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Abstract—The standard linear regression (SLR) problem is to
recover a vector x° from noisy linear observations y = Ax°+w.
The approximate message passing (AMP) algorithm proposed by
Donoho, Maleki, and Montanari is a computationally efficient
iterative approach to SLR that has a remarkable property: for
large i.i.d. sub-Gaussian matrices A, its per-iteration behavior is
rigorously characterized by a scalar state-evolution whose fixed
points, when unique, are Bayes optimal. The AMP algorithm,
however, is fragile in that even small deviations from the i.i.d.
sub-Gaussian model can cause the algorithm to diverge. This
paper considers a “vector AMP” (VAMP) algorithm and shows
that VAMP has a rigorous scalar state-evolution that holds under
a much broader class of large random matrices A: those that are
right-orthogonally invariant. After performing an initial singular
value decomposition (SVD) of A, the per-iteration complexity of
VAMP is similar to that of AMP. In addition, the fixed points of
VAMP’s state evolution are consistent with the replica prediction
of the minimum mean-squared error derived by Tulino, Caire,
Verdd, and Shamai. Numerical experiments are used to confirm
the effectiveness of VAMP and its consistency with state-evolution
predictions.

Index Terms—Belief propagation, message passing, inference
algorithms, random matrices, compressive sensing.

I. INTRODUCTION

Consider the problem of recovering a vector x° € RY from
noisy linear measurements of the form

y = Ax’ + w e RM, (1)

where A is a known matrix and w is an unknown, unstructured
noise vector. In the statistics literature, this problem is known
as standard linear regression, and in the signal processing
literature this is known as solving a linear inverse problem, or
as compressive sensing when M < N and x" is sparse.

A. Problem Formulations

One approach to recovering x° is regularized quadratic
loss minimization, where an estimate X of x9 is computed
by solving an optimization problem of the form

- 1
X = arg min iHyfo||§+f(x). 2)
xERN
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Here, the penalty function or “regularization” f(x) is chosen
to promote a desired structure in X. For example, the choice
f(x) = Al|x||1 with A > 0 promotes sparsity in X.

Another approach is through the Bayesian methodology.
Here, one presumes a prior density p(x) and likelihood
function p(y|x) and then aims to compute the posterior density

__ py)p(x)
[ p(y[x)p(x) dx

or, in practice, a summary of it [1]. Example summaries
include the maximum a posteriori (MAP) estimate

p(x|y) 3)

Xmap = arg max p(x|y), 4)
X

the minimum mean-squared error (MMSE) estimate
Rse = argin [ [x — | p(xly) dx = Bixlyl, 9

or the posterior marginal densities {p(z,|y)})\_;.

Note that, if the noise w is modeled as w ~ N(0,~,,'1),
i.e., additive white Gaussian noise (AWGN) with some preci-
sion 7y, > 0, then the regularized quadratic loss minimization
problem (2) is equivalent to MAP estimation under the prior
p(x) x exp[—ywf(x)], where o denotes equality up to a
scaling that is independent of x. Thus we focus on MAP,
MMSE, and marginal posterior inference in the sequel.

B. Approximate Message Passing

Recently, the so-called approximate message passing
(AMP) algorithm [2], [3] was proposed as an iterative method
to recover x° from measurements of the form (1). The AMP
iterations are specified in Algorithm 1. There,! g (-, V1)
RY — RY is a denoising function parameterized by 7, and
(g} (rg,vk)) is its divergence at ry,. In particular, g (v, %) €
RY is the diagonal of the Jacobian,

.0 (ry,
g1(rx, ) = diag [g1§9 - %)} ; (6)
Ty
and (-) is the empirical averaging operation
| XN
(u) := N;un. (7)

When A is a large ii.d. sub-Gaussian matrix, w ~
N(0,7,01), and gy (-, %) is separable, i.e.,

[gl (rka ’yk)]n =0 (rkny ’Yk) vny (8)

with identical Lipschitz components ¢1 (-, ) : R — R, AMP
displays a remarkable behavior, which is that r; behaves like

I'The subscript “1” in g7 is used promote notational consistency with Vector
AMP algorithm presented in the sequel.
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Algorithm 1 AMP

Require: Matrix A € RMXN ‘measurement vector y, denoiser
g1(-,7vx), and number of iterations Kj;.

1: Set v_1 = 0 and select initial rq, 7p.

2: for k=0,1,...,K; do

3 X = g1(rr, k)

4 o = (g1 (re, k)

5.

6

7

Vi =y — ARy, + Layviy
T = ik —+ ATVk
. Select v
8: end for
9: Return X, .

a white-Gaussian-noise corrupted version of the true signal x
[2]. That is,

r, = x° + N (0, 7,I), 9

for some variance 7 > 0. Moreover, the variance 7, can be
predicted through the following state evolution (SE):

1
E(vk, ) = ~E [Hgl (x” + N(0, 7T), ) — XOHQ} (10a)

_ N
Thtl = Yoo + 7€ (Vs Th), (10b)

M

where & (g, 7) is the MSE of the AMP estimate Xj.

The AMP SE (10) was rigorously established for i.i.d.
Gaussian A in [4] and for i.i.d. sub-Gaussian A in [5] in the
large-system limit (i.e., N,M — oo and N/M — ¢ € (0,1))
under some mild regularity conditions. Because the SE (10)
holds for generic g1(-,vx) and generic ~x-update rules, it
can be used to characterize the application of AMP to many
problems, as further discussed in Section II-A.

C. Limitations, Modifications, and Alternatives to AMP

An important limitation of AMP’s SE is that it holds only
under large i.i.d. sub-Gaussian A. Although recent analysis
[6] has rigorously analyzed AMP’s performance under finite-
sized i.i.d. Gaussian A, there remains the important question
of how AMP behaves with general A.

Unfortunately, it turns out that the AMP Algorithm 1 is
somewhat fragile with regard to the construction of A. For
example, AMP diverges with even mildly ill-conditioned or
non-zero-mean A [7]-[9]. Although damping [7], [9], mean-
removal [9], sequential updating [10], and direct free-energy
minimization [11] all help to prevent AMP from diverging,
such strategies are limited in effectiveness.

Many other algorithms for standard linear regression (1)
have been designed using approximations of belief propagation
(BP) and/or free-energy minimization. Among these are the
Adaptive Thouless-Anderson-Palmer (ADATAP) [12], Expec-
tation Propagation (EP) [13], [14], Expectation Consistent
Approximation (EC) [15]-[17], (S-transform AMP) S-AMP
[18], [19], and (Orthogonal AMP) OAMP [20] approaches.
Although numerical experiments suggest that some of these al-
gorithms are more robust than AMP Algorithm 1 to the choice
of A, their convergence has not been rigorously analyzed. In

particular, there remains the question of whether there exists
an AMP-like algorithm with a rigorous SE analysis that holds
for a larger class of matrices than i.i.d. sub-Gaussian. In the
sequel, we describe one such algorithm.

D. Contributions

In this paper, we propose a computationally efficient itera-
tive algorithm for the estimation of the vector x" from noisy
linear measurements y of the form in (1). (See Algorithm 2.)
We call the algorithm “vector AMP” (VAMP) because 1)
its behavior can be rigorously characterized by a scalar SE
under large random A, and ii) it can be derived using an
approximation of BP on a factor graph with vector-valued
variable nodes. We outline VAMP’s derivation in Section III
with the aid of some background material that is reviewed in
Section II.

In Section IV, we establish the VAMP SE in the case of
large right-orthogonally invariant random A and separable
Lipschitz denoisers g (-, v ), using techniques similar to those
used by Bayati and Montanari in [4]. Importantly, these right-
orthogonally invariant A allow arbitrary singular values and
arbitrary left singular vectors, making VAMP much more
robust than AMP in regards to the construction of A. In
Section V, we establish that the asymptotic MSE predicted by
VAMP’s SE agrees with the MMSE predicted by the replica
method [21] when VAMP’s priors are matched to the true
data. Finally, in Section VI, we present numerical experiments
demonstrating that VAMP’s empirical behavior matches its SE
at moderate dimensions, even when A is highly ill-conditioned
or non-zero-mean.

E. Relation to Existing Work

The idea to construct algorithms from graphical models
with vector-valued nodes is not new, and in fact underlies the
EC- and EP-based algorithms described in [13]-[17]. The use
of vector-valued nodes is also central to the derivation of S-
AMP [18], [19]. In the sequel, we present a simple derivation
of VAMP that uses the EP methodology from [13], [14], which
passes approximate messages between the nodes of a factor
graph. But we note that VAMP can also be derived using the
EC methodology, which formulates a variational optimization
problem using a constrained version of the Kullback-Leibler
distance and then relaxes the density constraints to moment
constraints. For more details on the latter approach, we refer
the interested reader to the discussion of “diagonal restricted
EC” in [15, App. D] and “uniform diagonalized EC” in [17].

It was recently shown [16] that, for large right-orthogonally
invariant A, the fixed points of diagonal-restricted EC are
“good” in the sense that they are consistent with a certain
replica prediction of the MMSE that is derived in [16]. Since
the fixed points of ADATAP and S-AMP are known [18]
to coincide with those of diagonal-restricted EC (and thus
VAMP), all of these algorithms can be understood to have
good fixed points. The trouble is that these algorithms do not
necessarily converge to their fixed points. For example, S-
AMP diverges with even mildly ill-conditioned or non-zero-
mean A, as demonstrated in Section V1. Our main contribution
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is establishing that VAMP'’s behavior can be exactly predicted
by an SE analysis analogous to that for AMP. This SE analysis
then provides precise convergence guarantees for large right-
orthogonally invariant A. The numerical results presented in
Section VI confirm that, in practice, VAMP’s convergence is
remarkably robust, even with very ill-conditioned or mean-
perturbed matrices A of finite dimension.

The main insight that leads to both the VAMP algorithm
and its SE analysis comes from a consideration of the sin-
gular value decomposition (SVD) of A. Specifically, take the
“economy” SVD,

A = UDiag(s)V', (11)

where 5 € R for R := rank(A) < min(M, N). The VAMP
iterations can be performed by matrix-vector multiplications
with V. € RV*E and VT, yielding a structure very similar
to that of AMP. Computationally, the SVD form of VAMP
(i.e., Algorithm 2) has the benefit that, once the SVD has
been computed, VAMP’s per-iteration cost will be dominated
by O(RN) floating-point operations (flops), as opposed to
O(N3) for the EC methods from [15, App. D] or [17].
Furthermore, if these matrix-vector multiplications have fast
implementations (e.g., O(N) when V is a discrete wavelet
transform), then the complexity of VAMP reduces accord-
ingly. We emphasize that VAMP uses a single SVD, not a
per-iteration SVD. In many applications, this SVD can be
computed off-line. In the case that SVD complexity may be
an issue, we note that it costs O(M N R) flops by classical
methods or O(M N log R) by modern approaches [22].

The SVD offers more than just a fast algorithmic implemen-
tation. More importantly, it connects VAMP to AMP in such
a way that the Bayati and Montanari’s SE analysis of AMP
[4] can be extended to obtain a rigorous SE for VAMP. In this
way, the SVD can be viewed as a proof technique. Since it
will be useful for derivation/interpretation in the sequel, we
note that the VAMP iterations can also be written without an
explicit SVD (see Algorithm 3), in which case they coincide
with the uniform-diagonalization variant of the generalized EC
method from [17]. In this latter implementation, the linear
MMSE (LMMSE) estimate (24) must be computed at each
iteration, as well as the trace of its covariance matrix (25),
which both involve the inverse of an N X [N matrix.

The OAMP-LMMSE algorithm from [20] is similar to
VAMP and diagonal-restricted EC, but different in that it ap-
proximates certain variance terms. This difference can be seen
by comparing equations (30)-(31) in [20] to lines 8 and 10 in
Algorithm 2 (or lines 14 and 7 in Algorithm 3). Furthermore,
OAMP-LMMSE differs from VAMP in its reliance on matrix
inversion (see, e.g., the comments in the Conclusion of [20]).

Shortly after the initial publication of this work, [23] proved
a very similar result for the complex case using a fully
probabilistic analysis.

F. Notation

We use capital boldface letters like A for matrices, small
boldface letters like a for vectors, (-) for transposition, and
a, = [a], to denote the nth element of a. Also, we use

3

lall, = (32, |an|P)!/P for the £, norm of a, ||Al|y for the
spectral norm of A, Diag(a) for the diagonal matrix created
from vector a, and diag(A) for the vector extracted from the
diagonal of matrix A. Likewise, we use Iy for the N x N
identity matrix, O for the matrix of all zeros, and 1 for the
matrix of all ones. For a random vector X, we denote its
probability density function (pdf) by p(x), its expectation
by E[x], and its covariance matrix by Cov[x]. Similarly, we
use p(x|y), E[x|y], and Cov[x|y] for the conditional pdf,
expectation, and covariance, respectively. Also, we use E[x|b]
and Cov[x|b] to denote the expectation and covariance of
x ~ b(x), i.e., x distributed according to the pdf b(x). We refer
to the Dirac delta pdf using 6(x) and to the pdf of a Gaussian
random vector x € RY with mean a and covariance C using
Ni(x;a,C) = exp(—(x — a) C~1(x — a)/2)/\/(2r)¥|C].
Finally, p(x) x f(x) says that functions p(-) and f(-) are
equal up to a scaling that is invariant to x.

II. BACKGROUND ON THE AMP ALGORITHM

In this section, we provide background on the AMP algo-
rithm that will be useful in the sequel.

A. Applications to Bayesian Inference

We first detail the application of the AMP Algorithm 1 to
the Bayesian inference problems from Section I-A. Suppose
that the prior on x is i.i.d., so that it takes the form

N
p(x) =[] pan). (12)
n=1
Then AMP can be applied to MAP problem (4) by choosing
the scalar denoiser as

91(7kn, Yk) = arg min [%\xn — 7";m|2 —Inp(z,)|. (13)

T, €R
Likewise, AMP can be applied to the MMSE problem (5) by
choosing

91 (Tkns Vi) = El@n|Tkn, Vi, (14)

where the expectation in (14) is with respect to the conditional
density

P(Tn|7kn, k) X €Xp [—%ﬂrkn — mn\z + lnp(xn)} . (15)

In addition, p(x,|rgn, k) in (15) acts as AMP’s iteration-k
approximation of the marginal posterior p(z,,|y). For later use,
we note that the derivative of the MMSE scalar denoiser (14)
w.r.t. its first argument can be expressed as

91 (Phkns Vi) = YRVAL [T Thon, Vi] (16)

where the variance is computed with respect to the density (15)
(see, e.g., [24]).

In (13)-(15), v can be interpreted as an estimate of 7, L
the iteration-k precision of ry from (9). In the case that 73 is
known, the “matched” assignment

=T (17)
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leads to the interpretation of (13) and (14) as the scalar MAP
and MMSE denoisers of ry,, respectively. Since, in practice,
Tk is usually not known, it has been suggested to use

M

- 18
Vil VelE (18)

although other choices are possible [25].

B. Relation of AMP to IST

The AMP Algorithm 1 is closely related to the well-known
iterative soft thresholding (IST) algorithm [26], [27] that can
be used” to solve (2) with convex f(-). In particular, if the
term

N

7Yk VE—1

% 19)

is removed from line 5 of Algorithm 1, then what remains is
the IST algorithm.

The term (19) is known as the Onsager term in the statistical
physics literature [28]. Under large i.i.d. sub-Gaussian A, the
Onsager correction ensures the behavior in (9). When (9)
holds, the denoiser g1 (-,yx) can be optimized accordingly, in
which case each iteration of AMP becomes very productive.
As a result, AMP converges much faster than ISTA for i.i.d.
Gaussian A (see, e.g., [25] for a comparison).

C. Derivations of AMP

The AMP algorithm can be derived in several ways. One
way is through approximations of loopy belief propagation
(BP) [29], [30] on a bipartite factor graph constructed from
the factorization

M N
p(y,x) = HN(ym;aInx,vwl)] [Hp(xn)], (20)

m=1 n=1

where a! denotes the mth row of A. We refer the reader
to [3], [24] for details on the message-passing derivation of
AMP, noting connections to the general framework of expec-
tation propagation (EP) [13], [14]. AMP can also be derived
through a “free-energy” approach, where one i) proposes a
cost function, ii) derives conditions on its stationary points,
and 1iii) constructs an algorithm whose fixed points coincide
with those stationary points. We refer the reader to [18], [31],
[32] for details, and note connections to the general framework
of expectation consistent approximation (EC) [15], [17].

III. THE VECTOR AMP ALGORITHM

The Vector AMP (VAMP) algorithm is stated in Algo-
rithm 2. In line 9, “S2” refers to the componentwise square
of vector 8. Also, Diag(a) denotes the diagonal matrix whose
diagonal components are given by the vector a.

2The IST algorithm is guaranteed to converge [27] when ||A]j2 < 1.

Algorithm 2 Vector AMP (SVD Form)

Require: Matrix A € RM*N: measurements y € RM;
denoiser g1 (+,yx); assumed noise precision ~,, > 0; and
number of iterations ;.

1: Compute economy SVD ﬁDiag(é)VT — Awith U U =
In, V'V =15 5€RY R=rank(A).

: Compute preconditioned y := Diag(ﬁ)*lﬁTy

: Select initial ry and 9 > 0.

for k=0,1,..., K; do

Xk = 81(Tk, Vi)

ar = (g1 (re, V&)

Tr = (X — apre) /(1 — o)

Vi = (1 — o)/

dy, = v, Diag(v,5° + %1)715

100 Ve = Te(di) /(5 — (di))

1 Tep =Tk + X VDiag(di/(di) (7 — V )

12: end for

13: Return X, .

[SSI o)

R A

2

A. Relation of VAMP to AMP

A visual examination of VAMP Algorithm 2 shows many
similarities with AMP Algorithm 1. In particular, the denoising
and divergence steps in lines 5-6 of Algorithm 2 are identical
to those in lines 3-4 of Algorithm 1. Likewise, an Onsager
term ayry is visible in line 7 of Algorithm 2, analogous to
the one in line 5 of Algorithm 1. Finally, the per-iteration
computational complexity of each algorithm is dominated by
two matrix-vector multiplications: those involving A and AT
in Algorithm 1 and those involving V and VT in Algorithm 2.

The most important similarity between the AMP and VAMP
algorithms is not obvious from visual inspection and will be
established rigorously in the sequel. It is the following: for
certain large random A, the VAMP quantity rj, behaves like a
white-Gaussian-noise corrupted version of the true signal xY,
ie.,

rp = x° + N(0,7,1), 21

for some variance 75, > 0. Moreover, the noise variance 75, can
be tracked through a scalar SE formalism whose details will
be provided in the sequel. Furthermore, the VAMP quantity
Vi can be interpreted as an estimate of 7, Lin (21), analogous
to the AMP quantity ~y;, discussed around (17).

It should be emphasized that the class of matrices A under
which the VAMP SE holds is much bigger than the class under
which the AMP SE holds. In particular, VAMP’s SE holds
for large random matrices A whose right singular® vector
matrix V' € RV*V is uniformly distributed on the group of
orthogonal matrices. Notably, VAMP’s SE holds for arbitrary
(i.e., deterministic) left singular vector matrices U and singular
values, apart from some mild regularity conditions that will be

3We use several forms of SVD in this paper. Algorithm 2 uses the
“economy” SVD A = ﬁDiag(g)vT € RM*N where 5 € RE with
R = rank(A), so that U and/or V may be tall. The discussion in
Section ITI-A uses the “standard” SVD A = USVT, where S € RM >N and
both U and V are orthogonal. Finally, the state-evolution proof in Section IV
uses the standard SVD on square A € RVXN,
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p(x1) 6(x1 —x2)  N(y;Axz,7,'D)

X1 X2

Fig. 1. The factor graph used for the derivation of VAMP. The circles represent
variable nodes and the squares represent factor nodes from (23).

detailed in the sequel. In contrast, AMP’s SE is known to hold
[4], [5] only for large i.i.d. sub-Gaussian matrices A, which
implies i) random orthogonal U and V and ii) a particular
distribution on the singular values of A.

B. EP Derivation of VAMP

As with AMP (i.e., Algorithm 1), VAMP (i.e., Algorithm 2)
can be derived in many ways. Here we present a very simple
derivation based on an EP-like approximation of the sum-
product (SP) belief-propagation algorithm. Unlike the AMP
algorithm, whose message-passing derivation uses a loopy
factor graph with scalar-valued nodes, the VAMP algorithm
uses a non-loopy graph with vector-valued nodes, hence the
name “vector AMP.” We note that VAMP can also be derived
using the “diagonal restricted” or “uniform diagonalization”
EC approach [15], [17], but that derivation is much more
complicated.

To derive VAMP, we start with the factorization

p(y,x) = p(x)N(y; Ax, 7, '),

and split x into two identical variables x; = xo, giving an
equivalent factorization

(22)

p(y.x1,%2) = p(x1)d(x1 — x2)N (y; Ax2,7,'I), (23)

where J(-) is the Dirac delta distribution. The factor graph
corresponding to (23) is shown in Figure 1. We then pass
messages on this factor graph according to the following rules.

1) Approximate beliefs: The approximate belief bapp(x) on
variable node x is N (x;X,n 'I), where X = E[x|bsp]
and n~! = (diag(Cov[x|bsp])) are the mean and aver-
age variance of the corresponding SP belief bgp(x) o<
[L; #tf,x(x), i.e., the normalized product of all messages
impinging on the node. See Figure 2(a) for an illustration.

2) Variable-to-factor messages: The message from a vari-
able node x to a connected factor node f; is pix— f, (x)
bapp(X)/11f,>x(x), i.e., the ratio of the most recent
approximate belief bapp(x) to the most recent message
from f; to x. See Figure 2(b) for an illustration.

3) Factor-to-variable messages: The message from a factor
node f to a connected variable node x; is fty—x, (X;) X
f f(Xi, {X]}’j#z}) H]#z /,ij%f<Xj) de. See Figure 2(C)
for an illustration.

By applying the above message-passing rules to the factor
graph in Figure 1, one obtains Algorithm 3. (See Appendix A
for a detailed derivation.) Lines 11-12 of Algorithm 3 use

—1
g2(Trak, Vor) = (%UATA + 'YQkI) (%ATY + V%r%) ,
(24)

which can be recognized as the MMSE estimate of a random
vector Xz under likelihood A (y; Axz,v,,'I) and prior x5 ~

5

fa(x)

-

f3(x)

Iy -x(X)

iys-x(x) ()

fa(x) X2
fi(x)

Hsea— 5 (X2)

flx1,%2,%3) %3

—_—
Hx— 1 (X)

—_—
fhf =y (X1)

f3(x)

/
Bis—x(x) (b) Hxs—(X3) (C)

Fig. 2. Factor graphs to illustrate (a) messaging through a factor node and
(b) messaging through a variable node.

Algorithm 3 Vector AMP (LMMSE form)

Require: LMMSE estimator gs(rak, y2x) from (24), denoiser
g1(-,v1k), and number of iterations Kj.

1: Select initial r1¢ and 19 > 0.

2: for k=0,1,...,K; do

3:  // Denoising

4 Xk = gi1(rie, 1ik)

s: oag = (81 (rik, Y1)

6

7

8

9

Mek = Yik/Q1k
Yok = Mk — Y1k
Trop = (TllkX1k - 'Ylkrlk’)/’YQk

10:  // LMMSE estimation

1: Xop = g2(Tor, Y2r)

12: o = (gy(ran, v2r))

13 Mg = Yor/ ok

4 Y1 kp = N2k — Y2k

15: Tipp = (2rXok — YorT2k) /Y1 ket
16: end for

17: Return X, .

N (rgk,w/;kll). Since this estimate is linear in rgy, we will
refer to it as the “LMMSE” estimator. From (6)-(7) and (24),
it follows that line 12 of Algorithm 3 uses

-1
(o)) = 2| (1uATA + o) ] @9

Algorithm 3 is merely a restatement of VAMP Algorithm 2.
Their equivalence can then be seen by substituting the “econ-
omy” SVD A = ﬁDiag@)vT into Algorithm 3, simplifying,
and equating Xy = X1, Tx = T1k, Yk = Yik> Tk = Y2k, and
A = k.

As presented in Algorithm 3, the steps of VAMP exhibit an
elegant symmetry. The first half of the steps perform denoising
on ri; and then Onsager correction in rog, while the second
half of the steps perform LMMSE estimation ry; and Onsager
correction in ry jy.

C. Implementation Details

For practical implementation with finite-dimensional A, we
find that it helps to make some small enhancements to VAMP.
In the discussion below we will refer to Algorithm 2, but the
same approaches apply to Algorithm 3.

0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2019.2916359, IEEE

Transactions on Information Theory

First, we suggest to clip the precisions v; and 7 to a
positive interval [Ymin, Ymax]. It is possible, though uncom-
mon, for line 6 of Algorithm 2 to return a negative oy, which
will lead to negative 7, and 7y if not accounted for. For the
numerical results in Section VI, we used Ymin = 1 x 1071
and Ymax = 1 x 1011,

Second, we find that a small amount of damping can be
helpful when A is highly ill-conditioned. In particular, we
suggest to replace lines 5 and 10 of Algorithm 2 with the
damped versions

(26)
27

Xk = pg1 (i, ) + (1 — p)Xp
Vi1 = pYk(de) R/ (N — (di)R) + (1 — p) vk

for all iterations k& > 1, where p € (0, 1] is a suitably chosen
damping parameter. Note that, when p = 1, the damping has
no effect. For the numerical results in Section VI, we used
p=0.97.

Third, rather than requiring VAMP to complete [, iter-
ations, we suggest that the iterations are stopped when the
normalized difference |ri; — rixall/[|rix|l falls below a
tolerance 7. For the numerical results in Section VI, we used
T=1x10"%

We note that the three minor modifications described above
are standard features of many AMP implementations, such
as the one in the GAMPmatlab toolbox [33]. However, as
discussed in Section I-C, they are not enough to stabilize AMP
for in the case of ill-conditioned or non-zero-mean A.

Finally, we note that the VAMP algorithm requires the user
to choose the measurement-noise precision 7, and the de-
noiser g1 (-, 7). Ideally, the true noise precision v, is known
and the signal x is i.i.d. with known prior p(z;), in which
case the MMSE denoiser can be straightforwardly designed.
In practice, however, v, and p(:z:j) are usually unknown.
Fortunately, expectation-maximization (EM)-based methods to
estimate these quantities on-line were proposed in [34] and
shown to have a rigorous state-evolution. Furthermore, under
certain identifiability conditions, the hyperparameters learned
by these methods are asymptotically consistent [34]. For the
numerical results in Section VI, however, we assume that 7,
and p(x;) are known.

Matlab implementations of VAMP and EM-VAMP can be
found in the public-domain GAMPmatlab toolbox [33].

IV. STATE EVOLUTION
A. Large-System Analysis

Our primary goal is to understand the behavior of the
VAMP algorithm for a certain class of matrices in the high-
dimensional regime. We begin with an overview of our anal-
ysis framework and follow with more details in later sections.

1) Linear measurement model: Our analysis considers a
sequence of problems indexed by the signal dimension V.
For each N, we assume that there is a “true” vector x° € R
which is observed through measurements of the form,

y=Ax"+w e RV, WNN(O,’Y;&IN)7 (28)

where A € RV*V is a known transform and w is Gaussian
noise with precision ~,,9. Note that we use ~,,9 to denote the

“true” noise precision to distinguish it from y,,, which is the
noise precision postulated by the estimator.

For the transform A, our key assumption is that it can
be modeled as a large, right-orthogonally invariant random
matrix. Specifically, we assume that it has an SVD of the
form

A =USV',

S = Diag(s), (29)

where U and V are N x N orthogonal matrices such that
U is deterministic and V is Haar distributed (i.e. uniformly
distributed on the set of orthogonal matrices). We refer to A as
“right-orthogonally invariant” because the distribution of A is
identical to that of AV for any fixed orthogonal matrix V.
We will discuss the distribution of the singular values s € R
below.

Although we have assumed that A is square to streamline
the analysis, we make this assumption without loss of gener-
ality. For example, by setting

oot o)
our formulation can model a wide rectangular matrix whose
SVD is UgSo V" with diag(Sy) = so. A similar manipulation
allows us to model a tall rectangular matrix.

2) Denoiser: Our analysis applies to a fairly general class
of denoising functions gi(-,71x) indexed by the parameter
Y1 > 0. Our main assumption is that the denoiser is separable,
meaning that it is of the form (8) for some scalar denoiser
g1(+,71k). As discussed above, this separability assumption
will occur for the MAP and MMSE denoisers under the
assumption of an i.i.d. prior. However, we do not require the
denoiser to be MAP or MMSE for any particular prior. We will
impose certain Lipschitz continuity conditions on g1 (-, y1x) in
the sequel.

3) Asymptotic distributions: It remains to describe the
distributions of the true vector x° and the singular-value
vector s. A simple model would be to assume that they are
random i.i.d. sequences that grow with N. However, following
the Bayati-Montanari analysis [4], we will consider a more
general framework where each of these vectors is modeled as
deterministic sequence for which the empirical distribution of
the components converges in distribution. When the vectors
x% and s are i.i.d. random sequences, they will satisfy this
condition almost surely. Details of this analysis framework
are reviewed in Appendix B.

Using the definitions in Appendix B, we assume that the
components of the singular-value vector s € RY in (29)
converge empirically with second-order moments as

Jim {5}, T2 s, (30)
for some positive random variable S. We assume that E[S] > 0
and S € [0, Spqz] for some finite maximum value Sp,qz-
Additionally, we assume that the components of the true
vector, xY, and the initial input to the denoiser, ryy, converge
empirically as

N PL(2)

Hm {(riom 29)}ney = (Ri,X°), 31)
N—oco
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for some random variables (R10, X°). Note that the conver-
gence with second-order moments requires that E[(X?)?] <
oo and E[R%,] < 0o, so they have bounded second moments.
We also assume that the initial second-order term, if dependent
on N, converges as

hm ’}/10 (N) = 710, (32)

N—oc0

for some 7, > 0.

As stated above, most of our analysis will apply to general
separable denoisers g1(-,71x). However, some results will
apply specifically to MMSE denoisers. Under the assumption
that the components of the true vector x° are asymptotically
distributed like the random variable X©, as in (31), the MMSE
denoiser (14) and its derivative (16) reduce to

91(r1,m) =E[X°|Ry =],

(33)
9/1(7°1771) = ypvar [X0|R1 = 7"1] ,

where R; is the random variable representing X° corrupted
by AWGN noise, i.e.,

Ri=X"4+P, P~N(0,7"),

with P being independent of X°. Thus, the MMSE denoiser
and its derivative can be computed from the posterior mean
and variance of X under an AWGN measurement.

B. Error Functions

Before describing the state evolution (SE) equations and
the analysis in the LSL, we need to introduce two key
functions: error functions and sensitivity functions. We begin
by describing the error functions.

The error functions, in essence, describe the mean squared
error (MSE) of the denoiser and LMMSE estimators under
AWGN measurements. Recall from Section IV-A, that we have
assumed that the denoiser g;(-,1) is separable with some
componentwise function g;(,~;). For this function g;(-,v1),
define the error function as

& () =E (g1 (R, m) — X°)?],

Ri=X"+P, P~N(0m). (34)

The function & (71, 71) thus represents the MSE of the esti-
mate X = ¢;1(R1,71) from a measurement R; corrupted by
Gaussian noise of variance 7;. For the LMMSE estimator, we
define the error function as

. 1
Ea(v2,2) = ngnoo N]E (g2 (r2,72) — x°1?],
q -~ N(07 TQI)’
W~ N(0,7,01),

r2:XO+qa

y=Ax" +w, (35)

which is the average per component error of the vector esti-
mate under Gaussian noise. Note that £5(ve, 72) is implicitly
a function of the noise precision levels ,,o and 7, (through
go from (24)), but this dependence is omitted to simplify the
notation.

We will say that both estimators are “matched” when

—1 —1
T =71 2 =72 5  Yw = Ywo,

7

so that the noise levels used by the estimators both match the
true noise levels. Under the matched condition, we will use
the simplified notation

Ei(m) = 51(’71,’Yf1)»

The following lemma establishes some basic properties of the
error functions.

Ea(72) = E2(72,73 1)

Lemma 1. Recall the error functions £y, > defined above.

(a) For the MMSE denoiser (33) under the matched condition
T =7 L the error function is the conditional variance

Ei(n) =var [X°|Ry = X"+ P], P~N(0,7 ).
(36)
(b) The LMMSE error function is given by

1 ~
E2(02.m) = lim —Tr[Q7*Q[,  (7)

where Q and Q are the matrices

. 2
Q=7wATA+7pI, Q= T2ATA+ 3L (38)
Vw0

Under the matched condition 7y = v5 ' and v = Yuwo,

o1 _
E(p) = lim =Tr Q']. (39)
(c) The LMMSE error function is also given by
2 g2 2
YarS? [Ywo + T3
& =E 40
2(’72)7-2) |: ('_YUJSQ +’Y2)2 :| ) ( )

where S is the random variable (30) representing the
distribution of the singular values of A. For the matched
condition Ty = 75 Y and vy = Yuo,

1
E () =E [“W*"YJ . (41)

Proof. See Appendix C. ]

C. Sensitivity Functions

The sensitivity functions describe the expected divergence
of the estimator. For the denoiser, the sensitivity function is
defined as

Ai(y1,m) = Eg (R, m)],

Ri=X"+P, P~N(0m), (42)

which is the average derivative under a Gaussian noise input.
For the LMMSE estimator, the sensitivity is defined as

{382(82227 72)] .

Lemma 2. For the sensitivity functions above:

(a) For the MMSE denoiser (33) under the matched condition
T =7 L the sensitivity function is given by

Ai(y1,77") = mvar [XO|Ry = X° + N (0,77 )],
(44)
which is the ratio of the conditional variance to the
measurement variance ;.

1
lim —Tr

AQ(WZ) = Nooo N

(43)
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(b) The LMMSE estimator’s sensitivity function is given by
. 1 _
As(y2) = lim —AoTr {(’ywATA + 72I) 1] .
N—ooo N

(c) The LMMSE estimator’s sensitivity function can also be

written as
V2
A =E|——]|.
2(72) |:'7w52+'72:|

Proof. See Appendix C. (]

D. State Evolution Equations

We can now describe our main result, which is the SE
equations for VAMP. For a given iteration k > 1, consider
the set of components,

{({Elk,n»rlk,n7x2), n=1,...,N}

This set represents the components of the true vector x°,

its corresponding estimate X1; and the denoiser input ryy.
Theorem 1 below will show that, under certain assumptions,
these components converge empirically as

PL(2)

(X1, Rk, X°0),  (45)

Hm {(Z1g.m, T1kms 20)}
N— o0

where the random variables ()? 1k, Rix, X©) are given by

le:X0+Pk7 PkNN(Olek)v
ben = g1(Rik, V1x),

(46a)
(46b)

for constants 7, and 7y that will be defined below. Thus,
each component 71, appears as the true component x2
plus Gaussian noise. The corresponding estimate /x\lk,n then
appears as the denoiser output with 71, ,, as the input. Hence,
the asymptotic behavior of any component 2 and its corre-
sponding Z1j ,, is identical to a simple scalar system. We will
refer to (45)-(46) as the denoiser’s scalar equivalent model.
For the LMMSE estimation function, we define the trans-
formed error and transformed noise,
@i =V (ra —x"), &:=Ulw, (47)
where U and V are the matrices in the SVD decomposition
(29). Theorem 1 will also show that these transformed errors
and singular values s,, converge as,

. PL(2) -
lim {(qk,nvgnasn)} = (Qk7:‘7s)a (48)
N—oo
to a set of random variables (Qg,=,.S). These random vari-
ables are independent, with .S defined in the limit (30) and
Qk ~ N(0,721),  E~N(0,75,5); (49)
where 79, is a variance that will be defined below and 7, is
the noise precision in the measurement model (28). Thus (48)-

(49) is a scalar equivalent model for the LMMSE estimator.

The variance terms are defined recursively through what are
called state evolution equations,

o, = A1(V1p, Tik) (50a)
_ 5y _ _ _
Mk = =2, Fop =Tk — T1k (50b)
QL
Tok = o (&1 (Fig> Tik) — O3xT1k] (50¢)
(1 _ alk)2 1k> 1k ’
aop, = Aa(Fop,, Tok) (50d)
_ % _ _ _
Mo = af%, Vin = Mok — Yok (50e)
2%
1
Tt = m [52(721@,7%) —@%szk] ) (501)
which are initialized with
10 = E[(R10 — X°)?], (51

and 7, defined from the limit (32).

Theorem 1. Under the above assumptions and definitions,
assume additionally that for all iterations k:

(i) The solution ayy, from the SE equations (50) satisfies
ay; € (0,1). (52)

(ii) The functions A;(v;, ;) and E;(~y;, ;) are continuous at
(i, i) = Vi Tik)-

(iii) The denoiser function g¢1(r1,7v1) and its derivative
g1 (r1,71) are uniformly Lipschitz in ri at y1 = 74, (See
Appendix B for a precise definition of uniform Lipschitz
continuity.)

Then, for any fixed iteration k > 0,

m (air, Niks Vi) = (@ike> Tite> Vire) (53)
N—oc0
almost surely. In addition, the empirical limit (45) holds almost
surely for all k > 0, and (48) holds almost surely for all k > 0.

E. Mean Squared Error

One important use of the scalar equivalent model is to
predict the asymptotic performance of the VAMP algorithm
in the LSL. For example, define the asymptotic mean squared
error (MSE) of the iteration-k estimate X;;, as

. 1 .
MSE;y, := lim Nuxik —xY|2. (54)
For this MSE, we claim that
MSE;r = & (Vi Tik)- (55

To prove (55) for i = 1, we write

N
. 1 ~
MSE;; = lim N Z(Ilk,n - z%)Q

N—o0
n=1

WE[(Xy - X°)?]

®) _ c _
= ]E[(gl(Rla'Ylk) - XO)Q] (:) 51(’71ka71k)

where (a) and (b) follow from the convergence in (45) and the
scalar equivalent model (45), and where (c) follows from (34).
Using the scalar equivalent model (48), the definition of E;(-)
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in (35), and calculations similar to the proof of Lemma 1, one
can also show that (55) holds for 7 = 2.

Interestingly, this type of calculation can be used to compute
any other componentwise distortion metric. Specifically, given
any distortion function d(x,Z) that is pseudo-Lipschitz of
order two, its average value is given by

N
. 1 ~ S
dim e D el Fakn) = B[40 Ka)]

where the expectation is from the scalar equivalent model (45).

FE. Contractiveness of the Denoiser

An essential requirement of Theorem 1 is the condition (52)
that @y, € (0,1). This assumption requires that, in a certain
average, the denoiser function ¢;(-,71) is increasing (i.e.,
g1 (r1n,71) > 0) and is a contraction (i.e., g} (r1n,71) < 1).
If these conditions are not met, then @y, < 0 or @y > 1,
and either the estimated precision 7;;, or 75; in (50b) may be
negative, causing subsequent updates to be invalid. Thus, @
must be in the range (0, 1). There are two important conditions
under which this increasing contraction property are provably
guaranteed:

Strongly convex penalties: Suppose that g1 (115, 71) is the
either the MAP denoiser (13) or the MMSE denoiser (14) for
a density p(x,) that is strongly log-concave. That is, there
exists constants c¢1, cy > 0 such that

2
< ——=
b= ox?
Then, using results from log-concave functions [35], it is
shown in [11] that

Inp(x,) < co.

N
co+ma+m

] C (0,1),

for all r1,, and 7 > 0. Hence, from the definition of the
sensitivity function (42), the sensitivity oy in (50a) will be
in the range (0, 1).

Matched MMSE denoising: Suppose that g1(r1,,71) is
the MMSE denoiser in the matched condition where 7, =
Tl_kl for some iteration k. From (44),

Ai(y,7 ) = mvar [XO|Ry = X+ N(0,77 )] .

gll(rlnapyl) € |:

Since the conditional variance is positive, A1 (71,77 ") > 0.
Also, since the variance is bounded above by the MSE of a
linear estimator,

vivar [XO|Ry = X + N (0,77 1)]

71_17-1‘0 _ V1T
Too 700 L4 7Ta

<M

where 7,0 = var(X?). Thus, we have A;(v1,77") € (0,1)
and @y, € (0,1).

In the case when the prior is not log-concave and the
estimator uses an denoiser that is not perfectly matched, o
may not be in the valid range (0, 1). In these cases, VAMP
may obtain invalid (i.e. negative) variance estimates.

9

V. MMSE DENOISING, OPTIMALITY, AND CONNECTIONS
TO THE REPLICA METHOD

An important special case of the VAMP algorithm is when
we apply the MMSE optimal denoiser under matched +,,. In
this case, the SE equations simplify considerably.

Theorem 2. Consider the SE equations (50) with the MMSE
optimal denoiser (33), matched v,, = Y0, and matched initial
condition 7,y = Tfol. Then, for all iterations k > 0,

_ 1 _ _ _ _

e = 781 Frr) Yor = T2k1 =Mk~ Vik> (562)
1

_ 1 _ _ _ _

Mok = 782(7 ) Vi = Tl,li+1 = Nog — Vok- (56b)
2

In addition, for estimators i = 1,2, 7, is the inverse MSE:

T 0)12. (56¢)

= N, %

Proof. See Appendix H. ]

It is useful to compare this result with the work [21], which
uses the replica method from statistical physics to predict
the asymptotic MMSE error in the LSL. To state the result,
given a positive semidefinite matrix C, we define its Stieltjes
transform as

1 1L 1
So(w) = 5T [(C—wly) '] = & > , (57)
n=1

— Ap — W

where \,, are the eigenvalues of C. Also, let Rc(w) denote
the so-called R-transform of C, given by
Rc(w) = Sg' (—w) — = (58)
where the inverse S61(~) is in terms of composition of
functions. The Stieltjes and R-transforms are discussed in
detail in [36]. The Stieltjes and R-transforms can be extended
to random matrix sequences by taking limits as N — oo (for
matrix sequences where these limits converge almost surely).
Now suppose that X = E[x|y] is the MMSE estimate of
x¥ given y. Let 7! be the asymptotic inverse MSE

Using a so-called replica symmetric analysis, it is argued in
[21] that this MSE should satisfy the fixed point equations

ol =E&(7),

where C = ’ywOATA. A similar result is given in [16].

¥, =Rc(-71), (59)

Theorem 3. Let 7,,m, be any fixed point solutions to the SE
equations (56) of VAMP under MMSE denoising and matched
Yw = Ywo- Then Ny = 7Ny. If we define 1 := 7; as the common
value, then 7, and 7 satisfy the replica fixed point equation
(59).

Proof. Note that we have dropped the iteration index & since
we are discussing a fixed point. First, (56) shows that, at any
fixed point,

Y1 +72 =11 =T,
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so that 77; = 7),. Also, in the matched case, (41) shows that

E2(F2) = Sc(—7a).
Since 77! = &(7¥,), we have that
Ti=T-T=7+58c' (") =Rc(-T").
Also, 7t =7, = £(7y). O

The consequence of Theorem 3 is that, if the replica
equations (59) have a unique fixed point, then the MSE
achieved by the VAMP algorithm exactly matches the Bayes
optimal MSE as predicted by the replica method. Hence,
if this replica prediction is correct, then the VAMP method
provides a computationally efficient method for finding MSE
optimal estimates under very general priors—including priors
for which the associated penalty functions are not convex.

The replica method, however, is generally heuristic. But in
the case of i.i.d. Gaussian matrices, it has recently been proven
that the replica prediction is correct [37], [38].

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments that
compare the VAMP* Algorithm 2 to the VAMP state evo-
lution from Section IV, the replica prediction from [21], the
AMP Algorithm 1 from [3], the S-AMP algorithm from [18,
Sec. IV], the adaptively damped (AD) GAMP algorithm from
[9], and the support-oracle MMSE estimator, whose MSE
lower bounds that achievable by any practical method. In all
cases, we consider the recovery of vectors x0 € RN from
AWGN-corrupted measurements y € RM constructed from
(1), where x° was drawn i.i.d. zero-mean Bernoulli-Gaussian
with Pr{z9 # 0} = 0.1, where w ~ N(0,1/740), and
where M = 512 and N = 1024. All methods under test
were matched to the true signal and noise statistics. When
computing the support-oracle MMSE estimate, the support of
x? is assumed to be known, in which case the problem reduces
to estimating the non-zero coefficients of x". Since these non-
zero coefficients are Gaussian, their MMSE estimate can be
computed in closed form. For VAMP we used the implemen-
tation enhancements described in Section III-C. For line 7 of
AMP Algorithm 1, we used 1/vx1 = 1/vwo + %ak/%, as
specified in [3, Eq. (25)]. For the AMP, S-AMP, and AD-
GAMP algorithms, we allowed a maximum of 1000 iterations,
and for the VAMP algorithm we allowed a maximum of 100
iterations.

A. Ill-conditioned A

First we investigate algorithm robustness to the condition
number of A. For this study, realizations of A were con-
structed from the SVD A = ﬁDiag(§)VT € RM*N with geo-
metric singular values s € RM . That is, 5;/5;_1 = p Vi, with p
chosen to achieve a desired condition number x(A) := 51 /3,
and with 5; chosen so that ||A||% = N. The singular vector
matrices U,V were drawn uniformly at random from the
group of orthogonal matrices, i.e., from the Haar distribution.

4A Matlab implementation of VAMP can be found in the public-domain
GAMPmatlab toolbox [33].

0 7 s —

AMP AT
| | —<—s-AwP L

£ AD-GAMP X .
—F— VAWP - 7
40 L|— — replica /f}
— - — - oracle y /I
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-40

-45
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Fig. 3. NMSE versus condition number x(A)) at final algorithm iteration. The
reported NMSE is the median over 500 realizations, with error bars shown
on the VAMP trace.

Finally, the signal and noise variances were set to achieve a
signal-to-noise ratio (SNR) E[||Ax||?]/E[||w]?] of 40 dB.

Figure 3 plots the median normalized MSE (NMSE)
achieved by each algorithm over 500 independent realizations
of {A,x,w}, where NMSE(x) := ||x — x°||?/||x°||%. To
enhance visual clarity, NMSEs were clipped to a maximum
value of 1. Also, error bars are shown that (separately) quantify
the positive and negative standard deviations of VAMP’s
NMSE from the median value. The NMSE was evaluated for
condition numbers x(A) ranging from 1 (i.e., row-orthogonal
A) to 1 x 10° (i.e., highly ill-conditioned A).

In Figure 3, we see that AMP and S-AMP diverged for
even mildly ill-conditioned A. We also see that, while adaptive
damping helped to extend the operating range of AMP, it had a
limited effect. In contrast, Figure 3 shows that VAMP’s NMSE
stayed relatively close to the replica prediction for all condition
numbers x(A). The small gap between VAMP and the replica
prediction is due to finite-dimensional effects; the SE analysis
from Section IV establishes that this gap closes in the large-
system limit. Finally, Figure 3 shows that the oracle bound is
close to the replica prediction at small x(A) but not at large
Kk(A).

Figure 4(a) plots NMSE versus algorithm iteration for
condition number k(A) = 1 and Figure 4(b) plots the same for
k(A) = 1000, again with error bars on the VAMP traces. Both
figures show that the VAMP trajectory stayed very close to the
VAMP-SE trajectory at every iteration. The figures also show
that VAMP converges a bit quicker than AMP, S-AMP, and
AD-GAMP when x(A) = 1, and that VAMP’s convergence
rate is relatively insensitive to the condition number x(A).

B. Non-zero-mean A

In this section, we investigate algorithm robustness to the
componentwise mean of A. For this study, realizations of A
were constructed by first drawing an i.i.d. M(u, 1/M) matrix
and then scaling it so that ||A||% = N (noting that essentially
no scaling is needed when p = 0). As before, the signal and
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Fig. 4. NMSE versus algorithm iteration for condition number x(A) = 1 in
(a) and k(A) = 1000 in (b). The reported NMSE is the median over 500
realizations, with error bars shown on the VAMP traces.
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Fig. 5. NMSE versus mean g at final algorithm iteration. The reported NMSE
is the median over 200 realizations, with error bars shown on the VAMP trace.

noise variances were set to achieve an SNR of 40 dB. For
AD-GAMP, we used the mean-removal trick proposed in [9].

Figure 5 plots the NMSE achieved by each algorithm over
200 independent realizations of {A,x,w}. The NMSE was
evaluated for mean parameters p between 0.001 and 10. Note
that, when p > 0.044, the mean is larger than the standard
deviation. Thus, the values of p that we consider are quite
extreme relative to past studies like [8].

Figure 5 shows that AMP and S-AMP diverged for even
mildly mean-perturbed A. In contrast, the figure shows that
VAMP and mean-removed AD-GAMP (MAD-GAMP) closely
matched the replica prediction for all mean parameters .
It also shows a relatively small gap between the replica
prediction and the oracle bound, especially for small .

Figure 6(a) plots NMSE versus algorithm iteration for
matrix mean p = 0.001 and Figure 6(b) plots the same for
© = 1. When p = 0.001, VAMP closely matched its SE at
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Fig. 6. NMSE versus algorithm iteration when A has mean p = 0.001 in (a)
and p = 1 in (b). The reported NMSE is the median over 200 realizations,
with error bars shown on the VAMP traces.

all iterations and converged noticeably quicker than AMP, S-
AMP, and MAD-VAMP. When p = 1, there was a small but
noticeable gap between VAMP and its SE for the first few
iterations, although the gap closed after about 10 iterations.
This gap may be due to the fact that the random matrix A used
for this experiment was not right-orthogonally invariant, since
the dominant singular vectors are close to (scaled versions of)
the 1s vector for sufficiently large wu.

C. Row-orthogonal A

In this section we investigate algorithm NMSE versus
SNR for row-orthogonal A, i.e., A constructed as in Sec-
tion VI-A but with k(A) = 1. Previous studies [16], [19]
have demonstrated that, when A is orthogonally invariant but
not i.i.d. Gaussian (e.g., row-orthogonal), the fixed points of
S-AMP and diagonal-restricted EC are better than those of
AMP because the former approaches exploit the singular-value
spectrum of A, whereas AMP does not.

Table I reports the NMSE achieved by VAMP, S-AMP, and
AMP at three levels of SNR: 10 dB, 20 dB, and 30 dB. The
NMSEs reported in the table were computed from an average
of 1000 independent realizations of {A,x,w}. Since the
NMSE differences between the algorithms are quite small, the
table also reports the standard error on each NMSE estimate
to confirm its accuracy.

Table I shows that VAMP and S-AMP gave nearly identical
NMSE at all tested SNRs, which is expected because these two
algorithms share the same fixed points. The table also shows
that VAMP’s NMSE was strictly better than AMP’s NMSE
at low SNR (as expected), but that the NMSE difference
narrows as the SNR increases. Finally, the table reports the
replica prediction of the NMSE, which is about 3% lower
(i.e., —0.15 dB) than VAMP’s empirical NMSE at each SNR.
We attribute this difference to finite-dimensional effects.
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SNR ‘ replica VAMP(stderr) S-AMP(stderr) AMP(stderr)
10 dB | 5.09e-02 5.27e-02(4.3e-04) 5.27¢-02(4.3e-04) 5.42¢-02(4.2e-04)
20 dB | 3.50e-03 3.57e-03(2.7e-05) 3.58e-03(2.7e-05) 3.62e-03(2.6e-05)
30 dB | 2.75e-04 2.84e-04(2.2e-06) 2.85e-04(2.2e-06) 2.85e-04(2.1e-06)

TABLE I
AVERAGE NMSE VERSUS SNR FOR ROW-ORTHOGONAL A, WHERE THE
AVERAGE WAS COMPUTED FROM 1000 REALIZATIONS. STANDARD ERROR
DEVIATIONS ARE ALSO REPORTED.

D. Discussion

Our numerical results confirm what is already known about
the fixed points of diagonally restricted EC (via VAMP) and
S-AMP. That is, when A is large and right-orthogonally invari-
ant, they agree with each other and with the replica prediction;
and when A is large i.i.d. Gaussian (which is a special case
of right-orthogonally invariant [36]), they furthermore agree
with the fixed points of AMP [16], [19].

But our numerical results also clarify that it is not enough
for an algorithm to have good fixed points, because it may not
converge to its fixed points. For example, although the fixed
points of S-AMP are good (i.e., replica matching) for any large
right-orthogonally invariant A, our numerical results indicate
that S-AMP converges only for a small subset of large right-
orthogonally invariant A: those with singular-value spectra
similar (or flatter than) i.i.d. Gaussian A.

The SE analysis from Section IV establishes that, in the
large-system limit and under matched priors, VAMP is guar-
anteed to converge to a fixed point that is also a fixed point
of the replica equation (59). Our numerical results suggest
that, even with large but finite-dimensional right orthogonally
invariant A (i.e., 512 x 1024 in our simulations), VAMP attains
NMSEs that are very close to the replica prediction.

VII. CONCLUSIONS

In this paper, we considered the standard linear regression
(SLR) problem (1), where the goal is to recover the vector x°
from noisy linear measurements y = Ax° + w. Our work is
inspired by Donoho, Maleki, and Montanari’s AMP algorithm
[2], which offers a computationally efficient approach to SLR.
AMP has the desirable property that its behavior is rigorously
characterized under large i.i.d. sub-Gaussian A by a scalar
state evolution whose fixed points, when unique, are Bayes
optimal [4]. A major shortcoming of AMP, however, is its
fragility with respect to the i.i.d. sub-Gaussian model on A:
even small perturbations from this model can cause AMP to
diverge.

In response, we proposed a vector AMP (VAMP) algorithm
that (after performing an initial SVD) has similar complexity
to AMP but is much more robust with respect to the matrix A.
Our main contribution is establishing that VAMP’s behavior
can be rigorously characterized by a scalar state-evolution
that holds for large, right-orthogonally invariant A. The fixed
points of VAMP’s state evolution are, in fact, consistent with
the replica prediction of the minimum mean-squared error
recently derived in [21]. We also showed how VAMP can
be derived as an approximation of belief propagation on a
factor graph with vector-valued nodes, hence the name “vector

AMP.” Finally, we presented numerical experiments to demon-
strate. VAMP’s robust convergence for ill-conditioned and
mean-perturbed matrices A that cause earlier AMP algorithms
to diverge.

As future work, it would be interesting to extend VAMP
to the generalized linear model, where the outputs Ax" are
non-linearly mapped to y. Also, it would be interesting to
design and analyze extensions of VAMP that are robust to
more general models for A, such as the case where A is
statistically coupled to xV.

APPENDIX A
MESSAGE-PASSING DERIVATION OF VAMP

In this appendix, we detail the message-passing derivation
of Algorithm 3. Below, we will use k£ to denote the VAMP
iteration and n to index the elements of /N-dimensional vectors
like x1,r1; and X1;. We start by initializing the message-
passing with p5 s, (x1) = N(x1;T10,710 I). The following
steps are then repeated for k = 0,1,2,....

From Rule 1, we first set the approximate belief on
X1 as N(Xl;ﬁlk,nl_kll:), where ﬁlk = E[x1|bsp(x1)] and
n = (diag(Cov(x;|bsp(x1)])) for the SP belief bsp(x1) o
p(x1)N (x1; 1k, 75, I). With an i.i.d. prior p(x;) as in (12),
we have that [X1x]n = 91("1k.n, 1) for the conditional-mean
estimator g;(-,v1x) given in (14), yielding line 4 of Algo-
rithm 3. Furthermore, from (16) we see that the corresponding
conditional covariance is 7}, g1 (71x,n, V1x), yielding lines 5-6
of Algorithm 3.

Next, Rule 2 says to set the message fix,—s(X1) propor-
tional to N (x1; X1k, 735 1) /N (X1; 18,75, I). Since

N(x;%,n ') /N (x;1, 7 1)
o N (x; (%0 —17)/(n =), (n =) ~'T),

we have fix, 5(x1) = N (X1; T2k, 755, I) for ror = (Rugns —
r1x71k)/ Mk —Y1k) and yor = N1k — Y1k, yielding lines 7-8 of
Algorithm 3. Rule 3 then implies that the message fix, —s(X1)
will flow rightward through the § node unchanged, manifesting
as ls—x, (X2) = N (x2; Tk, 75, I) on the other side.

Rule 1 then says to set the approximate belief on
xo at N (xXo; Xok, 172_131), where Xo, = E[xa|bsp(x2)] and
Ny = (diag(Cov(xa|bsp(x2)])) for the SP belief bsp(x2) o
N (x2; ok, Yo DN (y; Ax2, 7, T). Using standard manipu-
lations, it can be shown that this belief is Gaussian with mean

(60)

-1
%or = (wATA +72d)  (1ATy +9mra) (6D

and covariance (7, AT A +,I)~'. The equivalence between
(61) and (24) explains line 11 of Algorithm 3. Furthermore, it
can be seen by inspection that the average of the diagonal
of this covariance matrix coincides with ~,,' (g5 (rar, yor))
for (gh(ra,v2x)) from (25), thus explaining lines 12-13 of
Algorithm 3.

Rule 2 then says to set the message [ix,—s5(X2) at
N (X2; Xk, 195 I) /N (%25 Tor, V45 I), which (60) simplifies to
N (%2511 11 ’yiéﬂI) for r1 g = (Xorm2r — Tawvar)/ (M2k —
vor) and 1 g = N2k — Yok, yielding lines 14-15 of Algo-
rithm 3. Finally, Rule 3 implies that the message fx,—s(X2)
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flows left through the § node unchanged, manifesting as
o—sx, (X1) = N(xl;rlkﬂ,y;iﬂl) on the other side. The
above messaging sequence is then repeated with k < k + 1.

APPENDIX B
CONVERGENCE OF VECTOR SEQUENCES

We review some definitions from the Bayati-Montanari
paper [4], since we will use the same analysis framework in
this paper. Fix a dimension r > 0, and suppose that, for each
N, x(N) is a vector of the form

x(N) = (x1(N),...,xy(N)),

with vector sub-components x,(N) € R”". Thus, the total
dimension of x(NN) is rN. In this case, we will say that x(N)
is a block vector sequence that scales with N under blocks
x,(N) € R". When r = 1, so that the blocks are scalar, we
will simply say that x(IN) is a vector sequence that scales with
N. Such vector sequences can be deterministic or random. In
most cases, we will omit the notational dependence on N and
simply write x.

Now, given p > 1, a function f : R® — R” is called pseudo-
Lipschitz of order p, if there exists a constant C' > 0 such that
for all x1,x9 € R®,

1£(x1) = £(x2) || < Cllxcr — 2] [1 4[| [P~ + [l 77" -

Observe that in the case p = 1, pseudo-Lipschitz continuity
reduces to the standard Lipschitz continuity.

Now suppose that x = x(N) is a block vector sequence,
which may be deterministic or random. Given p > 1, we will
say that x = x(IV) converges empirically with p-th order
moments if there exists a random variable X € R” such that

(i) E|X|P < o0; and

(ii) for any scalar-valued pseudo-Lipschitz continuous func-
tion f(-) of order p,

lim ~ 3" faa(N) = E[f(X)] as.

n=1

(62)

Thus, the empirical mean of the components f(x,(N))
converges to the expectation E[f(X)]. When x converges
empirically with p-th order moments, we will write, with some
abuse of notation,

N PL(

. 2]
1\}21100 {xn}nzl = X’

(63)

where, as usual, we have omitted the dependence x, =
2, (V). Note that the almost sure convergence in condition (ii)
applies to the case where x(N) is a random vector sequence.
Importantly, this condition holds pointwise over each function
f(). It is shown in [4, Lemma 4] that, if condition (i) is true
and condition (ii) is true for any bounded continuous function
f(x) as well as f(z) = P, then condition (ii) holds for all
pseudo-Lipschitz functions of order p.

We conclude with one final definition. Let ¢(r,v) be a
function on r € R® and v € R. We say that ¢(r,7) is
uniformly Lipschitz continuous in r at v = 7 if there exists
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constants L; and Ls > 0 and an open neighborhood U of 7,
such that

[@(r1,7) — P(ra, V)| < Liflr1 — r2f], (64)
for all r1,ro € R® and v € U; and
[o(r,11) — @(r, )| < Lo (L +[Ir]) [y1 =72, (65)

for all r € R® and v1,72 € U.

APPENDIX C
PROOF OF LEMMAS 1 AND 2

For Lemma 1, part (a) follows immediately from (33) and
(34). To prove part (b), suppose

y:AX0+W, r22X0+q.

Then, the error is given by

0 (@ T -1
g2(r2,72) —x = <’YwA A +’721>
X (’ywATAXO + ’}/wATW + "YQI'Q) —-x°

—1
© (ATA+ 1) (a+wATw),

Yq! (qu + %ATW) :

where (a) follows by substituting y = Ax°®+w into (24); part
(b) follows from the substitution ry = x° + q and collecting
the terms with x%; and (c) follows from the definition of Q
in (38). Hence, the error covariance matrix is given

B | (eatrz.22) ~ ") (eatrz, 72) =)

— Q" [43Elaq"] + 2 AE[wwT]AT| Q!

=Q7'QQ,
where we have used the the fact that q and w are independent
Gaussians with variances 75 and +y, . This proves (37). Then,
under the matched condition, we have that Q = Q, which
proves (39). Part (c¢) of Lemma 1 follows from part (b) by
using the SVD (29).

For Lemma 2, part (a) follows from averaging (33) over r;.

Part (b) follows by taking the derivative in (24) and part (c)
follows from using the SVD (29).

APPENDIX D
ORTHOGONAL MATRICES UNDER LINEAR CONSTRAINTS

In preparation for proving Theorem 1, we derive various
results on orthogonal matrices subject to linear constraints.
To this end, suppose V. € RY*Y is an orthogonal matrix
satisfying linear constraints

A =VB, (66)
for some matrices A, B € RV** for some s. Assume A and
B are full column rank (hence s < N). Let

Uxr =AATA)7Y/2

Ug = B(B'B)~'/2. (67)
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Also, let Up: and Ug: be any N x (N — s) matrices
whose columns are an orthonormal bases for Range(A )+ and
Range(B)+, respectively. Define

V:=UL.VUg., (68)
which has dimension (N — s) x (N — s).
Lemma 3. Under the above definitions v satisfies
V=AATA)"'B"+U,.VUL.. (69)

Proof. Let Pao := UaUj and Py = U, UYL, are
the orthogonal projections onto Range(A) and Range(A)+
respectively. Define Pg and Pg similarly. Since, A = VB,
we have VT A = B and therefore,

PLVPg =0, PoVPg =0. (70)
Therefore,

V = (Pa+P;)V(Ps +Pg)

= (PAVPg + Py VP3). (71)
Now,
PAVPg =P, VB(B'B)"'B'

=PAA(B'B)"'BT

= AB'B)"'B"' = A(ATA)"'BT, (72)
where, in the last step we used the fact that

ATA =B"V'VB =B'B.
Also, using the definition of V in (68),
PAVPj =U,. VUL, . (73)

Substituting (72) and (73) into (71) obtains (69). To prove that
V is orthogonal,

VIV @ UL, VPiVUL.

Oyl vivug. 91,

where (a) uses (68); (b) follows from (70) and (c) follows
from the fact that V and Ug. have orthonormal columns. []

Lemma 4. Let V € RY*YN pe a random matrix that is Haar
distributed. Suppose that A and B are deterministic and G
is the event that V satisfies linear constraints (66). Then, the
conditional distribution given G, V is Haar distributed matrix
independent of G. Thus,

Vi, 2 AATA)'BT + U, VUL,
where V is Haar distributed and independent of G.

Proof. Let Op be the set of N x N orthogonal matrices and
let £ be the set of matrices V € Oy that satisfy the linear
constraints (66). If py (V) is the uniform density on Oy (i.e.
the Haar measure), the conditional density on V given the
event G,

1
pvic(VIG) = EPV(V)]I{Veﬁ}a

where Z is the normalization constant. Now let ¢ : ViV
be the mapping described by (69) which maps On_; to L.

This mapping is invertible. Since ¢ is affine, the conditional
density on V is given by

31 (VIG) x pvia(¢(V)|G)

where in the last step we used the fact that, for any matrix
V, ¢(V) € L (i.e. satisfies the linear constraints (66)). Now
to show that V is conditionally Haar distributed, we need to
show that for any orthogonal matrix Wy € Oy _,

(74)

P316(WoVIG) = pg(VIG). (75)
To prove this, given Wy € On_;, define the matrix,
W = UaUj + U, WU} L.
One can verify that W € Oy (i.e. it is orthogonal) and
$(WoV) = Wo (V). (76)

Hence,
~ (a) ~
Py16(WoVI|G) < pv(6(WoV))

Q v (W (V) & pv(6(V)),

where (a) follows from (74); (b) follows from (76); and
(c) follows from the orthogonal invariance of V. Hence,
the conditional density of V is invariant under orthogonal
transforms and is thus Haar distributed. ([

We will use Lemma 4 in conjunction with the following
simple result.

Lemma 5. Fix a dimension s > 0, and suppose that x(N)
and U(N) are sequences such that for each N,
(i) U=U(N) € RV*N=9) s g deterministic matrix with
Uulu =1,
(ii) x = x(N) € RN~% a random vector that is isotropically
distributed in that Vx < x for any orthogonal (N — s) x
(N — s) matrix V.
(iii) The normalized squared Euclidean norm converges al-
most surely as
lim %”XHQ =T,
for some T > 0.

Then, if we define y = Ux, we have that the components of
y converge empirically to a Gaussian random variable

PL(2

Jim {y} "2y ~ (0, 7). )

Proof. Since x is isotropically distributed, it can be generated
as a normalized Gaussian, i.e.

4 |
X = Wy,
[[woll
For each N, let U be an N x s matrix such that S := [U U |
is orthogonal. That is, the s columns of U are an orthonormal
basis of the orthogonal complement of the Range(U). If we
let wi ~ N(0,1,) independent of wq and define

W,
w = 0 ,
W1

Wo NN(O,IN_S).
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then w ~ N(0,Iy). With this definition, we can write y as

y = Ux 4 (il [Sw—U,wy]. (78)
[[woll
Now,
[
NG
NS0 ||wol|

almost surely. Also, since w ~ N(0,I) and S is orthogonal,
Sw ~ N(0,I). Finally, since w is s-dimensional,

) ]_ 2 . ]- 2
ngnoo N”UJ_Wl” = A}E}noo N”Wln =0,

almost surely. Substituting these properties into (78), we obtain
. O

APPENDIX E
A GENERAL CONVERGENCE RESULT

To analyze the VAMP method, we a consider the following
more general recursion. For each dimension N, we are given
an orthogonal matrix V € RV*¥ and an initial vector ug €
RY. Also, we are given disturbance vectors

wl = (wl,.. . wh), wi=(w], ... wl),

where the components wf € R"™ and w] € R"¢ for some
finite dimensions n, and n, that do not grow with N. Then
we generate a sequence of iterates by the following recursion:

pPr = Vu; (79a)
ar, = (£,(Pr, WP, 11k)), Yok = Di(mik, cax)  (79b)
vi, = Cr(aug) [fp(Pr, WP, 71k) — a1 Pi] (79¢)
ar = Vv (79d)
g, = (F3(ar, Wwhy2r)),  v1en = Da(yok, 2r)  (79€)
upy = Co (o) [fy(ar, w9, yor) — corqs] (791)

which is initialized with some vector ug and scalar ~;o. Here,
£,(-) and f,(-) are separable functions, meaning

[fp(pvaa’}/l)}n = fp(pn7w7€7’yl) vnv

80
[fq(q7 Wq>’72)]n = fq(Qmwgw’h) V’I’L7 ( )

for scalar-valued functions f,(-) and f,(-). The functions I';(-)
and C;(-) are also scalar-valued. In the recursion (79), the
variables 1 and o5 represent some parameter of the update
functions f,(-) and f,(-), and the functions I';(-) represent how
these parameters are updated.

Similar to our analysis of the VAMP, we consider the
following large-system limit (LSL) analysis. We consider a
sequence of runs of the recursions indexed by N. We model
the initial condition ug and disturbance vectors w? and w9
as deterministic sequences that scale with N and assume that
their components converge empirically as

lim {uon} ~ 2 Uy, (81)
N—oco
and
lim {w?} T2 W, ot {wi) TEY we (82
N—o00 N—oco
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to random variables Uy, WP and W4. The vectors W), and W,
are random vectors in R™» and R™<, respectively. We assume
that the initial constant converges as

]\}LYHOO Y10 = Y10» (83)

for some 7¥,,. The matrix V. € RN*N is assumed to

be uniformly distributed on the set of orthogonal matrices

independent of ry, w” and w?. Since ry, w” and w? are

deterministic, the only randomness is in the matrix V.
Under the above assumptions, define the SE equations

@ = E [£)(Pe, WP, 9,,)] (84a)
Tor = Cr(1k) {E [f2(Pe, WP, 711)] — @37k} (84b)
Yo = L1(F1p, Q1k) (84c)
Qo = E [£1(Qr, W9, 4], (844d)
Tra = O3 (0ar) {E [f2(Qr, W9, 7a1,)] — @5p7ar}  (84e)
Y11 = Do (Fop, @2k), (84f)

which are initialized with 7, in (83) and

10 = E[UF], (85)

where Uy is the random variable in (81). In the SE equa-
tions (84), the expectations are taken with respect to random
variables

Pk NN(O7T1]€)7 Qk NN<OaT2k:)7

where P} is independent of WP and () is independent of
wa.

Theorem 4. Consider the recursions (719) and SE equations
(84) under the above assumptions. Assume additionally that,
for all k:

(i) For i = 1,2, the functions

Ci(ai)a Fi(fyhai)v

are continuous at the points (v;, ;) = (Y, k) from
the SE equations; and

(ii) The function  f,(p,wP,v1) and its derivative
fp(p,wP,y1) are uniformly Lipschitz continuous in
(b, 0") at 1 =7y,

(iii) The  function  fq(q,w9,7v2) and its derivative
fo(q,w?,v2) are uniformly Lipschitz continuous in
(¢, w?) at 2 =y

Then,

(a) For any fixed k, almost surely the components of
(WP, po, ..., Pk) empirically converge as

)} T2 (WP Py, P,
(86)
where WP is the random variable in the limit (82) and
(Po,...,Py) is a zero mean Gaussian random vector
independent of WP, with IE[P,?] = Tyk. In addition, we

have that

Jim {(w? pon, ..

lim (cuw, vik) = (@1k, V1z), (87)
N—o00

almost surely.
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(b) For any fixed k, almost surely the components of C. The Induction Recursion

, k) empirically converge as

PL(2)
7qkn)} - (Wq7Q07"'

(w2, qo,. ..

) Qk)a

(88)
where W1 is the random variable in the limit (82) and
(Qo,...,Qr) is a zero mean Gaussian random vector
independent of W4, with E[P?] = 7o. In addition, we
have that

]\;gnoo {(wgquna e

lim (ook, v2r) = (Cak, Var ), 89)
N—oo

almost surely.

Proof. We will prove this in the next Appendix, Appendix F.
O

APPENDIX F
PROOF OF THEOREM 4

A. Induction Argument

We use an induction argument. Given iterations k,¢ > 0,
define the hypothesis, H}, ¢ as the statement:

o Part (a) of Theorem 4 is true up to k; and

e Part (b) of Theorem 4 is true up to £.
The induction argument will then follow by showing the
following three facts:

e Hy _y is true;

o If Hy . is true, then so is Hy, j;

o If Hk:,k is true, then so is Hk:+1,k-

B. Induction Initialization

We first show that the hypothesis Hy _; is true. That is,
we must show (86) and (87) for £ = 0. This is a special
case of Lemma 5. Specifically, for each N, let U = I, the
N x N identity matrix, which trivially satisfies property (i) of
Lemma 5 with s = 0. Let x = pg. Since pp = Vuy and
V is Haar distributed independent of ug, we have that pg is
orthogonally invariant and satisfies property (ii) of Lemma 5.
Also,

a b c
Jim (ool @ Tim [Jug)2 2 E[UF] < ny,

where (a) follows from the fact that pg = Vug and V is
orthogonal; (b) follows from the assumption (81) and (c)
follows from the definition (85). This proves property (iii) of
Lemma 5. Hence, pg = Upy, we have that the components
of po converge empirically as

. PL(2)

N pon )=

for a Gaussian random variable F,. Moreover, since V is
independent of wP, and the components of wP” converge
empirically as (82), we have that the components of p,,, wP
almost surely converge empirically as

lim {w?,pon} 2 (WP, Py),
N—o00
where WP is independent of Fy. This proves (86) for k = 0.
Now, we have assumed in (83) that y;0 — 7,4 as N — oo.

Also, since f,(p, w?,~1) is uniformly Lipschitz continuous in

(p,wP) at v1 = 7,4, we have that a9 = (£ (po, WP, 710))
converges to @y in (84a) almost surely. This proves (87).

Py ~ N(0,m10),

We next show the implication Hy, 1 = Hj, . The impli-
cation Hy j = Hj4q,, is proven similarly. Hence, fix k£ and
assume that Hy, . holds. Since I'y(7;, ;) is continuous at
(V15> @1k ), the limits (87) combined with (84c) show that

Ii = lim I = Yok
Ngnoovgk Ngnoo 1(V1k, Q1k) = Fap,

In addition, the induction hypothesis shows that for ¢ =
0,...,k, the components of (w? py) almost surely converge
empirically as

PLE) (e, py),

1\}51100{ (’LUZ, pEn) }
where P, ~ N(0,71) for 71, given by the SE equations.
Since f,(-) is Lipschitz continuous and C4(ay) is continuous
at aqy = a1y, one may observe that the definition of vy in
(79¢) and the limits (87) show that

PL(2)

hm {(wg’peﬂdvén)} - (WP,PK,W)7
N—oc0

where Vj is the random variable

Ve = gp(Pe, WP, 714, @10), (90)
and gp,(-) is the function
9p(p, w71, 01) = Ci(an) [fp(p, 0P, 1) —aap]. O
Similarly, we have the limit
i { (Wi en, wen) } "L (W, Qe Un),
where Uy is the random variable,
Ue = gq(Qe, W1, 750, C20) 92)
and g,(-) is the function
9q(q, w72, a2) := Co () [fo(q, 0", 72) — 2q] . (93)

We next introduce the notation
Ug:=[ug---u] € RNX(’“H),

to represent the first k+1 values of the vector uy,. We define
the matrices Vi, Qj and Py similarly. Using this notation,
let G, be the tuple of random matrices,

Gr = {Ur,Pr, Vi, Qp }

With some abuse of notation, we will also use G}, to denote
the sigma-algebra generated by these variables. The set (94)
contains all the outputs of the algorithm (79) immediately
before (79d) in iteration k.

Now, the actions of the matrix V in the recursions (79)
are through the matrix-vector multiplications (79a) and (79d).
Hence, if we define the matrices

B, = [Ur Qi],

the output of the recursions in the set G will be unchanged
for all matrices V satisfying the linear constraints

(94)

Ay =[Py Vi, (95)

A, =VBy. (96)
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Hence, the conditional distribution of V' given G, is precisely
the uniform distribution on the set of orthogonal matrices
satisfying (96). The matrices Ay and By are of dimensions
N x s where s = 2k + 1. From Lemma 4, this conditional
distribution is given by

Vi, £ Au(AJA,)'B] +UALVUBL, (97)

where Up: and Ugy are N x (N — s) matrices whose
columns are an orthonormal basis for Range(A;)* and
Range(Bj,)1. The matrix V is Haar distributed on the set
of (N —s) x (N — s) orthogonal matrices and independent of

Gp.
Using (97) we can write qy, in (79d) as a sum of two terms
ar = Vv = ai* + g, (98)

where qdet is what we will call the deterministic part:

= Bp(ALAL) AL vy, (99)
and q;*" is what we will call the random part:
Qi = UBkL{/TUTAtvk. (100)

The next few lemmas will evaluate the asymptotic distributions
of the two terms in (98).

Lemma 6. Under the induction hypothesis Hy, .1, there exist
constants B0, ..., Pk k-1 Such that the components of qdet
along with (qo, . .., Q1) converge empirically as

s dk—1,n, qut)}

(Wq7Q07"'>Qk: 1 det)7

where Q¢, £ =0, ..., k—1 are the Gaussian random variables
in induction hypothesis (88) and Q%Et is a linear combination,

get _ BkOQO + .4 Bk,k—le—l' (102)

Proof. We evaluate the asymptotic values of various terms in
(99). Using the definition of Ay in (95),

PI_.]I;Pk PTZVIH
ViaPr Vi Vi
We can then easily evaluate the asymptotic value of these terms

as follows. For example, the asymptotic value of the (i, )
component of the matrix PTPk is given by

@ 1
ij N

**mepj : 'Pj)(:C)

where (a) follows since the i-th column of Py is precisely
the vector p;; (b) follows due to convergence assumption in
(86); and in (c), we use QF to denote the covariance matrix

dim {wl gon, -

PLO) (101)

ATA, = {

lim — {P Pk} p;-rpj

N—oco N

[Q;Z]LJ )

of (Py,...,Px). Similarly
lim *Vk 1 Vi = Qi
N—oco N

where Qj_; has the components,

[Qz—l} ij = E [V;‘/J] )

17

where V; is the random variable in (90). Finally, the expecta-
tion for the cross-terms are given by

(a)
= E[9P<P17W 7’71z7a11)X]

b
Qg (g (P, WP, 7y, @0)] E[Xi X,

© E[X;X;]Cy (o) (B [f (P, WP, 7,;)] — @)

@

E[V; X;]

0,

where (a) follows from (90); (b) follows from Stein’s Lemma;
and (c) follows from the definition of g,(-) in (91); and (d)
follows from (84a). The above calculations show that

. 1 T a.s. Qk O
A similar calculation shows that
. 1 .+ 0
i s = [ | 104
where b} is the vector of correlations
v T
b= [E[VOVk] EWViVg] --- E[V;HV;C]] (105)
Combining (103) and (104) shows that
lim (AJA,)tAlv, = 0 (106)
N—o0 k k Bk ’
where
v 1-1
Br = [qu] by
Therefore,
det Bk(ATAk) Akvk
0
= [Uk Qk—l] [6 :| +£
k
k-1
= Brear + &, (107)
£=0
where £ € RY is the error,
T 0
€ = BkS, S = (AkAk) Akvk — [ﬂk:| . (108)

We next need to bound the norm of the error term &. Since
& = Bys, the definition of By in (95) shows that

k k-1

=) s+ sk,
i=0 =0

where we have indexed the components of s in (108) as s =
(s0,-..,82x). From (106), the components s; — 0 almost
surely, and therefore

(109)

lim  max_|[s;] 0

N—00j=0,...,.2k
Also, by the induction hypothesis,

|2 as.

.1 2 .1 2 as. 2
gl BU;), |lm <lg;]® = E(Q5)-
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Therefore, from (109),

N—o0 |7=0

1 a.s.
x| il + S a2 0.
( J

Therefore, if f(q1,- -
order 2,

1 N
]\;gnooﬁz.f(qmu"'

@ fm — e
i

(b)

|—|

A S .

— <
A}Hn lI€]] lim {max |52
(110)

,qk) is pseudo-Lipschitz continuous of

det
s dk—1,n, 49 )

k1
Gk 1ms Y Bkﬂ]én)

£=0

1
E|f (Qo, : 7Qk—lvzﬁleén>‘| ;

where (a) follows from the (107), the bound (110), and the
pseudo-Lipschitz continuity of f(-); and (b) follows from the
fact that f(-) is pseudo-Lipschitz continuous and the induction
hypothesis that

2)
(QOa sy Qk—1)~
This proves (101). (I

. PL(
lim {QOna Ty Qk—l,n} =
N—oc0

Lemma 7. Under the induction hypothesis Hy, 1.1, the follow-
ing limit holds almost surely

R TR S
dm UL sell™ = o, (111
for some constant py, > 0.

Proof. From (95), the matrix Ay has s = 2k + 1 columns.
From Lemma 4, U AL is an orthonormal basis of N — s in

the Range(Aj)* . Hence the energy ||U Af sk||? is precisely
||UAJ_S]€|| = SkSk — SkAk(ATAk) 1AA]€S}c

Using similar calculations as the previous lemma, we have

: 1 s s1—
Jim U, sl = E[S7] - (b7)7[Q)
Hence, the lemma is proven if we define pj, as the right hand
side of this equation. (I

Lemma 8. Under the induction hypothesis Hy, j1, the com-
ponents of the “random” part ;" along with the components
of (W%,qq,...,dqk1) almost surely converge empirically as

lim {(w?, qon, - -+ Qhit,n, @)}
N—oo

PL(2
:( ) (Wq7Q07 .. '7Qkflka)7

where U, ~ N(0,py) is a Gaussian random variable in-
dependent of (W1,Qo,...,Qk1) and py is the constant in
Lemma 7.

(112)

Proof. This is a direct application of Lemma 5. Let x =
VTULL Sy so that
k

det
qk == UBé‘Xk'

For each N, Ug: € RVNX(N=5) is a matrix with orthonormal

columns spanning Range(Bj)*. Also, since V is uniformly
distributed on the set of (N —s) x (N —s) orthogonal matrices,
and independent of G, the conditional distribution x;, given
G}, is orthogonally invariant in that

d
UXk‘Gk = Xk'|Gk’
for any orthogonal matrix U. Lemma 7 also shows that
1
lim —|xz||* =
Jim il = i,

almost surely. The limit (112) now follows from Lemma 5.
O

Using the partition (98) and Lemmas 6 and 8, the compo-
nents of (w?,qo,...,qx) almost surely converge empirically
as

lim {(UJ;INQO?“ s 7an)}
N—o00

PL(2) .. ran
= Nllm {( g,q0n7~-'7qk¢n +4q Akn )}
—00
PE (W Qo, ..., Q)

where Q) is the random variable

Qr = BroQo + - + Br k1 Qi1 + Ug.

Since (Qo, . .., Qk-1) is jointly Gaussian and Uy, is Gaussian
independent of (Qo,...,Qk-1) we have that (Qo,...,Qx) is
Gaussian. This proves (88).

Now the function I'; (71, @1 ) is assumed to be continuous at
Y1k, Q1k ). Also, the induction hypothesis assumes that vy, —

a1 and 1 — 7, almost surely. Hence,

Jim g = lim Ty(yix, 0nk) =7 (113)
In addition, since we have assumed that f,(q,w?,71) is
Lipschitz continuous in (g, w?) and continuous in 1,
1\}51100 Q2 = ]\}E)noo <fé (ka an 71k)>
= E [f3(Qr, W A)] = @ (114)

The limits (113) and (114) prove (89).
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Finally, we need to show that E[Q?] = 7oy, is the variance
from the SE equations.

E[QF <

tin
© lim_ lvel?
D E [g,(Pe, WP, Ty, @)
D 02 (@)E [(fp(Pk,W
= C(@u) {E [£2(P W7, 7,0)]
— 2001k E [Pe fp (P, WP, 91)] + 03, E [PICQ]}
9 @) {E [P W
— 2ay, ik [ £y (P WP, 715)] +a%k7-1k}
D c2(ay,) {E [f2(Py, W

(9)
= T2k,

P k) — 51kpk)2}

pvﬁlk’)]

— a5 Tk}

(115)

p’ ﬁlk)]

where (a) follows from the fact that the components of qy
converge empirically to Qg; (b) follows from (79d) and the
fact that V is orthogonal; (c) follows from the limit (90); and
(d) follows from (91); (e) follows from Stein’s Lemma and
the fact that E[P?] = 71x; (f) follows from the definition of
@1y in (84a); and (g) follows from (84b). Thus, E[Q%] = T2,
and we have proven the implication Hy, 1 = Hy, 1.

APPENDIX G
PROOF OF THEOREM 1

Theorem 1 is essentially a special case of Theorem 4. We
need to simply rewrite the recursions in Algorithm 3 in the
form (79). To this end, define the error terms

P i=rip — X", Vv i=ro —X°, (116)
and their transforms,
w,:=V'pr, qw:=V'v,. (117)
Also, define the disturbance terms
=(£s), wli=x" ¢£:=U'w (118)
and the componentwise update functions
Fa(a, (6,8),72) = % (1192)
fpp:2®m) = g1 (p+ 2, ) — 2°. (119b)
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With these definitions, we claim that the outputs satisfy the
recursions:

Pr = Vuy (120a)
11—«
arp = <f;(pk,xoa’hk)>, Yok = w (120b)
a1k
Vi = ! [f (Pk x° Yik) — Oélkpk] (120c¢)
11—y -7 B
ar = V' (120d)
11—«
Qof = <f;(Qk,Wq,72k)>, Y1,k = ﬂ (120e)
Q2
1
Upp = 7 (£ (ar, W7, y2r) — k] (120f)
— Q2

Before we prove (120), we can see that (120) is a special case
of the general recursions in (79) if we define

1
1—041"

Cl(al) =

Liad =7 |3 -1].

Q5

It is also straightforward to verify the continuity assumptions
in Theorem 4. The assumption of Theorem 1 states that
@, € (0,1). Since 7, > 0, 7, > 0 for all k£ and
i. Therefore, C;(«;) and T';(v;,«;) are continuous at all
points (y;, ;) = (¥, @ik ). Also, since s € [0, S,,q4.] and
vor > 0 for all k, the function f,(q, (&, s),7v2) in (119) is
uniformly Lipschitz continuous in (g¢,&,s) at all y5 = Fgy.
Similarly, since the denoiser function g; (71,71 ) is assumed be
to uniformly Lipschitz continuous in 7; at all y; =7, so is
the function f,(r1,2% 1) in (119b). Hence all the conditions
of Theorem 4 are satisfied. The SE equations (50) immediately
from the general SE equations (84). In addition, the limits (45)
and and (48) are special cases of the limits (86) and (88). This
proves Theorem 1.

So, it remains only to show that the updates in (120) indeed
hold. Equations (120a) and (120d) follow immediately from
the definitions (116) and (117). Next, observe that we can
rewrite the LMMSE estimation function (24) as

g2(rog, ’Y2k)
)

a —1
(: <’YUJATA + ’YQkI) ( wATAX + '}/wA w + 72kr2k)

b
© o + <7wA A+'72k1> ('72k rao; — X )+7wATW>

@ o +V (7,,S? +’72kI)

@ xo x + Vi, (qp, w

(v2kqk + SE) ,

772/6)7 (121)

where (a) follows by substituting (28) into (24); (b) is a simple
algebraic manipulation; (c) follows from the SVD definition
(29) and the definitions & in (118) and qj in (117); and (d)
follows from the definition of componentwise function f(-)
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in (119a). Therefore, the divergence ayy, satisfies

(@) 1 0ga(rak, Yar)
= Ty | 2222 TER
2k N : l: argk

N
(c) iT |:VD £ q VT
= 5T iag (£, (qx, w9, v2r))

1 . 0
= —Tr [VDlag(fé(qka an ,YQk)) 61('12];:|

= (£ (ar, w9, v2r)), (122)

where (a) follows from line 12 of Algorithm 3 and (6)-
(7); (b) follows from (121); (c) follows from (117); and (d)
follows from VTV = I and (6)—~(7). Also, from lines 13-14
of Algorithm 3,

1
V1R = M2k — Yok = Y2k { — 1] . (123)
Qo

Equations (122) and (123) prove (120e). In addition,

(@) 0
Pk = Y1 e — X
(b) 1

0
= r — ron| — x
1— ao [gZ( 2k7'Y2k) Q2 Qk]

c 1

= 1— oo [XO + VI, (ar, w9, yar) — a2 (x® + vi)] — x°
— Qg

d 1

(:) 1— cor [qu(qu w7, yar) — o V]
— Qo

=V | — [f(ar, w9, y2k) — agrar] | , (124)

1 — ag

where (a) follows from (116); (b) follows from lines 11-15 of
Algorithm 3; (c) follows from (121) and the definition of vy, in
(116); (d) follows from collecting the terms with x"; and (e)
follows from the definition q; = VTv}, in (117). Combining
(124) with upy = VTpkH proves (120f).

The derivation for the updates for v, are similar. First,

—~
=

a1k @ (81(r1k,718)) = <f[/7(pk'ax0)>7 (125)

where (a) follows from line 5 of Algorithm 3 and (b) follows
from the vectorization of f,(-) in (119b) and the fact that p;, =
ri, + x°. Also, from lines 6-7 of Algorithm 3,

1
Y2k = Mk — Mk = Y1k [ — 1} . (126)
A1k

Equations (125) and (126) prove (120b). Also,

(@) 0
Vi = I'gp — X

1
¢ 1—an (&1 (v, Y1) — arprar] —x°
c 1
Q_— [£,(Pr, X%, y1k) + x° — g (pr +x°)] — x°
1— A1k
(d) 1 0
T 1o [£5(Pr, X, 71k) — 1k Pr] (127)

where (a) is the definition of v in (116); (b) follows from
lines 4-8 of Algorithm 3; (c) follows from the vectorization
of f,(-) in (119b) and the definition of py in (116); and (d)
follows from collecting the terms with x°. This proves (120c).
All together, we have proven (120) and the proof is complete.

APPENDIX H
PROOF OF THEOREM 2

We use induction. Suppose that, for some k, 7, = Tfkl.
From (50a), (44) and (36),
a1 = Y161 (V1x)- (128)
Hence, from (50b), 7y, = &1(T1,) and Fap = Tig — Vipe
Also,

(@) 1

TQk = )2 [51(71];-77—1]??) _afleij

(1 — Q1K
(v) 1 = _ _
BT AACIE (&1 Tk Tik) = T1kE7 ()]

© & k)

1 =718 (V1)
(d) 1

Tk = Yk
where (a) follows from (50c); (b) follows from (128) and the
matched condition 7, = Tfkl; (c) follows from canceling
terms in the fraction and (d) follows from the fact that 7;,! =
E1(71y) and 7, = 7,/@1k. This proves (56a). A similar
argument shows that (56b) holds if 7,;, = Tz_kl. Finally, (56c)
follows from (56) and (55).
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