Article

pubs.acs.org/JPCC

$_1$ Origin of the $\pi-\pi$ Spacing Change upon Doping of Semiconducting $_2$ Polymers

- 3 Wenlan Liu,^{†,‡,§,¶} Lars Müller,^{‡,||,⊥,¶} Shuangying Ma,^{‡,§} Stephen Barlow,[#] Seth R. Marder,[#] Wolfgang Kowalsky,^{‡,||} Andreas Köhn,^{*,‡,§} and Robert Lovrincic^{*,‡,||}
- s [†]Chongqing Key Laboratory of Green Synthesis and Applications & College of Chemistry, Chongqing Normal University,
- 6 Chongqing 400047, China
- 7 FinnovationLab, Heidelberg 69115, Germany
- 8 SInstitute for Theoretical Chemistry, University of Stuttgart, Stuttgart 70174, Germany
- 9 ||Institute for High-Frequency Technology, TU Braunschweig, Braunschweig 38106, Germany
- 10 ^LKirchhoff Institute for Physics, Heidelberg University, Heidelberg 69117, Germany
- 11 *Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta,
- 12 Georgia 30332-0400, United States

Supporting Information

14

15

16

17

18

19

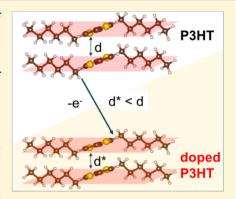
2.0

21

22

23

2.4


25

26

2.7

28

ABSTRACT: Although there is an agreement about the local structural order of semiconducting polymers such as poly(3-hexylthiophene) (P3HT), there is still a debate over the impact of molecular doping. One prevalent interpretation is that dopant molecules intercalate in the $\pi-\pi$ stacking of crystallites; however, this idea has recently been challenged. We present here electron diffraction measurements of P3HT doped with the two dopants 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F₄TCNQ) and molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-CO₂Me)₃), which have considerably different sizes and shapes, processed by different doping techniques. We observe a reduction in the $\pi-\pi$ spacing of P3HT upon doping with both dopant molecules and doping techniques. These data are not consistent with both of the dopants intercalating in the $\pi-\pi$ stacks and an alternative explanation is, therefore, required to explain these results. Density functional theory calculations for P3HT model oligomers suggest that the polaron delocalizes between adjacent chains and thus leads to attractive

forces that reduce the $\pi-\pi$ spacing, without the physical presence of any dopant molecules. Our study emphasizes that not only geometric effects induced by dopant molecules lead to the observed reduction of $\pi-\pi$ spacing, but the charging itself.

1. INTRODUCTION

30 The performance of organic electronic devices such as field-31 effect transistors or solar cells depends on the charge transport within the organic materials. In conjugated polymers, 32 electrical conductivity is known to be strongly influenced by 33 the local structural order and can be furthermore tuned in a 35 broad range with molecular doping. The complex polymer—36 dopant interactions and their effect on charge transport are an 37 area of active research. For instance, recent studies found a 38 decrease of the π - π interchain distance in polymers upon 39 doping. As we outline below, several, sometimes contra-40 dictory, explanations for this decrease have been proposed and 41 a generally accepted understanding of the underlying 42 mechanism is lacking.

The most investigated semiconducting polymer poly(3-44 hexylthiophene) (P3HT) is semicrystalline, with \sim 20 nm 45 crystallites embedded in an amorphous matrix. These 46 crystallites show distinct lattice spacings: the lamellar stacking 47 in the [100]-direction with a spacing of 1.68 nm in the 48 direction of alkyl side chains and the stacking in the [010]-

direction, usually named $\pi-\pi$ spacing, with a distance of 0.38 49 nm. Depending on the angle between side chains and 50 backbone, the spacing in the [010]-direction fully or partly 51 corresponds to the spacing orthogonal to and between the 52 backbones. Despite numerous publications that specifically 53 address the structural order and its emergence in the case of 54 molecular dopants present in the polymer matrix, the exact 55 local structure and its formation are still under discussion. $^{6,9,12-14}$

Among the first investigations on this topic was a study on 58 the host:dopant model system P3HT:2,3,5,6-tetrafluoro- 59 7,7,8,8-tetracyanoquinodimethane (F₄TCNQ) in which dop- 60 ing was achieved by mixing the dopant and host in a solution 61 prior to spin coating. After film formation, X-ray diffraction 62 measurements on F₄TCNQ-doped P3HT revealed two distinct 63 diffraction peaks around the spacings expected for the π - π 64

Received: November 7, 2018 Revised: November 16, 2018 Published: November 16, 2018

65 interchain distance. One of the spacings was smaller compared 66 to the $\pi-\pi$ stacking distance of two polymer backbones, 67 whereas the second was slightly larger. Although the authors 68 acknowledged that the amount of structural information that 69 could be extracted from the diffraction data was limited, they 70 suggested that cocrystals were formed in which F₄TCNQ 71 anions intercalated into the P3HT π -stacks. Subsequently, 72 several other studies of F₄TCNQ doping of conjugated 73 polymers also suggested that F₄TCNQ intercalates in the 74 π - π spacing of P3HT crystallites. 3-5,12,15,16 Inelastic neutron 75 scattering measurements were consistent with a density 76 functional theory (DFT) model based on F₄TCNQ 77 intercalation into the π - π spacing of P3HT. 12 However, this 78 interpretation is currently questioned with the emergence of 79 sequential doping techniques, which are not sensitive to the 80 phenomena arising from mixed doping (interactions of dopant, 81 host, and solvent prior to film formation). Sequential doping 82 makes use of the ability of small molecular dopants to enter 83 and diffuse in a semicrystalline polymer film. Hence, it allows 84 for regions of well-ordered polymers to form upon film 85 formation, and for one to probe the local structure of the 86 polymer film before contact with, and therefore influence by, 87 the dopant. 13,14,17 Recent studies of P3HT and F4TCNO still 88 observe the emergence of a diffraction peak that represents a 89 spacing smaller than the original π - π distance, regardless of 90 the doping technique: sequential doping from solution 14 or 91 from a dopant vapor. 13,17 However, the observed shape and 92 energetic position of optical P1 polaron absorption are not 93 consistent with strong localization of the P3HT polaron, which 94 would be expected if an F₄TCNQ anion was intercalated 95 between the $\pi - \pi$ stacks of P3HT. The study utilizing vapor 96 doping also suggested that intercalation of dopants between 97 the P3HT backbones is unlikely to occur just from solid-state 98 diffusion. 13 Additionally, experiments in which oriented and 99 highly crystalline P3HT layers were prepared by high-100 temperature rubbing and subsequent sequential doping from 101 solution corroborate this hypothesis: specifically, the absorp-102 tion transition dipole of the F₄TNCQ anions was found to be 103 roughly perpendicular to that of the P3HT polaron, which is 104 incompatible with the model of dopants intercalated in the 105 π – π stacks. Further evidence against the incorporation of 106 dopant molecules into the π - π stacks as an explanation for 107 different $\pi - \pi$ spacings is given by diffraction measurements of 108 electrochemically doped P3HT: with a continuous increase of 109 TFSI⁻ anion concentration in a P3HT thin film, the π - π 110 spacing was found to incrementally decrease—opposed to the 111 formation of a cocrystal with a different but fixed spacing. 8,18 A 112 similar result was found for various dopant ions in different 113 polythiophenes. 19,20 Furthermore, some recent studies on the polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]-115 thiophene) (PBTTT), which also exhibits the $\pi-\pi$ stacking, 116 revealed a decrease of the π - π spacing upon doping with 117 various dopants and doping techniques. Philadelphia effect was 118 reversed upon dedoping the polymer films. Importantly, 119 the change in $\pi - \pi$ spacing was not observed with the 120 structurally similar small-molecule TCNQ, which does not 121 electrically dope PBTTT, implying that the doping process 122 itself is required for the observed reduction of the π - π 123 spacing.²¹

For doped P3HT, some studies briefly address alternative explanations to an intercalation of dopants in the π - π stacking as a reason for a change in the stacking distance. It has been suggested that a change in the side-chain geometry and

orientation could influence the distance between π -orbitals on 128 adjacent thiophene rings. ^{13,14,24} In the case of F₄TNCQ, a ₁₂₉ specific intercalation in the side chains with an orientation of 130 the long molecular axis perpendicular to the P3HT backbone 131 was proposed. 13 This would lead to a phase change manifesting 132 in the appearance of an additional diffraction peak, which fits 133 to X-ray diffraction measurements.^{6,13,14} An observed registry 134 shift of thiophene units on neighboring backbones supports the 135 hypothesis of an altered crystal structure. 14 However, the 136 development of a new crystal phase as a sole reason for a 137 change in the π - π spacing is ruled out by the observations of a 138 similar stacking distance change in electrochemically doped 139 P3HT. 18 The proposed explanation is still limited to 140 geometrical arguments: straightening of alkyl side chains 141 when the dopant enters the region between the side chains 142 of two adjacent lamellae. 18 This flattening and the additional 143 space that is occupied by the dopant ions would lead to an 144 increase in lamellar spacing—which is observed—and could 145 additionally allow the polymer backbones to stack closer in the 146 $\pi-\pi$ stacking direction. Furthermore, it was suggested that 147 the decreased dihedral angle between neighboring thiophene 148 units upon doping might allow for a denser packing in $\pi-\pi$ 149 stacking direction. 17,19 A more general mechanism that could 150 lead to a change in $\pi - \pi$ spacing upon doping was previously 151 proposed, but not discussed in detail from a theoretical 152 perspective: the delocalization of the polaron across multiple 153 adjacent P3HT backbones, which could slightly pull together 154 the backbones in the π - π stacking direction.¹⁴

The studies described above illustrate clearly that the nature 156 of doping and therefore the structure are sensitive to the 157 doping process; therefore, care must be taken in drawing 158 universal conclusions about the structure and properties of 159 conjugated polymers doped with F₄TCNQ when comparing 160 work done by different groups, in different ways, and studied 161 by different techniques. To help develop a self-consistent 162 picture of the doping process, we conducted electron 163 diffraction measurements of P3HT doped with two dop- 164 ants—F₄TCNQ and molybdenum tris[1-(methoxycarbonyl)- 165 2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-166 CO₂Me)₃)—with considerably different sizes and shapes, 167 processed by both mixed and sequential doping techniques, 168 in order to probe both the role of the dopant and the processes 169 of doping to determine if any general trends emerged. 170 Specifically, in this work, we provide experimental evidence 171 that does not support intercalation of the dopant anion in the 172 π - π stacks and we provide a theoretical foundation based on 173 DFT calculations for a mechanism to explain the decreased 174 π - π stacking distances based on simple molecular orbital 175 (MO) arguments. Our theoretical discussion expands the 176 current discussion from a mostly geometric argumentation to a 177 more general picture that includes the energetics and 178 occupation of intermolecular orbitals upon doping a polymer 179 crystallite. Using DFT, we find that already the removal of 180 electrons from a P3HT crystallite without the physical 181 presence of dopant ions or molecules results in a decrease in 182 π - π spacing, which is comparable in magnitude to the 183 measured changes in doped thin films. The proposed 184 mechanism is broadly applicable to semiconducting polymers 185 that exhibit π - π stacking and explains previous observations 186 on PBTTT.²¹⁻²³

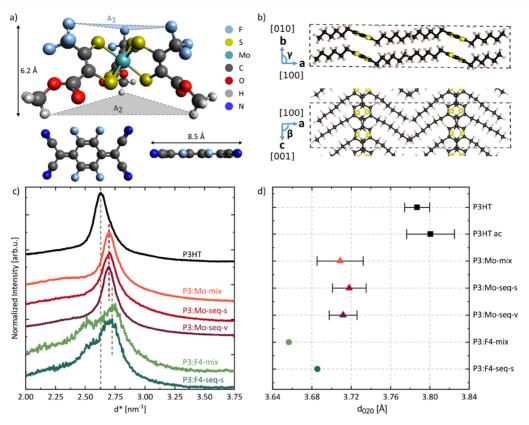


Figure 1. (a) Three-dimensional molecular structures of Mo(tfd-CO₂Me)₃ (top) and F_4TCNQ (bottom) with characteristic length dimensions. (b) Crystal structure of P3HT with important stacking directions. (c) Normalized radial profiles of electron diffraction patterns of (liquid nitrogencooled) doped and undoped P3HT thin films. The profiles are offset in the *y*-direction for clarity. (d) d_{020} spacing extracted from electron diffraction measurements as shown in (c). The error bars represent the statistical errors from various measurement spots and samples. Error bars are not given for P3:F4 because of the influence of electron dosage on the peak shape and position (see main text for details). P3:P3HT ac: P3HT film rinsed with acetonitrile, F4:F₄TCNQ, Mo:Mo(tfd-CO₂Me)₃, mix: host and dopant solutions are mixed prior to spin coating, seq-s: sequential doping from acetonitrile solution, seq-v: sequential doping via thermal evaporation of the dopant in vacuum conditions.

2. METHODS

2.1. Materials and Samples Preparation. P3HT ($M_{\rm w}$ = 189 31 kg/mol, regioregularity >93%) from Merck and F₄TCNQ (Ossila) were used as received without further purification. 191 Mo(tfd-CO₂Me)₃ was synthesized and purified as previously 192 described.²⁵ For transmission electron microscopy (TEM) 193 electron diffraction measurements, doped and undoped P3HT 194 layers were spin cast on indium tin oxide glass covered with 195 poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PE-196 DOT:PSS). PEDOT:PSS was processed as follows: spin 197 coating at 1000 rpm with 4300 rpm/s for 10 s followed by 198 4300 rpm with 4300 rpm/s for 30 s and thermal annealing at 199 140 °C for 30 min. The doped and undoped polymer layers $_{200}$ were processed under an inert N_{2} atmosphere. After spin coating the polymer layer, deionized water was used to dissolve 202 PEDOT:PSS and float the films off the glass substrates. 203 Hereafter, we skimmed the films with a copper grid (200 204 mesh) coated with a holey carbon film QUANTIFOIL (3.5/ 205 1). For mixed doping, P3HT and the dopants were separately dissolved and stirred for 15 h prior to mixing. The blend 207 solutions were shortly stirred prior to spin coating. We used 208 anhydrous chlorobenzene as the solvent for P3HT and the 209 blends and prepared all solutions at 50 °C under an inert N₂ 210 atmosphere. Film thicknesses were about 50 nm. For 211 sequential doping from solution, 50 nm pristine P3HT was 212 spin coated from chlorobenzene. Subsequently, the dopant was 213 spin coated from acetonitrile. We followed the recipe of Jacobs

et al. with a waiting time of 5 s prior to spin coating. For 214 sequential doping of Mo(tfd-CO $_{2}$ Me) $_{3}$ via thermal evapo- 215 ration, layers of pristine P3HT were transferred to ultrahigh 216 vacuum and subsequently the dopant molecule was evaporated 217 with $^{2.6}$ Å/min onto P3HT.

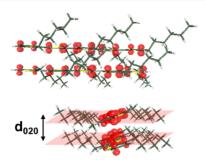
2.2. TEM Measurements. Electron diffraction was 219 performed with a Libra 200 MC Kronos, Carl Zeiss 220 Microscopy, at 60 keV acceleration voltage. A total electron 221 dose of ~1850 e⁻/nm²/s was applied for diffraction measure- 222 ments. The exposure time for the shown measurements on 223 P3HT:F₄TNCQ was 200 ms, whereas the diffraction patterns 224 of P3HT and P3HT:Mo(tfd-CO₂Me)₃ were recorded with 225 1000 ms exposure time. Prior to measurements, the samples 226 were cooled with liquid nitrogen to minimize the beam 227 damage.

2.28 2.3. DFT Calculations. *2.3.1. Bulk Geometry.* The bulk 229 geometry is calculated with the VASP code^{26,27} The Perdew— 230 Burke—Ernzerhof (PBE) functional²⁸ and the projector- 231 augmented wave^{29,30} methods were applied to treat the 232 electron—electron interaction and the valence—core interac- 233 tion, respectively. In addition, the empirical D3 dispersion 234 correction^{31,32} term was added. A kinetic energy cutoff of 400 235 eV was selected for the plane wave basis set. The Brillouin 236 zone was sampled using a $1 \times 4 \times 4$ Monkhorst—Pack k-point 237 scheme. The total energy convergence criterion was 10^{-4} eV. 238 The system was fully relaxed until the residual Hellmann— 239 Feynman forces were smaller than 0.01 eV/Å.

2.3.2Model Systems with Side Chains. The initial 242 structures of the model systems, dimers of P3HT chains 243 with 5 units (5u) and 10 units (10u), were extracted from the 244 computed P3HT crystal structure (see above). The ground-245 state geometries of both dimers, the cation-state geometry of 246 the 5u dimer, and the dication-state geometry of the 10u dimer 247 were optimized at the B3-LYP³³⁻³⁶/def-SV(P)³⁷+D3,³¹ level 248 respectively. We fitted two parallel planes for the two chain 249 molecules, respectively. For each fitted plane, the root-mean-250 square error of the distances of thiophene backbone atoms, 251 excluding the H atoms, to the plane was minimized. The 252 computations for the model systems without hexyl side chains 253 were carried out at the B3-LYP/def-TZVP³⁷+D3 level of 254 theory.

3. RESULTS AND DISCUSSION

3.1. Electron Diffraction Measurements. Figure 1 256 summarizes the electron diffraction measurements of doped 257 and undoped P3HT thin films measured in a transmission 258 electron microscope. Radial profiles of P3HT doped with two 259 different dopants and various doping techniques are shown in 260 Figure 1c. The diffraction maximum at 0.38 nm in the undoped film corresponds to the d_{020} stacking period of P3HT, 262 which corresponds to the $\pi-\pi$ spacing. To investigate the 263 impact of the dopants' spatial dimensions on the crystal lattice 264 of P3HT, the geometrically different dopant molecules 265 F₄TCNQ and Mo(tfd-CO₂Me)₃ were chosen. We compare 266 the mixed doping technique, in which dissolved dopant and 267 host are mixed prior to spin coating the blend (P3:Mo-mix and 268 P3:F4-mix with a ratio of one dopant molecule per 10 269 thiophene monomers), and sequential doping techniques. 270 Sequential doping was performed either from acetonitrile 271 solution (P3:Mo-seq-s and P3:F4-seq-s) or by thermal 272 evaporation of the dopant in vacuum conditions (P3:Mo-


To minimize the influence of electron beam on the 275 measured structure, all diffraction measurements were 276 performed by cooling the sample with liquid nitrogen. In 277 contrast to previously published electron diffraction measure-278 ments of P3HT:F4TNCQ, 4,5,9 which did not fully reproduce 279 the emergence of the double-peak structure that is observed 280 with X-ray diffraction techniques, ^{6,13,14} we observe the two 281 spacings with minimized exposure time and cooling of the 282 sample with liquid nitrogen. The major peak appears at smaller 283 spacings compared to that of undoped P3HT, as shown by a fit 284 including the broad background originating from amorphous 285 P3HT (Figure S4 in the Supporting Information). The peak 286 corresponding to a larger spacing compared to that in undoped 287 P3HT might be related to an ordered intercalation of 288 F₄TNCQ into the side chains of P3HT, which is very sensitive 289 to the electron beam as shown in a dosage series (Figure S1 in 290 the Supporting Information). In contrast to the electron-beamsensitive microstructure of P3HT:F4TCNQ, the crystallites of 292 Mo(tfd-CO₂Me)₃-doped P3HT are significantly more stable 293 and the diffraction pattern does not change in appearance for 294 the utilized exposure times and corresponding electron dosages 295 (see Figure S2 in the Supporting Information). Importantly, 296 upon doping P3HT with the larger molecular dopant Mo(tfd-297 CO₂Me)₃, the d_{020} spacing also decreases; this change is 298 independent of the doping technique within experimental 299 error.

Comparison of diffraction measurements with the two different dopant molecules allows one to gain insights into the

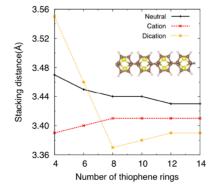
local structural order of doped P3HT thin films. As illustrated 302 in Figure 1a, F_4TCNQ is a rather small and planar molecule, 303 compared to the bulky $Mo(tfd-CO_2Me)_3$ (height ≈ 6.2 Å). 304 Based on the spatial dimensions of F_4TCNQ , incorporation of 305 the dopant in the side chains and the successive emergence of a 306 new crystal phase—as previously proposed 13,14—seem plau-307 sible. However, the fact that we observe a comparable change 308 of d_{020} spacing for the significantly larger dopant $Mo(tfd-309 CO_2Me)_3$ questions a straightening of side chains as the 310 exclusive explanation for the shift of d_{020} spacing and demands 311 a more general mechanism.

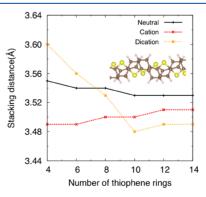
3.2. Density Functional Investigation of Attractive 313 π - π Interactions. It is well-known that the π -stacking 314 distances between radical cations (or anions) are often rather 315 short compared to those in the π -stacks of neutral 316 molecules, 38-41 and this can be explained in terms of the 317 effect of oxidation (or reduction) on the occupation of 318 bonding and antibonding intermolecular orbitals formed 319 through intermolecular π -overlap. Indeed, Scholes et al. have 320 suggested a similar explanation for the contraction in π - 321 stacking of P3HT on p-doping in terms of interchain polaron 322 delocalization. 14 To further investigate whether such orbital 323 occupancy arguments—rather than the geometric and steric 324 effects of dopant molecules present in the lamellar stacking 325 direction—can explain the observed change of π – π spacing in 326 doped P3HT, we performed DFT investigations of oligomer 327 models for P3HT. As a starting point, we recalculated the bulk 328 structure of P3HT⁴² using the PBE functional²⁸ and the D3 329 van der Waals dispersion correction³¹ within the VASP 330 program package. 26,27 The computed cell parameter along 331 the [010] direction is b = 7.08 Å, translating to a d_{020} spacing 332 of 3.54 Å. This value is slightly smaller than the experimentally 333 observed value of 3.8 Å for pristine P3HT films, which can be 334 attributed to both disorder effects in the real system and a 335 slight overestimation of bonding by the D3 dispersion 336 correction. Using Becke-Johnson damping³² does not 337 significantly alter this result. The optimized crystal structure 338 was then used to construct various model systems comprising 339 oligomers identical in the structure to short segments of 340 P3HT. Previous studies found an interaction of one dopant 341 molecule with 4 thiophene units in the case of 342 P3HT:F₄TCNQ, which represents the minimum meaningful 343 length for any calculations. On this basis, and to create 344 conditions comparable to the experiments, we considered a π - 345 dimer of two molecules consisting of 5 thiophene units (5u), 346 from which one electron was removed, representing a doping 347 ratio of 1:10, as in the mixed doping samples. Calculations of 348 other systems can be found in Figures S7.

Figure 2 displays the charge population of the positively $_{350}$ $_{12}$ charged Su $_{\pi}$ -dimer system. The calculations reveal that the $_{351}$ one positive charge delocalizes on the two conjugated $_{352}$ thiophene backbones. For this Su dimer system, the $_{020}$ $_{353}$ spacing (extracted from a root-mean-square fit of the $_{354}$ molecules to two planes, see "Methods" section) reduces $_{355}$ from 3.469 Å in its neutral state to 3.413 Å in its cationic state. $_{356}$ Similar calculations for a doubly charged $_{\pi}$ -dimer of molecules $_{357}$ consisting of 10 thiophene units (10u) were conducted and the $_{358}$ stacking distance reduces from 3.503 Å of its neutral form to $_{359}$ 3.459 Å of its dicationic form. Each positive charge delocalizes $_{360}$ in a pattern similar to that of a single positive charge on the Su $_{361}$ dimer and occupies approximately 5 thiophene units (Figure $_{362}$ fs 3). Although the calculated stacking distance change of around $_{363}$ fs 0.05 is smaller than the experimentally observed change $_{364}$

Figure 2. Charge population in a positively charged 5u thiophene dimer model system. The change of d_{020} spacing (Δd_{020}) because of the positive charge is 0.056 Å.

Figure 3. Charge population in a 10u thiophene dimer model system. The decrease of d_{020} spacing (Δd_{020}) because of the positive free charge is 0.044 Å.


365 between the undoped and doped P3HT thin films ($\Delta d_{\rm P3:Mo}$ = 366 (0.08 \pm 0.01) Å, $\Delta d_{\rm P3:F4} \approx$ 0.12 Å), it is clearly a significant 367 contribution to the reduction of d_{020} .


The d_{020} spacing is different from but strongly related to the spacing between the π -planes of the thiophene backbones, called d_{π} in the following. This distance can be extracted from our model by fitting a set of parallel planes to only the thiophene backbones. The angle between the two sets of planes, defining either d_{020} or d_{π} is about 27° and the change of the distances should fulfill the simple relation $\Delta d_{020} = \Delta d_{\pi}$ soco(27°). In fact, the observed values for Δd_{π} are larger (0.08 and Δd_{π}) for the Su model and 0.07 Å for 10u) because of an arrandomic additional horizontal shift of the monomers upon charging.

To track the evolution of π - π spacing for various sizes of 378 model systems with reasonable computational costs, we carried 379 out further calculations for oligothiophene chains in which the 380 side chains are excluded. One set of calculations starts from the 381 equilibrium P3HT bulk structure, from which dimers (and also 382 trimers and tetramers, see Supporting Information) of π - 383 stacked chains of oligothiophene (with up to 14 thiophene 384 units) have been extracted with the side chains replaced with 385 H atoms. The positions of the replaced H atoms were 386 optimized at the DFT level, whereas the other atoms were kept 387 frozen. In the subsequent computations, the chain geometry 388 was kept fixed and only the π - π stacking distances (d_{π}) for the 389 neutral, cationic, and dicationic states were optimized. A 390 second set of calculations employed a slightly different stacking 391 mode for the thiophene chains (see the inset of Figure 4 for a 392 f4 graphical representation).

The computed optimized stacking distances for the neutral, 394 cationic, and dicationic states of the two sets of dimers are 395 plotted in Figure 4. For the cationic states, a strong change of 396 the stacking distance of 0.08 Å relative to the neutral states is 397 found for the shortest chain (4u), which levels off to 0.02 Å for $_{398}$ increasing system size. Adding another charge (dicationic 399 states), however, leads to another shortening of the stacking 400 distance, once the chain is long enough to accommodate two 401 charges. This requires 8 units for the P3HT-like stacking 402 pattern and 10 units for the shifted structure. For all chains 403 with more than 10 units, the reduction of d_{π} in the dicationic 404 state is twice the reduction in the cationic state. In summary, 405 the model calculations confirm the results for the 5u and 10u 406 P3HT model dimer systems discussed above, which show 407 approximately the same shortening of the stacking distance for 408 the singly and doubly charged state, respectively. In addition, 409 although the absolute stacking distance d_{π} depends on the 410 relative orientation of the two chains, see Figure 4, its 411 reduction upon charging Δd_{π} is nearly independent of it.

To explain the measured and calculated decrease in $\pi-\pi$ 413 spacing, a closer look at the frontier orbitals, which delocalize 414 on the dimer, is instructive. In Figure 5, we applied MO 415 f5 localization on each thiophene chain monomer. The 416 corresponding MO diagram shows that the highest occupied 417 MO (HOMO) and HOMO – 1 of the dimer system can be 418 considered as, respectively, antibonding and bonding linear 419 combination of two monomer HOMOs. Hence, a positive 420 charge (corresponding to the removal of one electron from the 421 antibonding orbital) weakens the antibonding effect; the $\pi-\pi$ 422

Figure 4. Equilibrium $\pi - \pi$ stacking distance of the two sets of polythiophene dimers at different chain lengths for neutral (black line), cationic (red line), and dicationic (orange line) states, respectively. The left figure uses a model based on the stacking geometry of ideal crystalline P3HT and the right figure is based on an alternative model where one of the chains is shifted along the c direction as shown in the insert.

476

501

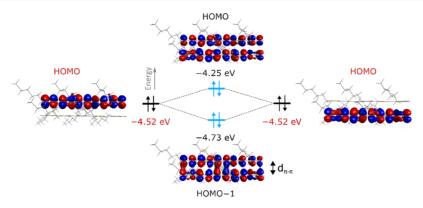


Figure 5. Frontier MO diagram of the Su model dimer system. The middle column shows the HOMO and HOMO -1 canonical MOs, whereas the left (right) column shows the degenerate HOMO of the localized MO on the upper (lower) polythiophene backbone.

423 stacking distance reduces as a direct consequence of the 424 charging, without the physical presence of a dopant molecule. 425 Moreover, our calculations show that a delocalization of the 426 positive charge in the stacked polythiophene chains is 427 energetically more favorable compared to a localization on a 428 single chain (see Supporting Information for a detailed energy 429 decomposition analysis).

Finally, the charge population on a series of large 431 polythiophene oligomers was calculated, see Figure S7. The 432 plot shows that each charge locates on one end of the 433 backbone chain, respectively, and strengthens the π - π stacking 434 on each end separately. Thus, the following model for the 435 observed structural changes emerges from our calculations: 436 upon doping, for each dopant molecule, 1 unit positive charge 437 is created in the neighboring P3HT crystal domain. The 438 charges localize statistically in the P3HT and lead to attractive 439 forces between the chains and in consequence to a reduced 440 average $\pi - \pi$ stacking distance. Reorganization of the crystal 441 structure due to the incorporation of dopant molecules into 442 the side-chain region, as suggested in refs 9 and 24, may in 443 addition contribute, resulting in the observed reduction of 444 stacking distance of up to 0.1 Å.

4. CONCLUSIONS

445 In summary, this work is consistent with several recent studies 446 in suggesting that intercalation of dopant molecules into P3HT 447 d_{020} stacking does not universally explain the observed 448 reductions of d_{020} spacing upon doping. Although our 449 diffraction data do not rule out F₄TCNQ intercalation, a 450 comparable reduction of d_{020} spacing on doping with the much 451 larger Mo(tfd-CO₂Me)₃ strongly suggests an alternative origin. 452 The reduction in d_{020} spacing seen for both dopants is 453 attributed to the removal of electrons on p-doping from 454 antibonding intermolecular orbitals; DFT calculations for a 455 model dimer give decreases in π -spacing similar to the 456 experimentally observed values. We certainly acknowledge 457 that many factors will impact the final solid-state structure of a 458 semiconducting polymer and the situation will be even more 459 complex for a doped material as is the subject of our paper. 460 These include the simple packing effects to maximize the 461 density, electrostatic interactions, and the effect of the polaron 462 interacting with a nearby chain, which themselves can have 463 purely electrostatic effects as well as those arising from 464 hybridization, which we have highlighted. The ultimate 465 structure will be influenced by all these effects and the 466 observed structure itself may not always even reflect a

thermodynamic minimum. An improved understanding of 467 the spatial position of dopant molecules and the origin of 468 changes in the crystal spacing and structure are valuable for the 469 understanding of the underlying processes of molecular doping 470 in terms of charge separation and the corresponding doping 471 efficiency. Furthermore, the previously shown correlation 472 between doping-induced lattice strain and charge carrier 473 mobility in doped P3HT^{8,24} illustrates the need for a detailed 474 understanding of the local structural order.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the 478 ACS Publications website at DOI: 10.1021/acs.jpcc.8b10845. 479

Electron diffraction dosage series of P3HT:F4TCNQ 480 and Mo(tfd-CO₂Me)₃ as well as a fit to low-dosage 481 electron diffraction profiles of P3HT:F4TNCQ; DFT 482 bulk structures of P3HT and polythiophene; energy 483 decomposition analysis of a polythiophene trimer 484 system; and DFT calculations of larger model systems 485 without side chains (PDF) 486

AUTHOR INFORMATION

487 **Corresponding Authors** 488 *E-mail: koehn@theochem.uni-stuttgart.de (A.K.). 489 *E-mail: r.lovrincic@tu-braunschweig.de (R.L.). 490 ORCID ® 491 Lars Müller: 0000-0001-7321-4702 492 Stephen Barlow: 0000-0001-9059-9974 493 Seth R. Marder: 0000-0001-6921-2536 Andreas Köhn: 0000-0002-0844-842X 495 Robert Lovrincic: 0000-0001-5429-5586 496 **Author Contributions** $^{\P}W.L.$ and L.M. contributed equally to this work. 498 499 The authors declare no competing financial interest. 500

ACKNOWLEDGMENTS

The authors acknowledge the German Federal Ministry of 502 Education and Research (BMBF) for financial support within 503 the InterPhase project (FKZ 13N13656 and 13N13663), the 504 Office of Naval Research for support through grant no. 505 N00014-14-1-0126, and the NSFC project no. 21703023. L.M. 506 gratefully acknowledges the scholarship granted by Carl Zeiss 507 Foundation. The authors furthermore greatly appreciate the 508

509 synthesis of $Mo(tfd-CO_2Me)_3$ carried out by Yadong Zhang. 510 S.R.M. and S.B. thank the U. S. National Science foundation 511 for support of this work through the DMREF program, under 512 award no. DMR-1729737.

REFERENCES

- 514 (1) Malliaras, G.; Friend, R. An Organic Electronics Primer. *Phys.* 515 *Today* **2005**, 58, 53–58.
- 516 (2) Salzmann, I.; Heimel, G. Toward a comprehensive under-517 standing of molecular doping organic semiconductors (review). *J.* 518 *Electron Spectrosc. Relat. Phenom.* **2015**, 204, 208–222.
- 519 (3) Scholes, D. T.; Hawks, S. A.; Yee, P. Y.; Wu, H.; Lindemuth, J. 520 R.; Tolbert, S. H.; Schwartz, B. J. Overcoming Film Quality Issues for 521 Conjugated Polymers Doped with F₄TCNQ by Solution Sequential 522 Processing: Hall Effect, Structural, and Optical Measurements. *J. Phys.* 523 Chem. Lett. **2015**, *6*, 4786–4793.
- 524 (4) Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.; 525 Roehling, J. D.; Li, J.; Zhang, G.; Augustine, M. P.; Mascal, M.; 526 Moulé, A. J. Comparison of Solution-Mixed and Sequentially 527 Processed P3HT:F₄TCNQ Films: Effect of Doping-Induced 528 Aggregation on Film Morphology. *J. Mater. Chem. C* **2016**, 4, 529 3454–3466.
- 530 (5) Müller, L.; Nanova, D.; Glaser, T.; Beck, S.; Pucci, A.; Kast, A. 531 K.; Schröder, R. R.; Mankel, E.; Pingel, P.; Neher, D.; et al. Charge-532 Transfer-Solvent Interaction Predefines Doping Efficiency in p-Doped 533 P3HT Films. *Chem. Mater.* **2016**, *28*, 4432–4439.
- 534 (6) Duong, D. T.; Wang, C.; Antono, E.; Toney, M. F.; Salleo, A. 535 The Chemical and Structural Origin of Efficient P-Type Doping in 536 P3HT. *Org. Electron.* **2013**, *14*, 1330–1336.
- 537 (7) Duong, D. T.; Phan, H.; Hanifi, D.; Jo, P. S.; Nguyen, T.-Q.; 538 Salleo, A. Direct Observation of Doping Sites in Temperature-539 Controlled, p-Doped P3HT Thin Films by Conducting Atomic Force 540 Microscopy. *Adv. Mater.* **2014**, *26*, 6069–6073.
- 541 (8) Thelen, J. L.; Wu, S.-L.; Javier, A. E.; Srinivasan, V.; Balsara, N. 542 P.; Patel, S. N. Relationship between Mobility and Lattice Strain in 543 Electrochemically Doped Poly(3-Hexylthiophene). *ACS Macro Lett.* 544 **2015**, *4*, 1386–1391.
- 545 (9) Hamidi-Sakr, A.; Biniek, L.; Bantignies, J.-L.; Maurin, D.; 546 Herrmann, L.; Leclerc, N.; Lévêque, P.; Vijayakumar, V.; 547 Zimmermann, N.; Brinkmann, M. A Versatile Method to Fabricate 548 Highly In-Plane Aligned Conducting Polymer Films with Anisotropic 549 Charge Transport and Thermoelectric Properties: The Key Role of 550 Alkyl Side Chain Layers on the Doping Mechanism. *Adv. Funct.* 551 *Mater.* 2017, 27, 1700173.
- 552 (10) Ihn, K. J.; Moulton, J.; Smith, P. Whiskers of poly(3-553 alkylthiophene)s. *J. Polym. Sci., Part B: Polym. Phys.* **1993**, 31, 735–554 742.
- 555 (11) Merlo, J. A.; Frisbie, C. D. Field Effect Transport and Trapping 556 in Regioregular Polythiophene Nanofibers. *J. Phys. Chem. B* **2004**, 557 *108*, 19169–19179.
- 558 (12) Harrelson, T. F.; Cheng, Y. Q.; Li, J.; Jacobs, I. E.; Ramirez-559 Cuesta, A. J.; Faller, R.; Moulé, A. J. Identifying Atomic Scale 560 Structure in Undoped/Doped Semicrystalline P3HT Using Inelastic 561 Neutron Scattering. *Macromolecules* **2017**, *50*, 2424–2435.
- 562 (13) Lim, E.; Peterson, K. A.; Su, G. M.; Chabinyc, M. L. 563 Thermoelectric Properties of Poly(3-hexylthiophene) (P3HT) Doped 564 with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane 565 (F4TCNQ) by Vapor-Phase Infiltration. *Chem. Mater.* **2018**, 30, 566 998–1010.
- 567 (14) Scholes, D. T.; Yee, P. Y.; Lindemuth, J. R.; Kang, H.; Onorato, 568 J.; Ghosh, R.; Luscombe, C. K.; Spano, F. C.; Tolbert, S. H.; Schwartz, 569 B. J. The Effects of Crystallinity on Charge Transport and the 570 Structure of Sequentially Processed F₄TCNQ-Doped Conjugated 571 Polymer Films. *Adv. Funct. Mater.* **2017**, *27*, 1702654.
- 572 (15) Wang, C.; Duong, D. T.; Vandewal, K.; Rivnay, J.; Salleo, A. 573 Optical Measurement of Doping Efficiency in Poly(3-Hexylthio-574 phene) Solutions and Thin Films. *Phys. Rev. B: Condens. Matter Mater.* 575 *Phys.* **2015**, *91*, 085205.

- (16) Méndez, H.; Heimel, G.; Winkler, S.; Frisch, J.; Opitz, A.; 576 Sauer, K.; Wegner, B.; Oehzelt, M.; Röthel, C.; Duhm, S.; et al. 577 Charge-Transfer Crystallites as Molecular Electrical Dopants. *Nat.* 578 *Commun.* **2015**, *6*, 8560.
- (17) Hynynen, J.; Kiefer, D.; Yu, L.; Kroon, R.; Munir, R.; Amassian, 580 A.; Kemerink, M.; Müller, C. Enhanced Electrical Conductivity of 581 Molecularly P-Doped Poly(3-Hexylthiophene) through Understanding the Correlation with Solid-State Order. *Macromolecules* **2017**, *50*, 583 8140–8148.
- (18) Guardado, J. O.; Salleo, A. Structural Effects of Gating Poly(3-585 Hexylthiophene) through an Ionic Liquid. *Adv. Funct. Mater.* **2017**, 586 27, 1701791.
- (19) Kawai, T.; Nakazono, M.; Yoshino, K. Effects of Doping on the 588 Crystal Structure of Poly(3-Alkylthiophene). *J. Mater. Chem.* **1992**, *2*, 589 903–906.
- (20) Tashiro, K.; Kobayashi, M.; Kawai, T.; Yoshino, K. Crystal 591 structural change in poly(3-alkyl thiophene)s induced by iodine 592 doping as studied by an organized combination of X-ray diffraction, 593 infrared/Raman spectroscopy and computer simulation techniques. 594 *Polymer* 1997, 38, 2867–2879.
- (21) Cochran, J. E.; Junk, M. J. N.; Glaudell, A. M.; Miller, P. L.; 596 Cowart, J. S.; Toney, M. F.; Hawker, C. J.; Chmelka, B. F.; Chabinyc, 597 M. L. Molecular Interactions and Ordering in Electrically Doped 598 Polymers: Blends of PBTTT and F₄TCNQ. *Macromolecules* **2014**, 47, 599 6836–6846.
- (22) Patel, S. N.; Glaudell, A. M.; Kiefer, D.; Chabinyc, M. L. 601 Increasing the Thermoelectric Power Factor of a Semiconducting 602 Polymer by Doping from the Vapor Phase. ACS Macro Lett. 2016, 5, 603 268–272.
- (23) Patel, S. N.; Glaudell, A. M.; Peterson, K. A.; Thomas, E. M.; 605 O'Hara, K. A.; Lim, E.; Chabinyc, M. L. Morphology Controls the 606 Thermoelectric Power Factor of a Doped Semiconducting Polymer. 607 Sci. Adv. 2017, 3, No. e1700434.
- (24) Thomas, E. M.; Brady, M. A.; Nakayama, H.; Popere, B. C.; 609 Segalman, R. A.; Chabinyc, M. L. X-Ray Scattering Reveals Ion- 610 Induced Microstructural Changes During Electrochemical Gating of 611 Poly(3-Hexylthiophene). *Adv. Funct. Mater.* **2018**, 28, 1803687.
- (25) Dai, A.; Zhou, Y.; Shu, A. L.; Mohapatra, S. K.; Wang, H.; 613 Fuentes-Hernandez, C.; Zhang, Y.; Barlow, S.; Loo, Y.-L.; Marder, S. 614 R.; et al. Enhanced Charge-Carrier Injection and Collection via 615 Lamination of Doped Polymer Layers p-Doped with a Solution- 616 Processible Molybdenum Complex. *Adv. Funct. Mater.* **2014**, 24, 617 2197–2204.
- (26) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab 619 initio total-energy calculations using a plane-wave basis set. *Phys. Rev.* 620 B: Condens. Matter Mater. Phys. **1996**, 54, 11169–11186.
- (27) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy 622 Calculations for Metals and Semiconductors Using a Plane-Wave 623 Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.
- (28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient 625 Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868. 626
- (29) Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B:* 627 *Condens. Matter Mater. Phys.* **1994**, 50, 17953–17979.
- (30) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the 629 Projector Augmented-Wave Method. *Phys. Rev. B: Condens. Matter* 630 *Mater. Phys.* **1999**, 59, 1758–1775.
- (31) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and 632 Accurate Ab Initio Parametrization of Density Functional Dispersion 633 Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, 634 132, 154104.
- (32) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping 636 Function in Dispersion Corrected Density Functional Theory. *J.* 637 *Comput. Chem.* **2011**, 32, 1456–1465.
- (33) Becke, A. D. Density-functional thermochemistry. III. The role 639 of exact exchange. *J. Chem. Phys.* **1993**, 98, 5648–5652.
- (34) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle- 641 Salvetti Correlation-Energy Formula into a Functional of the Electron 642 Density. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, 37, 785– 643 789.

- (35) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent
 Electron Liquid Correlation Energies for Local Spin Density
 Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211.
 (36) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.
 Ab Initio Calculation of Vibrational Absorption and Circular
 Dichroism Spectra Using Density Functional Force Fields. J. Phys.
 Chem. 1994, 98, 11623–11627.
- 652 (37) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted 653 Gaussian Basis Sets for Atoms Li to Kr. *J. Chem. Phys.* **1992**, 97, 654 2571–2577.
- 655 (38) Nishinaga, T.; Komatsu, K. Persistent π Radical Cations: Self-656 Association and Its Steric Control in the Condensed Phase. *Org.* 657 *Biomol. Chem.* **2005**, *3*, 561–569.
- 658 (39) Okajima, H.; Shinmyozu, T.; Sakamoto, A. Selective resonance 659 Raman enhancement of large amplitude inter-ring vibrations of 660 [34](1,2,4,5)cyclophane radical cation; a model of π -stacked dimer 661 radical ions. *Phys. Chem. Chem. Phys.* **2018**, *20*, 3395–3402.
- 662 (40) Yamazaki, D.; Nishinaga, T.; Tanino, N.; Komatsu, K. 663 Terthiophene Radical Cations End-Capped by Bicyclo[2.2.2]octene 664 Units: Formation of Bent π -Dimers Mutually Attracted at the Central 665 Position. *J. Am. Chem. Soc.* **2006**, *128*, 14470–14471.
- 666 (41) Lü, J.-M.; Rosokha, S. V.; Kochi, J. K. Stable (Long-Bonded) 667 Dimers via the Quantitative Self-Association of Different Cationic, 668 Anionic, and Uncharged π-Radicals: Structures, Energetics, and 669 Optical Transitions. *J. Am. Chem. Soc.* **2003**, *125*, 12161–12171.
- 670 (42) Dag, S.; Wang, L.-W. Packing Structure of Poly(3-671 Hexylthiophene) Crystal: Ab Initio and Molecular Dynamics Studies. 672 *J. Phys. Chem. B* **2010**, *114*, 5997–6000.