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ABSTRACT

This paper introduces the Fejér-monotone hybrid steepest
descentmethod (FM-HSDM), a newmember to the HSDM fam-
ily of algorithms, for solving affinely constrained minimiza-
tion tasks in real Hilbert spaces, where convex smooth and
non-smooth losses compose theobjective function. FM-HSDM
offers sequences of estimates which converge weakly and,
under certain hypotheses, strongly to solutions of the task at
hand. In contrast to its HSDM’s precursors, FM-HSDM enjoys
Fejér monotonicity, the step-size parameter stays constant
across iterations to promote convergence speed-ups of the
sequence of estimates to a minimizer, while only Lipschitzian
continuity, and not strong monotonicity, of the derivative of
the smooth-loss function is needed to ensure convergence.
FM-HSDM utilizes fixed-point theory, variational inequalities
and affine-nonexpansive mappings to accommodate affine
constraints in a more versatile way than state-of-the-art pri-
mal–dual techniques and the alternating direction method of
multipliers do. Recursions can be tuned to score low computa-
tional footprints, well-suited for large-scale optimization tasks,
without compromising convergence guarantees. Results on
the rateof convergence to anoptimal point are alsopresented.
Finally, numerical tests on synthetic data are used to validate
the theoretical findings.
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1. Introduction

1.1. Problem and notation

Problem 1.1: This paper considers the following composite convex minimiza-

tion task:

min
x∈A⊂X

f (x) + g(x), (1)
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whereX is a real Hilbert space, the loss functions f,g belong to the classŴ0(X ) of

all convex, proper and lower semicontinuous functions fromX to (−∞,+∞] [3,

p. 132], f is everywhere (Fréchet) differentiable with L-Lipschitz-continuous

derivative ∇f , i.e. there exists an L ∈ R>0 such that (s.t.) ‖∇f (x1) − ∇f (x2)‖ ≤
L‖x1 − x2‖, ∀x1, x2 ∈ X , and A is a closed affine subset of X . Throughout the

manuscript, it is assumed that (1) possesses a solution.

Symbols Z and R stand for sets of all integer and real numbers, respectively.

Moreover, Z>0 := {1, 2, . . .} ⊂ {0, 1, 2, . . .} =: Z≥0, while R>0 := (0,+∞). The

algorithms of this paper are built on a real Hilbert space X , equipped with an

inner product 〈· | ·〉, with vectors denoted by lower case letters, e.g. x. In the spe-

cial case whereX is finite dimensional, i.e. Euclidean, vectors ofX are denoted by

boldfaced lower case letters, e.g. x, while boldfaced upper case letters are reserved

for matrices, e.g. Q. Symbol Id denotes the identity mapping in X , i.e. Id x = x,

∀x ∈ X . In the special case where X is Euclidean, Id boils down to the identity

matrix, denoted by I. Vector/matrix transposition is denoted by the superscript

⊤. For g ∈ Ŵ0(X ), ∂g denotes the set-valued subdifferential operator which is

defined as x 
→ ∂g(x) := {ξ ∈ X | g(x) + 〈x′ − x|ξ〉 ≤ g(x′), ∀x′ ∈ X }.
Let B(X ,X ′) denote all bounded linear operators from X to X ′ [4], and

B(X ) := B(X ,X ). For Q ∈ B(X ,X ′), ‖Q‖ < ∞ stands for the norm of Q.

MappingQ∗ ∈ B(X ′,X ) stands for the adjoint ofQ ∈ B(X ,X ′) [4]. In the case

ofmatrices, the adjoint of amappingQ is nothing but the transposeQ⊤.Mapping

Q ∈ B(X ) is called self-adjoint if Q∗ = Q. In the case of a symmetric matrix Q,

λ(Q) denotes an eigenvalue ofQ. Furthermore, ‖Q‖ = σmax(Q) := λ
1/2
max(Q

⊤Q)

stands for the (spectral) norm ofQ, where σmax(·) ∈ R>0 denotes the maximum

singular value and λmax(·) the maximum eigenvalue of a matrix.

1.2. Background and contributions

1.2.1. The hybrid steepest descentmethod

To solve (1), this paper extrapolates the paths established by the hybrid steepest

descent method (HSDM), which was originally introduced to solve a variational-

inequality problem of a strongly monotone operator over the fixed-point set of

a nonexpansive mapping [5] (see also, e.g. [6–8] and references therein, for a

wider applicability of HSDM in other scenarios). In the context of (1), a version

of HSDM solves

min
x∈Fix T

f (x), (2)

where f is a strongly convex function and Fix T ⊂ X denotes the fixed-point set

of a nonexpansive mapping T : X → X (cf. Section 2). For an arbitrarily fixed

starting point x0, HSDM generates the sequence

xn+1 := Txn − λn∇f (Txn), (3)
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which strongly converges to the unique minimizer of (2). To secure strong

convergence, the step sizes (λn)n∈Z≥0 ⊂ R≥0 satisfy (i)
∑

n∈Z≥0
λn = +∞, (ii)

limn→∞ λn = 0 and (iii)
∑

n∈Z≥0
|λn+1 − λn| < +∞. Furthermore, in the case

where X is Euclidean, f is not necessarily strongly convex, and T is attract-

ing nonexpansive [9,10] with bounded Fix T, the requirements on (λn)n∈Z≥0

can be relaxed to (i)
∑

n∈Z≥0
λn = +∞, (ii)

∑

n∈Z≥0
λ2n < +∞ for achieving

limn→∞ dX (xn, ArgminFix T f ) = 0, where dX (xn, ArgminFix T f ) stands for the

(metric) distance of point xn from the set of minimizers of f over Fix T [9].

To speed up HSDM’s convergence rate, conjugate-gradient-based variants were

introduced in [11–13]. For example, for an arbitrarily fixed starting point x0 ∈ X ,

and d0 := −∇f (x0), the following recursions (i) xn+1 := T(xn + μλndn); (ii)

dn+1 := −∇f (xn+1) + βn+1dn, with μ > 0, λn ∈ (0, 1], βn ∈ [0,∞) were intro-

duced in [11]. Ifμ ∈ (0, 2η/L2), limn→∞ βn = 0, (∇f (xn))n∈Z≥0 is bounded, and

(i)
∑

n∈Z≥0
λn = +∞, (ii) limn→∞ λn = 0, (iii)

∑

n∈Z≥0
|λn+1 − λn| < +∞, (iv)

λn/λn+1 ≤ σ , (σ ≥ 1), then (xn)n∈Z≥0 converges strongly to the unique mini-

mizer of (2).

1.2.2. Prior art

To demonstrate the connections of (1) with state-of-the-art methods, it is help-

ful to notice that the concise description (1) can be unfolded in several ways to

describe a large variety of convex composite minimization tasks, e.g.

min
x∈A

f (x) +
J

∑

j=1

gj(Hjx − rj), (4)

where {Xj}Jj=0 are realHilbert spaces, f ∈ Ŵ0(X0), gj ∈ Ŵ0(Xj),Hj ∈ B(X0,Xj)

and rj ∈ Xj, j ∈ {1, . . . , J}. Moreover, ∇f is L-Lipschitz continuous and A

is a closed affine subset of X0. Indeed, it can be verified that (4) can be

recast as (1) viaX := X0 × X1 × · · · × XJ = {x := (x(0), x(1), . . . , x(J)) | x(j) ∈
Xj, ∀j ∈ {0, 1, . . . , J}}, f (x) := f (x(0)), g(x) :=

∑J
j=1 gj(x(j)), and the closed

affine set A := {x ∈ X | x(0) ∈ A , x(j) = Hjx
(0) − rj, ∀j ∈ {1, . . . , J}}. Task (4),

in the case where J=2, X := X0 = X1, H1 = Id , r1 = r2 = 0, and A :=
X , i.e. minx∈X [f (x) + g1(x) + g2(H2x)], has been already studied, e.g. via the

primal–dual (PD) algorithmic framework [14–17]. Gradient ∇f , proximal map-

pings (cf.Definition 2.5) Proxg1 and Proxg∗
2

= Id − Proxg2 [3, Rem. 14.4, p. 198],

where g∗
2 stands for the (Fenchel) conjugate of g2, as well as adjoint H

∗
2 are uti-

lized in a computationally efficient way to generate a sequence (xn)n∈Z≥0 ⊂ X ,

which converges weakly (and under certain hypotheses, strongly) to a solu-

tion of the previous minimization task. Moreover, task (4), in the case where

J=2, X := X0 = X1 = X2, H1 = H2 = Id , r1 = r2 = 0 and A := X , i.e.

minx∈X [f (x) + g1(x) + g2(x)], has also attracted attention in the context of the

‘three-term operator splitting’ framework [18,19]. As in [14–16], ∇f , Proxg1 and
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Proxg2 are employed via computationally efficient recursions in [18,19] to gener-

ate a sequence which converges weakly (and under certain hypotheses, strongly)

to a solution of the minimization task at hand. All studies in [14–16,18,19] set

A := X . In the case ofA � X , one can accommodate the affine constraintA

via the use of the indicator function ιA [ιA (x) := 0, if x ∈ A , and ιA (x) := +∞,

if x /∈ A ] and the additional loss g3 := ιA . According to the previous discus-

sion, such an accommodation entails the use of ProxιA = PA , where PA denotes

the metric projection mapping ontoA . Mapping PA may become computation-

ally demanding, e.g. in the case where X is a Euclidean space and the affine

constraints are described by a matrix of large dimensions (cf. Fact A.3), since

computing PA necessitates the costly singular value decomposition of the matrix

under query (cf. Example A.4). Task (1) in the case where X is a Euclidean

space and A := {x ∈ X | a⊤x = 0}, for some a ∈ X \ {0}, was treated, within a

stochastic setting, in [20].

The celebrated alternating direction method of multipliers (ADMM) [21–25]

deals with the task

min
(x(1),x(2))∈X1×X2

g1(x
(1)) + g2(x

(2)) (5a)

s.to H1x
(1) + H2x

(2) = r, (5b)

where Hj ∈ B(Xj,X0) and r ∈ X0. Again, (5) can be recast as (1) under the

following setting: X := X1 × X2 = {x := (x(1), x(2)) | x(1) ∈ X1, x
(2) ∈ X2},

f (x) := 0, g(x) := g1(x(1)) + g2(x(2)), and A := {x ∈ X | H1x
(1) + H2x

(2) = r}.
Provided that the inverse mappings (λH∗

1H1 + ∂g1)−1 and (λH∗
2H2 + ∂g2)−1

exist, the recursive application of (λH∗
1H1 + ∂g1)−1 and (λH∗

2H2 + ∂g2)−1 gen-

erates a sequence which converges weakly to a solution of (5) [24,25]. ADMM

enjoys extremely wide popularity for minimization problems in Euclidean

spaces [23], at the expense of the computation of (λH∗
1H1 + ∂g1)−1 and

(λH∗
2H2 + ∂g2)−1: there may be cases where computing the previous inverse

mappings entails the costly task of solving a convex minimization subproblem.

The motivation for the present paper is the algorithmic solution given in the

distributed minimization context of [26,27]: for a Euclidean X , and a collection

of loss functions {fj, gj ∈ Ŵ0(X )}Jj=1, where fj is everywhere differentiable with
an Lj-Lipschitz continuous∇fj, ∀j ∈ {1, . . . , J}, nodes N (|N | = J), connected by

edges E within a network/graph G := (N ,E), operate in parallel and cooperate

to solve

min
(x(1),...,x(J))∈X J

J
∑

j=1

fj(x
(j)) +

J
∑

j=1

gj(x
(j)) (6a)

s.to x(1) = · · · = x(J) . (6b)

Each node j ∈ N operates only on the pair (fj, gj) and communicates the

information regarding its updates to its neighbouring nodes to cooperatively
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solve (6), under the consensus constraint of (6b). Once again, (6) can be

seen as a special case of (1) under the following considerations: X :=
X J , f (x(1), . . . , x(J)) :=

∑J
j=1 f (x(j)), g(x(1), . . . , x(J)) :=

∑J
j=1 g(x(j)) and A :=

{(x(1), . . . , x(J)) ∈ X | x(1) = · · · = x(J)}. Upon defining the J × J mixing matri-

cesW = [wij], W̃ = [w̃ij], [27] introduced the following recursions to solve (6):

for an arbitrarily fixed starting-point J × dimX matrix X0, as well as

X1/2 := WX0 − λ∇f (X0) and X1 := Proxλg(X1/2), repeat for all n ∈ Z≥0, (i)

Xn+3/2 := Xn+1/2 + WXn+1 − W̃Xn − λ[∇f (Xn+1) − ∇f (Xn)]; (ii) Xn+2 :=
Proxλg(Xn+3/2). If (i) (i, j) /∈ E ⇒ wij = w̃ij = 0, (ii) W⊤ = W, W̃⊤ = W̃, (iii)

ker(W − W̃) = span 1 ⊂ ker(I − W̃), (iv) W̃ ≻ 0, (v) (1/2)(I + W̃) � W̃ � W

and (vi) λ ∈ (0, 2λmin(W̃)/maxi Li), then the sequence (Xn)n∈N converges to a

matrix whose rows provide a solution to (6).

1.2.3. Contributions

Driven by the similarity between the algorithmic solution of [26,27] and HSDM,

and aiming at solving (1), this study introduces a newmember to theHSDM fam-

ily of algorithms: the Fejér-monotone (FM-)HSDM. Building around the simple

recursion of (3) and the concept of a nonexpansive mapping, FM-HSDM’s recur-

sions offer sequences which converge weakly and, under certain hypotheses (uni-

form convexity of loss functions), strongly to a solution of (1); cf. Theorems 3.1

and 3.6. Fixed-point theory, variational inequalities and affine-nonexpansive

mappings are utilized to accommodate the affine constraint A in a more flex-

ible way (see, e.g. Proposition 2.10 and Example A.4) than the usage of the

indicator function and its associated metric-projection mapping that methods

[15,16,18,19] promote. Such flexibility is combined with the first-order informa-

tion of f and the proximal mapping of g to build recursions of tunable complexity

that can score low-computational complexity footprints, well-suited for large-

scale minimization tasks. FM-HSDM enjoys Fejér monotonicity, and in contrast

to (3) as well as its conjugate gradient-based variants [11–13], only Lipschitzian

continuity, and not strongmonotonicity, of the derivative of the smooth-part loss

is needed to establish convergence of the sequence of estimates. Furthermore, a

constant step-size parameter is utilized to effect convergence speed-ups. Finally,

as opposed to [11–13], the advocated scheme needs no boundedness assump-

tions on estimates or gradients to establish weak (or even strong) convergence of

the sequence of estimates to a solution of (1). Results on the rate of convergence

to an optimal point are also presented. Numerical tests on synthetic data are used

to validate the theoretical findings.

2. Affine nonexpansive mappings and variational inequalities

2.1. Nonexpansivemappings and fixed-point sets

Definition 2.1: A self-adjoint mapping Q ∈ B(X ) is called positive if 〈Qx|x〉 ≥
0, ∀x ∈ X [4, Sec. 9.3]. Moreover, the self-adjoint 
 ∈ B(X ) is called strongly
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positive if there exists δ ∈ R>0 s.t. 〈
x|x〉 ≥ δ‖x‖2, ∀x ∈ X . In the context of

matrices, Q is positive iff Q is positive semidefinite, i.e. Q � 0. Moreover, �

is strongly positive iff � is positive definite, i.e. � ≻ 0, and δ in the previous

definition can be taken to be λmin(�).

For a strongly positive 
, 〈·|·〉
 stands for the inner product 〈x|x′〉
 :=
〈x|
x′〉, ∀(x, x′) ∈ X 2. For a function ϕ : X → R, ∇ϕ and ∇ϕ(x) stand for the

(Gâteaux/Fréchet) derivative and gradient at x ∈ X , respectively [3, Sec. 2.6,

p. 37]. Given Q ∈ B(X ), kerQ stands for the linear subspace kerQ := {x ∈
X | Qx = 0}. Moreover, ran Q denotes the linear subspace ran Q := QX :=
{Qx | x ∈ X }. For the case of a matrix Q, ran Q is the linear subspace spanned

by the columns of Q. Finally, the orthogonal complement of a linear subspace is

denoted by the superscript ⊥.

Definition 2.2: The fixed-point set of amapping T : X → X is defined as the set

Fix T := {x ∈ X | Tx = x}.

Definition 2.3: Mapping T : X → X is called

(i) Nonexpansive, if ‖Tx − Tx′‖ ≤ ‖x − x′‖, ∀(x, x′) ∈ X 2.

(ii) Firmly nonexpansive, if ‖Tx − Tx′‖2 ≤ 〈x − x′|Tx − Tx′〉, ∀(x, x′) ∈ X 2.

Any firmly nonexpansive mapping is nonexpansive [3, Sec. 4.1].

(iii) α-averaged (nonexpansive), if there exist an α ∈ (0, 1) and a nonexpansive

mapping R : X → X s.t. T = αR + (1 − α)Id . It can be easily verified that

T is nonexpansive with Fix R = Fix T.

Fact 2.4 ([3, Cor. 4.15, p. 63]): The fixed-point set Fix T of a nonexpansive

mapping T is closed and convex.

Definition 2.5: Given f ∈ Ŵ0(X ) and γ ∈ R>0, the proximalmapping Proxγ f is

defined as Proxγ f : X → X : x 
→ argminz∈X (γ f (z) + 1
2‖x − z‖2).

Example 2.6:

(i) [3, Prop. 4.8, p. 61] Given a non-empty closed convex set C ⊂ X , the met-

ric projection mapping onto C, defined as PC : X → C : x 
→ PCx, with PCx

being the uniqueminimizer of minz∈C‖x − z‖, is firmly nonexpansive with

Fix PC = C.

(ii) [3, Prop. 12.27, p. 176] Given f ∈ Ŵ0(X ) and γ ∈ R>0, the proximal map-

ping Proxγ f is firmly nonexpansive with Fix Proxγ f = argmin f .

(iii) [3, Prop. 4.2, p. 60] T is firmly nonexpansive iff Id − T is firmly nonexpan-

sive iff T is (1/2)-averaged iff 2T − Id is nonexpansive.

(iv) [28, Prop. 2.2], [9, Thm. 3(b)]. Let {Tj}Jj=1 be a finite family (J ∈ Z>0) of

nonexpansive mappings fromX toX , and {ωj}Jj=1 be real numbers in (0, 1]
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s.t.
∑J

j=1 ωj = 1. Then,T :=
∑J

j=1 ωjTj is nonexpansive. If∩J
j=1FixTj �= ∅,

then Fix T = ∩J
j=1Fix Tj. Furthermore, consider real numbers {αj}Jj=1 ⊂

(0, 1) s.t. Tj is αj-averaged, ∀j. Define α :=
∑J

j=1 ωjαj. Then, T is α-

averaged. Hence, if each Tj is firmly nonexpansive, i.e. (1/2)-averaged, then

T is also firmly nonexpansive.

(v) [28, Prop. 2.5], [9, Thm. 3(b)] Let {Tj}Jj=1 be a finite family (J ∈ Z>0) of

nonexpansive mappings from X to X . Then, mapping T := T1T2 · · ·TJ is

nonexpansive. If ∩J
j=1Fix Tj �= ∅, then Fix T = ∩J

j=1Fix Tj. Furthermore,

consider real numbers {αj}Jj=1 ⊂ (0, 1) s.t. Tj is αj-averaged, ∀j. Define

α :=
1

1 + 1
∑J

j=1

αj
1−αj

.

Then, T is α-averaged.

In what follows, function f ∈ Ŵ0(X ) is considered to have an L-Lipschitz

continuous∇f with dom∇f = X . By [3, Prop. 16.3(i), p. 224], the previous con-

dition leads to dom f = X , which further implies by [3, Cor. 16.38(iii), p. 234]

that ∂(f + g) = ∇f + ∂g.

2.2. Affine nonexpansivemappings

Definition 2.7 ([3, p. 3]): A mapping T : X → X is called affine if there exist a

linear mapping Q : X → X and a π ∈ X s.t. Tx = Qx + π , ∀x ∈ X .

Fact 2.8 ([3, Ex. 4.4, p. 72]): Consider the affine mapping Tx = Qx + π , ∀x ∈
X , with Q being linear and π ∈ X . Then, T is nonexpansive iff ‖Q‖ ≤ 1.

Define now the following special class of affine-nonexpansive mappings:

T :=

⎧

⎨

⎩
T : X → X

∣
∣
∣
∣
∣
∣

Tx = Qx + π , ∀x ∈ X

Q ∈ B(X );π ∈ X

‖Q‖ ≤ 1,Q is positive

⎫

⎬

⎭
. (7)

As the following proposition highlights, T is nothing but the class of affine

firmly nonexpansive mappings.

Proposition 2.9: T ∈ T iff T = Q + π , where Q ∈ B(X ) is self-adjoint, π ∈ X ,

and T is firmly nonexpansive.

Proof: First, consider T ∈ T. Since Q is positive, let Q1/2 be the posi-

tive square root of Q, i.e. the (unique) positive operator which satisfies

Q1/2Q1/2 = Q [4, Thm. 9.4-2, p. 476]. The positivity of Q yields ‖Q‖ =
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supx∈X\{0} |〈Qx|x〉|/〈x|x〉 = supx∈X\{0}〈Qx|x〉/〈x|x〉, according to [4, Thm. 9.2-

2, p. 466]. Then, ∀(x, x′) ∈ X 2,

‖Tx − Tx′‖2 = ‖Qx − Qx′‖2 = ‖Q(x − x′)‖2 = 〈Q(x − x′)|Q(x − x′)〉

= 〈Q1/2(x − x′)|QQ1/2(x − x′)〉≤‖Q‖〈Q1/2(x−x′)|Q1/2(x − x′)〉

≤ 〈Q1/2(x − x′)|Q1/2(x − x′)〉 = 〈x − x′|Q(x − x′)〉
= 〈x − x′|Tx − Tx′)〉,

which suggests that T is firmly nonexpansive.

Now, let T = Q + π , for a self-adjoint Q ∈ B(X ), π ∈ X . Let also T be

firmly nonexpansive. Then, ∀x ∈ X , 〈x|Qx〉 = 〈x − 0|Q(x − 0)〉 = 〈x − 0|Tx −
T0)〉 ≥ ‖Tx − T0‖2 ≥ 0; thus Q is positive. By the fact that a firmly nonex-

pansive mapping is nonexpansive [Definition 2.3(ii)] and Fact 2.8, ‖Q‖ ≤ 1. In

summary, T ∈ T. �

Proposition 2.10: Let J ∈ Z>0.

(i) Consider a family {Tj}Jj=1 of members of T. For any set of weights {ωj}Jj=1

s.t. ωj ∈ (0, 1] and
∑J

j=1 ωj = 1,mapping
∑J

j=1 ωjTjx ∈ T.

(ii) Consider T0 := Q0 + π0 ∈ T. Moreover, let the self-adjoint Qj ∈ B(X ), with

‖Qj‖ ≤ 1, and πj ∈ X , ∀j ∈ {1, . . . , J}. Let now the family {Tj := Qj + πj}Jj=1

of affine nonexpansive mappings, where each Tj does not necessarily belong to

T, i.e. {Qj}Jj=1 might not be positive according to Proposition 2.9. Then, the

composition

TJTJ−1. . .T1T0T1. . .TJ−1TJx = QJQJ−1. . .Q1Q0Q1. . .QJ−1QJx

+
J

∑

j=1

QJQJ−1. . .Q1Q0Q1. . .Qj−1πj

+
J

∑

j=1

QJQJ−1. . .Qjπj−1 + πJ , ∀x ∈ X ,

satisfies TJTJ−1 . . .T1T0T1 . . .TJ−1TJ ∈ T.

Proof: The proof of Proposition 2.10(i) follows easily from Example 2.6(iv) and

Proposition 2.9. The formula appearing in Proposition 2.10(ii) can be deduced

by mathematical induction on J. Furthermore, QJQJ−1 . . .Q1Q0Q1 . . .QJ−1QJ

is self-adjoint, and its positivity follows from the fundamental observation

that∀x ∈ X , 〈QJQJ−1 · · ·Q1Q0Q1 · · ·QJ−1QJx|x〉 = 〈Q0(Q1 · · ·QJ−1QJx)|Q1 · · ·
QJ−1QJx〉 ≥ 0, due to the positivity of Q0. Finally, the claim of Proposi-

tion 2.10(ii) is established by ‖QJ . . .Q1Q0Q1 . . .QJ‖ ≤ ‖Q0‖
∏J

j=1

‖Qj‖2 ≤ 1. �



OPTIMIZATION 9

Proposition 2.11: Given the closed affine set A ⊂ X , define the following family

of mappings:

TA := {T ∈ T | Fix T = A} . (8)

Then, TA is non-empty.

Proof: The metric projection mapping PA ontoA is not only firmly nonexpan-

sive with Fix PA = A [cf. Example 2.6(i)] but also affine, according also to [3,

Cor. 3.20(ii), p. 48]. Hence, by virtue of Proposition 2.9, PA ∈ TA �= ∅. �

It can be verified that the fixed-point set Fix T of an affine mapping T is affine.

However, more can be said about the members of TA.

Proposition 2.12: For any T ∈ TA,

A = Fix T = ker(Id − Q) + w∗ = kerU + w∗,

where w∗ is any vector of A and U is the positive square root of Id − Q, i.e. the

(unique) positive operator which satisfies U2 = Id − Q [4, Thm. 9.4-2, p. 476].

Proof: Since ‖Q‖ = supx∈X\{0} |〈Qx|x〉|/‖x‖2 [4, Thm. 9.2-2, p. 466] and ‖Q‖ ≤
1, it can be easily verified that ∀x ∈ X , 〈(Id − Q)x|x〉 = ‖x‖2 − 〈Qx|x〉 ≥
‖x‖2 − ‖Q‖ · ‖x‖2 ≥ ‖x‖2 − ‖x‖2 = 0, i.e. Id − Q is positive. Interestingly, the

positivity of Q suggests that ∀x ∈ X , 〈(Id − Q)x|x〉 = ‖x‖2 − 〈Qx|x〉 ≤ ‖x‖2,
which implies, via [4, Thm. 9.2-2, p. 466], that ‖Id − Q‖ ≤ 1. Moreover, by the

definition of T, it follows that for any arbitrarily fixed w∗ ∈ Fix T,

Fix T = {x | Tx = x} = {x | (Id − T)x = 0}
= {x | (Id − Q)x = π} = {x | (Id − Q)x = (Id − Q)w∗}
= {x | (Id − Q)(x − w∗) = 0} = {x′ + w∗ | (Id − Q)x′ = 0}
= ker(Id − Q) + w∗ .

Finally, the characterization Fix T = kerU + w∗ follows from the previous argu-

ments and x′ ∈ ker(Id − Q) ⇔ (Id − Q)x′ = 0 ⇒ U2x′ = 0 ⇒ U∗Ux′ = 0 ⇒
〈x′|U∗Ux′〉 = 〈Ux′|Ux′〉 = ‖Ux′‖2 = 0 ⇒ Ux′ = 0 ⇔ x′ ∈ kerU ⇒ U2x′ = 0

⇒ (Id − Q)x′ = 0 ⇔ x′ ∈ ker(Id − Q), which establishes ker(Id − Q) =
kerU. �

Several examples ofTAmembers playing important roles in convexminimiza-

tion tasks can be found in Appendix 1.
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2.3. Variational-inequality problems

Definition 2.13 (Variational-inequality problem): For a nonexpansive map-

ping T : X → X , point x∗ ∈ Fix T is said to solve the variational-inequality

problem VIP(∇f + ∂g, Fix T) if there exists ξ∗ ∈ ∂g(x∗) s.t. ∀y ∈ Fix T, 〈y −
x∗|∇f (x∗) + ξ∗〉 ≥ 0.

Fact 2.14 ([3, Prop. 26.5(vi), p. 383]): Consider a mapping T ∈ TA (recall

Fix T = A), and assume that one of the following holds:

(1) 0 ∈ sri(A − domain(f + g)) ([cf.]Prop. 6.19, p. 95] [3] for special cases);

(2) X is Euclidean andA ∩ ri [dom (f + g)] �= ∅.

Then, point x∗ solves VIP(∇f + ∂g, Fix T) iff x∗ ∈ argminx∈Fix T[f (x) +
g(x)].

Proposition 2.15: Given the closed affine set A ⊂ X , consider any T ∈ TA

(cf. Proposition 2.12). If U stands for the square root of the linear operator Id − Q

in the description of T (cf. Definition 2.7), let ran U denote the closure (in the strong

topology) of the range of U. Then,

x∗ solves VIP(∇f + ∂g, Fix T)

⇔ x∗ ∈ A∗ := {x ∈ Fix T |
[

∇f (x) + ∂g(x)
]

∩ rangeU �= ∅} . (9a)

Moreover, for an arbitrarily fixed λ ∈ R \ {0}, define the subset

ϒ (λ)
∗ := {(x, v) ∈ Fix T × X | − 1

λ
Uv ∈ ∇f (x) + ∂g(x)} . (9b)

Then,

(x∗, v∗) ∈ ϒ (λ)
∗ ⇒ x∗ solves VIP(∇f + ∂g, Fix T) . (9c)

Furthermore, in the case where X is finite dimensional,

x∗ solves VIP(∇f + ∂g, Fix T) ⇔ ∃v∗ ∈ X s.t. (x∗, v∗) ∈ ϒ (λ)
∗ . (9d)

Proof: First, recall that (kerU)⊥ = ran U∗ = ran U [3, Fact 2.18(iii), p. 32].

According to Definition 2.13,

x∗ solves VIP(∇f + ∂g, Fix T)

⇔ x∗ ∈ Fix T and ∃ξ∗ ∈ ∂g(x∗) s.t. ∀y ∈ Fix T, 〈y − x∗|∇f (x∗) + ξ∗〉 ≥ 0

⇔ x∗ ∈ Fix T and ∃ξ∗ ∈ ∂g(x∗) s.t. ∀z ∈ kerU, 〈z|∇f (x∗) + ξ∗〉 ≥ 0 (10a)

⇔ x∗ ∈ Fix T and ∃ξ∗ ∈ ∂g(x∗) s.t. ∀z ∈ kerU, 〈z|∇f (x∗) + ξ∗〉 ≤ 0 (10b)
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⇔ x∗ ∈ Fix T and ∃ξ∗ ∈ ∂g(x∗) s.t. ∀z ∈ kerU, 〈z|∇f (x∗) + ξ∗〉 = 0

⇔ x∗ ∈ Fix T and ∃ξ∗ ∈ ∂g(x∗) s.t. ∇f (x∗) + ξ∗ ∈ (kerU)⊥ = ran U

⇔ x∗ ∈ Fix T and
[

∇f (x∗) + ∂g(x∗)
]

∩ ran U �= ∅
⇔ x∗ ∈ A∗, (10c)

which establishes (9a). Notice that Proposition 2.12 is used in (10a) and z ∈
kerU ⇔ −z ∈ kerU in (10b).

Moreover,

(x∗, v∗) ∈ ϒ (λ)
∗

⇔ x∗ ∈ Fix T and U
(

−v∗
λ

)

∈ ∇f (x∗) + ∂g(x∗)

⇔ x∗ ∈ Fix T and ∃v′
∗ ∈ X s.t. Uv′

∗ ∈
[

∇f (x∗) + ∂g(x∗)
]

∩ ran U
(

v′
∗ = −v∗

λ

)

⇔ x∗ ∈ Fix T and
[

∇f (x∗) + ∂g(x∗)
]

∩ ran U �= ∅
⇒ x∗ ∈ Fix T and

[

∇f (x∗) + ∂g(x∗)
]

∩ ran U �= ∅ (11a)

⇔ x∗ ∈ A∗,

which establishes (9c) via (9a).

In the case where X is Euclidean, (9d) is established by the well-known fact

ran U = ranU [4, Thm. 2.4-3, p. 74], which turns ‘⇒’ into ‘ ⇐⇒ ’ in (11a). �

3. Algorithm and convergence analysis

For any T ∈ TA and any α ∈ (0, 1), define the α-averaged mapping

Tαx := [αT + (1 − α)Id ]x = Qαx + απ , (12)

where Qα := αQ + (1 − α)Id .

Theorem 3.1: Consider f , g ∈ Ŵ0(X ), with L being the Lipschitz-continuity con-

stant of ∇f . Moreover, given the closed affine set A, consider any T ∈ TA. For

λ ∈ R>0, an arbitrarily fixed x0 ∈ X , and for all n ∈ Z≥0, the FM-HSDM is stated

as follows:

x1/2 := Tαx0 − λ∇f (x0), (13a)

x1 := Proxλg(x1/2), (13b)

xn+3/2 := xn+1/2 −
[

Tαxn − λ∇f (xn)
]

+
[

Txn+1 − λ∇f (xn+1)
]

, (13c)

xn+2 := Proxλg(xn+3/2) . (13d)

Consider also α ∈ [0.5, 1) and λ ∈ (0, 2(1 − α)/L). Then, the following hold true.
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(i) There exist a sequence (vn)n∈Z≥0 ⊂ X and a strongly positive operator

� : X 2 → X 2 s.t. sequence (yn := (xn, vn))n∈Z>0\{1} is Fejér monotone [3,

Def. 5.1, p. 75] w.r.t. ϒ
(λ)
∗ of Proposition 2.15 in the Hilbert space (X 2, 〈·|·〉�),

i.e.

‖(xn+1, vn+1) − (x∗, v∗)‖� ≤ ‖(xn, vn) − (x∗, v∗)‖�, ∀(x∗, v∗) ∈ ϒ (λ)
∗ .

(ii) Sequence (xn)n∈Z≥0 of (13) converges weakly to a point that solves VIP(∇f +
∂g, Fix T).

Proof: (i) By (13c),

xn+3/2 − xn+1/2 = Txn+1 − Tαxn − λ
[

∇f (xn+1) − ∇f (xn)
]

. (14)

Since z = Proxλg(y) ⇔ (∃ξ ∈ ∂g(z) s.t. z + λξ = y), then

∃ξn+2 ∈ ∂g(xn+2) (15)

s.t. xn+3/2 = xn+2 + λξn+2 and thus ∃ξn+1 ∈ ∂g(xn+1) s.t. xn+1/2 = xn+1 +
λξn+1. Incorporating the previous equations in (14) yields that ∀n ∈ Z≥0,

x1 = Tαx0 − λ
[

∇f (x0) + ξ1
]

,

xn+2 − xn+1 = Txn+1 − Tαxn − λ
[

∇f (xn+1) + ξn+2

]

+ λ
[

∇f (xn) + ξn+1

]

.

(16)

Moreover, adding consecutive equations of (16) results into the following fact:

xn+1 = Txn −
n−1
∑

ν=1

(Tα − T)xν − λ
[

∇f (xn) + ξn+1

]

= Txn −
n+1
∑

ν=1

(Tα − T)xν + (Tα − T)xn + (Tα − T)xn+1

− λ
[

∇f (xn) + ξn+1

]

= 2Tαxn+1 − Txn+1 + (Tαxn − Tαxn+1) −
n+1
∑

ν=1

(Tα − T)xν

− λ
[

∇f (xn) + ξn+1

]

,

where the last equality holds true ∀n ∈ Z≥0. Consequently,

(Id + T − 2Tα)xn+1 + (Tαxn+1 − Tαxn)

= (1 − 2α)(T − Id )xn+1 + Qα(xn+1 − xn)

= −
n+1
∑

ν=1

(Tα − T)xν − λ
[

∇f (xn) + ξn+1

]

, (17)

where the first equation is due to (12).
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Choose arbitrarily a w∗ ∈ Fix T, i.e. (Id − T)w∗ = 0. Then,

(Tα − T)xν = (1 − α)(Id − T)xν

= (1 − α) [(Id − T)xν − (Id − T)w∗]

= (1 − α)(Id − Q)(xν − w∗) .

Define also

vn+1 := (1 − α)

n+1
∑

ν=1

U(xν − w∗) .

Point vn+1 does not depend on the choice of the fixed point w∗. Indeed, by
Proposition 2.12, it can be verified that for any w# ∈ Fix T, w# − w∗ ∈ kerU,

and that

vn+1 = (1 − α)

n+1
∑

ν=1

U(xν − w# + w# − w∗)

= (1 − α)

n+1
∑

ν=1

[U(xν − w#) + U(w# − w∗)]

= (1 − α)

n+1
∑

ν=1

U(xν − w#) . (18)

Moreover,

vn+1 − vn = (1 − α)

n+1
∑

ν=1

U(xν − w∗) − (1 − α)

n
∑

ν=1

U(xν − w∗)

= (1 − α)U(xn+1 − w∗), ∀w∗ ∈ Fix T, (19)

and

−
n+1
∑

ν=1

(Tα − T)xν = −(1 − α)

n+1
∑

ν=1

(Id − Q)(xν − w∗)

= −U(1 − α)

n+1
∑

ν=1

U(xν − w∗)

= −Uvn+1 . (20)

Under the previous considerations, (17) becomes

(1 − 2α)(T − Id )xn+1 + Qα(xn+1 − xn) + Uvn+1 = −λ
[

∇f (xn) + ξn+1

]

.

(21)

Recall now Proposition 2.15, and consider any (x∗, v∗) ∈ ϒ
(λ)
∗ . By the

definition of ϒ
(λ)
∗ , (Id − T)x∗ = 0 and there exists ξ∗ ∈ ∂g(x∗) s.t. Uv∗ +
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λ[∇f (x∗) + ξ∗] = 0. These arguments, (21) and (T − Id )xn+1 − (T − Id )x∗ =
(Q − Id )(xn+1 − x∗) yield

λ[∇f (xn) − ∇f (x∗)] + λ(ξn+1 − ξ∗)

= −(1 − 2α)(Q − Id )(xn+1 − x∗) − Qα(xn+1 − xn) − U(vn+1 − v∗) .
(22)

The Baillon–Haddad theorem [29], [3, Cor. 18.16, p. 270] states that the L-

Lipschitz continuous ∇f is (1/L)-inverse strongly monotone, i.e. ∀(x, x′) ∈ X 2,

〈x − x′|∇f (x) − ∇f (x′)〉 ≥ (1/L)‖∇f (x) − ∇f (x′)‖2. This property, the fact that
∂g is monotone [3, Example 20.3, p. 294], i.e. ∀x, x′, ξ , ξ ′ s.t. ξ ∈ ∂g(x) and

ξ ′ ∈ ∂g(x′), 〈x − x′|ξ − ξ ′〉 ≥ 0, and the fact that U is self-adjoint imply

2λ
L ‖∇f (xn) − ∇f (x∗)‖2

≤ 2λ〈xn − x∗|∇f (xn) − ∇f (x∗)〉
≤ 2λ〈xn+1 − x∗|∇f (xn) − ∇f (x∗)〉 + 2λ〈xn − xn+1|∇f (xn) − ∇f (x∗)〉

+ 2λ〈xn+1 − x∗|ξn+1 − ξ∗〉
= 2〈xn+1 − x∗|λ[∇f (xn) − ∇f (x∗)] + λ(ξn+1 − ξ∗)〉

+ 2λ〈xn − xn+1|∇f (xn) − ∇f (x∗)〉
= −2(1 − 2α)〈xn+1 − x∗|(Q − Id )(xn+1 − x∗)〉

− 2〈xn+1 − x∗|Qα(xn+1 − xn)〉
− 2〈xn+1 − x∗|U(vn+1 − v∗)〉 + 2λ〈xn − xn+1|∇f (xn) − ∇f (x∗)〉 (23a)

= −2(1 − 2α)〈xn+1 − x∗|(Q − Id )(xn+1 − x∗)〉
− 2〈xn+1 − x∗|Qα(xn+1 − xn)〉
− 2〈U(xn+1 − x∗)|vn+1 − v∗〉 + 2λ〈xn − xn+1|∇f (xn) − ∇f (x∗)〉

≤ −2(1 − 2α)〈xn+1 − x∗|(Q − Id )(xn+1 − x∗)〉
− 2〈xn+1 − x∗|Qα(xn+1 − xn)〉 − 2

1−α
〈vn+1 − vn|vn+1 − v∗〉

+ λL
2 ‖xn − xn+1‖2 + 2λ

L ‖∇f (xn) − ∇f (x∗)‖2, (23b)

where (22) is used in (23a), and (19) as well as

2〈 a√
η
|√η b〉
 ≤ 1

η
‖a‖2
 + η‖b‖2
,

{

∀(a, b) ∈ X 2, ∀η ∈ R>0,

∀ strongly positive 
 ∈ B(X ),
(24)

with η := 2/L, a := xn − xn+1, b := ∇f (xn) − ∇f (x∗), and 
 := Id, were used

in (23b).

Recall (12) to verify that the positivity of Q implies that for any x ∈ X ,

〈Qαx|x〉 = α〈Qx|x〉 + (1 − α)‖x‖2 ≥ (1 − α)‖x‖2, (25)

i.e. Qα is strongly positive. Hence, upon defining the linear mapping � :

X 2 → X 2 : (x, v) 
→ (Qαx, v/(1 − α)), it can be easily seen that � is strongly



OPTIMIZATION 15

positive, under the standard inner product 〈(x, v)|(x′, v′)〉 := 〈x|x′〉 + 〈v|v′〉,
∀(x, v), (x′, v′) ∈ X 2, due to the fact that both Qα and Id /(1 − α) are strongly

positive. Consequently, (X 2, 〈·|·〉�) can be considered to be a Hilbert space

equipped with the inner product 〈·|·〉�.
Notation y := (x, v), α ≥ 1/2 as well as the positivity of Id − Q in (23) yield

0 ≤ 2〈(xn+1 − xn, vn+1 − vn)|�(x∗ − xn+1, v∗ − vn+1)〉
− 2(2α − 1)〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

+ λL
2 ‖xn − xn+1‖2

= 2〈yn+1 − yn|�(y∗ − yn+1)〉 − 2(2α − 1)〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

+ λL
2 ‖xn − xn+1‖2

≤ 2〈yn+1 − yn|y∗ − yn+1〉� + λL
2 ‖xn − xn+1‖2

= ‖yn − y∗‖2� − ‖yn+1 − y∗‖2� − ‖yn+1 − yn‖2� + λL
2 ‖xn − xn+1‖2 .

Hence,

‖yn − y∗‖2� − ‖yn+1 − y∗‖2� ≥ ‖yn+1 − yn‖2� − λL
2 ‖xn − xn+1‖2 . (26)

Since λ < 2(1 − α)/L, choose any ζ ∈ (λL/[2(1 − α)], 1). Then, by (25), ∀y :=
(x, v),

λL
2 ‖x‖2 < ζ(1 − α)‖x‖2 ≤ ζ 〈x|Qαx〉 ≤ ζ 〈x|Qαx〉 + ζ 1

1−α
‖v‖2 = ζ‖y‖2�,

and by (26),

‖yn − y∗‖2� − ‖yn+1 − y∗‖2� ≥ ‖yn+1 − yn‖2� − λL
2 ‖xn − xn+1‖2

≥ ‖yn+1 − yn‖2� − ζ‖yn+1 − yn‖2�
= (1 − ζ )‖yn+1 − yn‖2�, (27)

i.e. sequence (yn)n∈Z≥0 ⊂ (X 2, 〈·|·〉�) is Fejér monotone w.r.t. ϒ
(λ)
∗ of Proposi-

tion 2.15.

(ii)Due to Fejérmonotonicity, sequence (yn)n is bounded [as well as (xn)n and

(vn)n] [3, Prop. 5.4(i), p. 76] and possesses a non-empty set of weakly sequential

cluster points W[(yn)n] [3, Lem. 2.37, p. 36]. Moreover, it can be verified by (27)

that ∀n ∈ Z≥0,

(1 − ζ )

n
∑

ν=2

‖yν+1 − yν‖2� ≤ ‖y2 − y∗‖2� − ‖yn+1 − y∗‖2� ≤ ‖y2 − y∗‖2�,

and hence there exist C′,C ∈ R>0 s.t. for any n,

n
∑

ν=0

‖yν+1 − yν‖2� ≤ C′
1−ζ

=: C, (28)
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which leads to limn→∞‖yn+1 − yn‖� = 0, and which further implies that

lim
n→∞

(xn+1 − xn) = 0, lim
n→∞

(vn+1 − vn) = 0 . (29)

Adding the following equations, which result from (21),

− 1
λ
(1 − 2α)(T − Id )xn+1 − 1

λ
Qα(xn+1 − xn) − 1

λ
Uvn+1 − ∇f (xn) = ξn+1

1
λ
(1 − 2α)(T − Id )xn + 1

λ
Qα(xn − xn−1) + 1

λ
Uvn + ∇f (xn−1) = −ξn

(30)

yields

ξn+1 − ξn = 1−2α
λ

(T − Id )(xn − xn+1) + 1
λ
Qα(xn − xn−1) − 1

λ
Qα(xn+1 − xn)

+ 1
λ
U(vn − vn+1) + [∇f (xn−1) − ∇f (xn)] . (31)

By applying limn→∞ to the previous equality, and by using the Lipschitz con-

tinuity of ∇f , i.e. ‖∇f (xn) − ∇f (xn−1)‖ ≤ L‖xn − xn−1‖, (29), as well as the
continuity of Id − T, Qα and U, it can be verified that

lim
n→∞

(ξn+1 − ξn) = 0 . (32)

Now, by (16),

xn+2 − xn+1

= Txn+1 − Tαxn+1 + Tαxn+1 − Tαxn − λ[∇f (xn+1)

− ∇f (xn)] − λ[ξn+2 − ξn+1]

= (T − Tα)xn+1 + Qα(xn+1 − xn) − λ[∇f (xn+1)

− ∇f (xn)] − λ[ξn+2 − ξn+1],

which leads to

(1 − α)(Id − T)xn = (xn − xn+1) + Qα(xn − xn−1)

− λ[∇f (xn) − ∇f (xn−1)] − λ[ξn+1 − ξn] . (33)

Choose any y := (x̄, v̄) ∈ W[(yn)n∈Z≥0] �= ∅, i.e. there exists a subsequence

(ynk := (xnk , vnk))k s.t. xnk ⇀k→∞ x̄ and vnk ⇀k→∞ v̄. Furthermore, by (29),

(32), (33), and the Lipschitz continuity of ∇f ,
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lim sup
n→∞

‖(Id − T)xn‖ ≤ 1
1−α

lim
k→∞

‖xn − xn+1‖ + lim
k→∞

1
1−α

‖Qα(xn − xn−1)‖

+ λ
1−α

lim
k→∞

‖∇f (xn) − ∇f (xn−1)‖

+ λ
1−α

lim
k→∞

‖ξn+1 − ξn‖

≤ 1
1−α

lim
k→∞

‖xn − xn+1‖ + lim
k→∞

‖Qα‖
1−α

‖xn − xn−1‖

+ λL
1−α

lim
k→∞

‖xn − xn−1‖ + λ
1−α

lim
k→∞

‖ξn+1 − ξn‖

= 0 . (34)

Hence, due to xnk ⇀k→∞ x̄, limk→∞(Id − T)xnk = 0, and the demiclosedness

property of the nonexpansive mapping T [3, Thm. 4.17, p. 63], it follows that

x̄ ∈ Fix T . (35)

Fix arbitrarily an x# ∈ X . Since (xn)n is bounded, there exist C′′,C∇f ∈ R>0

s.t. for any n,

‖∇f (xn)‖ ≤ ‖∇f (xn) − ∇f (x#)‖ + ‖∇f (x#)‖
≤ L‖xn − x#‖ + ‖∇f (x#)‖
≤ L(‖xn‖ + ‖x#‖) + ‖∇f (x#)‖
≤ L(C′′ + ‖x#‖) + ‖∇f (x#)‖ ≤ C∇f . (36)

Now, according to the Baillon–Haddad theorem [29], [3, Cor. 18.16, p. 270],

2λ
L ‖∇f (xnk) − ∇f (x̄)‖2

≤ 2λ〈xnk − x̄|∇f (xnk) − ∇f (x̄)〉
= 2λ〈xnk+1 − x̄|∇f (xnk)〉

− 2λ〈xnk+1 − x̄|∇f (x̄)〉 + 2λ〈xnk − xnk+1|∇f (xnk) − ∇f (x̄)〉
= −2λ〈xnk+1 − x̄|ξnk+1〉 − 2〈xnk+1 − x̄|Uvnk+1〉

− 2〈xnk+1 − x̄|Qα(xnk+1 − xnk)〉 − (1 − 2α)〈xnk+1 − x̄|(T − Id )xnk+1〉
− 2λ〈xnk+1 − x̄|∇f (x̄)〉 + 2λ〈xnk − xnk+1|∇f (xnk) − ∇f (x̄)〉 (37a)

≤ 2λ
[

g(x̄) − g(xnk+1)
]

− 2〈U(xnk+1 − x̄)|vnk+1〉
− 2〈xnk+1 − x̄|Qα(xnk+1 − xnk)〉 − (1 − 2α)〈xnk+1 − x̄|(T − Id )xnk+1〉
− 2λ〈xnk+1 − x̄|∇f (x̄)〉 + 2λ〈xnk − xnk+1|∇f (xnk) − ∇f (x̄)〉 (37b)

≤ 2λ
[

g(x̄) − g(xnk+1)
]

− 2
1−α

〈vnk+1 − vnk |vnk+1〉

− 2〈xnk+1 − x̄|Qα(xnk+1 − xnk)〉 − (1 − 2α)〈xnk+1 − x̄|(T − Id )xnk+1〉
− 2λ〈xnk+1 − x̄|∇f (x̄)〉 + 2λ

(

C∇f + ‖∇f (x̄)‖
)

‖xnk − xnk+1‖, (37c)
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where (21) is used in (47a), the convexity of g, (15) and the self-adjointness

of U in (37b), and finally (19) and (36) in (37c). Since limk→∞(xnk −
xnk+1) = 0 by (29), the continuity of Qα implies limk→∞ Qα(xnk+1 − xnk) =
0, and (34) yields limk→∞(T − Id )xnk+1 = 0. Notice again by (29) that

limk→∞(vnk+1 − vnk) = 0. Furthermore, (29), together with (xnk − x̄) ⇀k→∞
0, yields (xnk+1 − x̄) ⇀k→∞ 0. Similarly, (vnk+1 − v̄) ⇀k→∞ 0 can be deduced

from (29) and (vnk − v̄) ⇀k→∞ 0. Due to [3, Lem. 2.41(iii), p. 37], all of the

previous arguments result in limk→∞〈vnk+1 − vnk |vnk+1〉 = 0, limk→∞〈xnk+1 −
x̄|Qα(xnk+1 − xnk)〉 = 0, limk→∞〈xnk+1 − x̄|(T − Id )xnk+1〉 = 0, limk→∞
〈xnk+1 − x̄|∇f (x̄)〉 = 0 and limk→∞‖xnk − xnk+1‖ = 0. Hence, the application

of lim supk→∞ onto both sides of (37c) yields

lim sup
k→∞

‖∇f (xnk) − ∇f (x̄)‖2 ≤ lim sup
k→∞

L
[

g(x̄) − g(xnk+1)
]

= L

[

g(x̄) − lim inf
k→∞

g(xnk+1)

]

≤ 0,

where the last inequality is deduced from the fact that g ∈ Ŵ0(X ) turns out to

be also weakly sequentially lower semicontinuous [3, Thm. 9.1, p. 129]. In other

words,

lim
k→∞

∇f (xnk) = ∇f (x̄) . (38)

Since vnk+1 ⇀k v̄, i.e. ∀z ∈ X , limk→∞〈z|vnk+1〉 = 〈z|v̄〉, it can be easily seen
that ∀z ∈ X , limk→∞〈z|Uvnk+1〉 = limk→∞〈Uz|vnk+1〉 = 〈Uz|v̄〉 = 〈z|Uv̄〉, i.e.
Uvnk+1 ⇀k Uv̄. Hence, having this result and (38) plugged into (30) yields that

ξnk+1 ⇀k→∞ ξ := − 1
λ
Uv̄ − ∇f (x̄) . (39)

Using (21) once again,

〈xnk+1 − x̄|ξnk+1〉 = −〈xnk+1 − x̄|∇f (xnk)〉 − 1
λ
〈xnk+1 − x̄|Uvnk+1〉

− 1
λ
〈xnk+1 − x̄|Qα(xnk+1 − xnk)〉

− 1
λ
(1 − 2α)〈xnk+1 − x̄|(T − Id )xnk+1〉

= −〈xnk+1 − x̄|∇f (xnk)〉 − 1
λ
〈U(xnk+1 − x̄)|vnk+1〉

− 1
λ
〈xnk+1 − x̄|Qα(xnk+1 − xnk)〉

− 1
λ
(1 − 2α)〈xnk+1 − x̄|(T − Id )xnk+1〉

= −〈xnk+1 − x̄|∇f (xnk)〉 − 1
λ(1−α)

〈vnk+1 − vnk |vnk+1〉

− 1
λ
〈xnk+1 − x̄|Qα(xnk+1 − xnk)〉

− 1
λ
(1 − 2α)〈xnk+1 − x̄|(T − Id )xnk+1〉, (40)

where (19) is used in (40). Since (xnk+1 − x̄) ⇀k 0 and vnk+1 ⇀k v̄, and due

to (29), (34) and (38), as well as the continuity of the linear mapping Qα , it turns
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out by [3, Lem. 2.41(iii), p. 37] and (40) that limk→∞〈xnk+1 − x̄|ξnk+1〉 = 0. In

other words,

lim
k→∞

〈xnk+1|ξnk+1〉 = lim
k→∞

(

〈xnk+1 − x̄|ξnk+1〉 + 〈x̄|ξnk+1〉
)

= lim
k→∞

〈xnk+1 − x̄|ξnk+1〉 + lim
k→∞

〈x̄|ξnk+1〉

= lim
k→∞

〈x̄|ξnk+1〉 = 〈x̄|ξ〉 . (41)

Now, by (xnk+1, ξnk+1) ∈ gra∂g, the maximal monotonicity of ∂g [3, Thm. 20.40,

p. 304] and the propertymanifested in (41), [3, Cor. 20.49(ii), p. 306] suggests that

(x̄, ξ) ∈ gra∂g ⇔ ξ ∈ ∂g(x̄). Hence, according also to (39),−U(v̄/λ) ∈ ∇f (x̄) +
∂g(x̄), which together with (35) imply (x̄, v̄) ∈ ϒ

(λ)
∗ . Since (x̄, v̄) was arbitrarily

chosen within W[(yn)n], it follows that W[(yn)n] ⊂ ϒ
(λ)
∗ . Adding also to that

the Fejér monotonicity property (27) of (yn)n∈Z≥0 w.r.t. ϒ
(λ)
∗ yields that (yn)n

converges weakly to a point in ϒ
(λ)
∗ [3, Thm. 5.5, p. 76]. According to (9c), the

weak limit of (xn)n solves VIP(∇f + ∂g, Fix T). �

Definition 3.2 ([3, (10.2), p. 144]): A proper convex function h : X →
(−∞,+∞] is called uniformly convex on a non-empty subsetS of dom h, if there

exists an increasing function ϕS : [0,+∞] → [0,+∞], which vanishes only at

0, s.t. ∀x, x′ ∈ S and ∀μ ∈ (0, 1),

h(μx + (1 − μ)x′) + μ(1 − μ)ϕS(‖x − x′‖) ≤ μh(x) + (1 − μ)h(x′) .

In the case where S := dom h and ϕS := (βS/2)(·)2, for some βS ∈ R>0,

then h is called strongly convex with constant βS . Moreover, ‘strong convexity’

⇒ ‘uniform convexity’ ⇒ ‘strict convexity ’.

Assumption 3.3: (i) Function f is uniformly convex on every non-empty

bounded subset of X .

(ii) Function g is uniformly convex on every non-empty bounded subset of

dom ∂g.

Lemma 3.4: In addition to the setting of Theorem 3.1, if either Assumption 3.3(i)

or Assumption 3.3(ii) holds true, then sequence (xn)n∈Z≥0 of (13) converges strongly

to a point that solves VIP(∇f + ∂g, Fix T).

Proof: As part (ii) of the proof of Theorem 3.1 has demonstrated, sequences

(xn)n and (Uvn)n converge weakly to x̄ andUv̄, respectively. Consequently, (29),

the continuity ofQα , (30), (34), (38) and (39) suggest that (ξn)n converges weakly

to ξ .
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Let Assumption 3.3(i) holds true. Then, according to [3, Ex. 22.3(iii), p. 324],

given a bounded set B ⊂ X , there exists an increasing function ϕB : [0,+∞) →
[0,+∞], which vanishes only at 0, s.t. ∀x, x′ ∈ B,

〈x − x′|∇f (x) − ∇f (x′)〉 ≥ 2ϕB

(

‖x − x′‖
)

. (42)

Define B := (xn)n ∪ {x̄} (recall that (xn)n is bounded). Set x := xn and x′ := x̄

in (42) to obtain

〈xn − x̄|∇f (xn) − ∇f (x̄)〉 ≥ 2ϕB (‖xn − x̄‖) , ∀n . (43)

Since xn ⇀n→∞ x̄ and limn→∞ ∇f (xn) = ∇f (x̄) by (38), the application of

limn→∞ to (43) and [3, Lem. 2.41(iii), p. 37] suggest that limn→∞ ϕB(‖xn −
x̄‖) = 0, and thus limn→∞‖xn − x̄‖ = 0, due to the properties

of ϕB.

Let now Assumption 3.3(ii) holds true. Then, according to [3, Ex. 22.3(iii),

p. 324], given a bounded setB ⊂ dom ∂g, there exists an increasing function ϕB :

[0,+∞) → [0,+∞], which vanishes only at 0, s.t. ∀x, x′ ∈ B, and ∀ξ ∈ ∂g(x),

∀ξ ′ ∈ ∂g(x′),

〈x − x′|ξ − ξ ′〉 ≥ 2ϕB

(

‖x − x′‖
)

. (44)

According to (15), xn ∈ dom ∂g, ∀n. Moreover, as the discussion after (41)

demonstrated, x̄ ∈ dom ∂g. Define thus the bounded set B := (xn)n ∪ {x̄} ⊂
dom ∂g, and set x := xn, x

′ := x̄, ξ := ξn and ξ ′ := ξ in (44) to obtain

〈xn − x̄|ξn − ξ〉 ≥ 2ϕB (‖xn − x̄‖) , ∀n . (45)

Similarly to (41), it can be verified that limn→∞〈xn|ξn〉 = 〈x̄|ξ〉. Thus

lim
n→∞

〈xn − x̄|ξn − ξ 〉 = lim
n→∞

〈xn|ξn〉 − lim
n→∞

〈xn|ξ〉 − lim
n→∞

〈x̄|ξn〉 + 〈x̄|ξ〉

= 〈x̄|ξ〉 − 〈x̄|ξ〉 − 〈x̄|ξ〉 + 〈x̄|ξ〉 = 0 .

Hence, the application of limn→∞ to (45) yields limn→∞ ϕB(‖xn − x̄‖) = 0, and

thus limn→∞‖xn − x̄‖ = 0. �
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Corollary 3.5: Consider again the setting of Theorem 3.1. In the case where the

non-smooth part of the composite loss becomes zero, i.e. g:=0, then (13) takes the

special form

x1/2 := Tαx0 − λ∇f (x0), (46a)

x1 := x1/2, (46b)

xn+3/2 := xn+1/2 −
[

Tαxn − λ∇f (xn)
]

+
[

Txn+1 − λ∇f (xn+1)
]

, (46c)

xn+2 := xn+3/2 . (46d)

Consider α ∈ [0.5, 1) and λ ∈ (0, 2(1 − α)/L). Then the following hold true.

(i) For sequence (xn)n∈Z≥0 of (46), there exist a sequence (vn)n∈Z≥0 ⊂
X and a strongly positive operator � : X 2 → X 2 s.t. sequence (yn :=
(xn, vn))n∈Z>0\{1} is Fejér monotone [3, Def. 5.1, p. 75] w.r.t. ϒ

(λ)
∗ of Propo-

sition 2.15 (under g=0) in the Hilbert space (X 2, 〈·|·〉�).

(ii) Sequence (xn)n∈Z≥0 of (46) converges weakly to a point that solves

VIP(∇f , Fix T).

In the case where f:=0, the FM-HSDM recursions take the form

x1/2 := Tαx0, (47a)

x1 := Proxλg(x1/2), (47b)

xn+3/2 := xn+1/2 − Tαxn + Txn+1, (47c)

xn+2 := Proxλg(xn+3/2) . (47d)

Consider α ∈ [0.5, 1) and λ ∈ R>0. Then the following hold true.

(i) For sequence (xn)n∈Z≥0 of (47), there exist a sequence (vn)n∈Z≥0 ⊂
X and a strongly positive operator � : X 2 → X 2 s.t. sequence (yn :=
(xn, vn))n∈Z>0\{1} is Fejér monotone [3, Def. 5.1, p. 75] w.r.t. ϒ

(λ)
∗ of Propo-

sition 2.15 (under f=0) in the Hilbert space (X 2, 〈·|·〉�).

(ii) Sequence (xn)n∈Z≥0 of (47) converges weakly to a point that solves

VIP(∂g, Fix T).

Proof: The proof becomes a special case of the one of Theorem 3.1, after set-

ting f :=0 or g:=0. With regards to the reason behind the relaxation of λ

offered by (47), notice that any λ ∈ R>0 can serve as the Lipschitz constant of

∇f = 0. �
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The following theorem draws even stronger links with the original form of

HSDM.

Theorem3.6: Consider f ∈ Ŵ0(X ),with L being the Lipschitz-continuity constant

of ∇f . Moreover, given the closed affine set A, consider any T ∈ TA, and for λ ∈
R>0, an arbitrarily fixed x0 ∈ X , and for all n ∈ Z≥0 form the iterations:

x1/2 := Tαx0 − λ∇f (Tαx0), (48a)

x1 := x1/2, (48b)

xn+3/2 := xn+1/2 −
[

Tαxn − λ∇f (Tαxn)
]

+
[

Txn+1 − λ∇f (Tαxn+1)
]

, (48c)

xn+2 := xn+3/2, (48d)

where Tα is defined in (12). Consider also α ∈ [0.5, 1) and λ ∈ (0, 2(1 − α)2/L).

Then, the following hold true.

(i) There exist a sequence (vn)n∈Z≥0 ⊂ X and a strongly positive operator

ϒ : X 2 → X 2 s.t. sequence (yn := (xn, vn))n∈Z>0\{1} is Fejér monotone [3,

Def. 5.1, p. 75] w.r.t. ϒ
(λ)
∗ of Proposition 2.15 (under g=0) in the Hilbert

space (X 2, 〈·|·〉ϒ).

(ii) Sequence (xn)n of (48) converges weakly to a point that solvesVIP(∇f , FixT).

(iii) If Assumption 3.3(i) also holds true, then (xn)n of (48) converges strongly to a

point that solves VIP(∇f , Fix T).

Proof: (i) Proposition 2.15 takes the following special form in the present

context: if ∃v∗ ∈ X s.t.

(x∗, v∗) ∈ ϒ (λ)
∗ := {(x, v) ∈ Fix T × X | − 1

λ
Uv = ∇f (x)} , (49)

then x∗ solves VIP(∇f , Fix T).

By following the same steps which start from the beginning of the proof of

Theorem 3.1 till (20), it can be verified that

− (1 − 2α)(T − Id )xn+1 − Qα(xn+1 − xn) − Uvn+1 = λ∇f (Tαxn), (50)

and by considering any (x∗, v∗) ∈ ϒ
(λ)
∗ ,

λ[∇f (Tαxn) − ∇f (Tαx∗)]

= −(1 − 2α)(Q − Id )(xn+1 − x∗) − Qα(xn+1 − xn) − U(vn+1 − v∗) .
(51)
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As in the proof of Theorem 3.1, the Baillon–Haddad theorem [29], [3, Cor. 18.16,

p. 270] suggests that

2λ
L ‖∇f (Tαxn) − ∇f (Tαx∗)‖2

≤ 2λ〈Tαxn − Tαx∗|∇f (Tαxn) − ∇f (Tαx∗)〉
= 2λ〈Qα(xn − x∗)|∇f (Tαxn) − ∇f (Tαx∗)〉
= 2λ〈xn − x∗|Qα[∇f (Tαxn) − ∇f (Tαx∗)]〉
= 2λ〈xn+1 − x∗|Qα[∇f (Tαxn) − ∇f (Tαx∗)]〉

+ 2λ〈xn − xn+1|Qα[∇f (Tαxn) − ∇f (Tαx∗)]〉
= −2(1 − 2α)〈xn+1 − x∗|Qα(Q − Id )(xn+1 − x∗)〉

− 2〈xn+1 − x∗|Q2
α(xn+1 − xn)〉 − 2〈xn+1 − x∗|QαU(vn+1 − v∗)〉

+ 2λ〈xn − xn+1|Qα[∇f (Tαxn) − ∇f (Tαx∗)]〉
= −2(1 − 2α)〈xn+1 − x∗|Qα(Q − Id )(xn+1 − x∗)〉

− 2〈xn+1 − x∗|Q2
α(xn+1 − xn)〉 − 2〈U(xn+1 − x∗)|Qα(vn+1 − v∗)〉

+ 2λ〈xn − xn+1|Qα[∇f (Tαxn) − ∇f (Tαx∗)]〉
≤ −2(1 − 2α)〈xn+1 − x∗|Qα(Q − Id )(xn+1 − x∗)〉

− 2〈xn+1 − x∗|Q2
α(xn+1 − xn)〉 − 2

1−α
〈vn+1 − vn|Qα(vn+1 − v∗)〉

+ λL
2 ‖xn − xn+1‖2 + 2λ

L ‖Qα[∇f (xn) − ∇f (x∗)]‖2

≤ −2(2α − 1)〈xn+1 − x∗|Qα(Id − Q)(xn+1 − x∗)〉

− 2〈xn+1 − x∗|Q2
α(xn+1 − xn)〉 − 2

1−α
〈vn+1 − vn|Qα(vn+1 − v∗)〉

+ λL
2 ‖xn − xn+1‖2 + 2λ

L ‖∇f (Tαxn) − ∇f (Tαx∗)‖2

≤ 2〈x∗ − xn+1|Q2
α(xn+1 − xn)〉 + 2

1−α
〈vn+1 − vn|Qα(v∗ − vn+1)〉

+ λL
2 ‖xn − xn+1‖2 + 2λ

L ‖∇f (Tαxn) − ∇f (Tαx∗)‖2 . (52)

Mapping Q2
α is strongly positive: indeed, if Uα denotes the square root of

the strongly positive Qα [cf. (29)], then ∀x ∈ X , 〈Q2
αx|x〉 = 〈UαQαUαx|x〉 =

〈QαUαx|Uαx〉 ≥ (1 − α)〈Uαx|Uαx〉 = (1 − α)〈Qαx|x〉 ≥ (1 − α)2‖x‖2. Define
now the mapping ϒ : X 2 → X 2 : (x, v) 
→ (Q2

αx, [1/(1 − α)]Qαv). Mapping

ϒ turns out to be strongly positive, w.r.t. the standard inner product of X 2:

〈(x, v)|(x, v′)〉 := 〈x|x′〉 + 〈v|v′〉, ∀(x, v), (x′, v′) ∈ X 2, due to the strong posi-

tivity of Q2
α and [1/(1 − α)]Qα . Consequently, one can consider (X 2, 〈·|·〉ϒ) as

a Hilbert space equipped with the inner product 〈(x, v)|(x, v′)〉ϒ := 〈x|Q2
αx

′〉 +
[1/(1 − α)]〈v|Qαv′〉, ∀(x, v), (x′, v′) ∈ X 2. As such, (52) becomes

0 ≤ 2〈yn+1 − yn|ϒ(y∗ − yn+1)〉 + λL
2 ‖xn − xn+1‖2
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= 2〈yn+1 − yn|y∗ − yn+1〉ϒ + λL
2 ‖xn − xn+1‖2

= ‖yn − y∗‖2ϒ − ‖yn+1 − y∗‖2ϒ − ‖yn+1 − yn‖2ϒ + λL
2 ‖xn − xn+1‖2 . (53)

Choose, now, any ζ ′ with λL/[2(1 − α)2] < ζ ′ < 1. Then, for any y = (x, v) ∈
X 2,

λL
2 ‖x‖2 < ζ ′(1 − α)2‖x‖2 ≤ ζ ′〈x|Q2

αx〉

≤ ζ ′〈x|Q2
αx〉 + ζ ′ 1

1−α
〈v|Qαv〉 = ζ ′‖y‖2ϒ .

This argument together with (53) yield

‖yn − y∗‖2ϒ − ‖yn+1 − y∗‖2ϒ ≥ ‖yn+1 − yn‖2ϒ − λL
2 ‖xn − xn+1‖2

≥ ‖yn+1 − yn‖2ϒ − ζ ′‖yn+1 − yn‖2ϒ
= (1 − ζ ′)‖yn+1 − yn‖2ϒ , (54)

i.e. sequence (yn)n∈Z≥0 ⊂ (X 2, 〈·|·〉ϒ) is Fejér monotone w.r.t. ϒ
(λ)
∗ of (49).

(ii)Due to Fejér monotonicity, (yn) is bounded [3, Prop. 5.4(i), p. 76] and pos-

sesses a non-empty set of weakly sequential cluster pointsW[(yn)n] [3, Lem. 2.37,

p. 36]. Moreover, it can be readily verified, as in (29), that limn→∞(yn+1 − yn) =
0, limn→∞(xn+1 − xn) = 0 and limn→∞(vn+1 − vn) = 0. The rest of the proof

follows steps similar to those after (29) in the proof of Theorem 3.1, but with

the following twist: ∇f (xnk) is replaced by ∇f (Tαxnk), where all the asymp-

totic results of the proof of Theorem 3.1 continue to hold due to the Lipschitz

continuity of ∇f and the nonexpansiveness of Tα , e.g. ∀x, x′ ∈ X ,

‖∇f (Tαx) − ∇f (Tαx
′)‖ ≤ L‖Tαx − Tαx

′‖ ≤ L‖x − x′‖ .

(iii) Part (ii) of this proof has demonstrated that sequences (xn)n and (Uvn)n

converge weakly to x̄ and Uv̄, respectively. Consequently, in a way similar to

part (ii) of the proof of Theorem 3.1, it can be shown also here that (ξn)n

converges weakly to ξ .

Let Assumption 3.3(i) holds true. Then, according to [3, Ex. 22.3(iii), p. 324],

given a bounded set B ⊂ X , there exists an increasing function ϕB : [0,+∞) →
[0,+∞], which vanishes only at 0, s.t. x, x′ ∈ B,

〈x − x′|∇f (x) − ∇f (x′)〉 ≥ 2ϕB

(

‖x − x′‖
)

. (55)

Due to the nonexpansiveness of Tα and the boundedness of (xn)n, by part (i)

of the proof, it turns out that (Tαxn)n is also bounded: ‖Tαxn‖ ≤ ‖Tαxn −
Tα x̄‖ + ‖Tα x̄‖ ≤ ‖xn − x̄‖ + ‖x̄‖ ≤ ‖xn‖ + 2‖x̄‖ ≤ C′′ + 2‖x̄‖, for some C′′ ∈
R>0 (recall that x̄ ∈ Fix Tα = Fix T). Define, thus, the bounded set B :=
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(Tαxn)n ∪ {x̄}. As such, (55) yields

〈(Tα − Id )xn|∇f (Tαxn) − ∇f (x̄)〉 + 〈xn − x̄|∇f (Tαxn) − ∇f (x̄)〉
= 〈Tαxn − x̄|∇f (Tαxn) − ∇f (x̄)〉 ≥ 2ϕB (‖Tαxn − x̄‖) , ∀n . (56)

Part (i) of this proof has already showed that limn→∞(T − Id )xn =
0. As such, limn→∞(Tα − Id )xn = α limn→∞(T − Id )xn = 0. Moreover,

note that xn ⇀n→∞ x̄ and limn→∞ ∇f (Tαxn) = ∇f (x̄). Hence, due also

to [3, Lem. 2.41(iii), p. 37], an application of limn→∞ to both sides

of (56) results in limn→∞ ϕB(‖Tαxn − x̄‖) = 0, and thus limn→∞ Tαxn =
x̄. Using limn→∞(Tα − Id )xn = 0, one can easily verify that limn→∞ xn =
limn→∞(Id − Tα)xn + limn→∞ Tαxn = x̄, which establishes part (iii) of

Theorem 3.6. �

The following theorems present convergence rates on the sequence of FM-

HSDM estimates.

Theorem 3.7: For sequence (xn)n∈Z≥0 of (13), there exists ξn ∈ ∂g(xn), ∀n, s.t. for
any x∗ ∈ Fix T,

1
n+1

n
∑

ν=0

〈xν+1 − x∗|(Id − Q)(xν+1 − x∗)〉 = O( 1
n+1), (57a)

1
n+1

n
∑

ν=0

‖Uvν+1 + λ[∇f (xν) + ξν+1]‖2 = O( 1
n+1), (57b)

1
n+1

n
∑

ν=0

‖(Id − T)xν+1‖2 = O( 1
n+1), (57c)

where the big-oh notation an = O(bn), bn > 0, means lim supn→∞ |an|/bn <

+∞. Regarding sequence (xn)n∈Z≥0 of (46), (57a)–(57c) still hold true, but ξν+1

is set equal to 0 in (57b). Similarly, for sequence (xn)n∈Z≥0 of (48), (57a), (57c) as

well as

1
n+1

n
∑

ν=0

‖Uvν+1 + λ∇f (Tαxν)‖2 = O( 1
n+1)

hold true.

Proof: First, notice by (25), Proposition A.5 and ‖Qα‖ ≤ 1 that Q−1
α exists and

it is strongly positive with

‖Q−1
α ‖ ≤ 1

1−α
; (1 − α)‖x‖2 ≤ (1−α)

‖Qα‖2 ‖x‖
2 ≤ 〈Q−1

α x|x〉, ∀x ∈ X . (58)

Then, going back to the discussion following (25),

‖yn+1 − yn‖2�
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= ‖xn+1 − xn‖2Qα
+ 1

1−α
‖vn+1 − vn‖2 (59a)

= ‖Qα(xn+1 − xn)‖2Q−1
α

+ 1
1−α

‖(1 − α)U(xn+1 − x∗)‖2 (59b)

= ‖Uvn+1 + λ[∇f (xn) + ξn+1] − (1 − 2α)(Id − T)xn+1‖2Q−1
α

+ 1
1−α

‖(1 − α)U(xn+1 − x∗)‖2 (59c)

= ‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1
α

+ (1 − 2α)2‖(Id − T)xn+1‖2Q−1
α

− 2〈Uvn+1 + λ[∇f (xn) + ξn+1]|(1 − 2α)(Id − T)xn+1〉Q−1
α

+ 1
1−α

‖(1 − α)U(xn+1 − x∗)‖2

≥ 1
ρ
‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1

α
− (1−2α)2

ρ−1 ‖(Id − T)xn+1‖2Q−1
α

+ 1
1−α

‖(1 − α)U(xn+1 − x∗)‖2 (59d)

= 1
ρ
‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1

α
− (1−2α)2

ρ−1 ‖(Id − T)xn+1

− (Id − T)x∗‖2Q−1
α

+ (1 − α)〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

= 1
ρ
‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1

α
− (1−2α)2

ρ−1 ‖(Id − Q)(xn+1 − x∗)‖2Q−1
α

+ (1 − α)〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

= 1
ρ
‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1

α

− (1−2α)2

ρ−1 〈xn+1 − x∗|(Id − Q)Q−1
α (Id − Q)(xn+1 − x∗)〉

+ (1 − α)〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

≥ 1
ρ
‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1

α
(59e)

− (2α−1)2

(ρ−1)(1−α)
〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

+ (1 − α)〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉 (59f)

= 1
ρ
‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2Q−1

α
+ θ〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

(59g)

≥ (1−α)
ρ

‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2+θ〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉,
(59h)

≥ (1−α)
ρ

‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2+θ(1 − α)‖(Id−Q)(xn+1 − x∗)‖2Q−1
α

(59i)

= (1−α)
ρ

‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2 + θ(1 − α)‖(Id − T)xn+1‖2Q−1
α

(59j)

≥ (1−α)
ρ

‖Uvn+1 + λ[∇f (xn) + ξn+1]‖2 + θ(1 − α)2‖(Id − T)xn+1‖2,
(59k)
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where the definition of ϒ , given after (52), is used in (59a), (19) in (59b), (21)

in (59c), (24) with η := ρ/(ρ − 1), a := Uvn+1 + λ[∇f (xn) + ξn+1], b := (1 −
2α)(Id − T)xn+1 and 
 := Q−1

α , as well as ρ > 1 in (59d), and

〈xn+1 − x∗|(Id − Q)Q−1
α (Id − Q)(xn+1 − x∗)〉

= 〈xn+1 − x∗|U2Q−1
α U2(xn+1 − x∗)〉

= 〈U(xn+1 − x∗)|
(

UQ−1
α U

)

U(xn+1 − x∗)〉

≤ ‖UQ−1
α U‖ 〈U(xn+1 − x∗)|U(xn+1 − x∗)〉 (60a)

= ‖UQ−1
α U‖ 〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

≤ ‖U‖2‖Q−1
α ‖ 〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

= ‖Id − Q‖‖Q−1
α ‖ 〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉

≤ 1
1−α

〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉 (60b)

with (58) and ‖Id − Q‖ ≤ 1 in (59f). Note that [4, Thm. 9.2-2, p. 466] is used

in (60a). Moreover, θ := (1 − α) − (2α − 1)2/[(1 − α)(ρ − 1)] becomes posi-

tive for any ρ > 1 + (2α − 1)2/(1 − α)2 in (59g), (58) in (59h), (60b) in (59i),

the fact (Id − Q)(xn+1 − x∗) = (Id − T)xn+1 − (Id − T)x∗ = (Id − T)xn+1

in (59j), and (58) in (59k).

Due to (28), the previous considerations suggest that there exists C ∈ R>0

s.t. ∀n,

C
n+1 ≥ 1

n+1

n
∑

ν=0

‖yν+1 − yν‖2�

≥ 1
ρ(n+1)

n
∑

ν=0

‖Uvν+1 + λ[∇f (xν) + ξν+1]‖2

+ θ
n+1

n
∑

ν=0

〈xν+1 − x∗|(Id − Q)(xν+1 − x∗)〉

≥ 1
ρ(n+1)

n
∑

ν=0

‖Uvν+1 + λ[∇f (xν) + ξν+1]‖2+ θ(1−α)2

n+1

n
∑

ν=0

‖(Id−T)xν+1‖2,

which establishes the claim of Theorem 3.7 regarding the sequence of (13).

The proof of the claim with regards to the sequence of (47) follows the same

steps as the previous one, but with the twist of replacing ∇f (xn) by ∇f (Tαxn)

and g=0. �
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Theorem 3.8: For the sequence (xn)n∈N of (47), there exists ξn ∈ ∂g(xn), ∀n,
s.t. for any x∗ ∈ Fix T,

〈xn+1 − x∗|(Id − Q)(xn+1 − x∗)〉 = O( 1
n+1),

‖Uvn+1 + λξn+1‖2 = O( 1
n+1),

‖(Id − T)xn+1‖2 = O( 1
n+1) .

Proof: Define here �xn := xn−1 − xn, �vn := vn−1 − vn, �yn := (�xn,�vn)

and �ξn := ξn−1 − ξn, ∀n. Under these definitions and in the case of f =0, (31)

yields

(1 − 2α)(Q − Id )(xn − xn+1) + Qα [(xn − xn+1) − (xn−1 − xn)]

= −U(vn − vn+1) − λ(ξn − ξn+1)

⇔ (1 − 2α)(Q − Id )�xn+1 + Qα(�xn+1 − �xn) = −U�vn+1 − λ�ξn+1

⇔ λ�ξn+1 = −U�vn+1 − Qα(�xn+1 − �xn) − (1 − 2α)(Q − Id )�xn+1 .

(61)

Moreover, (19) suggests that −�vn+1 = (1 − α)U(xn+1 − x∗), and thus

1
1−α

(�vn+1 − �vn) = U�xn+1 . (62)

The monotonicity of ∂g(·), (61), (62), and the definition of �, introduced

after (25), imply that

0 ≤ 〈�xn+1|λ�ξn+1〉
⇔ 0 ≤ 〈�xn+1| − U�vn+1 − Qα(�xn+1 − �xn)−(2α − 1)(Id − Q)�xn+1〉
⇔ (2α − 1)〈�xn+1|(Id − Q)�xn+1〉
≤ −〈U�xn+1|�vn+1〉 − 〈�xn+1|Qα(�xn+1 − �xn)〉
⇔ (2α − 1)〈�xn+1|(Id − Q)�xn+1〉
≤ − 1

1−α
〈�vn+1 − �vn|�vn+1〉 − 〈�xn+1|Qα(�xn+1 − �xn)〉

⇔ (2α − 1)〈�xn+1|(Id − Q)�xn+1〉 ≤ 〈�yn+1|�yn − �yn+1〉�
⇔ (2α − 1)〈�xn+1|(Id − Q)�xn+1〉 ≤ 1

2

(

‖�yn‖2� − ‖�yn+1‖2�
−‖�yn − �yn+1‖2�

)

⇔ 2(2α − 1)〈�xn+1|(Id − Q)�xn+1〉 + ‖�yn − �yn+1‖2�
≤ ‖�yn‖2� − ‖�yn+1‖2�, (63)

and due to α ≥ 1/2 as well as the positive-definiteness of Id − Q, (63) yields

‖yn+1 − yn‖2� ≤ ‖yn − yn−1‖2�, ∀n . (64)
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Now, (28) and (64) imply that there exists C>0 s.t. for any n,

(n + 1)‖yn+1 − yn‖2� ≤
n

∑

ν=0

‖yν+1 − yν‖2� ≤ C,

and thus ‖yn+1 − yn‖2� ≤ C/(n + 1). This result applied to (59h) and (59k)

establishes the claim of Theorem 3.8. �

4. Numerical tests

To validate the previous theoretical findings, tests are conducted on a simple sce-

nario which is motivated by [13, Prob. 4.1]. More elaborate tests, involving noisy

real data, are deferred to an upcoming publication where FM-HSDM is extended

to a stochastic setting.

Given dimension d ∈ Z>0, the real Euclidean space X0 := Rd is considered.

Upon defining the closed ball B[uc, r] := {u ∈ X0 | ‖u − uc‖2 ≤ r}, for cen-

tre uc ∈ X0 and radius r ∈ R>0, let B1 := B[uc1, r1] := B[2e1, 1] and B2 :=
B[uc2, r2] := B[0, 2], where e1 stands for the first column of the d × d identity

matrix Id. In all tests, d:=10,000. Let also P denote a d × d diagonal positive-

definite matrix, whose unique smallest entry [P]11 ≤ 1 is fixed at position (1, 1),

and its largest entry, placed at position (d, d), is set to be equal to 10. This setting

is fixed across all experiments. Each experiment in the sequel randomly draws

numbers from the interval ([P]11, 10), under the uniformdistribution, and places

them in the remaining d−2 entries of the diagonal of P. Moreover, in all scenar-

ios, parameter α of FM-HSDM is set equal to 0.5, since this value produced the

best performance among all theoretically supported values taken from [0.5, 1).

Along the lines of [13, Prob. 4.1], the following constrained quadratic mini-

mization task is considered:

min
u∈B1∩B2

u⊤Pu = min
x:=(x(1),x(2),x(3))∈X

3
0 =:X

1
2x

(1)⊤Px(1) + ιB1(x
(2)) + ιB2(x

(3))

s.to x(1) = x(2) = x(3), (65)

where x := (x(1), x(2), x(3)) := [x(1)⊤, x(2)⊤, x(3)⊤]⊤ ∈ X
3
0 , and X := X

3
0 with

inner product defined as the standard Euclidean dot-vector product. The

definition of the indicator functions ιB1 , ιB2 can be found in Section 1.2. Since

P ≻ 0 and the smallest entry of P is located at the (1, 1) position, the unique

solution to (65) is x∗ := (e1, e1, e1). There are several ways of viewing (65) as a

special case of (1). For example, f (x) := (1/2)x(1)⊤Px(1) and g(x) := ιB1(x
(2)) +

ιB2(x
(3)), for any x = (x(1), x(2), x(3)). The Lipschitz coefficient of ∇f is the

largest entry of P, i.e. L=10, and Proxλg(x) = (x(1), PB1(x
(2)), PB2(x

(3))). For

any λ ∈ R>0, the proximal mapping of ιBi becomes ProxλιBi
= PBi , where PBi

denotes the metric projection mapping onto the ball Bi, given by PBi(u) =
uci + (u − uci)ri/max{‖u − uci‖, ri}, for any u ∈ X0. Furthermore, A := {x =
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Figure 1. Deviation of the estimate xn from the unique minimizer x∗ of (65) and deviation of
the loss-function value (f + g)(xn) from the optimal (f + g)(x∗) vs iteration index n, in the case
where [P]11 := 1 and thus the condition number of P equals 10.

(x(1), x(2), x(3)) ∈ X | x(1) = x(2) = x(3)} is a closed linear subspace and thus an

affine set. According to Example A.1, a nonexpansive mapping T with T ∈ TA is

the metric projection mapping PA(x) = (1/3)(
∑3

i=1 x
(i),

∑3
i=1 x

(i),
∑3

i=1 x
(i)),

∀x := (x(1), x(2), x(3)) ∈ X .

Under the previous view of (65) as a special case of (1), FM-HSDM is

compared with other HSDM family members such as the original HSDM [5],

the hybrid conjugate gradient method (HCGM) [11], the hybrid three-term

conjugate gradient method (HTCGM) [12] and the accelerated hybrid con-

jugate gradient method (AHCGM) [13]. Other competing methods include

ADMM [21,22,24,25] in the standard ‘scaled form’ [23, §3.1.1], and the PD

methods of ‘CP-C’ [15] and ‘PD-CP’ [14]. Due to the strongly convex nature

of x(1)⊤Px(1), the accelerated Alg. 2 of [14] with adaptive step sizes is used in

‘PD-CP.’

To test (47) and address also the case where [P]11 ∈ R>0 is close to zero

(cf. Figure 2), i.e. P is ‘nearly’ singular, f and g can be considered in a different

way than the previous setting: f :=0 and g(x) := (1/2)x(1)⊤Px(1) + ιB1(x
(2)) +

ιB2(x
(3)). Results that associate with this take on (65) as a special case of (1)

and with FM-HSDM are shown in the subsequent figures under the tag ‘FM-

HSDM II ’. The PD method of [15] is also adjusted to accommodate this view

of (65), and the associated results are shown in Figures 1 and 2 under the tag of

‘PD-C II ’. It is worth stressing here that for this specific g, the proximal mapping

Proxλg(x) = ((Id + λP)−1x(1), PB1(x
(2)), PB2(x

(3))). In other words, both PD-C

II and FM-HSDM II use the resolvent (Id + γP)−1, for some adequate γ ∈ R>0,

similarly to the case of ADMM and PD-CP.

Parameters in all methods were tuned to yield best performance. In all tests,

methods start from the same initial point, randomly drawn from a unit-norm
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Figure 2. This setting follows that of Figure 1, butwith [P]11 := 10−2, which results in a condition
number 10/10−2 = 103 for P.

sphere and centred at the uniqueminimizer of (65). Each curve in Figures 1 and 2

is the uniform average of the curves obtained from 100 Monte-Carlo runs.

Figure 1 considers [P]11 := 1, and since the largest entry of P is 10, the con-

dition number of P is 10/1 = 10. According to the developed theory, parameter

λ of FM-HSDM is set equal to λ := 0.99 · 2(1 − α)/L. Figure 1 shows that all

methods, apart from AHCGM, perform similarly. All HSDM-family members,

excluding FM-HSDM II, as well as PD-C score similar complexities since they

use ∇f once per iteration. On the contrary, ADMM, PD-CP, PD-C II and FM-

HSDM II do not utilize ∇f but build around the resolvent (Id + γP)−1 [3], for

appropriate γ ∈ R>0.

The next set of tests follows that of Figure 1, but with [P]11 := 10−2, which

yields the condition number 10/10−2 = 103 for P. As in the previous setting,

parameter λ of FM-HSDM is set equal to λ := 0.99 · 2(1 − α)/L. Notice that

since the theory which associates with HSDM, HCGM, HTCGM and AHCGM

offers guarantees of convergence in cases where f is strongly convex, i.e. P is

positive definite, Figure 2 shows that the performance of the aforementioned

algorithms degrades due to the fact that P was purposefully chosen to be ‘nearly

singular’. Figure 2 suggests also that FM-HSDM II pays the price, by using

(Id + γP)−1, to achieve a performance similar to ADMM. The ‘simpler’ FM-

HSDM and PD-C, where no matrix inversion is required, face difficulties in

following the ADMM, FM-HSDM II, PD-C II and PD-CP curves for such an ill-

conditionedminimization task. In theory, anyλ ∈ R>0 can serve FM-HSDMdue

to the fact that f :=0. In practice, tuning is necessary, and the value of λ = 100

is used. Figure 2 underlines the flexibility of FM-HSDM, where mappings and

computational complexity can be tuned to suit the minimization task at hand.

To compare (46) with (48), tests are performed on the following task:

min
x∈X0

x⊤Px s.t. x ∈ V := {u ∈ X0 | e⊤1 u = 1}, (66)
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Figure 3. Deviation of the estimate xn from the unique minimizer x∗ of (66) and deviation of
the loss-function value (f + g)(xn) from the optimal (f + g)(x∗) vs iteration index n, in the case
where [P]11 := 1 and thus the condition number of P equals 10.

Figure 4. This setting follows that of Figure 3, butwith [P]11 := 10−2, which results in a condition
number 10/10−2 = 103 for P.

where X0, P and e1 were defined earlier in this section, and V is a hyperplane;

hence, an affine set. Due to the construction of P, it can be verified that the mini-

mizer of (66) is x∗ = e1. Both (46) and (48) are employedwithT := PV , wherePV
stands for themetric projectionmapping onto V (cf. Example A.2). The results of

the application of (46) and (48) are illustrated in Figures 3 and 4 as ‘FM-HSDM’

and ‘FM-HSDM III’, respectively.

The state-of-the-art FISTA method [30, (4.1)–(4.3)] is also employed here

after recasting (66) as minx∈X0(1/2)x
⊤Px + ιV(x), where ιV stands for the

indicator function of V . This take on (66) opens also the door for (47),

under g(x(1), x(2)) := g1(x
(1)) + g2(x

(2)), ∀(x(1), x(2)) ∈ X
2
0 , with g1(x

(1)) :=
(1/2)x(1)⊤Px(1), ∀x(1), g2 := ιV , andA := {(x(1), x(2)) ∈ X

2
0 | x(1) = x(2)}, sim-

ilarly to the application of FM-HSDM II to (65). Tag ‘FM-HSDM II’ is used
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also in Figures 3 and 4 to indicate the performance of (47). It is worth notic-

ing that (48) can be applied to (66), but not to (65), due to the limitation of

g=0 in (48). Moreover, FISTA cannot be applied ‘innocently’ to (65), since its

proximal-mapping step [30, (4.1)] amounts to identifying the metric projection

of a point onto the intersection B1 ∩ B2, which is itself the outcome of an iter-

ative procedure, such as the projections-onto-convex-sets (POCS) algorithm [3,

Cor. 5.23, p. 84]. Such computational issues would have been surmounted, had

FISTA the ability to employ the convenient tool of ‘splitting of variables ’, which

is embedded in ADMM and PD methods, as well as in FM-HSDM via the affine

constraintA [cf. (65)].

The way to construct P is identical to that in the case of (65). Parameters α (:=
0.5) and λ for FM-HSDM and FM-HSDM II are identical to those of the (65)

scenario. The step size λ′ of FM-HSDM III is defined as λ′ := 0.99 · 2(1 − α)2/L,

according to the specifications dictated by Theorem 3.6. In all tests, methods start

from the same initial point, randomly drawn from a unit-norm sphere and cen-

tred at the unique minimizer of (66). Results are depicted in Figures 3 and 4,

where each curve is the uniform average of the curves obtained from 100Monte-

Carlo runs. FM-HSDM III demonstrates slower convergence speed than that of

the rest of the methods. Note that FISTA guarantees optimal convergence rate

|(f + g)(xn) − (f + g)(x∗)| = O[1/(n + 1)2] [30, Thm. 4.4]. The fast conver-

gence speed of FM-HSDM II becomes prominent in the case of Figure 4, where

P suffers a large condition number.

5. Conclusion

This paper introduced the FM-HSDM for solving affinely constrained compos-

ite minimization tasks in real Hilbert spaces. Only differential and proximal

mappings are used to provide low-computational complexity recursions with

enhanced flexibility towards the accommodation of affine constraints. The advo-

cated scheme enjoys Fejér monotonicity, a constant step-size parameter across

iterations, and minimal presuppositions on the smooth and non-smooth loss

functions to establish weak, and under certain hypotheses, strong convergence to

an optimal point. Results on the rate of convergence of the FM-HSDM’s sequence

of estimates were also presented. Numerical tests on synthetic data were also

demonstrated to validate the theoretical findings. Thorough tests on noisy real

data, which showcase the flexibility of the family of mappings TA [cf. (7)] in a

stochastic setting, are deferred to an upcoming publication.
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Appendix

Several special cases of A, of large interest in optimization tasks, together with members of

the family of mappings TA follow.

ExampleA.1: Given aHilbert spaceX0 and I ∈ Z>0, consider theHilbert spaceX := X0 ×
X0 × · · · × X0 = {x := (x(1), x(2), . . . , x(I)) | x(i) ∈ X0,∀i ∈ {1, . . . , I}}, equipped with the

inner product 〈x|x′〉X :=
∑I

i=1〈x(i)|x′(i)〉. Then, upon defining the (closed) linear subspace
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S := {x ∈ X | x(1) = x(2) = · · · = x(I)}, the metric projection mapping onto S satisfies

PS(x) =
(

1
I

I
∑

i=1

x(i), 1I

I
∑

i=1

x(i), . . . , 1I

I
∑

i=1

x(i)

)

, ∀x ∈ X , (A1)

and PS ∈ TS .

Proof: Formula (A1) can be easily derived by applying Example 2.6(i) to the special cases of

X and S : ‖x − PSx‖2X = minz∈X0

∑I
i=1‖x(i) − z‖2. Then, claim PS ∈ TS is established by

noticing that S is a closed affine set and by Proposition 2.11. �

Example A.2 (Metric projection mapping onto a hyperplane): For a non-zero a ∈ X and

a real number b, consider the metric projection mapping onto the hyperplane V := {x ∈
X | 〈a|x〉 = b} [3, (3.11), p. 49]

PV = Id − 〈a|Id 〉
‖a‖2 a + b

‖a‖2 a . (A2)

Then, PV ∈ TV .

Proof: The claim follows by the observations that V is a closed affine set, (b/‖a‖2)a ∈ V , and

by introducingV = {x ∈ X | 〈a|x〉 = 0}, with PV = Id − 〈a|Id 〉
‖a‖2 a and PV [(b/‖a‖2)a] = 0, in

Proposition 2.11. �

As the following fact states, affine sets obtain a specific form in Euclidean spaces.

Fact A.3 ([31, Thm. 1.4, p. 5]): Given b ∈ RM (M ∈ Z>0) and A ∈ RM×D (D ∈ Z>0) the

set {x ∈ RD | Ax = b}, if non-empty, is an affine set. Moreover, every affine set in X := RD

can be represented in this way.

Motivated by the previous fact and aiming at an algorithmic schemewithwide applicability

in Euclidean spaces, where most of the minimization problems reside, the following exam-

ple and proposition offer a view of affine sets via least-squares (LS) tasks and nonexpansive

mappings.

Example A.4 (Affinely constrained LS in Euclidean spaces): For vector b and matrix A of

Fact A.3, consider the following LS solution set [3, Prop. 3.25, p. 50]:

A := Argminx∈RD
1
2‖Ax − b‖2 = {x ∈ RD | A⊤Ax = A⊤b}. (A3)

Now, considering theD × 1 vectors {αm}Mm=1, defined by the rows ofA, i.e. [α1,α2, . . . ,αM] :=
A⊤, as well as theD × 1 vectors {gd}Dd=1 defined via [g1, . . . , gD] := G, whereG := A⊤A and

c := [c1, c2, . . . , cD]
⊤ := A⊤b, let the hyperplanes Am := {x ∈ RD | 〈αm|x〉 = bm}, (m =

1, . . . ,M), as well as Gd := {x ∈ RD | 〈gd|x〉 = cd}, (d = 1, . . . ,D), with associated met-

ric projection mappings PAm and PGd
, respectively [cf. (A2)]. Then, any of the following

mappings, with † denoting the Moore–Penrose pseudoinverse operation [32],
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T =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(

I − μ
̺
A⊤A

)

Id + μ
̺
A⊤b , ̺ ≥ ‖A‖2, μ ∈ (0, 1] , (A4a)

(I − A⊤A†⊤)Id + A†b , (A4b)

(I − GG†)Id + G†A⊤b , (A4c)

(I + γA⊤A)−1Id + γ (I + γA⊤A)−1A⊤b , γ ∈ R>0 , (A4d)

(1 − β)Id + β

M
∑

m=1

‖αm‖2
‖A‖2F

PAm , β ∈ (0, 1] , (A4e)

(1 − θ)Id + θ

D
∑

d=1

ωdPGd
,

{

θ ∈ (0, 1] , ωd ∈ (0, 1) ,
∑D

d=1 ωd = 1 ,
(A4f)

satisfies T ∈ TA.

Furthermore, given also theM0 × 1 (M0 ∈ Z>0) vector b0, theM0 × Dmatrix A0, let the

non-empty affine constraint setK := {x ∈ RD | A0x = b0}, with metric projection mapping

PK = (I − A⊤
0 A

†⊤
0 )Id + A

†

0b0 [3, Prop. 3.17, p. 47]. Then, according to [32, Ex. 34, p. 120],

x ∈ AK := Argminz∈K
1
2‖Az − b‖2

⇔ ∃µ ∈ RM0 s.t. (x,µ) ∈ A :=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(x′,µ′) ∈ RD × RM0 |

L :=
︷ ︸︸ ︷
[
A⊤A A⊤

0
A0 0

] [
x′
µ′

]

=

e :=
︷ ︸︸ ︷
[

A⊤b
b0

]

⎫

⎪
⎪
⎬

⎪
⎪
⎭

,

(A5)

or, in other words, AK = 
RDA, where 
RD denotes the mapping 
RD : RD × RM0 →
RD : (x,µ) 
→ x. Define also the (D + M0) × 1 vectors [l1, . . . , lD+M0 ] := L, as well as the

hyperplanes Ld := {(x′,µ′) ∈ RD × RM0 | 〈ld|(x′,µ′)〉 = ed}, with PLd
denoting the associ-

atedmetric projectionmapping [cf. (A2)]. Then, any of the followingmappings T̄ : RD+M0 →
RD+M0 :

T̄ =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(

I − μ
̺
L⊤L

)

Id + μ
̺
L⊤b, ̺ ≥ ‖L‖2, μ ∈ (0, 1], (A6a)

(

I − L⊤L†⊤
)

Id + L†e, (A6b)

(

I + γL⊤L
)−1

Id + γ
(

I + γL⊤L
)−1

L⊤e, γ ∈ R>0, (A6c)

(1 − θ)Id + θ

D+M0∑

d=1

wdPLd
,

{

θ ∈ (0, 1], ωd ∈ (0, 1),
∑D+M0

d=1 ωd = 1,
(A6d)

satisfies T̄ ∈ TA. Moreover, the mapping T : RD → RD, defined by

T := (1 − β)PK + βPK

M
∑

m=1

‖αm‖2
‖A‖2F

PAmPK, β ∈ (0, 1], (A6e)

satisfies T ∈ TAK
.
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Proof: For δ ∈ R>0, define

ϕδ(x) := 1
2δ ‖Ax − b‖2, ∀x ∈ RD, (A7)

and verify that ∇ϕδ = (1/δ)A⊤AId − (1/δ)A⊤b. According to (A3), all points x ∈ RD

s.t. ∇ϕδ(x) = 0 constitute A. Moreover, for any ̺ ≥ ‖A‖2/δ, ‖∇ϕδ(x) − ∇ϕδ(x
′)‖ ≤

(‖A‖2/δ)‖x − x′‖ ≤ ̺‖x − x′‖, ∀x, x′ ∈ RD, since ‖A⊤A‖ = ‖A‖2. In other words, ∇ϕδ is

̺-Lipschitz continuous, which, according to the Baillon–Haddad theorem [29], [3, Cor. 18.16,

p. 270], is equivalent to that (1/̺)∇ϕδ is firmly nonexpansive iff Id − (1/̺)∇ϕδ is firmly

nonexpansive [cf. Example 2.6(iii)] with fixed-point set equal to A. By utilizing once again

Example 2.6(iii), R := 2[Id − (1/̺)∇ϕδ] − Id is nonexpansive, and for any ζ ∈ (0, 1], R′ :=
ζR + (1 − ζ )Id = Id − (2ζ/̺)∇ϕδ = {I − [2ζ/(̺δ)]A⊤A}Id + [2ζ/(̺δ)]A⊤b is nonex-

pansive with Fix (R′) = A. Due to the nonexpansiveness of R′, ‖I − [2ζ/(̺δ)]A⊤A‖ ≤ 1

(cf. Fact 2.8). Constraining ζ ∈ (0, 1/2] guarantees that I − [2ζ/(̺δ)]A⊤A � 0. By defining

μ := 2ζ and δ := 1, the claim regarding (A4a) is established.

The metric projection mapping PkerA onto kerA is PkerA = (I − A⊤A⊤†)Id [3,

Prop. 3.28(iii), p. 51]. Since A = kerA + A†b [3, Prop. 3.28(i), p. 51], [3, Prop. 3.17, p. 47]

suggests that the metric projection mapping PA onto A becomes PA = PkerA + A†b −
PkerA(A†b) = PkerA + A†b, due to PkerA(A†b) = 0 [3, Prop. 3.28(i), p. 51]. Hence, (A4b)

is an immediate consequence of Proposition 2.11. By [32, Ex. 18(d), p. 49], A⊤A⊤† =
A⊤A(A⊤A)† = GG† and A†b = (A⊤A)†A⊤b = G†A⊤b. Hence, (A4c) follows easily from
(A4b).

Now, for any γ ′ ∈ R>0, Proxγ ′ϕδ
= (I + (γ ′/δ)A⊤A)−1Id + (γ ′/δ)(I + (γ ′/δ)A⊤A)−1

A⊤b. Setting γ := γ ′/δ, the nonexpansiveness of Proxγ δϕδ , stated by Example 2.6(ii), suggests

that ‖(I + γA⊤A)−1‖ ≤ 1 (cf. Fact 2.8), and that Fix (Proxγ δϕδ ) = A. Due also to the fact that

(I + γA⊤A)−1 is positive, the claim regarding (A4d) is established.

Let δ := ‖A‖2F in (A10), so that

ϕ‖A‖2F
(x) = 1

2‖A‖2F
‖Ax − b‖2 = 1

2‖A‖2F

M
∑

m=1

(〈αm|x〉 − bm)2

= 1
2

M
∑

m=1

‖αm‖2
‖A‖2F

‖x − PAm(x)‖2 = 1
2

M
∑

m=1

wm‖x − PAm(x)‖2,

where the explicit expression of PAm is given in (A2), and the non-negative weights {wm :=
‖αm‖2/‖A‖2F}Mm=1 satisfy

∑M
m=1 wm = 1. It can be also verified by the Fréchet-gradient

definition [3, Def. 2.45, p. 38] that ∇‖(Id − PAm)x‖2 = 2(Id − PAm)x, which yields

∇ϕ‖A‖2F
=

M
∑

m=1

wm(Id − PAm) = Id −
M

∑

m=1

wmPAm .

Hence, all minimizers of ϕ‖A‖2F
, i.e.A, constitute the fixed-point set of

∑

m wmPAm , which

is equal to the fixed-point set of the mapping in (A4e). Hence, by utilizing the trivial fact

Id ∈ T and by applying also Proposition 2.10(i) to (1 − β)Id + β
∑

m wmPAm , the claim of

(A4e) is established.

Regarding (A6e), notice first that A = ∩D
d=1Gd. According to Example 2.6(iv), A =

Fix (
∑

d ωdPGd
). Since PGd

∈ T (cf. Example A.2), Proposition 2.10(i) yields
∑

d ωdPGd
∈ T.

As a result, fact Id ∈ T and Proposition 2.10(i) yield (1 − θ)Id + θ
∑

d ωdPGd
∈ T, which

establishes the claimof (A4f).Due toA = argmin(x,µ)‖L[x⊤,µ⊤]⊤ − e‖2, arguments similar

to those developed for (A4a), (A4b) and (A4d) yield (A6a), (A6b) and (A6c), respectively. Fur-

thermore, notice that sinceA = ∩D+M0

d=1 Ld, (A6d) is deduced in away similar to the derivation

of (A4f) from (A3).
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Regarding (A9a), notice thatAK = Fix TAK
[5, Prop. 4.2(a)], where

TAK
:= (1 − β)Id + βPK

M
∑

m=1

‖αm‖2
‖A‖2F

PAm

is nonexpansive for β ∈ (0, 3/2]. Since AK = Fix TAK
= Fix TAK

∩ K = Fix TAK
∩

Fix PK, Example 2.6(v) suggests that AK can be seen also as the fixed-point set of the non-

expansive mapping TAK
PK, which is nothing but the mapping appearing at (A9a). Now, due

to Proposition 2.10(i) and Example A.2,
∑

m wmPAm ∈ T, with wm := ‖αm‖2/‖A‖2F. Hence,
Proposition 2.10(ii) suggests also that PK(

∑

m wmPAm)PK ∈ T. Once again, since PK ∈ T

(cf. Proposition 2.11), Proposition 2.10(i) guarantees (1 − β)PK + βPK
∑

m wmPAmPK ∈ T,

for β ∈ (0, 1], which establishes the claim of (A9a). �

An auxiliary proposition, used in Theorem 3.7, follows.

Proposition A.5: Given the surjective and strongly positive mapping 
 ∈ B(X ), i.e. there

exists δ ∈ R>0 s.t. 〈
x|x〉 ≥ δ‖x‖2, ∀x ∈ X , the inverse 
−1 exists and 
−1 ∈ B(X )

with ‖
−1‖ ≤ 1/δ. Moreover, 
−1 is strongly positive and (δ/‖
‖2)‖x‖2 ≤ 〈
−1x|x〉 ≤
(1/δ)‖x‖2, ∀x ∈ X .

Proof: [4, Sec. 2.7, Prob. 7, p. 101] guarantees the existence of 
−1 and 
−1 ∈ B(X ). By

the strong positivity of
, ∀x ∈ X \ ({0} = ker
−1), ‖
−1x‖2 ≤ (1/δ)〈
−1x|
(
−1x)〉 =
(1/δ)〈
−1x|x〉 ≤ (1/δ)‖
−1x‖‖x‖ ⇒ ‖
−1x‖ ≤ (1/δ)‖x‖ ⇒ ‖
−1‖ ≤ (1/δ). By [4,

Thm. 9.4-2, p. 476] and the previous result, ∀x ∈ X , 〈
−1x|x〉 ≤ ‖
−1‖‖x‖2 ≤ (1/δ)‖x‖2.
Moreover, ∀x′ ∈ X , 〈
x′|
−1
x′〉 = 〈
x′|x′〉 ≥ δ‖x′‖2 ≥ (δ/‖
‖2)‖
x′‖2, which yields,

under x := 
x′, that ∀x ∈ X , (δ/‖
‖2)‖x‖2 ≤ 〈
−1x|x〉. �
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