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Abstract
In this study, the persistence barrier (PB) of the El Niño–Southern Oscillation (ENSO) phenomenon is investigated using 
reanalysis data and historical simulations of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Both the 
timing and intensity of the ENSO PB can be quantified using the maximum gradient of autocorrelation decline of Niño sea 
surface temperature (SST) anomaly indices. Most of the CMIP5 models were found to reasonably reproduce the observed 
timing of the ENSO PB that typically occurs during the boreal late spring to early summer, and underestimated the PB 
intensity compared to observations. Furthermore, the PB properties of the Eastern Pacific (EP) ENSO indices were much 
better represented by the models than those of the Central Pacific (CP) ENSO indices, probably because CP ENSO events are 
more challenging to simulate than their counterparts. Approximately half of the models can satisfyingly reflect the intensity 
and timing of PB for indices of EP ENSO and their distinctions from those of the CP ENSO, with a larger uncertainty for 
the modeled PB timing than intensity. Further diagnosis has revealed the relationship between the ENSO PB intensity and 
the factors associated with the tropical Pacific background state. The PB intensity exhibits a stronger relationship with the 
seasonality of the SST amplitude in CP, compared to the SST amplitude, and the strength of seasonal synchronization of EP 
SST anomalies is highly correlated with the PB intensity. These results suggest that the seasonality of tropical SST variability 
may fundamentally contribute to the ENSO PB.
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1  Introduction

The El Niño–Southern Oscillation (ENSO) is the dominant 
mode of interannual climate variability and has attracted 
considerable attention due to its large impacts on global 

climate (e.g., Rasmusson and Carpenter 1982; Timmer-
mann et al. 2018). Significant progress has been made in 
understanding and predicting ENSO, and ENSO could now 
be well predicted 6 months in advance, and probably longer 
(Barnston et al. 2012; Jin et al. 2008; Latif et al. 1994; Ren 
et al. 2014; Timmermann et al. 2018; Zhu et al. 2012). 
Nevertheless, the accuracy of ENSO predictions decreases 
abruptly for forecasts made before and during boreal spring. 
This so-called ENSO spring predictability barrier is at least 
partially caused by seasonal transitions in the monsoon cir-
culation (Webster and Yang 1992), ocean–atmosphere cou-
pling strength variation (Chen et al. 2015; Hu et al. 2011; 
Larson and Kirtman 2016; Webster 1995; Zebiak and Cane 
1987), seasonal change in the signal-to-noise ratio (Bar-
nett et al. 1994; Torrence and Webster 1998; Zheng and 
Zhu 2010), initial errors of certain specific patterns (Duan 
et al. 2009; Mu et al. 2007; Tian and Duan 2016b), model 
biases (Lopez and Kirtman 2015; Zheng and Zhu 2010), 
seasonality of ocean surface–subsurface connection (Zhu 
et al. 2015), and westerly wind burst activity (WWB) (Chen 
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et al. 2015; Larson and Kirtman 2016; Lopez and Kirtman 
2015). Importantly, the degree of ENSO seasonal synchro-
nization in the annual cycle seems to affect the spring pre-
dictability barrier of ENSO (Levine and McPhaden 2015) 
and is thought to determine the strength of the ENSO per-
sistence drop-off (Torrence and Webster 1998). The ENSO 
persistence barrier (PB), which is commonly considered a 
natural and observable ENSO property, refers to the rapid 
decline in persistence (lagged autocorrelations) across boreal 
spring, irrespective of which starting time is chosen. Consid-
ering the similarity of basic characteristics between the two 
phenomena, it is reasonable to hypothesize that the spring 
predictability barrier in models, including the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) models, 
is closely related to the observed ENSO PB; meanwhile, the 
former may potentially be reduced using improved model 
initializations (Chen et al. 1995; Mu et al. 2007). Therefore, 
improving our understanding of the ENSO PB should allow 
us to identify important dynamical mechanisms that affect 
operational ENSO predictions.

Previous efforts investigating the ENSO persistence and 
predictability barrier were mostly conducted using observa-
tions and models of limited complexity (e.g., Levine and 
McPhaden 2015; Mu et al. 2007; Torrence and Webster 
1998). In addition, recent findings using the CCSM4 model 
might be model-dependent (Larson and Kirtman 2016). 
Therefore, there is ongoing debate regarding the cause of the 
spring predictability barrier. Moreover, some of the research 
on the ENSO PB lacks quantitative descriptions. Recently, 
Ren et al. (2016) proposed measuring the intensity of the 
ENSO PB using the largest gradient of the autocorrelation 
decline of Niño indices of the sea surface temperature (SST) 
anomaly and demonstrated distinct PB features in terms of 
the two ENSO types (Ashok et al. 2007; Kao and Yu 2009; 
Kug et al. 2009). Here we combine the aforementioned 
measures of ENSO PB occurrence timing and intensity to 
assess PB features within a large group of coupled general 
circulation models (CGCMs). Exploring the ENSO PB phe-
nomenon and its causes is feasible using this approach due to 
large number of models contributing to CMIP5. It was previ-
ously assumed that the simulation performance of the ENSO 
PB may be related to the seasonal synchronization of ENSO 
in these models (Torrence and Webster 1998). Therefore, an 
improved understanding of the ENSO PB may also enable 
future model improvement. It is important to note that many 
of the current generation of climate models fail to simulate 
the Central Pacific (CP) ENSO events realistically (Ham 
and Kug 2012; Kim and Yu 2012). Therefore, we use vari-
ous ENSO indices to explore PBs in distinct SST anomaly 
(SSTA) regions, which characterize SST variability associ-
ated with Eastern Pacific (EP) and CP ENSO, respectively.

The observational data and utilized models are introduced 
in Sect. 2, together with definitions related to the ENSO 

SST indices and PB metrics. The models used in this paper 
are separated into two groups as described in Sect. 3. The 
ENSO PB features in 38 CGCMs are then investigated and 
compared with the observations. Next, the relationships 
between the PB intensity and several features of the tropical 
Pacific background state are explored. Potential factors that 
additionally may influence the PB intensity are discussed in 
Sect. 4. A summary is provided in Sect. 5.

2 � Data

Monthly data from 38 CMIP5 models (Taylor et al. 2012) 
is utilized (see Table 1). Realizing that ENSO PB could 
experience decadal variability just like other properties of 
ENSO such as the amplitude and period, we analyze the 
historical simulations (also referred to as twentieth century 
simulations) and focus on the most recent 30 years of those 
experiments (1976–2005), a period of reliable contemporary 
observations to compare to. Ice and sea surface temperature 
(HadISST, Rayner 2003) data is obtained for the same time 
period. The observed ENSO PB characteristics are virtually 
identical to HadISST when using Extended Reconstructed 
Sea Surface Temperature V3b (ERSST) monthly data from 
NCEI/NOAA for our analysis (Smith et al. 2008). We also 
use two sets of surface wind stress monthly data from NCEP/
NCAR Reanalysis 1 between 1976 and 2005 (Kalnay et al. 

Table 1   The 38 CMIP5 models (18 models that simulate ENSO PB 
better are in italics, please see text for details) used in this manuscript

No. Model abbreviated No. Model abbreviated

1 Access1-0 20 GISS-E2-H
2 Access1-3 21 GISS-E2-R
3 BCC-CSM1-1 22 HadCM3
4 BCC-CSM1-1-m 23 HadGEM2-AO
5 CanCM4 24 HadGEM2-CC
6 CanESM2 25 HadGEM2-ES
7 CCSM4 26 INMCM4
8 CESM1-BGC 27 IPSL-CM5A-LR
9 CESM1-CAM5 28 IPSL-CM5A-MR
10 CMCC-CESM 29 IPSL-CM5B-LR
11 CMCC-CM 30 MIROC5
12 CMCC-CMS 31 MIROC-ESM-CHEM
13 CNRM-CM5 32 MIROC-ESM
14 CSIRO-Mk3-6-0 33 MPI-ESM-LR
15 FGOALS-g2 34 MPI-ESM-MR
16 FIO-ESM 35 MPI-ESM-P
17 GFDL-CM3 36 MRI-CGCM3
18 GFDL-ESM2G 37 NorESM1-ME
19 GFDL-ESM2M 38 NorESM1-M
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1996) and between 1980 and 2005 from the NCEP-DOE 
Reanalysis 2 (Kanamitsu et al. 2002).

The Niño3.4, Niño3, and Niño4 indices (defined as SSTA 
averages over the respective regions) are adopted as meas-
ures for ENSO-associated SST anomalies. The Cold-Tongue 
and Warm-Pool (NiñoCT and NiñoWP, respectively) Niño 
indices defined by Ren and Jin (2011) are used together with 
the El Niño Modoki index proposed by Ashok et al. (2007). 
These different ENSO indices are used to investigate PBs in 
distinct SSTA regions associated with the two ENSO types. 
In addition to the aforementioned Niño indices, we utilize 
the first two SSTA empirical orthogonal functions (EOFs) 
in the tropical Pacific (30°S–30°N, 110°E–70°W), and their 
corresponding principal components: Niño-PC1 and Niño-
PC2, which provides an additional measure for EP and CP 
ENSO. All indices are calculated for the 1976–2005 period 
with the 30-year climatologies and linear trends removed 

from the SST data. In observation, Niño3, Niño3.4, NiñoCT 
and Niño-PC1 usually depict EP ENSO better.

3 � ENSO PB in CMIP5 model outputs

3.1 � Simulated PB characteristics

The PB is a clear observable feature of the Niño3.4 index. 
ENSO persistence represented by the autocorrelation of the 
Niño3.4 index is shown in Fig. 1a. The autocorrelations 
decline with increasing lag months and exhibit a strong sea-
sonal dependency. Then the autocorrelation decline rate for 
given ENSO index is expressed by the centered difference 
of the autocorrelation, i.e., Gi

j
=
(

Ci
j+1

− Ci
j−1

)

∕2 . Here i is 
the initial calendar month, j is the lag month and Ci

j
 is the 

Fig. 1   a Autocorrelations as 
a function of initial calendar 
month and lag month for 
Niño3.4 index (from HadISST), 
and b decline rate of autocorre-
lations (month−1) as a function 
of initial calendar month and 
lag month for the Niño3.4 index 
where green and blue lines 
denote target months of March 
and August, respectively, in the 
lag month domain

(a)

(b)
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autocorrelation of the ENSO index for a given start and lag 
month (see Fig. 1a). Thus, the Gi

j
 value that results from the 

centered difference of Ci
j
 reflects the autocorrelation decline 

rate for given ENSO index. The maximum decline rate of 
autocorrelation (nearly all the autocorrelation decline gradi-
ents are negative and absolute values reflect the decline 
rapidity) for the Niño3.4 index (Fig. 1b) occurs primarily in 
boreal spring and summer, viz., from March to August and 
is centered around June. In contrast, a weaker loss of persis-
tence is observed for the other target calendar months, which 
is consistent with previous studies (e.g., Yu and Kao 2007; 
Ren et al. 2016). Note that decline rate of autocorrelations 
for the Niño3.4 index could be shown as a function of initial 
calendar month and lag month as in Fig. 1b, and can also be 
transformed into Fig. 2 where it is expressed as a function 
of target calendar month and lag month. So in general, 
Figs. 1b and 2 present similar information but from different 
viewpoints. Specifically, PB intensity and timing could be 
more distinct quantitatively among varied models when they 
are related to target calendar month. As shown in Fig. 2, the 
majority of the 38 models reasonably reproduce the observed 
ENSO PB features, such as PB intensity and PB timing; 
however, some models show a weaker Niño3.4 PB intensity. 
To further quantify these characteristics, the 12-lag-month 
mean (average over the Y-axis in Fig. 2) of the decline rates 
of the Niño3.4 autocorrelation is plotted as a function of 
target calendar month (Fig. 3). The 38 models are then clas-
sified into two groups based on the following two criteria: 
(1) whether the two largest Niño3.4 autocorrelation decline 
rates in Fig. 3 are situated between the target months of 
April and July as observed, and (2) whether this maximum 
decline rate reaches a similar value (a value less than 
− 0.15 month−1) as seen in the observations (Fig. 3). The 
models that satisfy both of these conditions are then included 
in group A (marked by italics in Table 1: 18 models), and 
the remainder is placed in group B. Meanwhile, based on the 
observed ENSO PB pattern (from HADISST) in Fig. 2, the 
simulations of two groups of models are presented in a Tay-
lor diagram (Fig. 4). Indeed, there is a great contrast between 
models in group B and the two observational data sets. The 
subsequent analysis will be conducted following this group 
classification.

The Niño indices describing the different ENSO types 
(i.e., EP and CP) exhibit different PB magnitudes in observa-
tions (Ren et al. 2016). For each ENSO metric, the PB inten-
sity (PBI) index, which is dependent on the start month, is 
defined by summing up the rates of autocorrelation decline 
from March to August within the first 12 lag months, i.e., 
PBIi = −

∑Aug

k=Mar
Gi

k
,where Gi

j
=
�

Ci
j+1

− Ci
j−1

�

∕2  ( R e n 
et al. 2016). Here i is the initial calendar month, j is the lag 
month and Ci

j
 is the autocorrelation of the ENSO index for a 

given start and lag month. The mean of all PBI index values 

for 12 initial months of a given Niño index is used to char-
acterize the PB intensity of this Niño index and is termed 
mPBI. Notice the definition of PBI (as well as mPBI) in Ren 
et al. (2016) corresponds to generally positive values for 
PBI, which could help better describe the decline rapidity. 
In Fig. 5, the PBI index is given as a function of the initial 
calendar month and only four Niño indices are shown to 
represent our main points (For ENSO PB of other Niño indi-
ces, one could refer to Fig. 6 of a comprehensive collection). 
In the observations, EP ENSO has a significantly stronger 
PB than CP ENSO, with Niño3.4 having the largest PBI 
(Fig. 5). The observed Niño4 index exhibits the strongest PB 
among those CP ENSO indices, potentially because it cap-
tures some EP ENSO variability (Niño3.4 and Niño4 are not 
orthogonal). To examine the modeled PB intensity, we com-
pared the PBI for different Niño indices between models in 
terms of the two aforementioned groups and show their com-
posites in Fig. 5. Both the observations and model compos-
ites exhibit a similar PB intensity for these ENSO indices; 
the EP ENSO indices (the left row in Fig. 5) have signifi-
cantly larger PBIs than the CP ENSO indices, although this 
is less evident for the models in group B.

As mentioned earlier, the group classifications are based 
on the model representations of Niño3.4 autocorrelation 
decline; however, model simulations of all EP ENSO indices 
in group A, rather than those in group B, have a more similar 
PB to the parallel observations (Fig. 6). Meanwhile, it is 
noted that the two model groups perform equally in terms 
of PB intensity simulation of CP ENSO indices and the PBI 
indices remain somewhat stronger in group A, compared to 
the group B models (Fig. 6).

The PB timing for these ENSO indices is another focus of 
our comparison in addition to the PB intensity. For a given 
start month, the time when the most rapid autocorrelation 
decline arises represents the occurrence of ENSO PB for 
that month, and the mean of all PB occurrence time for the 
12 initial months is utilized to represent the PB timing for a 
given Niño index. In Fig. 7, the PB timing for the 38 mod-
els is presented along with relevant observations. As indi-
cated by Ren et al. (2016), the PB in observations generally 
occurs in boreal late spring-early summer for EP ENSO and 
in boreal summer for the CP ENSO. Compared to the EP 
ENSO indices, the observed PB timing is clearly delayed for 
the CP ENSO indices (the right row in Fig. 7), which can be 
generally represented by the CMIP5 models but with a large 
inter-model spread. Compared to the PB intensity in Fig. 5, 
the PB occurrence time in these models exhibits no clear 
structure, especially for the CP ENSO indices; however, the 
group mean does not significantly deviate from the observed 
features due to the inter-model offset. This conspicuous 
divergence as well as the departure from the observed ENSO 
PB timing reflects the unrealistic representation of CP ENSO 
(including the second EOF of tropical Pacific SSTA) in 
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Fig. 2   Decline rates of autocorrelations (month−1) as a function of 
target calendar month and lag month for the Niño3.4 index among 
observations (HadISST and ERSST) and the CMIP5 models. Green 

and blue lines demonstrate the decline rates of autocorrelation target-
ing March and August with all the lag months, respectively. Model 
names are defined in Table 1
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current models (see Fig. 6 for other Niño indices). For both 
the observations and the ensemble mean of group A, the EP 
ENSO indices generally show a PB occurring in May–June, 
while the PB timing for the CP ENSO indices occurs about 
one or 2 months later in June–July. This characteristic is less 
clear for the ensemble mean of the group B models, which 
tends to be generally around May–June (Fig. 6). At present, 
most of the models still have problems simulating CP ENSO 

realistically, especially its center location and SST anomaly 
amplitude (Ham and Kug 2012; Kim and Yu 2012). What 
we find here further suggests that the simulated PB of EP 
ENSO rather than CP ENSO could potentially be utilized to 
distinguish the performance between different models. In 
this regard, an unrealistic representation of CP ENSO may 
limit the prediction of CP ENSO as well and thus it may 
be not suitable to explore whether EP or CP ENSO is more 
predictable within current models, which will be further dis-
cussed in Sect. 5.

3.2 � ENSO PBI and its causes

In this section, several aspects of the model background state 
that may relate to the ENSO PB intensity bias are investi-
gated. It is evident that both in observations and model simu-
lations, the PBs of the EP ENSO indices are much more pro-
nounced compared to those of the CP ENSO indices (e.g., 
Fig. 6). Given the weaker strength of CP ENSO compared to 
EP ENSO (Ashok et al. 2007; Kao and Yu 2009; Kug et al. 
2009), the obvious question here is whether the PB inten-
sity of a given ENSO index is positively correlated to the 
amplitude of that index. Here, the standard deviation (STD) 
is utilized to characterize the amplitude of a certain ENSO 
index. Here, we focus on the PB intensity of Niño3.4 index 
only, which is the most commonly used index for monitoring 
and predicting ENSO.

Fig. 3   The average autocorrelation decline rates (month−1) for all 12 
lag months as a function of target calendar month for the Niño3.4 
index among HADISST (orange bars), ERSST (yellow bars), and 
CMIP5 model output (dashed lines). The two CMIP5 group means 
(please see Sect. 3.1 for model classification) highlight the ENSO PB 
as seen in Fig. 2

Fig. 4   Taylor diagram compar-
ing the two groups of CMIP5 
model simulations (blue and 
red dots) and ERSST with the 
observed ENSO PB pattern 
(from HADISST) in Fig. 2. 
Group A consists of 18 models 
and group B of 20 models. The 
model numbers are the same 
as in Table 1. Note that three 
models in group B are not seen 
in the diagram as they exhibit 
negative correlations with the 
observations
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We calculate 40 STDs for each grid point using the 
Pacific SSTA observations and 38 model simulations (a 
sequence with a sample size of 40) with the 30-year clima-
tologies and linear trends removed (see Fig. 8 for an illustra-
tion). These 40 STD fields are then used to obtain correla-
tions with Niño3.4 PBI with those 40 samples. Hereinafter, 
Niño3.4 PBI is expressed by mPBI of the same index. As 
shown in Figs. 8 and 9, some positive correlations can be 
seen in the tropical central–eastern Pacific, but these are only 
statistically significant at the 95% confidence level between 
SSTA STD and PBI of Niño3.4 in boreal winter (Fig. 9b). 
We also find that the correlation between amplitude and PBI 
of the ENSO Niño3.4 is generally only moderate (Fig. 9c, 
d). Therefore, the amplitude of a certain Niño SST index is 
only a modest indicator of the PBI of the same index but 
may not be the key factor.

Previous studies have emphasized the importance of 
the annual cycle in the tropical Pacific for explaining the 
ENSO persistence/predictability barrier, and both observa-
tional and theoretical evidence have been given to support 
this hypothesis (e.g., Torrence and Webster 1998; Mu et al. 
2007; Levine and McPhaden 2015; Larson and Kirtman 
2016). For instance, Webster (1995) explained that the PB 
occurs during boreal spring when the signal-to-noise ratio in 
the air–sea coupled system is lowest and the near-equatorial 
circulation is most easily perturbed by external influences. 
Therefore, we hypothesize that the seasonality of SSTA 

amplitude in the tropical Pacific rather than the SSTA ampli-
tude may play a more important role in influencing ENSO 
PB intensity. Here, we first explore the relationship between 
ENSO PB intensity and the seasonality of the SSTA ampli-
tude. The seasonality of the Pacific SSTA STD is defined 
as follows: SISTD = Max

(

STD12−month

)

−Min
(

STD12−month

)

 , 
where STD12−month represents the monthly standard devia-
tion of SSTA evolution, comprising the 12 values of the 12 
calendar months at each grid point for both the observations 
and models. In this sample of 40, the correlation patterns 
between SISTD of Pacific SSTA and PBI of Niño3.4 is shown 
in Fig. 10a. As hypothesized, the ENSO PBI appears to be 
closely related to the seasonality of SSTA amplitude in the 
tropical central Pacific which is the common area for the 
ENSO indices shown in Fig. 10b, c. That is, the stronger 
seasonality of SSTA amplitude corresponds to an enhanced 
Niño3.4 PB intensity (Fig. 10d).

Furthermore, it was also suggested that the strength of 
the PB seems to depend on the degree of ENSO seasonal 
synchronization (Torrence and Webster 1998), and the lat-
ter one may play a key role in the spring predictability 
barrier of ENSO (Levine and McPhaden 2015). Thus, we 
further explore whether the PB intensity is associated with 
the ENSO seasonal synchronization. The ratio between 
winter (November–January) and spring (March–May) 
average Niño-3 SST anomalies standard deviations is 
adopted (Bellenger et al. 2014), which is a measure of the 

Fig. 5   PBI indices of varied 
ENSO Niño indices as a func-
tion of initial calendar month 
(month−1), where mPBI denotes 
the annual mean PBI index 
of 12 initial calendar months. 
Observed mPBI in each panel 
is obtained from HadISST. 
Orange and yellow bars indicate 
HadISST and ERSST results, 
respectively, and red and blue 
dashed lines indicate models 
from group A and B, respec-
tively. Solid lines indicate each 
group’s ensemble mean
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Fig. 6   Scatterplots of ENSO 
PBI and PB timing for HadISST 
(black solid circle), ERSST 
(gray solid circle), mean of 
CMIP5 model group A (red 
solid circle), and mean of 
CMIP5 model group B (blue 
solid circle). For a given model 
(red and blue squares indicate 
models from group A and B 
respectively), PBI is expressed 
by mPBI of each Niño index. 
For a given month, the time 
when the most rapid autocorre-
lation decline arises represents 
the occurrence of ENSO PB 
for that start month, and PB 
timing is the average of PB 
occurrence time for 12 initial 
calendar months. Green line in 
each panel indicates the month 
of May as the PB timing, and 
correlations between ENSO PB 
timing and PBI are shown on 
top right of each panel
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ENSO seasonal synchronization character. Unlike the ter-
minology “phase-locking” used in Bellenger et al. (2014), 
seasonal synchronization is adopted as it mainly presents 
the distribution of variance with respect to the annual 
cycle and better reflects amplitude modulation. This ratio 
can also be calculated for each grid point individually for 
the tropical Pacific, referred to as SST seasonal synchro-
nization strength. Statistically significant positive corre-
lations between the PBI and strength of the SST seasonal 
synchronization can be seen in the tropical eastern Pacific 
(Fig. 11a). Similarly, in Fig. 11d, the correlation coeffi-
cient between the ENSO seasonal synchronization strength 
and Niño3.4 PBI is relatively high with a correlation of 
0.65, denoting significance at the 99% confidence level. 
These results confirm a close connection between the SST 
seasonal synchronization and PB intensity of ENSO, as 
suggested by Torrence and Webster (1998), and provide a 
reference for understanding model simulations of ENSO 
persistence. We also find that SST seasonal synchroniza-
tion is strongest in the eastern Pacific in observations (not 
shown). This feature can be generally captured by models 
from group A, however not by the models of group B. 
Considering the high relevance of the Niño PBI to sea-
sonal synchronization in this area, it may explain why 
the ENSO PB is stronger in the group A compared to the 
group B models for a given ENSO index (Figs. 5 and 6).

Fig. 7   PB occurrence time for 
various ENSO indices as a func-
tion of the 12 initial calendar 
months. PB timing is the mean 
of all PB occurrence time for 
the 12 initial months and the 
value (e.g., 1 equals Jan., 2 
equals Feb. and so forth) on the 
top right corner of each panel 
is obtained from HadISST. 
Orange and yellow bars indicate 
HadISST and ERSST results, 
respectively. Red and blue 
dashed lines indicate models 
from group A and B, respec-
tively, with a solid line showing 
each group’s ensemble mean

Fig. 8   Schematic diagram of PBIs of Niño3.4 (month−1), SSTA 
standard deviations (K) of a grid (0°, 160°W), seasonality of SSTA 
standard deviations (K) of a grid (0°, 160°W), and SST seasonal syn-
chronization strength (dimensionless) of a grid (0°, 120°W) for 40 
samples (numbers 1–38 indicate results from the 38 CMIP5 models 
and numbers 39–40 the two observational data sets, constituting 40 
elements in each sequence). The order of models (i.e., from 1 to 38 
in each sequence) is the same as in Table 1. Various sequences with 
a sample size of 40 (like sequences shown here) will be adopted in 
subsequent correlation analysis
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4 � Discussion

Thus far, we have assessed the representations of the ENSO 
PB intensity for multiple Niño indices in CMIP5 model 
simulations and emphasized the close relationship between 
it and the tropical Pacific annual cycle (e.g., seasonal syn-
chronization of ENSO). The region that exhibits the strong-
est relationship between SST seasonal synchronization and 
PB intensity is located in the eastern Pacific, where SST 
seasonal synchronization is most pronounced. Accord-
ing to CMIP3 model results, the zonal SST gradient and 
related zonal wind contribute to the seasonal synchroniza-
tion of ENSO (Ham et al. 2012). The surface wind stress, 
which exhibits a strongly seasonally modulated response to 
Niño3.4 SSTA mainly over the equatorial central Pacific, 
is an important factor in the seasonal synchronization 
of ENSO (Ham et al. 2012; Harrison and Vecchi 1999; 
Stuecker et al. 2013). This implies that the close relation-
ship between ENSO PBI and SSTA that is shown in Fig. 10 
may also be seen in atmospheric variables. Thus, we explore 
the relationship between ENSO PB intensity and the zonal 
wind stress magnitude seasonality, for which the latter is 
defined in the same way as the seasonality of SSTA STD. 
As expected, the region that exhibits the closest relation-
ship is quite similar to the SSTA-related patterns in Fig. 10 

with a slightly southward shift towards the location where 
the strongest air–sea coupling occurs (Ham et al. 2012; 
Lloyd et al. 2009). Indeed, a weaker relationship is evident 
between Niño3.4 PBI and the seasonality of surface zonal 
stress strength among models, with a correlation coefficient 
of 0.4 that is statistically significant at the 95% confidence 
level (figure not shown). Thus, the coupling between the 
mean surface zonal wind and local SST enables the close 
relationship between ENSO PB intensity and SST season-
ality in the tropical central Pacific (Fig. 10), and may even 
change the way that ENSO seasonal synchronization affects 
ENSO PB intensity.

One may realize that the two ENSO types are thought to 
involve different processes but the PB intensity of the two 
ENSO types is found to closely relate to similar causes. Thus, 
it is difficult to explain why EP ENSO exhibit a larger PB 
intensity compared to CP ENSO in this study. The PB of the 
CP ENSO indices may be more susceptible to the extratropical 
seasonally varying forcing (e.g., Yu et al. 2010). This stochas-
tic forcing originates from the north Pacific and then influ-
ences the tropical central Pacific with a maximum effect in 
boreal winter according to the Seasonal Footprinting mecha-
nism (Chang et al. 2007; Chiang and Vimont 2004; Vimont 
et al. 2003). Considering that the tropical central Pacific is the 
common area where the PB intensity of various Niño indices 

Fig. 9   Correlation patterns 
between the standard deviation 
(STD) of SST anomalies and 
the Niño3.4 index PBI for 40 
samples (two observational data 
sets and 38 climate models) 
for the a long term mean and 
b ENSO mature phase (Nov–
Dec–Jan) mean. Green stippling 
denotes statistical significance 
at the 95% confidence level. 
Scatterplots of Niño3.4 PBI and 
the STD (their correlations are 
shown on the top right corner 
of each panel) of the c long 
term mean, and d Nov–Dec–Jan 
mean for the same data (black/
gray solid circles indicate 
HadISST/ERSST, and red/blue 
squares indicates models from 
group A/B)

(a) (b)

(c) (d)



2157Diagnosing the representation and causes of the ENSO persistence barrier in CMIP5 simulations﻿	

1 3

is related to the seasonality of SSTA amplitude, the role of 
this extratropical process may not result in the PB difference 
between the two ENSO types directly. As discussed in pre-
vious studies (e.g., McPhaden 2012; Yu and Kao 2007), the 
subsurface ocean temperature over the equatorial Pacific rep-
resents a major source for the following SST development in 
tropical eastern Pacific (EP ENSO events) but with much less 
effectiveness of thermocline feedbacks in governing the evo-
lution of CP ENSO SST. The equatorial Pacific heat content 
(also known as warm water volume) anomalies, which exhibit 
a boreal winter PB that is not further addressed in this study, 
usually lead the eastern equatorial Pacific SST anomalies by 
several months (McPhaden 2012; Yu and Kao 2007). Thus, it 
is reasonable to hypothesize that differing thermocline feed-
back strength between EP and CP ENSO events might result 
in a contrast between the PBs of two types of ENSO.

5 � Conclusions

Here, we investigated the PB phenomenon for a variety of 
ENSO indices by comparing historical simulations from 38 
CMIP5 models with the observations. Utilizing a metric of 

ENSO PBI proposed by Ren et al. (2016), we found that 
most of the models reasonably reproduced the observed 
ENSO PB characteristics. Moreover, approximately half of 
the models also realistically simulated a distinct PBI between 
CP and EP ENSO indices. The observed PB timing for the 
ENSO indices can be represented to a lesser degree by the 
CMIP5 models with a large inter-model spread. Therefore, 
some indications for distinguishing the two different ENSO 
types are found in the PB characteristics as simulated by 
current CMIP5 models.

The relationships between ENSO PBI and several poten-
tial physical causes were investigated next. We found a weak 
relationship between ENSO amplitude and the PBI for vari-
ous ENSO indices. Instead, the intensity of the PB for dif-
ferent ENSO indices is closely related to the seasonality of 
the climatological SST amplitude. Furthermore, the intensity 
of seasonal synchronization of Niño3 SST anomalies to the 
annual cycle is associated with the ENSO PB intensity. Spe-
cifically, the seasonality of the zonal wind stress strength, 
which constitutes one important part of the tropical coupled 
system, is thought to influence both the seasonal synchroni-
zation of ENSO and the seasonal variation of tropical SSTs. 
This result provides further evidence that the seasonality 

(a) (b) (c)

(d) (e) (f)

Fig. 10   Correlation patterns between seasonality of SST anomaly 
standard deviation and the PBI of a Niño3.4, b Niño3, and c Niño4 
index for 40 samples (two observational data sets and 38 climate 
models). Green stippling denotes statistical significance at the 95% 
confidence level. Scatterplots of ENSO PBI for d Niño3.4, e Niño3, 

and f Niño4 and the regional mean (5°S–5°N, 180°–145°W) season-
ality of SSTA STD (their correlations are shown on the top right cor-
ner of each panel) for the same data (black/gray solid circles indicate 
HadISST/ERSST, and red/blue squares indicate models from group 
A/B)
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of the tropical Pacific background state is a crucial factor 
in controlling the ENSO PB. Hence, a better reproduction 
of ENSO seasonal synchronization might in turn result in 
a more realistic representation of the ENSO PB in models. 
Here, only the physical mechanisms related to the ENSO PB 
intensity were explored, and potential factors controlling the 
ENSO PB timing difference across models are beyond the 
scope of this study and may be the subject of future work.

Around half of the CMIP5 models are able to capture the 
observed discrepancy in PB intensity between the two ENSO 
types by reproducing a larger PB intensity for EP ENSO than 
CP ENSO. This suggests that CP ENSO may possess a higher 
upper limit of predictability in comparison to EP ENSO and 
could be more predictable by simply setting up autoregression 
statistical models of the indices. However, it proves difficult 
to compare the predictability of the two different ENSO types 
within dynamical prediction models. On one hand, the results 
here are based on the latest 30 years of CMIP5 historical simu-
lations as well as parallel observations, thus the potential influ-
ence of decadal variability (and associated shift in ENSO pre-
dictability) on the PB characteristics of the two ENSO types 
are not considered (McPhaden 2012; Zhu et al. 2015). On the 
other hand, simulating and predicting CP ENSO, in contrast to 

EP ENSO, remains a large challenge. Considerable model drift 
seems to limit the ability to simulate/predict CP ENSO and 
the differences between the two types of ENSO (Duan et al. 
2014; Hendon et al. 2009; Tian and Duan 2016a). Therefore, 
an improved understanding of the mechanisms responsible for 
the two different ENSO types and reduction of model mean 
state and seasonal cycle biases might open the gates for a more 
conclusive study of the processes that are responsible for the 
different PB characteristics, and lead to a more appropriate 
analysis of predictability of two types of ENSO.
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