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The Stochastic Fejér-Monotone Hybrid Steepest
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Abstract—This paper introduces the stochastic Fejér-monotone
hybrid steepest descent method (S-FM-HSDM) to solve affinely
constrained and composite convex minimization tasks. The mini-
mization task is not known exactly; noise contaminates the infor-
mation about the composite loss function and the affine constraints.
S-FM-HSDM generates sequences of random variables that, under
certain conditions and with respect to a probability space, converge
point-wise to solutions of the noiseless minimization task. S-FM-
HSDM enjoys desirable attributes of optimization techniques such
as splitting of variables and constant step size (learning rate). Fur-
thermore, it provides a novel way of exploiting the information
about the affine constraints via fixed-point sets of appropriate non-
expansive mappings. Among the offsprings of S-FM-HSDM, the
hierarchical recursive least squares (HRLS) takes advantage of S-
FM-HSDM’s versatility toward affine constraints and offers a novel
twist to LS by generating sequences of estimates that converge to
solutions of a hierarchical optimization task: minimize a convex
loss over the set of minimizers of the ensemble LS loss. Numeri-
cal tests on a sparsity-aware LS task show that HRLS compares
favorably to several state-of-the-art convex, as well as non-convex,
stochastic-approximation, and online-learning counterparts.

Index Terms—Stochastic approximation, online learning, con-
vex, composite, RLS.

I. INTRODUCTION

A. Problem Statement

T
HE following problem is considered: With a stochastic
oracle providing estimates fn (or even ∇fn), hn and An

per n (n denotes discrete time and iteration index; n ∈ Z>0 :=
{1, 2, . . .}) of the generally unknown convex functions f, h and
the affine set A, respectively, solve

min
x∈A⊂X

f(x) + h(x) + g(x), (P)

where X is a finite-dimensional real Hilbert space. Only the
convex (regularizing) function g is assumed to be known ex-
actly. The goal is to construct a sequence of estimates (xn)n :=
(xn)n∈Z≥0

⊂ X by exploiting the information about (fn)n, or
(∇fn)n, (hn,An)n as well as g, and to identify the conditions
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which ensure, despite the uncertainty aboutf, h andA, the point-
wise convergence of (xn)n to a solution of (P) with respect to
(w.r.t.) a probability space.

Instances of (P) appear in adaptive filtering (AF) [2]–[4]; in
particular, in linear equalization, channel estimation, beamform-
ing, tracking of fading channels, line and acoustic echo cancel-
lation and active noise control [2]. Special cases of (P) appear
also in stochastic approximation (SA) [4], [5] and online learn-
ing (OL) [4], [6] as in training artificial neural networks, learn-
ing optimal strategies in Markov decision processes, recursive
games, sequential-decision tasks in economics [5], online clas-
sification and multi-armed bandit problems [6]. (An outline of
the strong ties and distinct differences between SA and online
learning is provided in [7].)

Each one of the three loss terms in (P) plays a distinct role:
f is smooth and generally unknown, h can be non-smooth
and unknown, while g comprises all known and possibly non-
smooth regularizing losses. The affine constraint A renders (P)
a versatile framework that encompasses a large variety of prob-
lems. For example, given the finite-dimensional Hilbert spaces
{Xk}Ih+Jg

k=0 , with Ih, Jg ∈ Z>0, the convex functions f : X0 →
R, h(i) : Xi → R ∪ {+∞}, g(j) : Xj+Ih → R ∪ {+∞}, the
linear mappingsH(i) : X0 → Xi,G(j) : X0 → Xj+Ih , p(i) ∈ Xi

and q(j) ∈ Xj+Ih , for i ∈ {1, . . . , Ih} and j ∈ {1, . . . , Jg}, then
the highly structured composite problem

min
x(0)∈X0

f(x(0)) +

Ih∑

i=1

h(i)(H(i)x(0) − p(i))

+

Jg∑

j=1

g(j)(G(j)x(0) − q(j)) (1)

can be recast as (P) if X := X0 × X1 × · · · × XIh+Jg
= {x :=

(x(0), . . . , x(Ih+Jg))|x(k)∈Xk, ∀k∈{0, . . . , Ih+Jg}}, f(x) :=

f(x(0)), h(x) :=
∑Ih

i=1 h
(i)(x(i)), g(x) :=

∑Jg

j=1g
(j)(x(j+Ih)),

and the closed affine set A := {x ∈ X |x(0) ∈ X0, x
(i) = H(i)

x(0) − p(i), x(j+Ih) = G(j)x(0) − q(j), i∈{1, . . . , Ih}, j ∈ {1,
. . . , Jg}}. The splitting of variables via Cartesian-product
spaces facilitates processing; e.g., (6). The (P) formulation can
also accommodate any closed convex (not necessarily affine)
constraint C as follows: Consider (1) and let one of the {h(i)}i
or {g(j)}j , depending on whether C bears stochasticity or not,
take the form of the indicator function ιC (see Appendix A
for the definition). More importantly, (P) allows for cases
where the information about A is not known exactly, introduces
thus stochasticity into A and opens the door to new problem
formulations and novel algorithmic developments, e.g., (HLS)
and Algorithm 2.
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B. Case Study: Sparsity-Aware Least Squares

To highlight the versatility of (P) and to unfold all features
of the proposed algorithmic solution, coined stochastic Fejér-
monotone hybrid steepest descent method (S-FM-HSDM), it is
instructive to build the discussion around specific instances of
(P). To this end, letX be the Euclidean R

D. Bold-faced symbols
indicate that X = R

D; in particular, lowercase bold-faced sym-
bols denote vectors in R

D. Consider a sparse systemθ∗ ∈ X and
the classical linear-regression model: bn = a⊺nθ∗ + ηn, almost
surely (a.s.), ∀n ∈ Z>0, with input-output data pair (an, bn) ∈
X × R, the noise process (ηn)n is assumed to be zero-mean
and independent of (an)n, and ⊺ denotes vector/matrix transpo-
sition. Typical stationarity assumptions on (an, bn)n are adopted
also here: R := E(ana

⊺

n), r := E(bnan), and E(b2n) stay con-
stant ∀n, where E(·) denotes expectation. It is well-known that
θ∗ satisfies the normal equations θ∗ ∈ {x ∈ X |Rx = r} [2,
(3.9)]. This section deals with the system-identification problem
of estimating the sparse θ∗ without knowing (R, r) but relying
only on the information (an, bn)n provided by the stochastic
oracle.

Motivated by the celebrated (Lagrangian form of the) least
absolute shrinkage and selection operator (LASSO) [8, (3.52)],
designed to solve sparse system-identification problems, the
first instance of (P) is the convexly regularized least squares:

∀n ∈ Z>0,

min
x∈RD

l(x)
︷ ︸︸ ︷

1

2
x⊺Rx− r⊺x+

1

2
E(b2n)+

g(x)
︷ ︸︸ ︷

ρ‖x‖1

= min
x∈RD

E

⎡

⎢
⎢
⎣

1

2n

∑n

ν=1
(a⊺νx− bν)

2

︸ ︷︷ ︸

ln(x)

⎤

⎥
⎥
⎦
+ ρ‖x‖1, (CRegLS)

where the ℓ1-norm regularizer promotes sparse solutions.
(CRegLS) becomes a special case of (P), if A := X = R

D =:
An, (f, fn) := (l, ln), or, (h, hn) := (l, ln) a.s.

The second instance of (P) exploits the fact that even the
information about A may be inexact, and takes the form of a
hierarchical (H)LS estimation task, which appears to be new in
the AF, SA and OL literature: ∀n,

min
x∈RD

[ ‖x‖1 =: g(x) ]

s.to x ∈ argmin
x′∈RD

E

[∑n

ν=1
(a⊺νx

′ − bν)
2
]

︸ ︷︷ ︸

A

, (HLS)

i.e., the convex loss g(·), here ‖ · ‖1, is minimized over the set
of minimizers of the classical (ensemble) LS loss. Recall that
A in (HLS) comprises all vectors, including θ∗, that satisfy the
normal equations. In the case of g(·) := ‖ · ‖1, (HLS) can be
also viewed as an SA extension of (the deterministic) basis pur-
suit [9]. The mainstream approach, e.g., [4], [10], [11], to deal
with (HLS) is to employ the indicator function ιA in the place
of one of the h(i) and g(j) in (1). Such a path restricts the means
of treating A to the projection mapping PA [recall that PA is
the proximal mapping of ιA; cf. (9)]. Since (R, r) are generally
unknown, A is also unknown to the user. Still, the goal is to
solve (HLS). If (f, fn) := (0, 0) =: (h, hn), and An is defined
as an estimate ofA, then (HLS) turns out to be a special instance
of (P). This paper provides a novel way of using the available
estimates (An)n of A via fixed-point sets of appropriate nonex-
pansive mappings (cf. Section II). This new viewpoint pays off
in the computationally efficient HRLSa (cf. Algorithm 2), which
solves (HLS) under certain conditions, despite the uncertainty
in the estimates (An)n, while scoring the lowest estimation er-
ror across a variety of numerical-test scenarios versus several
state-of-the-art schemes (cf. Section IV).

C. Prior Art

In most cases, OL and SA algorithms have their origins
in deterministic optimization schemes. For example, the OL
scheme [12] draws inspiration from the forward-backward
(a.k.a. proximal-gradient) algorithm [13, §27.3] and incorpo-
rates variance-reduction arguments [14] into its iterations to
effect convergence speed-ups in solving a special case of (P),
which appears to be of primary importance in machine learn-

ing: f := (1/M)
∑M

m=1 f
(m), where

{
f(m)

}M

m=1
are convex and

smooth, M ∈ Z>0 is very large, h := 0 and A := X . Driven by
the need to avoid the cumbersome computation of ∇f , stochas-
ticity is introduced by selecting randomly only a small subset of
{
f(m)

}M

m=1
, per time/iteration index n, to form an estimate of

∇f . Recent SA schemes, motivated by the forward-backward al-
gorithm and formulated in the more general setting of monotone-
operator inclusions, can be found in [10], [15], [16]. An SA
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extension of primal-dual methods, where stochasticity is intro-
duced via general sampling techniques to deal with massive data,
is reported in [17]. An SA extension of the Douglas-Rachford
algorithm [13, §25.2, §27.2] is reported in [10]. Study [18] ex-
tends the celebrated alternating direction method of multipli-
ers (ADMM) to the OL setting, and blends it with variance-
reduction arguments to solve a problem similar to that of [12],
but with a non-trivial, yet deterministic affine constraintA � X .
Furthermore, [19] explores the dual-averaging scheme of [20]
in the SA context offering linear-convergence guarantees for a
quadratic f in (P), whileX is a closed convex set with non-empty
interior. Moreover, the SA schemes [11], [21] are motivated by
the deterministic acceleration method of [22]; in particular, [21]
uses specific step sizes (cf. [21, (33)]) to effect convergence ac-
celeration in the case where h := 0, g is (Lipschitz) continuous
and a deterministic convex compact constraint takes the place
of A in (P).

With regards to the specific setting of Section I-B, the state-
of-the-art AF schemes [23]–[25] are built around a variation
of (CRegLS), where the regularizing coefficient ρn converges
to zero as n → ∞. A Bayesian approach to the LS sparse
system-identification problem appears in [26], and a greedy
RLS approach based on the orthogonal-matching-pursuit al-
gorithm is reported in [27]. A majorization-minimization ap-
proach, which includes also non-convex regularizers, is studied
in [28]. Basis pursuit [9] is used in [29] to provide an interpre-
tation of the estimate-update equation per iteration n of several
proportionate-type AF schemes; however, an ensemble-based
viewpoint, such as (HLS), and a performance analysis are not
provided.

D. Contributions and Structure of the Manuscript

Similarly to [10], [12], [15], [16], [18], [19], [21], the pro-
posed S-FM-HSDM (Algorithm 1) springs from the deter-
ministic FM-HSDM [30], which belongs to the HSDM fam-
ily [31] and solves (P) in infinite-dimensional Hilbert spaces
with no stochasticity involved. In [30], the information about
the affine constraint A is incorporated into FM-HSDM via an
affine nonexpansive mapping T : X → X whose fixed-point set
is A = FixT := {x ∈ X |Tx = x}. For example, the (metric)
projection mapping PA onto A (cf. Appendix A) may serve as
T [30, Prop. 2.11]. Interestingly, the versatile [30] allows for
numerous choices of T other than the mainstream PA [cf. (3)].

S-FM-HSDM extends FM-HSDM to the stochastic set-
ting. With a stochastic oracle providing a sequence of affine
constraints (An)n as estimates of the generally unknown A, a
mapping Tn is chosen per time index n, with An = FixTn, to
serve as an estimate of T . There are numerous choices of Tn

other than the obvious PAn
. Furthermore, f and h are not re-

quired to be known exactly and only estimates (fn)n [or even
(∇fn)n] and (hn)n are provided to the user by the stochas-
tic oracle. The versatility of S-FM-HSDM is demonstrated in
the system-identification context of Section I-B, where S-FM-
HSDM solves (HLS) in Section II, with its specific form coined
hierarchical (H)RLS. Mappings (Tn)n drive the HRLS iter-
ates asymptotically to a vector in A, and HRLS solves (HLS)
without employing any sub-routines for identifying A prior to
minimizing g over A. It is worth recalling here that identify-
ing A requires the computation of E(·) which is a usually in-
tractable task for the user. A specific choice ofTn [cf. (5a)] yields

the computationally efficient HRLSa flavor of S-FM-HSDM
(cf. Section II).

Many SA methods, such as the classical [32] and its convex-
analytic extension [33], rely on diminishing step sizes (learning
rates) to ensure a.s. convergence of their iterates. Nevertheless,
constant step-size schemes, e.g., [10], [16], are highly desirable
in signal processing and machine learning since they appear
to (i) reach the neighborhood of solutions in a fewer number
of iterations than the diminishing step-size methods [16]; and
(ii) adapt quickly to changes of non-stationary environments
and track dynamically changing sets of solutions (cf. Figure 3
and [2, Ch. 21]). S-FM-HSDM operates with a constant step
size ∀n. The performance analysis of Section III identifies those
conditions which ensure that S-FM-HSDM converges a.s. to a
solution of (P). For clarity, those conditions are exemplified in
the context of Section I-B.

To validate the theoretical developments of this work, ex-
tensive numerical tests on synthetic data, within the context of
Section I-B, are reported in Section IV. Flavors HRLSa and
HRLSb of S-FM-HSDM appear to be the most consistent meth-
ods in achieving the lowest estimation error across a variety
of scenarios versus several state-of-the-art AF, SA and OL
schemes.

To improve readability, S-FM-HSDM, its specific flavors
within the context of Section I-B and their main theoretical re-
sults are presented first in Section II. The performance analysis
and the accompanying assumptions are detailed in Section III,
while the necessary mathematical preliminaries and proofs are
deferred to the appendices.

II. THE S-FM-HSDM FAMILY AND ITS PROPERTIES

A. The User-Defined Mappings (Tn)n

To utilize the information about A, this work follows [30] and
considers a mapping T s.t. Fix(T ) = A. An obvious choice for
T would be the (metric) projection mapping PA onto A [30,
Prop. 2.11]. Nevertheless, this study revolves around less obvi-
ous cases. In the context of Section I-B, such examples are:

T =

{

(I− µ
̟R) + µ

̟ r, ̟ ≥ ‖R‖, μ ∈ (0, 1], (2a)

(I+ κR)−1 + κ(I+ κR)−1r, κ ∈ R>0, (2b)

where I is the identity matrix and the spectral norm ‖R‖ is equal
to the maximum eigenvalue of R. In fact, any mapping which
belongs to the following family of mappings may serve as a
candidate for T [30, Prop. 2.11]:

TA :=

{

T : X → X
∣
∣
∣
∣
∣

FixT = A;T = Q+ π;

Q is positive; ‖Q‖ ≤ 1;π ∈ X

}

. (3)

Any T ∈ TA is affine, i.e., there exists a linear mapping Q : X
→ X and a π ∈ X s.t. Tx = Qx+ π, ∀x ∈ X ; in short, T =
Q+ π. For the linear Q, ‖Q‖ := sup{x| ‖x‖≤1}〈x | Qx〉. Map-
ping Q : X → X is called positive if it is linear, bounded, self-
adjoint and 〈x | Qx〉 ≥ 0, ∀x ∈ X [34, §9.3]. Since ‖Q‖ ≤
1, every mapping T ∈ TA turns out to be nonexpansive
[13]: ∀(x, x′) ∈ X 2, ‖Tx− Tx′‖ = ‖Qx−Qx′‖ = ‖Q(x−
x′)‖ ≤ ‖Q‖ ‖x− x′‖ ≤ ‖x− x′‖. It is also worth noticing here
that TA is closed under any convex combination and certain
compositions of its members [30, Prop. 2.10]. Notice also that
PA ∈ TA [30, Prop. 2.11]. Further information onTA is deferred
to Appendix A.
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Notwithstanding, A is in general unknown to the user; hence,
so is T as well. With the stochastic oracle providing esti-
mates (An)n of A, the user needs to construct mappings (Tn)n
that serve as estimates of the unknown T . In the context of
Section I-B, for example, instead of the unknown R and r, their
classical running-average estimates [2], ∀n ∈ Z>0,

Rn :=
1

n

n∑

ν=1

aνa
⊺

ν , rn :=
1

n

n∑

ν=1

bνaν , (4)

can be used to define

Tn :=

⎧

⎨

⎩

(I− µ
̟n

Rn) +
µ
̟n

rn, ̟n ≥ ‖Rn‖,
μ ∈ (0, 1], (5a)

(I+ κRn)
−1 + κ(I+ κRn)

−1rn, κ ∈ R>0. (5b)

Lemma 1: For the affine set A := {x|Rx = r} in Section
I-B, mappings (2) belong to TA. Moreover, mappings (5) take
the form Tn = Qn + πn, where Qn : X → X is positive, with
‖Qn‖ ≤ 1, and πn ∈ X , a.s., ∀n.

Proof: See Appendix B. �

B. The S-FM-HSDM Family

With mapping Tn available, and with the av-

eraged mapping T
(α)
n defined as T

(α)
n := αTn +

(1− α) Id, ∀n, where Id : X → X stands for the
identity operator, S-FM-HSDM is presented in
Algorithm 1. Prox in lines 3 and 6 of Algorithm 1 de-
notes the proximal mapping [cf. (9)]. In the case where L∇f

is not available or cannot be estimated, S-FM-HSDM offers
the option of setting (f, fn) := (0, 0), where L∇f can be set
equal to any positive real-valued number (cf. Section IV),
and any estimate of f can be transferred to the loss hn, since
assumptions on h and hn are weaker than those on f and fn (cf.

Section III). Strategies for estimating L∇f , in the case it is
unknown, will be reported elsewhere. Line 5 requires only the
computation of the current first-order information ∇fn(xn),
whereas ∇fn−1(xn−1), which was computed at the previous
time instance, can be pulled from a buffer that stores information.

In the context of (HLS), if (5a) with μ := 1 is adopted,
S-FM-HSDM takes the flavor of Algorithm 2, coined
HRLSa. Since g(·) = ‖ · ‖1, Proxλg(·) in lines 3 and 7 of
Algorithm 2 boils down to the popular soft-thresholding opera-
tion. Following (5a), line 5 of Algorithm 2 introduces an over-
estimate ̟n of the maximum eigenvalue λmax(Rn) = ‖Rn‖.
To this end, motivated by the celebrated power iteration [35],
and for an arbitrarily fixed initial vector p0 ∈ X , the following
iterative procedure, run over all n ∈ Z>0, is used in Section IV
to generate (̟n)n: (i) qn := Rnpn−1; (ii) pn := qn/‖qn‖;
(iii)̟n := p⊺

nRnpn + ǫ̟, for a user-defined ǫ̟ ∈ R>0. If (5b)
is used asTn in Algorithm 1, the flavor of S-FM-HSDM is coined
HRLSb. Due to space limitations, the detailed pseudo-code de-
scription of HRLSb is omitted. Other options for Tn will be
explored elsewhere. Between HRLSa and HRLSb, HRLSa ex-
hibits the lowest computational complexity, of order O(D2) per
n. HRLSb requires the matrix inversion (I+ λRn)

−1 for the
running average Rn in (4).

In the context of (CRegLS), Algorithm 1 yields Algorithm 3,
tagged S-FM-HSDM(CRegLS). To verify that Algorithm 3 is
indeed a by-product of Algorithm 1, notice that (CRegLS) can

be seen, via variable splitting in the spirit of (1), as

min
(x(1),x(2))∈RD×RD

E

⎡

⎢
⎢
⎢
⎣

hn(x
(1))

︷ ︸︸ ︷

1

2n

∑n

ν=1

(

a⊺νx(1) − bν

)2

⎤

⎥
⎥
⎥
⎦

+ ρ‖x(2)‖1
︸ ︷︷ ︸

g(x(2))

s.to x(1) = x(2), (6)

so that space X is set to be R
D × R

D, with inner product 〈(x(1),
x(2)) | (x′(1), x′(2))〉 := 〈x(1) | x′(1) + 〈x(2) | x′(2)〉. Moreover,
A is the linear subspace {(x(1), x(2)) ∈ X |x(1) = x(2)}, with
(orthogonal) projection mapping given by PA[(x(1), x(2))] =
((x(1) + x(2))/2, (x(1) + x(2))/2) and Tn := T := PA in
Algorithm 1. Moreover, Proxλ(hn+g)[(x

(1), x(2))] = (Proxλhn

(x(1)),Proxλg(x
(2))). Lines 9 and 10 in Algorithm 3 cor-

respond to Proxλhn
(·) and Proxλg(·), respectively. Due to

the fact that Rn is obtained by Rn−1 via a rank-one mod-
ification, i.e., Rn = (n− 1)Rn−1/n+ ana

⊺

n/n, a way to
compute (I+ λRn)

−1 efficiently via modifications of the
eigen-decomposition of (I+ λRn−1)

−1 can be deduced, for
example, via arguments found in [36], [37]; details are omitted.
Quantities R0 and r0 are arbitrarily fixed and used in Line 4 of
Algorithm 3 to initialize the iterative process.

C. Main Theoretical Properties

The main properties of S-FM-HSDM (Algorithm 1) are sum-
marized in the following Theorems 1 and 2. To improve the
readability of the manuscript, the detailed description of the
necessary assumptions is deferred to Section III. Nevertheless,
as a high-level description, Assumption 1 gathers all the as-
sumptions about the sequence of the user-defined nonexpan-
sive mappings (Tn)n, such as asymptotic consistency, while
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Assumption 3 refers to the loss functions (fn, hn)n. The typical
SA presupposition of asymptotic unbiasedness is introduced in
Assumption 4. The technical Assumption 6 imposes a summa-
bility constraint on the random variables (RVs) defined via (19b)
and (19c). A typical SA boundedness constraint of variances is
introduced by Assumption 7, while Assumption 8 imposes the
weak condition on loss functions that bounded estimates imply
bounded subgradients. Assumptions 2 and 5 refer to the special
cases of (CRegLS) and (HLS).

Theorem 1: Under Assumptions 1, 3, 4, 6, 7, and 8 (see
Section III), the set of cluster points C[(xn)n] of the S-FM-
HSDM sequence (xn)n (Algorithm 1) is nonempty a.s. Further-
more, every point in the nonempty C[(xn)n] is a solution of (P)
a.s.

Proof: See Appendix C. �
Theorem 2: Consider the case whereT is known exactly, i.e.,

T = Tn, ∀n. Then, under the same setting as in Theorem 1, but
without Assumptions 1, 7(ii), 8(ii), 8(iii), the sequence (xn)n
generated by Algorithm 1 converges a.s. to a solution of (P).

Proof: See Appendix D. �
It is worth mentioning here that the qualifier “FM” in S-

FM-HSDM comes from the deterministic predecessor FM-
HSDM [30] and the Fejér-monotonicity property of (22) and
(24) in Appendix C.

Since HRLS and S-FM-HSDM(CRegLS) are offsprings of S-
FM-HSDM, assertions about their convergence properties can
be deduced from Theorems 1 and 2 and can take various forms.
This study avoids to provide an exhaustive list of all such asser-
tions with their forms, but brings only a couple of examples in
the form of the following corollaries.

Corollary 1: Let Assumptions 2, 6, and 7(ii) hold true. As-
sume also that the stochastic process (an)n possesses a non-
singular R, and that ∃̟ ∈ R>0 s.t. ̟n := ̟ ≥ max{‖R‖,
‖Rn‖}, a.s., ∀n. Then, the set of cluster points of the sequence
(xn)n, generated by either HRLSa or HRLSb, is non-empty, and
any of its cluster points is a solution of (HLS) a.s.

Proof: See Appendix E. �
As a postscript to Corollary 1, recall that the matrix R of

any regular process (an)n, i.e., a process with non-zero innova-
tion [38, §2.6], is non-singular [38, Prob. 2.2].

Corollary 2: Let Assumptions 2, 4(i), and 6 hold true. Then,
the sequence (xn)n generated by Algorithm 3 converges a.s. to
a solution of (CRegLS).

Proof: See Appendix F. �

III. PERFORMANCE ANALYSIS OF S-FM-HSDM

Rather than simply listing all assumptions needed for
Theorems 1 and 2, as well as for Corollaries 1 and 2, this section
follows a more instructive route by exemplifying the assump-
tions in the context of (CRegLS) and (HLS). With symbol

a.s.−→n

introduced in Appendix A, the following assumptions are im-
posed on the mappings T and (Tn)n.

Assumption 1 (Mappings T and Tn):

i) T ∈ TA.
ii) Tn := Qn + πn, where mapping Qn : X → X is posi-

tive, with ‖Qn‖ ≤ 1, and πn ∈ X , a.s., ∀n.
iii) (T − Tn)

a.s.−→n 0, i.e., (T − Tn)x
a.s.−→n 0, ∀x ∈ X , or,

equivalently, (Q−Qn)
a.s.−→n 0 and (π − πn)

a.s.−→n 0.

iv) Define ∀n, tn := E|Fn
[
∑n

ν=1(T − Tν)xν ]. All cluster
points of any bounded subsequence of (E(tn))n belong
to ran(Id−Q).

To underline the generality of Assumption 1, the following pop-
ular Assumption 2, placed in the context of Section I-B and
(4), provides a special case of Assumption 1, as Lemma 2
demonstrates.

Assumption 2 (Pointwise ergodicity): E
R
n := R−Rn

a.s.−→n

0 and εrn := r− rn
a.s.−→n 0.

To save space, a discussion on conditions which suffice to guar-
antee Assumption 2, such as statistical independency or mixing
conditions [39], [40], via the strong law of large numbers, is
omitted. Notice that due to Assumption 2, (Rn)n is bounded
a.s.; hence, ∃̟ := ̟(ω) ≥ max {‖R‖, ‖Rn‖}, a.s., ∀n (sym-
bol ω is introduced in Appendix A).

Lemma 2: Assume that ∃̟ ∈ R>0 s.t. ̟n := ̟ ≥ max
{‖R‖, ‖Rn‖}, a.s., ∀n, and that the matrix R of the stochastic
process (an)n is non-singular. Then, under also Assumption 2,
mappings (5) satisfy Assumptions 1(ii) and 1(iii). Moreover, for
any T ∈ TA and any of its estimates (Tn)n, Assumption 1(iv)
holds true.

Proof: See Appendix G. �
Assumption 3 (Loss functions):

i) f, h, g : X → R ∪ {+∞} belong to the class Γ0(X )
of proper, lower semicontinuous (l.s.c.), convex func-
tions [13].

ii) f is everywhere (Fréchet) differentiable, with L∇f -
Lipschitz continuous ∇f : ‖∇f(x)−∇f(x′)‖ ≤ L∇f

‖x− x′‖, ∀(x, x′) ∈ X × X , for some L∇f ∈ R>0.
Moreover, for any sub-σ-algebra G of Σ (cf. Appendix
A) and ∀x ∈ mG, ∇f(x) ∈ mG.

iii) fn, hn ∈ Γ0(X ) a.s., ∀n.
iv) fn is everywhere (Fréchet) differentiable, with Ln-

Lipschitz continuous ∇fn a.s., ∀n.
v) There exist n# ∈ Z≥0 and a CLip ∈ R>0, which is con-

stant over all ω ∈ Ω, s.t. Ln ≤ CLip a.s., ∀n ≥ n#.
vi) (∇f −∇fn)

a.s.−→n 0.
It can be readily verified in the context of (CRegLS) that
Assumptions 3(i), 3(ii), 3(iii), and 3(iv) are satisfied by ei-
ther (f, fn) := (l, ln), or, (h, hn) := (l, ln). If fn := ln, then
∀x ∈ X ,

∇fn(x) =
1

n

n∑

ν=1

aν (a
⊺

νx− bν) = Rnx− rn . (7)

Scalar Ln := ‖Rn‖ can be considered as ∇fn’s Lipschitz co-
efficient. Hence, if (Rn)n is uniformly bounded over Ω, i.e.,
∃CLip s.t. ‖Rn‖ ≤ CLip, a.s., ∀n, then Assumption 3(v) holds
true. On the other hand, if the uniform boundedness of (Rn)n
cannot be guaranteed, and since the current framework places
no requirements on the uniform boundedness of the subgra-
dients of (hn)n, (P) offers the flexibility to set hn := ln and
fn := 0, for which Assumption 3(v) holds trivially true. Given
that ∇f(x) = Rx− r, ∀x ∈ X , whenever f = l, it can be ver-
ified via Assumption 2 and (7) that Assumption 3(vi) holds true.

Assumption 4 (Asymptotic unbiasedness):

i) For any x ∈ X , E|Fn
[(h− hn)(x)] =: εhn(x)

a.s.−→n 0

and εhn(xn)
a.s.−→n 0.

ii) E|Fn
[(∇f −∇fn)(xn)] =: εfn(xn)

a.s.−→n 0.
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Asymptotic unbiasedness appears often in SA, e.g., [5, p. 132,
Thm. 2.3]. Lemma 3 presents cases where Assumption 4 holds
true. Several of the results of Lemma 3 serve also as interme-
diate steps that justify the introduction of Assumption 6; more
precisely, (8) suffice for Assumption 6 to hold true. To prove the
claims of Lemma 3, the following assumption is needed.

Assumption 5: Motivated by [5, p. 162], the approximation
errors E

R
n and εrn (cf. Assumption 2) are assumed here to be

exogenous w.r.t. Fn := σ({xν}nν=0) for any n. In other words,
E
R
n , εrn, which are provided by the stochastic oracle, are consid-

ered to be independent of the past history Fn of the iterates: ∀n
and a.s., E|Fn

(ER
n ) = E(ER

n ), E|Fn
(εrn) = E(εrn). Moreover,

the stochastic process (an)n is assumed to be independent and
identically distributed (IID) and Fn is considered to be condi-
tionally independent with σ({aν}nν=1) given σ(Rn).

It can be verified via the stationarity conditions of Section I-B
that Assumption 5 implies E|Fn

(Rn) = E(Rn) = R and
E|Fn

(rn) = E(rn)=r. Thus, E|Fn
(ER

n )=0 and E|Fn
(εrn)=0.

Lemma 3:

i) Consider T of (2a), Tn of (5a), and let Assumption 5
hold true. Moreover, assume the existence of ̟ ∈ R>0

s.t. ̟n := ̟ ≥ max {‖R‖, ‖Rn‖}, a.s. and ∀n. Then,

E|Fn
[(T − Tn)xn] = 0, (8a)

E|Fn
[(Q−Qn)(xn − xn−1)] = 0, (8b)

tn = 0, (8c)

E|Fn
[(Tn − Tn−1)xn−1] = 0 . (8d)

Clearly, E(tn) = 0, and thus, the only cluster point
limn→∞ E(tn) = 0 of sequence (tn)n belongs trivially
to ran(Id−Q); that is, Assumption 1(iv) holds true.

ii) Consider (h, hn) := (l, ln) in (CRegLS), and let
Assumption 5 hold true. Then, Assumption 4(i) holds
true with εhn(x) = 0 = εhn(xn), a.s., ∀n, ∀x ∈ X .

iii) Consider ∇fn in (7), f := l, and let Assumption 5 hold
true. Then, ∀n,

E|Fn
[(∇f −∇fn)xn] = 0, (8e)

E|Fn
[(∇fn −∇fn−1)xn−1] = 0 . (8f)

iv) Let Assumption 5 hold true. Let also g := ‖ · ‖1 and
either (h, hn) := (0, 0) or (h, hn) := (l, ln). Consider
also the sequence (ξn ∈ ∂(hn−1 + g)(xn))n of subgra-
dients defined in (11). Then, E|Fn

(ξn) ∈ ∂(h+ g)(xn),
∀n. More generally,

∃(ǫn)n ⊂ (mΣ)+ with
∑

n

E(ǫn) < +∞

s.t. E|Fn
(ξn) ∈ ∂ǫn(h+ g)(xn), ∀n . (8g)

Proof: See Appendix H. �
Results (8) can be relaxed as follows: Appendix C [cf. (23)]
demonstrates that (8) suffice to establish Assumption 6.

Assumption 6 (Dominated (ϑn)n∈Z≥0
): Consider the se-

quence (ϑn)n∈Z≥0
of RVs defined by the expression which

starts from (19b) and ends at (19c). There exists ψ ∈ (mΣ)+

with E(ψ) < +∞ s.t.
∑

n E|Fn
(ϑn)

+ ≤ ψ a.s., where
E|Fn

(ϑn)
+ := max

{
0,E|Fn

(ϑn)
}

.
Assumption 7 (Bounded variances):

i) Given z ∈ X , there exists C∇f := C∇f (z) ∈ R>0 s.t.
E[‖(∇f −∇fn)z‖2] ≤ C∇f , ∀n.

ii) There exists Cπ ∈ R>0 s.t. E(‖πn − π‖2) ≤ Cπ , ∀n.

Bounded-variance assumptions appear often in SA, e.g., [5,
p. 126, (A2.1)].

Assumption 8 (Bounded estimates yield bounded subgradi-

ents):

i) For any a.s. bounded (zn)n, there exist a sequence (τn)n
and C∂ := C∂(ω) ∈ R>0 s.t. τn ∈ ∂(hn + g)(zn) and
E|Fn

(‖τn‖) ≤ C∂ , ∀n, a.s.
ii) Consider the sequence (ξn)n of subgradients defined in

(11). If (xn)n is bounded a.s., then (ξn)n is bounded a.s.
iii) If (E(‖xn‖2))n is bounded, then (E(‖ξn‖2))n is

bounded.
Lemma 4: Let Assumption 2 hold true. If (h, hn) := (0, 0)

and g is defined as a scalar multiple of ‖ · ‖1, then Assump-
tion 8 holds true. If (h, hn) := (l, ln) and (f, fn) := (0, 0) in
(CRegLS), then the following claims can be established.

i) Assumptions 8(i) and 8(ii) hold true.
ii) If there exist also ̟,̟′ ∈ R>0, fixed over the probabil-

ity space, s.t. ‖Rn‖ ≤ ̟ and ‖rn‖ ≤ ̟′, ∀n and a.s.,
then Assumption 8(iii) holds true.

Proof: See Appendix I. �

IV. NUMERICAL TESTS

The proposed framework is validated within the setting of
Section I-B where S-FM-HSDM(CRegLS), HRLSa and HRLSb
are compared with the following OL and SA schemes:

1) The classical RLS [2, §30.2];
2) the ℓ1-norm regularized (ℓ1-)RLS [25], and its extension,

the ℓ0-norm (ℓ0-)RLS [25], where a non-convex regular-
izing function is used instead of ‖ · ‖1;

3) the LASSO-motivated online selective coordinate descent
(OSCD) and online cyclic coordinate descent (OCCD)
methods [23], where, according to [23, Sec. V], the power
of the additive noise in the linear-regression model is as-
sumed to be known and incorporated in the regularizing
coefficient ρn in (CRegLS) s.t. ρn →n 0;

4) the proximal stochastic variance-reduced gradient (Prox-
SVRG) method [12], applied to the setting of the ever-
growing data regime f := (1/n)

∑n
ν=1 fν in (CRegLS),

with fν(x) := (1/2)(a⊺νx− bν)
2;

5) SVRG-ADMM [18], where f is identical to that of the
Prox-SVRG case;

6) the accelerated stochastic approximation (ACSA) with the
step sizes of [21, (33)];

7) the adaptive sparse variational Bayes multi-parameter
Laplace prior (ASVB-MPL) method [26]; and

8) the stochastic dual-averaging (SDA) scheme with linear-
convergence-rate guarantees [19].

It is worth stressing here that all of [12], [18], [19], [21], [23],
[25] are built around the mainstream (CRegLS). As explained in
Sections I-A and I-B, any attempt to pass A of (HLS) to the ob-
jective function via the indicator function ιA entails the use of the
projection mapping PA and, thus, the eigen-decompositions of
(Rn)n via the (Moore-Penrose-)pseudoinverse operation. Re-
call that this is not the case for the computationally “light”
HRLSa.

In all tests, the dimension of the Euclidean space X = R
D is

set to be D := 100. The sparse system θ∗ is created by placing
±1 s at randomly selected entries of the D × 1 all-zero vector.
The “sparsity level” of θ∗ is defined as the percentage of the
number of non-zero entries of θ∗ over D. All of the methods
were tested in several scenarios detailed below. Since focus is
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Fig. 1. IID (an)n; SNR = 20 dB.

placed on the system-identification problem of Section I-B, the
criterion of performance is the normalized-root-mean-square-
deviation loss ‖xn − θ∗‖/‖θ∗‖. Each curve in the figures is the
uniform average of 500 independently performed tests.

To ensure fair comparisons, the parameters of every method
were carefully tuned to reach optimal performance per given
scenario. Due to space limitations, lists of all parameters for
each test are omitted. However, few things can be stated here
about the parameters α and λ of Algorithm 1. With α ∈ [0.5, 1)
in Algorithm 1, the general trend is that the fastest convergence
speed of S-FM-HSDM is achieved for α = 0.5. Moreover, with
λ ∈ (0, 2(1− α)/L∇f ), the fastest convergence speed was ob-
served for values of λ close to 2(1− α)/L∇f . In the case where
L∇f is unknown, e.g., the case of f := 0, the values ofL∇f used
in the following tests were drawn from the interval [10−3, 10−1].

A. (an)n is an IID Process

With regards to the linear-regression model of Section I-B,
process (an)n is considered to be IID Gaussian. Independency
is also assumed among the entries ([an]d)

D
d=1 of each vector

an, ∀n. Given a value for the signal-to-noise ratio (SNR) in dB,
the “power” of the additive noise E(η2n) = 10−SNR(dB)/10‖θ∗‖2
E([an]

2
d). The SNR values {10, 20} dB were examined and re-

sults are illustrated in Figures 1 and 2. Remarkably, the (HLS)
formulation seems to be more appropriate than (CRegLS) for
the sparse system-identification problem: The best performance
among all methods is achieved by the proposed HRLSa, HRLSb
and the non-convex ℓ0-RLS.

1) Time-Varying System: To test the ability of the methods
to adapt to dynamic system changes, a typical AF test is consid-
ered here [2]: The sparsity level of the estimandum θ∗ changes
abruptly at the time instance 2,500 from 1% to 10%, where the
non-zero entries of θ∗ are re-allocated randomly.

Fig. 2. IID (an)n; SNR = 10 dB.

Fig. 3. IID (an)n; SNR = 20 dB; the sparsity level of θ∗ changes at time
n = 2, 500 from 1% to 10%.

As in the classical exponentially-weighted RLS [2, §30.6],
(CRegLS) is modified to

min
x∈RD

E

[

1

2Γf,n

n∑

ν=1

γn−ν
f (a⊺νx− bν)

2

]

+ ρ‖x‖1,

where Γf,n :=
∑n

ν=1 γ
n−ν
f and γf ∈ (0, 1] is a “forgetting coef-

ficient” that enforces a “short-memory” effect, via the exponen-
tial rule γn−ν

f , to account for the non-stationaries of the input-
output data statistics. Results are illustrated in Figure 3. HRLSa,
HRLSb and the Bayesian ASVB-MPL seem to be both agile and
accurate in their estimation task.

2) No Additive Noise: Here, ηn = 0, or, SNR = +∞, in
the linear-regression model of Section I-B. Results are il-
lustrated in Figure 4. The best performance is achieved by
S-FM-HSDM(CRegLS), HRLSa, HRLSb, SDA, Prox-SVRG
and SVRG-ADMM.
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Fig. 4. SNR = +∞ (no additive noise); sparsity level: 10%; ρ = 10−20.

Fig. 5. AR (an)n; SNR = 20 dB.

B. (an)n is an Auto-Regressive (AR) Process

A first-order auto-regressive [AR(1)] process (an)n is
considered: ∀n ∈ Z≥0, an := δARan−1 + υn, with δAR ∈ R

and |δAR| < 1, (υn)
+∞
n=−1 is a zero-mean Gaussian IID pro-

cess, where independency is also assumed among the entries
([υn]d)

D
d=1 of each vector υn, and a−1 := υ−1. Recall here that

E([an]
2
d) = E([υn]

2
d)/(1− δ2AR) [38, (2.12.7)]. In all tests, the

ratio E([an]
2
d)/E([υn]

2
d) is set to 5dB. Results are illustrated in

Figures 5 and 6. The best performance is achieved by HRLSa,
HRLSb and ℓ0-RLS.

Fig. 6. AR (an)n; SNR = 10 dB.

V. CONCLUSIONS

This paper presented a novel stochastic-approximation tool,
namely the stochastic Fejér-monotone hybrid steepest descent
method (S-FM-HSDM), to solve convex and affinely con-
strained composite minimization tasks. Noise contaminates the
information about the task, affecting not only the loss terms
but also the affine constraints. S-FM-HSDM provides a novel
way of dealing with stochastic affine constraints via fixed-point
sets of appropriate mappings, while retaining several desirable
properties such as splitting of variables and constant step size.
A performance analysis is also provided to identify the condi-
tions under which the sequence of random variables, generated
by S-FM-HSDM, converges a.s. to solutions of the latent noise-
less minimization task. Several offsprings of S-FM-HSDM were
presented in the context of a well-studied convexly regularized
least-squares task. The versatility of S-FM-HSDM toward affine
constraints opens the door to computationally efficient novel
designs, called hierarchical recursive least squares, which, ac-
cording to extensive numerical tests on synthetic data, appear
to score the lowest estimation error across a variety of scenar-
ios versus several state-of-the-art adaptive-filtering, stochastic-
approximation and online-learning schemes. Due to space limi-
tations, rates of convergence, other theoretical contributions and
additional applications of S-FM-HSDM will be presented else-
where.

APPENDIX A
MATHEMATICAL PRELIMINARIES

Symbol X denotes a finite-dimensional Hilbert space, with
inner product 〈· | ·〉 and induced norm ‖ · ‖ := 〈· | ·〉1/2. Given
a linear operator U : X → X , ranU and kerU denote the range
and kernel spaces of U , respectively. Whenever X = R

D, the
inner product of X is the standard dot-vector one: 〈x | x′〉 :=
x⊺x′, ∀(x,x′) ∈ X 2.
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Let (Ω,Σ,P ) be a probability space, with E(·) denoting
expectation [41]. Given a sub-σ-algebra G of Σ, the class of
(non-negative) G-measurable functions is denoted by ((mG)+)
mG [41]. Given an orthonormal basis {bi}dimX

i=1 of X , x :
Ω → X is called a random variable (RV) if there exist RVs
{
γi : Ω → R

}dimX
i=1

s.t. x =
∑dimX

i=1 γibi. To avoid congestion
in notations, a lowercase symbol x denotes both a RV, i.e.,
x : Ω → X with x ∈ mΣ, and its realization x(ω), ω ∈ Ω. The
abbreviation a.s. stands for either “almost surely,” or, “almost
sure” with respect to (w.r.t.) Ω, depending on the syntax of
the sentence. A.s. convergence of the RV-sequence (xn)n to
x̄ is denoted by xn

a.s.−→n x̄. For an RV γ : Ω → R, let E|G(γ)
denote the conditional expectation of γ, conditioned on G.
The conditional expectation E|G(x) is defined by E|G(x) :=∑

i E|G(γ
i)bi. Notice that E|G(x) ∈ mG [41]. Moreover, σ(x)

denotes the sub-σ-algebra of Σ generated by x [41, §3.8]. For a
“random” linear mapping Q : X → X s.t. Qx ∈ mΣ, ∀x ∈ X ,
let E|G(Q) denote the linear mapping E|G(Q) : X → X : x �→
E|G(Q)x :=

∑

i γ
i
E|G(Qbi). Further, for each n, define the fil-

tration Fn := σ({xν}nν=0), i.e., the sub-σ-algebra generated by
the RVs {xν}nν=0 [41, §10.1].

Given ϕ ∈ Γ0(X ) [cf. Assumption 3(i)] and ǫ ∈ R>0,
the ǫ-subdifferential ∂ǫϕ is the set-valued mapping which
maps to any z ∈ X all ǫ-subgradients of ϕ at z: ∂ǫϕ(z) :=
{ξ ∈ X |ϕ(z) + 〈ξ | x− z〉 − ǫ ≤ ϕ(x), ∀x ∈ X}. The graph
of ∂ǫϕ is defined as gph ∂ǫϕ := {(z, ξ) ∈ X × X|ξ ∈ ∂ǫϕ(z)}.
Symbol ∂ϕ stands for the subdifferential mapping, defined as
∂ϕ(z) := ∩ǫ∈R>0

∂ǫϕ(z). Moreover, given λ ∈ R>0, the prox-
imal mapping Proxλϕ : X → X is defined as [13]

z = Proxλϕ(x) ⇔ z = argmin
a∈X

1

2
‖a− x‖2 + λϕ(a)

⇔ ∃ξ ∈ ∂ϕ(z) s.t. z + λξ = x . (9)

In the case where ϕ is the indicator function ιC for a closed
convex set C, i.e., ιC(x) := 0, if x ∈ C, and ιC(x) := +∞, if
x /∈ C [13], then Proxλϕ, for any λ ∈ R>0, is nothing but the
(metric) projection mappingPC onto C. The following holds true
for any member T of the family TA in (3).

Fact 1 ([30, Prop. 2.12]): The affine constraint A = FixT
= ker(Id−Q) + a = kerU + a, where a ∈ A and U stands
for the square root of the positive Id−Q, i.e., the (unique)
positive mapping s.t. U2 = Id−Q [34, Thm. 9.4-2]. Moreover,
‖ Id−Q‖ ≤ 1 [30, (7)], and hence, ‖U‖ ≤ 1.

Fact 2 ([30, Prop. 2.15]): For any λ ∈ R>0, define

A∗ := {x ∈ A| [∇f(x) + ∂(h+ g)(x)] ∩ ranU �= ∅} ,

Υ
(λ)
∗ :=

{

(x, v) ∈ A× X|−Uv

λ
∈ ∇f(x)+∂(h+g)(x)

}

.

Then,x∗ solves (P)⇔ x∗ ∈ A∗ ⇔ ∃v∗ ∈ X s.t. (x∗, v∗) ∈ Υ
(λ)
∗ .

The following lemma is used repeatedly in the sequel.
Lemma 5: For any sub-σ-algebra G ⊂ Σ, ∀(x, x′) ∈ mG ×

mΣ, E|G〈x | x′〉 = 〈x | E|G(x
′)〉 a.s. Given a linear mappingQ :

X → X , then, E|G(Qx′) = QE|G(x
′). Further, ifQ is “random,”

in the sense described earlier in this appendix, then E|G(Qx) =
E|G(Q)x.

Proof: First, expectations are assumed to exist. Given an or-
thonormal basis {bi}dimX

i=1 of X , there exist R-valued RVs {γi,

γ′i}dimX
i=1 s.t.x =

∑

i γ
ibi andx′ =

∑

i γ
′ibi a.s. Hence, accord-

ing to basic properties of conditional expectation [41, §9.7(c)(j)],
E|G〈x | x′〉 = ∑

i,i′ γ
i
E|G(γ

′i′)〈bi | bi′〉 = 〈∑i γ
ibi |

∑

i′ E|G
(γ′i′)bi′〉 = 〈x | E|G(x

′)〉 a.s. Further, E|G(Qx′) = E|G(
∑

i γ
′i

Qbi) =
∑

i E|G(γ
′i)Qbi = QE|G(x

′). Similar arguments can
lead to the final claim of Lemma 5. �

APPENDIX B
PROOF OF LEMMA 1

First, notice that A=argminx∈X ‖R1/2x−R†/2r‖2, where
R1/2 is the square root of R and † stands for the Moore-Penrose
pseudoinverse operation. The previous equality can be estab-
lished by observing that R1/2R†/2 is the orthogonal projec-
tion mapping onto the range space ranR1/2 = ranR, and that
r ∈ ranR due to the normal equations. The claim that map-
pings (2) belong to TA follows then directly from [30, (70a) and
(70d)]. The claim of Lemma 1 with regards to the mappings (5)
can be also established in a similar way; details are omitted.

APPENDIX C
PROOF OF THEOREM 1

Line 5 of Algorithm 1 yields

xn+3/2 − xn+1/2 = Tn+1xn+1 − T (α)
n xn

− λ∇fn+1(xn+1) + λ∇fn(xn) . (10)

By line 6 of Algorithm 1 and (9), ∃ξn ∈ ∂(hn−1 + g)(xn), or,
equivalently

(xn, ξn) ∈ gph ∂(hn−1 + g), (11)

s.t. xn−1/2 = xn + λξn, ∀n ∈ Z>0. Moreover, lines 2 and 3 of
Algorithm 1, as well as (10) and (11) suggest

x1 = T
(α)
0 x0 − λ [∇f0(x0) + ξ1] , (12a)

xn+2 − xn+1 = Tn+1xn+1 − T (α)
n xn

− λ [∇fn+1(xn+1) + ξn+2]

+ λ [∇fn(xn) + ξn+1] . (12b)

By telescoping (12),

xn+1 = Tnxn −
n−1∑

ν=1

(T (α)
ν − Tν)xν − λ [∇fn(xn) + ξn+1]

= 2T
(α)
n+1xn+1 − Tn+1xn+1 + (T (α)

n xn − T
(α)
n+1xn+1)

−
n+1∑

ν=1

(T (α)
ν − Tν)xν − λ [∇fn(xn) + ξn+1] ,

or, equivalently, via T
(α)
ν − Tν = (1− α)(Id−Tν),

(Id+Tn+1 − 2T
(α)
n+1)xn+1 + (T

(α)
n+1xn+1 − T (α)

n xn)

= −(1− α)

n+1∑

ν=1

(Id−Tν)xν − λ [∇fn(xn) + ξn+1] , (13)

where (13) holds true ∀n ∈ Z≥0. Furthermore,

(1− 2α)(Tn+1 − Id)xn+1 +Q
(α)
n+1(xn+1 − xn)

+ α(Tn+1 − Tn)xn
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= (1− 2α)(Tn+1 − Id)xn+1 + (T
(α)
n+1xn+1 − T

(α)
n+1xn)

+ (T
(α)
n+1 − T (α)

n )xn

= (Id+Tn+1 − 2T
(α)
n+1)xn+1 + (T

(α)
n+1xn+1 − T (α)

n xn)

(13)
= −wn+1 − λ [∇fn(xn) + ξn+1] , (14)

where ∀n ∈ Z>0,

wn+1 := (1− α)

n+1∑

ν=1

(Id−Tν)xν . (15)

Moreover, given x∗ ∈ A, define ∀n ∈ Z>0,

vn+1 := (1− α)

n+1∑

ν=1

U(xν − x∗) . (16)

whereU is defined in Fact 1. Also, let v0 := 0 =: w0. Notice that
vn+1 does not depend on the choice of x∗ ∈ A, since ∀x′

∗ ∈ A,
with x′

∗ �= x∗, Fact 1 yields x′
∗ − x∗ ∈ kerU , and

vn+1 = (1− α)

n+1∑

ν=1

U(xν − x′
∗ + x′

∗ − x∗)

= (1− α)

n+1∑

ν=1

U(xν − x′
∗) .

Notice again by Fact 1 that x∗ ∈ A ⇔ (Id−T )x∗ = 0. Then,
by (15) and (16), ∀n ∈ Z>0,

wn+1 = (1− α)

n+1∑

ν=1

(T − Tν)xν

+ (1− α)

n+1∑

ν=1

[(Id−T )xν − (Id−T )x∗]

= (1− α)

n+1∑

ν=1

(T − Tν)xν

+ (1− α)

n+1∑

ν=1

(Id−Q)(xν − x∗)

= (1− α)

n+1∑

ν=1

(T − Tν)xν + Uvn+1 . (17)

Arbitrarily fix, now, (x∗, v∗) ∈ Υ
(λ)
∗ of Fact 2: (Id−T )x∗ = 0

and ∃ξ∗ ∈ ∂(h+ g)(x∗) s.t. Uv∗ + λ[∇f(x∗) + ξ∗] = 0. Then,
by (14), (17),

(1− 2α)(Tn+1 − T )xn+1 + (1− 2α)(T − Id)xn+1

+ α(Qn+1 −Q)(xn+1 − xn)

+Q(α)(xn+1 − xn) + α(Tn+1 − Tn)xn

= −(1− α)
n+1∑

ν=1

(T − Tν)xν

− U(vn+1 − v∗)− λ [∇fn(xn)−∇f(x∗)]

− λ(ξn+1 − ξ∗)

⇔ (1− 2α)(Id−T )xn+1 +Q(α)(xn − xn+1)

+ U(v∗ − vn+1) + (1− 2α)(T − Tn+1)xn+1

+ α(Q−Qn+1)(xn+1 − xn)

+ α(Tn − Tn+1)xn

+ (1− α)

n+1∑

ν=1

(Tν − T )xν

= λ [∇fn(xn)−∇f(x∗) + ξn+1 − ξ∗] . (18)

Based on Assumption 3(ii), the application of the Baillon-
Haddad theorem [13, Cor. 18.16] to f suggests that

2λ

L∇f
‖∇f(xn)−∇f(x∗)‖2

≤ 2λ〈xn − x∗ | ∇f(xn)−∇f(x∗)〉
= 2λ〈xn+1 − x∗ | ∇fn(xn)−∇f(x∗) + ξn+1 − ξ∗〉
+ 2λ〈xn+1 − x∗ | (∇f −∇fn)xn〉
+ 2λ〈xn − xn+1 | ∇f(xn)−∇f(x∗)〉
+ 2λ〈x∗ − xn+1 | ξn+1 − ξ∗〉

(18)
= 2(1− 2α)〈xn+1 − x∗ | (Id−T )xn+1〉

+ 2〈xn+1 − x∗ | Q(α)(xn − xn+1)〉
+ 2〈xn+1 − x∗ | U(v∗ − vn+1)〉
+ 2λ〈xn − xn+1 | ∇f(xn)−∇f(x∗)〉
+ 2(1− 2α)〈xn+1 − x∗ | (T − Tn+1)xn+1〉
+ 2α〈xn+1 − x∗ | (Q−Qn+1)(xn+1 − xn)〉
+ 2α〈xn+1 − x∗ | (Tn − Tn+1)xn〉

+ 2(1− α)

〈

xn+1 − x∗ |
n+1∑

ν=1

(Tν − T )xν

〉

+ 2λ〈xn+1 − x∗ | (∇f −∇fn)xn〉
+ 2λ〈x∗ − xn+1 | ξn+1 − ξ∗〉

≤ 2(1− 2α)〈xn+1 − x∗ | (Id−T )xn+1 − (Id−T )x∗〉

+ 2〈xn+1 − x∗ | Q(α)(xn − xn+1)〉
+ 2〈x∗ − xn+1 | U(vn+1 − v∗)〉

+
λL∇f

2
‖xn − xn+1‖2 +

2λ

L∇f
‖∇f(xn)−∇f(x∗)‖2

(19a)

+ 2(1− 2α)〈xn+1 − x∗ | (T − Tn+1)xn+1〉 (19b)

+ 2α〈xn+1 − x∗ | (Q−Qn+1)(xn+1 − xn)〉
+ 2α〈xn+1 − x∗ | (Tn − Tn+1)xn〉

+ 2(1− α)

〈

xn+1 − x∗ |
n+1∑

ν=1

(Tν − T )xν

〉

+ 2λ〈xn+1 − x∗ | (∇f −∇fn)xn〉
+ 2λ〈x∗ − xn+1 | ξn+1 − ξ∗〉, (19c)
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where 2〈√βa | b/√β〉 ≤ β‖a‖2 + ‖b‖2/β, a := xn − xn+1,
b := ∇f(xn)−∇f(x∗) and β := L∇f/2, were used in (19a).
Let ϑn be the RV defined by the expression which starts from
(19b) and ends at (19c).

Let y := (x, v) denote an element of the finite-dimensional
Hilbert space (X 2, 〈· | ·〉X 2), where the inner product is
defined as 〈(x, v) | (x′, v′)〉X 2 := 〈x | x′〉+ 〈v | v′〉, for any
(x, v), (x′, v′) ∈ X 2. Let also the bounded linear and self-
adjoint operator Θ : X 2 → X 2 : (x, v) �→ (Q(α)x, v/(1− α)).
By virtue of the positivity of Q, ∀x,

〈Q(α)x | x〉 = α〈Qx | x〉+ (1− α)‖x‖2

≥ (1− α)‖x‖2, (20)

which renders Θ strongly positive (recall α < 1). Operator Θ
induces thus the Hilbert space X 2

Θ := (X 2, 〈· | ·〉X 2
Θ
) with in-

ner product 〈· | ·〉X 2
Θ
:= 〈Θ(·) | ·〉X 2 . Then, upon defining y∗ :=

(x∗, v∗), (19c) yields

0 ≤ 2(1− 2α)〈xn+1 − x∗ | (Id−Q)(xn+1 − x∗)〉

+ 2〈Q(α)(xn − xn+1) | xn+1 − x∗〉
+ 2〈U(x∗ − xn+1) | vn+1 − v∗〉

+
λL∇f

2
‖xn − xn+1‖2 + ϑn

≤ 2〈Q(α)(xn − xn+1) | xn+1 − x∗〉+
λL∇f

2
‖xn − xn+1‖2

+
2

1− α
〈vn − vn+1 | vn+1 − v∗〉+ ϑn (21a)

= 2〈Θ(yn − yn+1) | yn+1 − y∗〉X 2

+
λL∇f

2
‖xn − xn+1‖2 + ϑn

= ‖yn − y∗‖2X 2
Θ
− ‖yn+1 − y∗‖2X 2

Θ
− ‖yn+1 − yn‖2X 2

Θ

+
λL∇f

2
‖xn − xn+1‖2 + ϑn

≤ ‖yn − y∗‖2X 2
Θ
− ‖yn+1 − y∗‖2X 2

Θ

− (1− ζ)‖yn+1 − yn‖2X 2
Θ
+ ϑn, (21b)

where the positivity of Id−Q from Fact 1, α ≥ 1/2, and
vn − vn+1 = (1− α)U(x∗ − xn+1), from (16), were used in
(21a). Any ζ ∈ (λL∇f/[2(1− α)], 1) justifies (21b), since for
λ < 2(1− α)/L∇f and ∀y := (x, v) ∈ X 2, (20) suggests

λL∇f

2
‖x‖2 < ζ(1− α)‖x‖2 ≤ ζ〈x | Q(α)x〉

≤ ζ〈x | Q(α)x〉+ ζ
1

1− α
‖v‖2 = ζ‖y‖2X 2

Θ
.

Notice by (16) that vn ∈ mFn. Hence, yn = (xn, vn) ∈ mFn.
Applying E|Fn

(·) to (21b) yields

E|Fn
‖yn+1 − y∗‖2X 2

Θ
+ (1− ζ)E|Fn

‖yn+1 − yn‖2X 2
Θ

≤ ‖yn − y∗‖2X 2
Θ
+ E|Fn

(ϑn)
+ a.s., (22)

where E|Fn
(ϑn)

+ := max
{
0,E|Fn

(ϑn)
}

. Since (x∗, v∗) was

arbitrarily chosen from Υ
(λ)
∗ (cf. Fact 2), Assumption 6 and [10,

Prop. 2.3] render (yn)n stochastic quasi-Fejér monotonous w.r.t.

Υ
(λ)
∗ ; thus, bounded a.s. Due to yn = (xn, vn), sequences (xn)n

and (vn)n are also bounded a.s.
This paragraph proves the claim that (8) suffice for Assump-

tion 6 to hold true. Via (8g), a.s.,

(h+ g)(x∗)

≥ (h+ g)(xn+1) + 〈x∗ − xn+1 | E|Fn+1
(ξn+1)〉 − ǫn+1 .

Moreover, (x∗, ξ∗) ∈ gph ∂(h+ g) ⇒ (h+ g)(xn+1) ≥ (h+
g)(x∗) + 〈xn+1 − x∗ | ξ∗〉. Hence, by adding the previous two
inequalities, 〈x∗ − xn+1 | E|Fn+1

(ξn+1)− ξ∗〉 ≤ ǫn+1. The
“tower property” of conditional probability suggests E|Fn

(ϑn)
= E|Fn

E|Fn+1
(ϑn) [41, §9.7(i)]. By xn+1 − x∗ ∈ mFn+1, (8),

(19c) and Lemma 5,

E|Fn+1
(ϑn)

= 2(1− 2α)〈xn+1 − x∗ | E|Fn+1
[(T − Tn+1)xn+1]〉

+ 2α〈xn+1 − x∗ | E|Fn+1
[(Q−Qn+1)(xn+1 − xn)]〉

+ 2α〈xn+1 − x∗ | E|Fn+1
[(Tn − Tn+1)xn]〉

+ 2(1− α)〈xn+1 − x∗ | −tn+1〉
+ 2λ〈xn+1 − x∗ | E|Fn+1

[(∇f −∇fn+1)xn]〉
+ 2λ〈xn+1 − x∗ | E|Fn+1

[(∇fn+1 −∇fn)xn]〉
+ 2λ〈x∗ − xn+1 | E|Fn+1

(ξn+1)− ξ∗〉 ≤ 2λǫn+1 . (23)

Thus, E|Fn
(ϑn) ≤ 2λE|Fn

(ǫn+1) ⇒ E|Fn
(ϑn)

+ ≤ 2λE|Fn

(ǫn+1) ⇒
∑

n E|Fn
(ϑn)

+ ≤ 2λ
∑

n E|Fn
(ǫn+1) a.s. By (8g),

∑

n E[E|Fn
(ǫn+1)] =

∑

n E(ǫn+1) < +∞, and ψ := 2λ
∑

n

E|Fn
(ǫn+1), a.s., satisfies Assumption 6.

Going back to the general setting, define now space X :=
L2[(Ω,Σ,P ),X ] of (equivalent classes of Borel) measurable
functions, or, RVs x : Ω → X s.t.

∫

Ω ‖x(ω)‖2 P (dω) < +∞.
This RV-space X turns out to be a real Hilbert one with inner
product 〈x | x′〉X := E(〈x | x′〉) :=

∫

Ω〈x(ω) | x′(ω)〉P (dω),
∀(x, x′) ∈ X× X [13, Ex. 2.5, p. 28]. Hilbert space X2

Θ :=
L2[(Ω,Σ,P ),X 2

Θ] is similarly defined, with inner product 〈y |
y′〉X := E(〈y | y′〉X 2

Θ
).

Application of E(·) to (22), under the light of E(·) = E

[E|Fn
(·)] [41, §9.7(a)], yields

‖yn+1 − y∗‖2X2
Θ
+ (1− ζ)‖yn+1 − yn‖2X2

Θ

≤ ‖yn − y∗‖2X2
Θ
+ E [E|Fn

(ϑn)
+] . (24)

The monotone-convergence theorem [41, §5.3] and Assump-
tion 6 imply that

∑

n E[E|Fn
(ϑn)

+] ≤ E(ψ) < +∞. As such,

(24) renders (yn)n quasi-Fejér (of type III) w.r.t. Υ
(λ)
∗

and, thus, bounded within X2
Θ [42, Prop. 3.3]. Hence, both

(xn)n and (vn)n are bounded within X. Moreover, by tele-
scoping (24), ∀n,

∑n
ν=0 ‖yν+1 − yν‖2X2

Θ
≤ (1− ζ)−1[‖y0 −

y∗‖2X2
Θ
+ E(ψ)]. Hence,

∑+∞
n=0 E(‖yn+1 − yn‖2X 2

Θ
) < +∞. By

[41, §6.5], ‖yn+1 − yn‖2X 2
Θ

a.s.−→n 0, and thus, (yn+1 − yn)
a.s.−→n

0 by virtue of the strong positivity of Θ. Consequently,

(xn+1 − xn)
a.s.−→n 0, (vn+1 − vn)

a.s.−→n 0 ; (25)

hence, both (xn+1 − xn)n and (vn+1 − vn)n are bounded a.s.
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By (17),

wn+1 − wn

= (1− α)(T − Tn+1)xn+1 + U(vn+1 − vn)

= (1− α)(Txn+1 − Txn) + (1− α)(T − Tn+1)xn

+ (1− α)(Tn+1xn − Tn+1xn+1) + U(vn+1 − vn)

= (1− α)Q(xn+1 − xn) + (1− α)(Q−Qn+1)xn

+ (1− α)(π − πn+1) + (1− α)Qn+1(xn − xn+1)

+ U(vn+1 − vn) .

Since (xn)n is bounded a.s., there exists C1 := C1(ω) ∈
R>0 s.t. ‖xn‖ ≤ C1, ∀n, a.s. Consequently, by Fact 1,
Assumptions 1(i) and 1(ii),

‖wn+1 − wn‖
≤ (1− α)‖Q‖ ‖xn+1 − xn‖+ (1− α)‖Q−Qn+1‖ ‖xn‖
+ (1− α)‖π − πn+1‖+ (1− α)‖Qn+1‖ ‖xn − xn+1‖
+ ‖U‖ ‖vn+1 − vn‖
≤ ‖xn+1 − xn‖+ C1‖Q−Qn+1‖+ ‖π − πn+1‖
+ ‖xn − xn+1‖+ ‖vn+1 − vn‖, (26)

Via Assumption 1(iii) and (25), (26) yields

wn+1 − wn
a.s.−→n 0 . (27)

Hence, for any ǫ ∈ R>0, there exists n# := n#(ω) ∈ Z≥0

s.t. ∀n ≥ n#, ‖wn+1 − wn‖ ≤ ǫ a.s. Notice also via Jensen’s
inequality [41, §9.7(h)] that ‖E|Fn

(wn+1)− E|Fn
(wn)‖ =

‖E|Fn
(wn+1 − wn)‖ ≤ E|Fn

(‖wn+1 − wn‖) ≤ ǫ, and thus,
lim supn ‖E|Fn

(wn+1)− E|Fn
(wn)‖ ≤ ǫ a.s. Since ǫ is chosen

arbitrarily,

E|Fn
(wn+1)− E|Fn

(wn)
a.s.−→n 0 . (28)

Furthermore, by (15), (Id−Tn+1)xn+1 = (wn+1 − wn)/(1
− α), which, together with (27), yields

(Id−Tn)xn
a.s.−→n 0 . (29)

As such, ((Id−Tn)xn)n is bounded a.s. Moreover,

‖(Id−T )xn‖
≤ ‖[(Id−T )− (Id−Tn)]xn‖+ ‖(Id−Tn)xn‖
≤ ‖Qn −Q‖ ‖xn‖+ ‖πn − π‖+ ‖(Id−Tn)xn‖
≤ C1‖Qn −Q‖+ ‖πn − π‖+ ‖(Id−Tn)xn‖ .

Referring again to Assumption 1(iii), (29) and the previous in-
equality yield

(Id−T )xn
a.s.−→n 0 . (30)

Moreover,

‖(Tn − Tn+1)xn‖ ≤ ‖(Qn −Qn+1)xn‖+ ‖πn − πn+1‖
≤ ‖Qn −Qn+1‖‖xn‖+ ‖πn − πn+1‖
≤ C1‖Qn −Qn+1‖+ ‖πn − πn+1‖,

which, according to Assumption 1(iii), leads to

(Tn − Tn+1)xn
a.s.−→n 0 . (31)

Hence, ((Tn − Tn+1)xn)n is bounded a.s.

Assumptions 3(iv) and 3(v) suggest that for any z ∈ X ,

‖∇fn(xn)−∇f(z)‖2

≤ 2‖∇fn(xn)−∇fn(z)‖2 + 2‖(∇fn −∇f)z‖2

≤ 2L2
n‖xn − z‖2 + 2‖(∇fn −∇f)z‖2

≤ 2C2
Lip‖xn − z‖2 + 2‖(∇fn −∇f)z‖2 . (32)

The a.s. boundedness of (xn)n implies the a.s. boundedness
of (xn − z)n. Moreover, Assumption 3(vi) suggests the a.s.
boundedness of ((∇fn −∇f)z)n. Due also to ‖∇fn(xn)‖ ≤ ‖
∇fn(xn)−∇f(z)‖+ ‖∇f(z)‖, (32) guarantees that (∇fn
(xn))n is bounded a.s. Notice also by (14),

ξn+1 +
1

λ
wn+1 =

1− 2α

λ
(Id−Tn+1)xn+1

+
1

λ
Q

(α)
n+1(xn − xn+1)

+
α

λ
(Tn − Tn+1)xn −∇fn(xn) . (33)

Due also to the a.s. boundedness of ((Id−Tn)xn)n, (xn+1 −
xn)n, ((Tn+1 − Tn)xn)n and (∇fn(xn))n, there exists C2 :=
C2(ω) ∈ R>0 s.t.

‖ξn+1 +
1

λ
wn+1‖

≤ 2α− 1

λ
‖(Id−Tn+1)xn+1‖+

1

λ
‖Q(α)

n+1(xn − xn+1)‖

+
α

λ
‖(Tn − Tn+1)xn‖+ ‖∇fn(xn)‖

≤ 2α− 1

λ
‖(Id−Tn+1)xn+1‖+

1

λ
‖xn − xn+1‖

+
α

λ
‖(Tn − Tn+1)xn‖+ ‖∇fn(xn)‖ ≤ C2 a.s. (34)

Lemma 6: The cluster-point set C[(yn)n] of sequence (yn)n,
as well as C[(xn)n] and C[(vn)n] are nonempty. If ȳ =: (x̄, v̄) ∈
C[(yn)n], then, x̄ ∈ C[(xn)n] and v̄ ∈ C[(vn)n]. For any x̄ ∈
C[(xn)n], there exists v̄ ∈ C[(vn)n] s.t. ȳ := (x̄, v̄) ∈ C[(yn)n].
All of the previous statements hold true a.s.

Proof: Since (yn)n is bounded a.s. [cf. discussion after (22)],
its set of cluster points is nonempty [13, Fact 2.26(iii) and
Lem. 2.37]. Moreover, due to the boundedness of (xn)n and
(vn)n, C[(xn)n] and C[(vn)n] are also nonempty. For any clus-
ter point ȳ =: (x̄, v̄) ∈ C[(yn)n], there exists a subsequence
(nk)k s.t. ynk

:= (xnk
, vnk

)
a.s.−→k (x̄, v̄), i.e., x̄ ∈ C[(xn)n] and

v̄ ∈ C[(vn)n]. On the other hand, given any x̄ ∈ C[(xn)n],
there exists a subsequence (xnk

)k s.t. xnk

a.s.−→k x̄. Since (vn)n
is bounded, passing to a subsequence of (nk)k if necessary
(avoided here to avoid notational congestion), there exists
v̄ ∈ C[(vn)n] s.t. vnk

a.s.−→k v̄, and thus, ynk
:= (xnk

, vnk
)

a.s.−→k

(x̄, v̄) =: ȳ ∈ C[(yn)n]. �

Choose, now, arbitrarily a cluster point ȳ =:(x̄, v̄)∈C[(yn)n]
�= ∅. Hence, there exists a subsequence (nk)k s.t. ynk

=:

(xnk
, vnk

)
a.s.−→k (x̄, v̄). Then, by (30), applied to (xnk

)k, and
by the nonexpansivity (thus continuity) of T ,

x̄ ∈ FixT = A a.s. (35)
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Setting n = nk and z = x̄ in (32) yields ‖∇fnk
(xnk

)−
∇f(x̄)‖2 ≤ 2C2

Lip‖xnk
− x̄‖2 + 2‖(∇fnk

−∇f)x̄‖2, which,

by Assumption 3(iv) andxnk

a.s.−→k x̄, deduces∇fnk
(xnk

)
a.s.−→k

∇f(x̄). Moreover, by Assumption 4(ii), ∇f(xnk
) ∈ mFnk

and

E|Fnk
[∇fnk

(xnk
)] = E|Fnk

[∇f(xnk
)] + εfnk

(xnk
)

= ∇f(xnk
) + εfnk

(xnk
)

a.s.−→k ∇f(x̄) .
(36)

Lemma 7: The range space ranU is closed in the strong
topology of X, i.e., ranU = ranU , where ranU denotes
the smallest closed set containing ranU (notice that X :=
L2[(Ω,Σ,P ),X ] is infinite dimensional).

Proof: Since ranU is finite dimensional within X , there
exists an orthonormal set {ui}rankU

i=1 which spans ranU .
Hence, for any z ∈ X ∩ ranU , there exist real-valued RVs
{γi}rankU

i=1 s.t. z =
∑

i γ
iui a.s. Due to the orthonormality

of uis, it can be verified that ‖z‖2
X
=

∑

i E[(γi)2]. Thus,
z ∈ X ⇒ γi ∈ L2[(Ω,Σ,P ),R], ∀i. Consider, now, a se-
quence (zk)k ⊂ ranU ∩ X, with the associated coefficients
{γi

k|i ∈ {1, . . . , rankU}; k ∈ Z≥0} ⊂ L2[(Ω,Σ,P ),R]. Let z̄

s.t. zk
X−→k z̄. Since (zk)k is convergent, it is also Cauchy [13],

and thus, (γi
k)k is also Cauchy, ∀i. By virtue of the com-

pleteness of the Hilbert space L2[(Ω,Σ,P ),R] [13], there

exists γ̄i s.t. γi
k

L2[(Ω,Σ,P),R]−−−−−−−−−→k γ̄i, ∀i. In other words, z̄ =
limk→∞

∑

i γ
i
kui =

∑

i limk→∞ γi
kui =

∑

i γ̄
iui ∈ ranU ,

which establishes the claim. �

Since (xnk
)k is bounded a.s., Assumption 8(ii) suggests that

(ξnk
)k is also bounded a.s. There exists, thus, ξ̄ and a sub-

sequence of (nk)k, denoted here also by (nk)k to avoid no-
tational congestion, s.t. ξnk

a.s.−→k ξ̄. Further, via ‖wnk+1‖ ≤
λ‖ξnk+1 + wnk+1/λ‖+ λ‖ξnk+1‖ and (34), (wnk

)k is also
bounded a.s., and hence, so is (E|Fnk

(wnk
))k. Consequently,

passing again to a subsequence of (nk)k if necessary, there ex-
ists w̄ s.t. E|Fnk

(wnk
)

a.s.−→k w̄.
Recall now that (xn)n is bounded within X [cf. discussion

after (24)]. Moreover, the application of E(·) to (32), Assump-
tion 7(i), and by arguments similar to those after (32), it can be
shown that there exists C3 ∈ R>0 s.t.

‖∇fn(xn)‖X ≤ C3, ∀n . (37)

Notice by Assumption 7(ii) that ∀n, ‖πn − πn+1‖2X = ‖πn − π
+ π − πn+1‖2X ≤ 2‖πn − π‖2

X
+ 2‖πn+1 − π‖2

X
≤ 4Cπ . Fur-

ther,‖πn‖2X = ‖πn − π + π‖2
X
≤ 2‖πn − π‖2

X
+2‖π‖2

X
≤2Cπ

+ 2‖π‖2
X

; thus, (πn)n is bounded. By (33), the a.s. nonexpan-
sivity of (Qn)n suggests that ∃C4 ∈ R>0 s.t.

‖ξn+1 +
1

λ
wn+1‖X

≤ 2α− 1

λ
‖(Id−Tn+1)xn+1‖X +

1

λ
‖xn − xn+1‖X

+
α

λ
‖(Tn − Tn+1)xn‖X + ‖∇fn(xn)‖X

≤ 2α− 1

λ
‖xn+1‖X +

2α− 1

λ
‖Qn+1xn+1‖X

+
2α− 1

λ
‖πn+1‖X +

1

λ
‖xn‖X +

1

λ
‖xn+1‖X +

α

λ
‖Qnxn‖X

+
α

λ
‖πn‖X +

α

λ
‖Qn+1xn‖X +

α

λ
‖πn+1‖X + ‖∇fn(xn)‖X

≤ 4α− 1

λ
‖xn+1‖X +

2α+ 1

λ
‖xn‖X +

3α− 1

λ
‖πn+1‖X

+
α

λ
‖πn‖X + ‖∇fn(xn)‖X ≤ C4 .

Due to Assumption 8(iii), which establishes the boundedness
of (ξnk

)k, the previous discussion renders (wnk
)k bounded. By

Jensen’s inequality [41, §9.7(h)], (E|Fnk
(wnk

))k is also bounded
in X, and hence uniformly integrable (UI) [41, §13.3(a)]. Since
E|Fnk

(wnk
)

a.s.−→k w̄, then, this convergence holds also in proba-
bility [41, App. A13.2(a)]. This and the UI argument imply that

E|Fnk
(wnk

)
X−→k w̄ [41, App. A13.2(f)]. Going back to (17),

notice by Lemma 5 and E(·) = E[E|Fn
(·)] [41, §9.7(a)] that

∀u ∈ kerU ∩ X ,

〈u | E|Fnk
(wnk

)〉X
= (1− α)〈u | tnk

〉X + 〈u | U E|Fnk
(vnk

)〉X
= (1− α)〈u | tnk

〉X + 〈Uu | vnk
〉X

= (1− α)〈u | tnk
〉X = (1− α)〈u | E(tnk

)〉 . (38)

It can be also seen via (17) that (1− α)tnk
= E|Fnk

(wnk
)−

U E|Fnk
(vnk

); hence, (1− α)E(tnk
) = E(wnk

)− U E(vnk
)

and (1− α)2‖E(tnk
)‖2 ≤ 2‖E(wnk

)‖2 + 2‖U‖2‖E(vnk
)‖2

≤ 2‖E(wnk
)‖2 + 2‖E(vnk

)‖2. Furthermore, Jensen’s inequal-
ity [41, §9.7(h)] yields (1− α)2‖E(tnk

)‖2 ≤ 2E(‖wnk
‖2) +

2E(‖vnk
‖2) = 2‖wnk

‖2
X
+ 2‖vnk

‖2
X

, and consequently, the
boundedness of (wnk

)k and (vnk
)k inX results in that (E(tnk

))k
is also bounded in X . According now to Assumption 1(iv), there
exists a subsequence of (nk)k, denoted here again by (nk)k
to avoid clutter in notations, s.t. limk E(tnk

) ∈ ran(Id−Q) =
ranU = (kerU)⊥. Thus, via (38) and the continuity of
the inner product [13, Lem. 2.41(iii)], 〈u | w̄〉X = limk〈u |
E|Fnk

(wnk
)〉X = (1− α)〈u | limk E(tnk

)〉 = 0. Hence, w̄ ∈
(kerU)⊥ = ranU = ranU , according to [13, Fact 2.18(iii)]
and Lemma 7.

Fix arbitrarily an ǫ > 0. By the convexity of hnk
+ g, ∀z ∈ X

and a.s.,

(hnk
+ g)(z)

≥ 〈z − xnk+1 | ξnk+1〉+ (hnk
+ g)(xnk+1)

≥ 〈z − xnk+1 | ξnk+1〉+ 〈xnk+1 − xnk
| τnk

〉
+ (hnk

+ g)(xnk
)

= 〈z − xnk
| ξnk+1〉+ (hnk

+ g)(xnk
)

+ 〈xnk
− xnk+1 | ξnk+1〉+ 〈xnk+1 − xnk

| τnk
〉

≥ 〈z − xnk
| ξnk+1〉+ (hnk

+ g)(xnk
)

− ‖xnk
− xnk+1‖‖ξnk+1‖ − ‖xnk

− xnk+1‖‖τnk
‖, (39)

where τnk
∈ ∂(hnk

+ g)(xnk
) is chosen according to Assump-

tion 8(i), ∀k. Moreover, by (25) and Assumption 4, there
exists an integer k# := k#(ω) s.t. ∀k ≥ k#, ‖xnk

− xnk+1‖
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≤ ǫ/[3(C∂ + C5)], −ǫ/3 ≤ εhnk
(xnk

) ≤ ǫ/3 and −ǫ/3≤−εhnk

(z) ≤ ǫ/3. By (39),

(hnk
+ g)(z) ≥ 〈z − xnk

| ξnk+1〉+ (hnk
+ g)(xnk

)

− ǫ/3

C∂ + C5
(‖τnk

‖+ ‖ξnk+1‖) .

Notice that Assumption 8(ii) implies the existence of C5 :=
C5(ω) ∈ R>0 s.t.‖ξn‖ ≤ C5. Applying E|Fnk

(·) to the previous
inequality and adhering to Assumptions 4(i) and 8(i), as well as
Lemma 5, ∀z ∈ X , ∀k ≥ k# and a.s.,

ǫ

3
+ (h+ g)(z)

≥ −εhnk
(z) + (h+ g)(z) = E|Fnk

(hnk
+ g)(z)

≥ 〈z − xnk
| E|Fnk

(ξnk+1)〉

+ E|Fnk
[(hnk

+ g)(xnk
)]− ǫ

3

= 〈z − xnk
| E|Fnk

(ξnk+1)〉+ (h+ g)(xnk
)

− εhnk
(xnk

)− ǫ

3

≥ 〈z − xnk
| E|Fnk

(ξnk+1)〉+ (h+ g)(xnk
)− ǫ

3
− ǫ

3
.

(40)

Since (ξn)n is bounded a.s., so is (ξnk
)k and, consequently, so is

(E|Fnk
(ξnk+1))k. Hence, there exists ξ̄ s.t. E|Fnk

(ξnk+1)
a.s.−→k

ξ̄ (once again, passing to a subsequence of (nk)k is avoided).
Moreover, since h+ g is l.s.c., lim infk(h+ g)(xnk

) ≥ (h+
g)(x̄) [13]. Hence, by the application of lim infk to (40) and
the continuity of the inner product [13, Lem. 2.41(iii)], ǫ/3 +
(h+ g)(z) ≥ 〈z − x̄ | ξ̄〉+ (h+ g)(x̄)− 2ǫ/3, ∀z ∈ X , and
(x̄, ξ̄) ∈ gph ∂ǫ(h+ g) a.s. Since ǫ > 0 was chosen arbitrarily,

(x̄, ξ̄) ∈ ∩ǫ∈R>0
gph ∂ǫ(h+ g) = gph ∂(h+ g) a.s. (41)

Similarly to the way that (28) follows from (27), it can be verified
that (29) yields E|Fnk

[(Tnk+1 − Id)xnk+1]
a.s.−→k 0, (31) leads

to E|Fnk
[(Tnk+1 − Tnk

)xnk
]

a.s.−→k 0, and (25) gives, via fact

‖Q(α)
n ‖ = ‖αQn + (1− α) Id ‖ ≤ α‖Qn‖+ (1− α)≤1, ∀n,

a.s., E|Fnk
[Q

(α)
nk+1(xnk+1 − xnk

)]
a.s.−→k 0. Recalling (28) and

(36), the application of limk E|Fnk
(·) to (14) yields

− lim
k→∞

E|Fnk
(wnk+1)− λ lim

k→∞
E|Fnk

[∇fnk
(xnk

)]

− λ limk→∞ E|Fnk
(ξnk+1)

= (1− 2α) lim
k→∞

E|Fnk
[(Tnk+1 − Id)xnk+1]

+ lim
k→∞

E|Fnk
[Q

(α)
nk+1(xnk+1 − xnk

)]

+ α lim
k→∞

E|Fnk
[(Tnk+1 − Tnk

)xnk
]

⇔ ∇f(x̄) + ξ̄ = − 1

λ
w̄ ∈ ranU a.s. (42)

Since (42) holds true for any cluster point inC[(yn)n], Fact 2 and
Lemma 6 suggest that any x̄ ∈ C[(xn)n] belongs to A∗, solving
thus (P) a.s.

APPENDIX D
PROOF OF THEOREM 2

Assumptions 8(ii) and 8(iii) are used in Appendix C to es-
tablish the boundedness of (wn)n a.s. and in X. However, in
the case where T is known exactly, the boundedness of (wn)n
follows from the boundedness of (vn)n, since by (15) and (16),
wn = Uvn. Moreover, by Lemma 5 and the fact that vn ∈ mFn,
E|Fn

(wn) = U E|Fn
(vn) = Uvn. Thus, w̄

a.s.←−k E|Fnk
(wnk

) =

Uvnk

a.s.−→k Uv̄, and (42) becomes ∇f(x̄) + ξ̄ = −(1/λ)Uv̄
a.s. Hence, according to Fact 2, the arbitrarily chosen cluster
point ȳ = (x̄, v̄) ∈ Υ

(λ)
∗ . This result together with the stochastic

Fejér monotonicity of (yn)n w.r.t. Υ(λ)
∗ [cf. (22)] suggest that

C[(yn)n] is a singleton [10, Prop. 2.3(iv)], that C[(xn)n] is also
a singleton by virtue of Lemma 6, and that (xn)n converges a.s.
to a solution of (P).

APPENDIX E
PROOF OF COROLLARY 1

According to Lemma 2, Assumption 1 holds true. Since
(f, fn) := (0, 0) and (h, hn) := (0, 0) in (HLS), Assumptions
3, 4, and 7(i) hold trivially true. Moreover, Lemma 4 and
(h, hn) := (0, 0) suggest that Assumption 8 holds true. In the
context of Theorem 1, L∇f and λ can take any values in R>0.
The claim of Corollary 1 follows now from Theorem 1.

APPENDIX F
PROOF OF COROLLARY 2

Since (f, fn) := (0, 0) in (CRegLS) and Tn := PA =: T in
Algorithm 3, Assumptions 3, 4(ii) and 7(i) hold trivially true.
Moreover, according to Lemma 4, Assumption 8(i) holds also
true. The claim of Corollary 2 follows now from Theorem 2.

APPENDIX G
PROOF OF LEMMA 2

The proof that Assumption 1(ii) holds true follows exactly
the steps of the proof of [30, (70a) and (70d)], in the case where
δ := 1 and ϕδ(x) = ϕ1(x) := [1/(2n)]

∑n
ν=1(a

⊺

νx− bν)
2,

∀x ∈ X , in [30, (73)]. Furthermore, by virtue of Assumption 2,
of (̟n := ̟, ∀n), and the continuity of the matrix-
inversion operation, mappings (5) satisfy Assumption
1(iii). According to Fact 1, the normal equations suggest
that for any T ∈ TA, {x|Rx = r} = ker(Id−Q) + θ∗ ⇒
ker(Id−Q) = {x− θ∗|Rx = r = Rθ∗} = {x′|Rx′ = 0} =
kerR = {0}, due to the non-singularity of R. How-
ever, ran(Id−Q) = [ker(Id−Q)]⊥ = {0}⊥ = X . Hence,
if (E(tn))n is bounded, then any of its cluster points belongs
trivially to ran(Id−Q) = X .

APPENDIX H
PROOF OF LEMMA 3

Notice first that due to the IID assumption, ∀ν ∈ {1, . . . , n},
E|σ(Rn)(aνa

⊺

ν) = Rn [41, §9.11]. Thus, by applying E|σ(Rn)(·)
to Rν = (n/ν)Rn − (1/ν)

∑n
i=ν+1 aia

⊺

i , which can be
straightforwardly derived from (4), E|σ(Rn)(Rν) = Rn can
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be established. Moreover, due to the conditional-independence
hypothesis E|Fn

(Rν) = E|Fn
E|Fn,σ(Rn)[(1/ν)

∑ν
i=1 aia

⊺

i ] =
(1/ν)

∑ν
i=1 E|Fn

E|Fn,σ(Rn)(aia
⊺

i )=(1/ν)
∑ν

i=1 E|Fn
E|σ(Rn)

(aia
⊺

i ) = E|Fn
(Rn) = R. Furthermore, by the linear-

regression model of Section I-B and the assumptions on
the noise process (ηn)n, E|σ(Rn)(bνaν) = E|σ(Rn)(aνa

⊺

νθ∗) +
E|σ(Rn)(ηnaν) = E|σ(Rn)(aνa

⊺

ν)θ∗ + E(ηn)E|σ(Rn)(aν) =
Rnθ∗. Furthermore, in a way similar to that of the E|Fn

(Rν)
case, E|Fn

(rν) = E|Fn
(Rnθ∗) = Rθ∗ = r.

i) Applying E|Fn
(·) to (T − Tn)xn = −(μ/̟)ER

nxn +
(μ/̟)εrn yields (8a). In a similar way, (8b) can be es-
tablished. Moreover,

tn = E|Fn

[
n∑

ν=1

(T − Tν)xν

]

= − μ

̟

n∑

ν=1

[
R− E|Fn

(Rν)
]
xν

+
μ

̟

n∑

ν=1

[
r− E|Fn

(rν)
]
= 0 .

Furthermore, Rn−1 −Rn = Rn/(n− 1)− ana
⊺

n/(n
− 1) = R/(n− 1)− ana

⊺

n/(n− 1)−E
R
n /(n−1) and

rn−1 − rn = r/(n− 1)− bnan/(n− 1)−εrn/(n−1).
Hence, due to Tn − Tn−1 = (μ/̟)(Rn−1 −Rn) +
(μ/̟)(rn − rn−1),

E|Fn
[(Tn − Tn−1)xn−1]

=
μ

̟(n− 1)
Rxn−1 −

μ

̟(n− 1)
E|Fn

(ana
⊺

n)xn−1

− μ

̟(n− 1)
E|Fn

(ER
n )xn−1 −

μ

̟(n− 1)
r

+
μ

̟(n− 1)
E|Fn

(bnan) +
μ

̟(n− 1)
E|Fn

(εrn) = 0 .

ii) By the assumption that noise ηn is independent of
an, and thus independent also of Fn, as well as by
E|Fn

(ER
n ) = 0, it can be verified that E|Fn

(b2n) = E(b2n)
a.s. Now, by (CRegLS) and Lemma 5, ∀n, ∀x ∈ X and
a.s.,

εhn(x) = E|Fn
[(h− hn)(x)]

=
1

2
E|Fn

(x⊺
E
R
nx)− E|Fn

(x⊺εrn)

=
1

2
x⊺

E|Fn
(ER

n )x− x⊺
E|Fn

(εrn) = 0 .

The claim εhn(xn) = 0, a.s., can be similarly verified.
iii) Notice that E|Fn

[(∇f −∇fn)xn] = E|Fn
(ER

nxn)−
E|Fn

(εrn) = E(ER
n )xn − E(εrn) = 0. Moreover, by

following similar steps as those in the last part of
Appendix H(i), E|Fn

[(∇fn −∇fn−1)xn−1] = 0 can be
also established.

iv) Here, only the case of (h, hn) = (l, ln) is consid-
ered, since the case of (h, hn) = (0, 0) can be triv-
ially deduced. To this end, there exists χn ∈ ∂g(xn)
s.t. ξn = Rn−1xn − rn−1 + χn. Recall here that χn ∈

∂g(xn) = ∂‖ · ‖1(xn) iff

[χn]d ∈
{

{sgn([xn]d)} , if [xn]d �= 0,

[− 1, 1], if [xn]d = 0,
(43)

where sgn(·) denotes the sign of a real-valued number.
Hence, χn ∈ mFn. By arguments similar to those
in the first part of Appendix H(i), E|Fn

(ξn) = E|Fn

(Rn−1)xn − E|Fn
(rn−1) + χn = Rxn − r+ χn ∈

∂(h+ g)(xn). In other words, ǫn = 0, a.s., in (8g).

APPENDIX I
PROOF OF LEMMA 4

i) According to (43), for any (z, τ ) s.t. τ ∈ ∂‖‖1(z),
|[τ ]d| ≤ 1, ∀d. Hence, ‖τ‖ ≤

√
D and E|Fn

(‖τ‖) ≤√
D a.s. This bound renders Assumptions 8(i), 8(ii)

and 8(iii) true in the case where hn := 0 and h := 0
in (CRegLS).
The following discussion deals with the case of (h, hn)
:= (l, ln) in (CRegLS), where, according to (7), ∇hn

(x)=Rnx− rn, ∀x ∈ X . By Assumption 2, given
ǫ
:= ǫ(ω) ∈ R>0, there exists n# := n#(ω) ∈ Z≥0 s.t.
‖Rn‖ ≤ ‖R‖+ ǫ and ‖rn‖ ≤ ‖r‖+ ǫ, ∀n ≥ n#.
Define, then, ̟ := ̟(ω) := max{{‖Rn‖|0≤n < n#

− 1}, ‖R‖+ ǫ} and ̟′ := ̟′(ω) := max{{‖rn‖|0
≤ n < n# − 1}, ‖r‖+ ǫ}. According to the
hypothesis, there exists Cz := Cz(ω) ∈ R>0

s.t. ‖zn‖ ≤ Cz , ∀n. Thus, ∀δn ∈ ∂‖ · ‖1(zn),
τn := Rnzn − rn + ρδn ∈ ∂(hn + g)(zn) and
‖τn‖ ≤ ‖Rn‖‖zn‖+ ‖rn‖+ ρ‖δn‖ ≤ ̟Cz +̟′ +
ρ
√
D =: C∂ , ∀n; thus, Assumption 8(i) holds true. By

using xn in the place of zn in the previous discussion,
it can be verified that Assumption 8(ii) holds also true.

ii) Observe that ‖ξn‖2 = ‖Rnxn − rn + ρδn‖2 ≤ 2‖Rn

xn‖2 + 2‖rn + ρδn‖2 ≤ 2‖Rn‖2‖xn‖2 + 4‖rn‖2 +
4ρ2‖δn‖2 ≤ 2̟2‖xn‖2 + 4̟′2 + 4ρ2D, a.s. Hence,
‖ξn‖2X=E(‖ξn‖2) ≤ 2̟2

E(‖xn‖2) + 4̟′2 + 4ρ2

D = 2̟2‖xn‖2X + 4̟′2 + 4ρ2D, and consequently,
(‖ξn‖2X)n is bounded.
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