, (x?)). In other words, both PD-C
IT and FM-HSDM II use the resolvent (I; 4+ yP)~!, for some adequate y € R.,
similarly to the case of ADMM and PD-CP.

Parameters in all methods were tuned to yield best performance. In all tests,
methods start from the same initial point, randomly drawn from a unit-norm
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—— HSDM HCGM HTCGM - AHCGM 4+ ADMM
~~ PD-C -PD-C II -~ PD-CP -A-FM-HSDM —&- FM-HSDM II
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Figure 2. This setting follows that of Figure 1, but with [P];; := 1072, which results in a condition

number 10/10~2 = 103 for P.

sphere and centred at the unique minimizer of (65). Each curve in Figures 1 and 2
is the uniform average of the curves obtained from 100 Monte-Carlo runs.

Figure 1 considers [P];; := 1, and since the largest entry of P is 10, the con-
dition number of P is 10/1 = 10. According to the developed theory, parameter
A of FM-HSDM is set equal to A := 0.99 - 2(1 — «) /L. Figure 1 shows that all
methods, apart from AHCGM, perform similarly. All HSDM-family members,
excluding FM-HSDM 11I, as well as PD-C score similar complexities since they
use Vf once per iteration. On the contrary, ADMM, PD-CP, PD-C II and FM-
HSDM II do not utilize Vf but build around the resolvent (I; + yP)~! [3], for
appropriate y € R.q.

The next set of tests follows that of Figure 1, but with [P];; := 10~2, which
yields the condition number 10/1072 = 10> for P. As in the previous setting,
parameter A of FM-HSDM is set equal to A := 0.99 - 2(1 — «)/L. Notice that
since the theory which associates with HSDM, HCGM, HTCGM and AHCGM
offers guarantees of convergence in cases where f is strongly convex, i.e. P is
positive definite, Figure 2 shows that the performance of the aforementioned
algorithms degrades due to the fact that P was purposefully chosen to be ‘nearly
singular. Figure 2 suggests also that FM-HSDM II pays the price, by using
(I; + yP)7!, to achieve a performance similar to ADMM. The ‘simpler’ FM-
HSDM and PD-C, where no matrix inversion is required, face difficulties in
following the ADMM, FM-HSDM II, PD-C II and PD-CP curves for such an ill-
conditioned minimization task. In theory, any A € R. ¢ can serve FM-HSDM due
to the fact that f:=0. In practice, tuning is necessary, and the value of A = 100
is used. Figure 2 underlines the flexibility of FM-HSDM, where mappings and
computational complexity can be tuned to suit the minimization task at hand.

To compare (46) with (48), tests are performed on the following task:

min x'Px stxeV:i={ue 2| elru =1}, (66)
xe 2o
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Figure 3. Deviation of the estimate x, from the unique minimizer x,. of (66) and deviation of
the loss-function value (f + g)(x,,) from the optimal (f + g)(x,) vs iteration index n, in the case
where [P]17 := 1 and thus the condition number of P equals 10.
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Figure 4. This setting follows that of Figure 3, but with [P]1; := 1072, which results in a condition
number 10/10~2 = 10? for P.

where 2y, P and e; were defined earlier in this section, and V is a hyperplane;
hence, an affine set. Due to the construction of P, it can be verified that the mini-
mizer of (66) is x, = e;.Both (46) and (48) are employed with T := Py,, where Py,
stands for the metric projection mapping onto V (cf. Example A.2). The results of
the application of (46) and (48) are illustrated in Figures 3 and 4 as ‘FM-HSDM’
and ‘FM-HSDM III, respectively.

The state-of-the-art FISTA method [30, (4.1)-(4.3)] is also employed here
after recasting (66) as minge 2; (1 /2)x" Px + 1(x), where 1 stands for the
indicator function of V. This take on (66) opens also the door for (47),
under g(x(l),x(z)) =g (xM) +g2(x(2)), v, x@) e 3&”02, with g xy =
(1/2)x(1)TPx(1),Vx(1),g2 := tp,and A := {(xV,x?) € 3&”02 | x(D = x@}, sim-
ilarly to the application of FM-HSDM 1I to (65). Tag ‘FM-HSDM II’ is used
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also in Figures 3 and 4 to indicate the performance of (47). It is worth notic-
ing that (48) can be applied to (66), but not to (65), due to the limitation of
£=0 in (48). Moreover, FISTA cannot be applied ‘innocently’ to (65), since its
proximal-mapping step [30, (4.1)] amounts to identifying the metric projection
of a point onto the intersection B; N B,, which is itself the outcome of an iter-
ative procedure, such as the projections-onto-convex-sets (POCS) algorithm [3,
Cor. 5.23, p. 84]. Such computational issues would have been surmounted, had
FISTA the ability to employ the convenient tool of ‘splitting of variables , which
is embedded in ADMM and PD methods, as well as in FM-HSDM via the affine
constraint A [cf. (65)].

The way to construct P is identical to that in the case of (65). Parameters o (:=
0.5) and A for FM-HSDM and FM-HSDM II are identical to those of the (65)
scenario. The step size A’ of FM-HSDM IIl is defined as A" := 0.99 - 2(1 — «)?/L,
according to the specifications dictated by Theorem 3.6. In all tests, methods start
from the same initial point, randomly drawn from a unit-norm sphere and cen-
tred at the unique minimizer of (66). Results are depicted in Figures 3 and 4,
where each curve is the uniform average of the curves obtained from 100 Monte-
Carlo runs. FM-HSDM III demonstrates slower convergence speed than that of
the rest of the methods. Note that FISTA guarantees optimal convergence rate
|(f + 9 (xn) — (f + 9 (x4)| = O[1/(n + 1)?] [30, Thm. 4.4]. The fast conver-
gence speed of FM-HSDM II becomes prominent in the case of Figure 4, where
P suffers a large condition number.

5. Conclusion

This paper introduced the FM-HSDM for solving affinely constrained compos-
ite minimization tasks in real Hilbert spaces. Only differential and proximal
mappings are used to provide low-computational complexity recursions with
enhanced flexibility towards the accommodation of affine constraints. The advo-
cated scheme enjoys Fejér monotonicity, a constant step-size parameter across
iterations, and minimal presuppositions on the smooth and non-smooth loss
functions to establish weak, and under certain hypotheses, strong convergence to
an optimal point. Results on the rate of convergence of the FM-HSDM’s sequence
of estimates were also presented. Numerical tests on synthetic data were also
demonstrated to validate the theoretical findings. Thorough tests on noisy real
data, which showcase the flexibility of the family of mappings T 4 [cf. (7)] in a
stochastic setting, are deferred to an upcoming publication.
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Appendix

Several special cases of .4, of large interest in optimization tasks, together with members of
the family of mappings T 4 follow.

Example A.1: Given a Hilbert space 2 andI € Z-, consider the Hilbert space X := 27 x
Lo x - x Zo={x:= WD, x@, . xDy | xD e 20,Vi e (1,...,1}}, equipped with the
inner product (x|x') x := 25:1 (x®]x’®), Then, upon defining the (closed) linear subspace
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S:={xe X |xV =x? =... = x(D}, the metric projection mapping onto S satisfies

1 1
Ps(x) = (}Zx“),}Zx“),...,}Zx“)), Vx € X, (A1)

and Pg € Ts.

Proof: Formula (A1) can be easily derived by applying Example 2.6(i) to the special cases of
X and S: ||x — Psx||3, = minge 2, ZZI-ZI [x® — z||?. Then, claim Ps € Ts is established by
noticing that S is a closed affine set and by Proposition 2.11. |

Example A.2 (Metric projection mapping onto a hyperplane): For a non-zero a € X and
a real number b, consider the metric projection mapping onto the hyperplane V := {x €
X | (alx) = b} [3, (3.11), p. 49]

py=1d —falld)gy b, (A2)

llall? lal?

Then, Py € Ty.

Proof: The claim follows by the observations that )} is a closed affine set, (b/||a]|*)a € V, and
by introducingV = {x € X | (a]x) = 0}, with Py =1d — <aud>aandPV[(b/||a||2)a] =0,in

llall?

Proposition 2.11. |

As the following fact states, affine sets obtain a specific form in Euclidean spaces.

Fact A.3 ([31, Thm. 1.4, p. 5]): Givenb € RM (M € Z.) and A € RM*P (D € Z.) the
set {x € RP | Ax = b}, if non-empty, is an affine set. Moreover, every affine set in X’ := RP
can be represented in this way.

Motivated by the previous fact and aiming at an algorithmic scheme with wide applicability
in Euclidean spaces, where most of the minimization problems reside, the following exam-
ple and proposition offer a view of affine sets via least-squares (LS) tasks and nonexpansive
mappings.

Example A.4 (Affinely constrained LS in Euclidean spaces): For vector b and matrix A of
Fact A.3, consider the following LS solution set [3, Prop. 3.25, p. 50]:

A= Argmin pp1l|Ax —b|* = (x e RP | ATAx = ATb). (A3)

Now, considering the D x 1 vectors {ot, }fn/le ,defined by therows of A, i.e. [at1, @2, ..., 0p] :=

AT, as well as the D x 1 vectors {gd}dD=1 defined via [g1, . . ., gp] := G, where G := ATAand
c:=[c1,¢2,...,cp]T := AT, let the hyperplanes A, := {x € RP | {at|x) = by}, (m =
L,...,M), as well as G;:= {x € RP | (g4|x) = ¢4}, (d=1,...,D), with associated met-
ric projection mappings P 4, and Pg,, respectively [cf. (A2)]. Then, any of the following
mappings, with © denoting the Moore—Penrose pseudoinverse operation [32],
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(1 - gATA) 1d + £ATb, 0> llAI% we (0,1], (Ada)
I—ATATHId + AT, (A4b)
I-GGHId +G'ATD, (A4c)
s | a+ yATA)_lld +yd+yATA)TIATD,  y eR., (A4d)
(1—p)d +p Z el p s, p e 1], (Ade)
D 0 e(0,1], wg € (0,1)
1-60)Id +0 Y wyPg,, Y 7777 (A4S
; ’ ZdD=1 wi=1,

satisfies T € T 4.

Furthermore, given also the My x 1 (My € Z-.¢) vector by, the My x D matrix Ay, let the
non-empty affine constraint set K := {x € RP | Agx = by}, with metric projection mapping
P =1- A(—)rAgT)Id + Agbo [3, Prop. 3.17, p. 47]. Then, according to [32, Ex. 34, p. 120],

x € Ak := Argmin, - 1[Az —b|?

Iz =
SIpeRMst (x,p) e A=, n) e RP x RMo | [AOA:T][,L//]:[%TO]’] >

(A5)

or, in other words, Ax = IgpA, where [gp denotes the mapping Igp : RP x RMo —
RP : (x, t) — x. Define also the (D + M) x 1 vectors [1;, .. - 1p+m,] :=L, as well as the
hyperplanes L4 := {(x, p’) € RP x RMo | (I;|(x, ")) = e}, w1th P, denotlng the associ-

ated metric projection mapping [cf. (A2)]. Then, any of the following mappings T : RP+Mo
]RD+M0 .

(1 - gLTL) 1d + ELTb, o> LA T e (0,1], (A6a)
(1 - LTLTT) 1d +Lle, (A6b)
T= S1T) = 1T T _
<I+ 7L L) d+7 (I+ 7L L) LTe, 7eR., (A6¢)
D+Mj — —
—_ _ _ 0 € (0,1], wg € (0,1),
(1—0)1d +6 Y WaPr,, { DM (A6d)
d=1 d=1 a=1
satisfies T € T . Moreover, the mapping T : R” — RP, defined by
M 2
T:=(—PB)Pc+PBPc ) urPa,Pe, B e 1] (A6e)
m=1

satisfies T € T 4.
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Proof: For$ € R. ¢, define
9s(x) == 5[|Ax —b|>, VxeRP, (A7)

and verify that Vs = (1/8)ATAId — (1/8)ATb. According to (A3), all points x € RP
s.t. Vgs(x) =0 constitute .A. Moreover, for any o > IAlI2/8, IVps(x) — Vos(x)|| <
A2/ Nx — x| < ollx — X'||, Vx, X' € RP, since |ATA| = ||A||. In other words, Vs is
o-Lipschitz continuous, which, according to the Baillon-Haddad theorem [29], [3, Cor. 18.16,
p. 270], is equivalent to that (1/0) Vs is firmly nonexpansive iff Id — (1/0)V; is firmly
nonexpansive [¢f. Example 2.6(iii)] with fixed-point set equal to .A. By utilizing once again
Example 2.6(iii), R := 2[Id — (1/0)Vgs] — Id is nonexpansive, and for any ¢ € (0,1], R’ :=
(R+(1—0Id =1d — (2¢/0)Ves = {1 —[2¢/(08)]ATAJId + [2¢/(08)]ATD is nonex-
pansive with Fix (R') = A. Due to the nonexpansiveness of R/, ||I — [2¢/(08)]ATA| <1
(cf. Fact 2.8). Constraining ¢ € (0, 1/2] guarantees that I — [2{/(@8)]ATA > 0. By defining
w:=2¢ and 8 := 1, the claim regarding (A4a) is established.

The metric projection mapping Pyers onto ker A is Pyera = (I— ATATHId [3,
Prop. 3.28(iii), p. 51]. Since A = ker A + A'b [3, Prop. 3.28(i), p. 51], [3, Prop. 3.17, p. 47]
suggests that the metric projection mapping P4 onto A becomes P4 = Pierp + ATb —
Pier A(ATD) = Piera + ATb, due to P (ATb) = 0 [3, Prop. 3.28(i), p. 51]. Hence, (A4b)
is an immediate consequence of Proposition 2.11. By [32, Ex. 18(d), p. 49], ATATH =
ATAATA)" = GG" and A'b = (ATA)TATb = GTATb. Hence, (A4c) follows easily from
(A4b).

Now, for any y’ € R.¢, Prox,,, = I+ (' /OATA) A + (/8 A+ (v /O ATA)!
ATb. Setting y := y'/5, the nonexpansiveness of Prox, s, , stated by Example 2.6(ii), suggests
that |1+ yATA) ! <1 (¢f. Fact 2.8), and that Fix (Prox, 5;) = A. Duealso to the fact that
(I+ yATA)~!is positive, the claim regarding (A4d) is established.

Let 8 := ||Al|% in (A10), so that

M
_ 1 2 _ 1 2
“1aiR ) = g 14x ~ BI" = g 2_:1 () =)

M M
2
=33 Ll =, @I = 3 Y winlix— Pa, I
m=1 F m=1
where the explicit expression of P 4,, is given in (A2), and the non-negative weights {w,, :=
||ccm||2/||A||%}1n\f=1 satisfy Zﬁf:l Wy, = 1. It can be also verified by the Fréchet-gradient
definition [3, Def. 2.45, p. 38] that V||(Id — PAm)XHZ =2(Id — P4,,)x, which yields

M M
Vouap = D wn(d —Pa,) =1d = 3 wnPa,.
m=1 m=1

Hence, all minimizers of ¢ Al e A, constitute the fixed-point set of 3 ., Wy, P 4,,, which
is equal to the fixed-point set of the mapping in (A4e). Hence, by utilizing the trivial fact
Id € T and by applying also Proposition 2.10(i) to (1 — 8)Id + B ) _,, wmP4,,, the claim of
(Ade) is established.

Regarding (A6e), notice first that A = mdDzlgd. According to Example 2.6(iv), A =
Fix (3_;waPg,). Since Pg, € T (¢f. Example A.2), Proposition 2.10(i) yields ) ; w4Pg, € .
As a result, fact Id € T and Proposition 2.10(i) yield (1 — 6)Id + 6 }_; w4Pg, € T, which
establishes the claim of (A4f). Due to A = argminy ILxT, wT]T —ell? arguments similar
to those developed for (A4a), (A4b) and (A4d) yield (A6a), (A6b) and (A6¢), respectively. Fur-
thermore, notice that since A4 = ﬁgLM L4, (A6d) is deduced in a way similar to the derivation
of (A4f) from (A3).
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Regarding (A9a), notice that Ax = Fix T4, [5, Prop. 4.2(a)], where
_ llem |
= (- P)d + BP Z e Pa,

is nonexpansive for B € (0,3/2]. Since Ax = Fix Tay =Fix Tae NK =Fix Ty N
Fix P, Example 2.6(v) suggests that Ax can be seen also as the fixed-point set of the non-
expansive mapping T 4, Pic, which is nothing but the mapping appearing at (A9a). Now, due
to Proposition 2.10(i) and Example A.2, ), wmP4,, € T, with wp, := |l ||2/||A||12:. Hence,
Proposition 2.10(ii) suggests also that Px. (D", wnP4,,)Pxc € . Once again, since P € ¥
(¢f- Proposition 2.11), Proposition 2.10(i) guarantees (1 — 8)Px + BPx > WmPa,Px €%,
for B € (0, 1], which establishes the claim of (A9a). |

An auxiliary proposition, used in Theorem 3.7, follows.

Proposition A.5: Given the surjective and strongly positive mapping I1 € *B(X), i.e. there
exists § € Rog s.t. (Ilx|x) > 8||x||%, Vx € X, the inverse TI™! exists and T17' € B(X)
with |[TI7Y|| < 1/8. Moreover, TI™! is strongly positive and (8/||T1||%)|x||> < (T~ x|x) <
1/8)|x]1%, Vx € X.

Proof: [4, Sec. 2.7, Prob. 7, p. 101] guarantees the existence of M !'and 17! € BX). By
the strong positivity of IT, Vx € X' \ ({0} = ker IT~1), |TT~ x||? < (1/8)(TT~1x|TI(IT~'x)) =
(1/8) (M 'x|x) < (/I xll]lx]l = 1T~ x| < (1/8)llxll = T < (1/8). By [4,
Thm. 9.4-2, p. 476] and the previous result, Vx € X, (IT"x|x) < |[TT7Y|||x]|> < (1/8)]|x]|%.
Moreover, Vx' € X, (I |TT7Tx) = (IT'|x) > §[|x/||> > (8/|IT1||?) | T1x'||?, which yields,
under x := ITx/, that Vx € X, (8/||TT||2)||x[1> < (IT™1x|x). [ |
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