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ABSTRACT

As datasets continue to grow in size and complexity, exploring multi-
dimensional datasets remain challenging for analysts. A common
operation during this exploration is drill-down—understanding
the behavior of data subsets by progressively adding filters. While
widely used, in the absence of careful attention towards confound-
ing factors, drill-downs could lead to inductive fallacies. Specifically,
an analyst may end up being “deceived” into thinking that a devi-
ation in trend is attributable to a local change, when in fact it is
a more general phenomenon; we term this the drill-down fallacy.
One way to avoid falling prey to drill-down fallacies is to exhaus-
tively explore all potential drill-down paths, which quickly becomes
infeasible on complex datasets with many attributes. We present
V1sPILOT, an accelerated visual data exploration tool that guides
analysts through the key insights in a dataset, while avoiding drill-
down fallacies. Our user study results show that VisPiLoT helps
analysts discover interesting visualizations, understand attribute
importance, and predict unseen visualizations better than other
multidimensional data analysis baselines.
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1 INTRODUCTION

Visual data exploration is the de facto first step in understanding
multi-dimensional datasets. This exploration enables analysts to
identify trends and patterns, generate and verify hypotheses, and
detect outliers and anomalies. However, as datasets grow in size
and complexity, visual data exploration becomes challenging. In
particular, to understand how a global pattern came about, an ana-
lyst may need to explore different subsets of the data to see whether
the same or different pattern manifests itself in these subsets. Unfor-
tunately, manually generating and examining each visualization in
this space of data subsets (which grows exponentially in the number
of attributes) presents a major bottleneck during exploration.

One way of navigating this combinatorial space is to perform
drill-downs on the space—a lattice—of data subsets. For example,
a campaign manager who is interested in understanding voting
patterns across different demographics (say, race, gender, or social
class) using the 2016 US election exit polls [1] may first generate
a bar chart for the entire population, where the x-axis shows the
election candidates and the y-axis shows the percentage of votes for
each of these candidates. In Figure 1, the visualization at the top of
the lattice corresponds to the overall population. The analyst may
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Figure 1: Example data subset lattice from the 2016 US elec-
tion dataset illustrating the drill-down fallacy along the pur-
ple path as opposed to the informative orange path.
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then use their intuition to drill down to specific demographics of
interest, say gender-based demographics, by generating bar charts
for female voters by following the purple path, as shown in the
second visualization at the second row of Figure 1, and then to
the visualization corresponding to African-American Female
voters in the third row.

Challenges with Manual Drill-down. There are three challenges
associated with manual drill downs:

First, it is often not clear which attributes to drill-down on. Analysts
may use their intuition to select the drill-down attribute, but such
arbitrary exploration may lead to large portions of the lattice being
unexplored—leading to missed insights.

Second, a path taken by analysts in an uninformed manner may lead
to visualizations that are not very surprising or insightful. For exam-
ple, an analyst may end up wasting effort by drilling down from
the African-American visualization to the African-American
Female one in Figure 1, since the two distributions are similar and
therefore not very surprising.

Third, an analyst may encounter a drill-down fallacy—a new class
of errors in reasoning we identify—where incomplete insights re-
sult from potentially confounding factors not explored along a
drill-down path. As shown in Figure 1, an analyst can arrive at
the African-American Female visualization via the purple or
the orange drill-down path. An analyst who followed the purple
path may be surprised at how drastically the African-American
Female voting behavior differs from that of Female. However, this
behavior is not surprising if the analyst had gone down the orange
path that we saw earlier, where the proper reference (i.e., the dis-
tribution for African-American) explains the vote distribution
for African-American Female. In other words, even though the
vote distribution for African-American Female is very differ-
ent from that of Female, the phenomenon can be explained by a
more general “root cause” attributed to the voting behavior for the
African-American community as a whole. Attributing an overly
specific cause to an effect, while ignoring the actual, more gen-
eral cause, not only leads to less interpretable explanations for the
observed visualizations, but can also lead to erroneous decision-
making. For example, for the campaign manager, this could lead to
incorrect allocation of campaign funds. To prevent analysts from
falling prey to such drill-down fallacies—consisting of misleadingly
“surprising” local deviations in trend during drill-down (Female
— African-American Female)—it is important to preserve the
proper parent reference (African-American) to contextualize the
behavior of the visualization of interest (African-American Fe-
male). One approach to avoid this fallacy is to exhaustively explore
all potential drill-down paths. Unfortunately, this approach does
not scale.

While there have been a number of statistical reasoning fallacies
that have been identified in visual analytics, including Simpson’s
paradox [5, 13], multiple comparisons [43], and selection bias [11],
to the best of our knowledge, our paper is the first to identify the
drill-down fallacy, a common fallacy that appears during manual
data exploration. There have been efforts to develop visualization
recommendation systems [24, 37] that assist or accelerate the pro-
cess of visual data exploration [6, 19-21, 33, 37, 41], none of these
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systems have provided a conclusive solution to the problem of aid-
ing drill-downs to explore data subsets, while avoiding drill-down
fallacies. We discuss related work in detail in Section 7.

VisPiLoT with Safety, Saliency, and Succinctness. We present
a visual data exploration tool, titled VisP1LoT, that addresses the
three aforementioned challenges of exploration by espousing three
principles: (i) Safety (i.e., ensure that proper references are present
to avoid drill-down fallacies), (ii) Saliency (i.e., identify interesting
visualizations that convey new information or insights), and (iii)
Succinctness (i.e., convey only the key insights in the dataset).
To facilitate safety, we develop a notion of informativeness—the
capability of a reference parent visualization to explain the visual-
ization of interest. To facilitate saliency, we characterize the notion
of interestingness—the difference between a visualization and its
informative reference in terms of underlying data distribution. Fi-
nally, to facilitate succinctness, we embrace a collective measure
of visualization utility by recommending a compact connected net-
work of visualizations. Based on these three principles, VisPiLoT
automatically identifies a compact network of informative and in-
teresting visualizations that collectively convey the key insights in a
dataset. Our user study results demonstrate that VisP1LoT can help
analysts gain a better understanding of the dataset and help them
accomplish a variety of tasks. Our contributions include:

o Identifying the notion of a drill-down fallacy;

e Introducing the concept of informativeness that helps identify
insights that arise from something that holds in the data (as
opposed to confounding local phenomena);

Extending the concept of informativeness to a measure to quan-
tify the benefit of a network of visualizations;

Designing VisPiLoT, which efficiently and automatically identi-
fies a network of visualizations conveying the key insights in a
dataset; and

Demonstrating the efficacy of VisPiLot through a user study
evaluation on how well users can retrieve interesting visualiza-
tions, judge the importance of attributes, and predict unseen
visualizations, against two baselines.

2 PROBLEM FORMULATION

In this section, we first describe how analysts manually explore the
space of data subsets. We then introduce three design principles for
a system that can automatically guide analysts to the key insights.

2.1 Manual Exploration: Approach and
Challenges

During visual data exploration, an analyst may need to explore
different subsets of the data that together form a combinatorial
lattice. Figure 1 shows a partial lattice for the 2016 US election
dataset. The lattice contains the overall visualization with no filter at
the first level, all visualizations with a single filter at the second level
(such as Female), all visualizations with two filters at third level,
and so on. Analysts explore such a combinatorial lattice from top to
bottom, by generating and examining visualizations with increasing
levels of specificity. In particular, analysts perform drill-downs [12]
to access data subsets at lower levels by adding one filter at a time
(such as adding African-American to Female along the purple
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path) and visualize their measures of interest for each data subset—
in this case the percentage of votes for each candidate. Further, as
analysts perform drill-downs, they use the most recent visualization
in the drill-down path—the parent—as a reference to establish what
they expect to see in the next visualization in the path—the child.
In Figure 1, the visualizations Female and African-American
are the parents of the African-American Female visualization,
explored along the purple and orange path respectively.

As we saw in the purple path in Figure 1, while performing
drill-downs, analysts may detect a local deviation (we will formal-
ize these and other notions subsequently) between a parent and a
child to be significant. For example, they may be surprised by the
fact that the Female and African-American Female visualiza-
tions are very different from each other, and may find this to be
a novel insight. However, this deviation is a result of Female not
being an informative parent or reference for African-American
Female—instead, it is a deceptive reference. Here, a different parent,
African-American, is the most informative parent or reference of
African-American Female because it is the parent that exhibits
the least deviation relative to African-American Female. Here,
the African-American Female visualization is not really all that
surprising given the African-American visualization. We refer to
this phenomenon of being deceived by a local difference or devia-
tion relative to a deceptive reference as an instance of the drill-down
fallacy. One way to avoid such fallacies is to ensure that one or
more informative parents are present for each visualization so that
analysts can contextualize the visualization accurately. While this
fallacy is applicable to any chart type that can be described as a
probability distribution over data (e.g., pie charts, heatmaps), we
will limit our discussion to bar charts for brevity.

2.2 The “3S8” Design Principles

Our goal is to help analysts discover the key insights in a dataset
while avoiding drill-down fallacies. We outline three essential prin-
ciples for finding such insights—the three S’s: safety, saliency, and
succinctness, and progressively layer these principles to formalize a
measure of utility for a network of visualizations. We adopt these
principles to develop a visual exploration tool that automatically
generates a network of visualizations conveying the key insights
in a multidimensional dataset.

2.2.1 Safety. To prevent drill-down fallacies, we ensure safety—
by making sure that informative parents are present to accurately
contextualize visualizations. A parent is said to be informative if
its data distribution closely follows the child visualization’s data
distribution, since the presence of the parent allows the analyst to
form an accurate mental model of what to expect from the child
visualization. We compute the informativeness of the jth parent
Vi] for a visualization V; as the similarity between their data dis-
tributions measured using a distance function D. For bar charts,
the data distribution refers to the height of bars assigned to the
categories labeled by the x-axis, suitably normalized. Accordingly,
the computed distance D(V;, Vij ) refers to the sum of the distances
between the normalized heights of bars across different categories.
Quantifying deviation using distances between normalized versions
of visualizations in this manner is not a novel idea—we leverage
prior work for this [9, 25, 33, 37]. The specific distance measure D
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is not important; while we use the Euclidean metric, we can easily
work with other common distance metrics such as Kullback-Leibler
Divergence and Earth Mover’s distance [37]. The most informative
parent V: for a visualization V; is the one whose data distribution
is most similar to V;.

V; = argmin D(V;, Vi]) (1)
v/

Instead of insisting that the most informative parent is always
present to contextualize a given child visualization, we relax our
requirement somewhat: we don’t need the most informative parent
to be present, just an informative parent. We define a parent to be
informative (denoted V;") if its distance from the child falls within
a threshold 6% of the most informative parent—the default is set to
90% and adjustable by the user.

2.2.2  Saliency. Simply ensuring that informative parents are present
is insufficient; we also want to emphasize saliency by identifying
visualizations that convey new information. In general, a visualiza-
tion is deemed to be interesting if its underlying data distribution
differs from that of its parents, and thus offers new unexpected
information or insight. Such distance-based notions of interesting-
ness have been explored in past work [8, 18, 37], where a large
distance from some reference visualization indicates that the se-
lected visualization is interesting. We deviate from this prior work
in two ways: first, we concentrate on informative interestingness,
where the interestingness of a child visualization is only defined
with respect to informative parent references. Second, we weigh
the interestingness by the proportion of the population captured by
the child visualization. (That is, when a deviation is manifested in a
larger population, it is deemed to be more significant and therefore
more interesting.) Thus, we define the utility of a visualization V;,
U(V;) as follows:

Vil LU iV
Uw) = A -D(V;, V") if V] is present
-0 otherwise

That is, the utility or interestingness of a visualization is the distance
between the visualization and its informative parent, if present!.
To incorporate the effect of subpopulation size into our objective
function, we multiply the distance D(V;, Vi*) between an informa-
tive parent V;" and a child visualization V; by the ratio of their
sizes. Notice that the objective U has a minimax form [39], in that
informativeness aims to minimize the distance between parent and
child, while interestingness aims to maximize the resulting mini-
mum distance. For convenience, we define U(V;), where Vj is the
overall visualizzli‘t/icl)n, to be 1, which is the maximum value that
i .

the expression Al D(Vv;, Vl*) can take, ensuring that the overall

visualization is always valuable to include.

2.2.3  Succinctness. We cannot possibly display all of the visualiza-
tions in the lattice of data subsets: this lattice scales exponentially
in the number of attributes. Instead, we aim for succinctness, where
we only select a subset S of size |S| = k from all the visualizations.

!If multiple informative parents, V', are present for a given visualization, V;, then
U(V;) is defined in terms of the most informative parent present.
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We define the utility of S as follows:
uE) = ), UMW)

V;eS

In this subset, for every visualization except for the overall visual-
ization, one of its informative parents must be present (otherwise
U = —o0). Thus, this subset ends up being a connected network (a
sub-graph of the overall lattice) rooted at the overall visualization,
ensuring that for each visualization, there is an informative parent
available for context. We can now formally define our problem
statement.

PROBLEM. Given a dataset and user-provided X, Y attributes, select
a subset S of |S| = k visualizations from the lattice of data subsets L,
such that U(S) is maximized.
Thanks to how we have defined U, S will include the overall visu-
alization, corresponding to the entire dataset with no filter. And,
for each visualization in S except the overall one, at least one of
its informative parents will be present in S. This network of vi-
sualizations S can be displayed on a dashboard. Since the edges
between non-informative parents to children are not pertinent to
the solution, we can remove those edges from the lattice, leaving
only the edges from the informative parents to the children. Then,
we are left with an arbitrary graph, from which we need to select
a rooted subgraph of size k, with greatest utility U. For arbitrary
distance metrics D, this problem can be viewed to be NP-HARD
via a reduction from the NP-HARD problem of selecting items with
prerequisites [30] (specifically, the AND graph variant). The proof
can be found in our technical report [23]. Next, we design an
approximate algorithm to solve this problem.

3 VISPILOT: OUR SOLUTION

We present our system, VIsPILOT, by first providing a high-level
overview of the underlying algorithm, and then describing the user
interaction mechanisms.

— Connection to Informative Parents V*

Frontier Nodes 7
Max Utility Node

Figure 2: Example illustrating how the frontier greedy algo-
rithm incrementally builds up the solution by selecting the
node or visualization that leads to the highest gain in util-
ity from the frontier at every step. Starting from a pruned
lattice comprising only connections to informative parents
(left) and three nodes in the existing solution (blue), we se-
lect the node with the highest utility gain (yellow) amongst
the frontier nodes (green). The contribution to the utility of
a node/visualization is depicted as the number within the
node. On the right, the newly added node results in an up-
dated frontier and the node leading to the highest utility
gain is selected among them.

3.1 Lattice Traversal Algorithm

For a given dataset and user-selected X and Y axes, we first enu-
merate all possible attribute-value combinations (i.e., filters) to
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construct the lattice upfront. Like we described in the previous
section, we retain only the edges that correspond to informative
parents. Then, we traverse this pruned lattice to select the con-
nected subgraph S of k visualizations (or equivalently, nodes in the
lattice) that maximizes the utility U. Our algorithm for travers-
ing the lattice, titled frontier-greedy, is inspired by the notion of
“externals” in Parameswaran et al. [30]. The algorithm incremen-
tally grows a subgraph S’ until k nodes are selected. Throughout,
the algorithm maintains a set of frontier nodes ¥ —nodes that are
connected to the existing subgraph solution S’ but have not yet
been added. The frontier nodes includes all of the children of the
nodes in §’. Given that our pruned lattice only retains edges be-
tween children and their informative parents, all frontier nodes
are guaranteed to have an informative parent in the the existing
solution and can be added to S without violating informativeness.
At each iteration, the algorithm adds the node from the frontier
nodes that leads to the greatest increase in the utility of §’: i.e., the
node V,, such that U(S” U {V,,}) is the largest. Figure 2 displays how
the algorithm maintains the list of frontier nodes (in green), and
the current §” (in blue), adding the node that leads to the greatest
increase in utility (in yellow). Algorithm 1 provides the pseudocode.

Algorithm 1 Frontier Greedy Algorithm

1: procedure PickVisuarizations(k, £)
2 S’ « {Vp} /* adding the overall node */
3 while |S’| < k do
4 F « getFrontier(S’, L)
5 bestUtility « —co
6 for V; € ¥ do
7 if U(S’ U {V;}) >bestUtility then
8 maxNode « V;
9 bestUtility « U(S” U {V;})
10: S’ « §’U {maxNode}
return S’

3.2 User Interaction

Given the visualizations in S/, we can render these visualizations
in a dashboard, where users can inspect the visualizations through
panning and zooming with navigation buttons, mouse clicks, and
key bindings. Users can also select the x and y axes of interest, aggre-
gation function, and set the number of visualizations (k) to generate
a dashboard. Figure 3 displays VIsPILOT in action on the Police stop
dataset [31]. The dataset contains records of vehicle and pedestrian
stops from law enforcement departments in Connecticut, dated
from 2013 to 2015. In this case, the analyst is interested in the per-
centages of police stops (Y) that led to different outcomes (X), such
as ticket, warning, or arrest. As shown in Figure 3a, the analyst may
begin by generating a 7-visualization dashboard. They would learn
that if a search is conducted (search_conducted=t), then the
probability of being arrested increases from 6.2% to 42.1%. However,
the probability goes down to 23.1% if the driver is Asian (driver_-
race=Asian, search_conducted=t). When examining these vi-
sualizations, the analyst can be confident that any deviations are
both informative and interesting: that is, the informative parents
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Figure 3: a) Overview of the VisP1LoT interface for the Police Stop dataset. Users can select x, y axes, and aggregation function
via the dropdown menu, to define the visualization space of interest, as well as adjusting dashboard parameters, such as the
number of visualizations to show in the dashboard (k) via the sliders. b) User clicks on the duration=30+min visualization to
request 2 additional visualizations. c) A preview of the added portion of the resulting dashboard is shown.

are present for each child, making the takeaways more significant.
Moreover, the analyst may learn that for drivers who had contra-
band found in the vehicle (contraband_found=t), the arrest rate
for those who are 60 and over is surprisingly higher than usual,
whereas for Asian drivers the arrest rate is lower.

After browsing through visualizations in the dashboard, the
analyst may be interested in getting more information about a spe-
cific visualization. VisP1LoT allows analysts to perform additional
drill-downs by requesting a new dashboard centered on a chosen
visualization of interest as the new starting point (or equivalently,
the root of the lattice) for analysis. Say the analyst is now interested
in learning more about the other factor that contributes to high
arrest rates: a long stop with duration=30+min. In Figure 3b, they
can click on the corresponding visualization to request additional vi-
sualizations. Upon seeing the updated dashboard in Figure 3c, they
learn that any visualization that involves the duration=30+min
filter is likely to result in high ticketing and arrest rates. This im-
plies that if a police stop lasts more than 30 minutes, the outcome
would more or less be the same, independent of other factors such
as the driver’s race or age. To generate the expanded dashboard,
VisP1LoOT uses the same models and algorithms as before, except
the selected visualization is set as the the overall visualization Vj at
the root node of the new lattice. This node expansion capability is
motivated by the idea of iterative view refinement common in other
visual analytics systems, which is essential for users to iterate on
and explore different hypotheses [16, 41].

4 EVALUATION STUDY METHODS

In this section, we describe the methodology for a user study we
conducted for evaluating the usefulness of VisP1LoT for various ex-
ploratory analysis tasks. We aim to evaluate whether VisPiLot’s “3S”
design principles enables analysts to effortlessly identify insights
in comparison with conventional approaches for multidimensional
data exploration.

4.1 Participants and Conditions

We recruited 18 participants (10 Male; 8 Female) with prior expe-
rience in working with data. Participants included undergraduate
and graduate students, researchers, and data scientists, with 1 — 14
years of data analysis experience (average: 5.61). No participants
reported prior experience in working with the two datasets used in
the study (described below). Participants were randomly assigned
two of the three types of dashboards with k = 10 visualizations
generated via the following conditions. The specific dashboards for
each dataset and condition can be found in our technical report [23].
VisPiLoT: The dashboards for this condition are generated by
the aforementioned frontier greedy algorithm and displayed in a
hierarchical layout as in Figure 3. To establish a fair comparison
with the two other conditions, we deactivated the interactive node
expansion capabilities.

BFS (short for breadth-first search): Starting from the visualiza-
tion of the overall population, k visualizations are selected level-
wise, traversing down the subset lattice, adding the visualizations
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at the first level with 1-filter combination one at a time, and then
visualizations with 2-filter combinations, and so on, until k visu-
alizations have been added. This baseline is designed to simulate
a dashboard generated by a meticulous analyst who exhaustively
inspects all visualizations (i.e., filter combinations) from the top
down. These visualizations are then displayed in a 5 X 2 table.
CLUSTER: In this condition, k-means clustering is first performed
on the data distributions of all of the visualizations in the lattice.
This results in k clusters that cover the rest of the visualizations.
For each cluster, we select the visualization with the least number
of filter conditions as the cluster representative for interpretability
and display them in a 5 X 2 table layout. This baseline is designed
to showcase a diverse set of distributions within the dataset.

Dataset Descriptions. Each participant was assigned two differ-
ent conditions on two different datasets (Police Stop and Autism,
described below). The ordering of each condition was randomized
to prevent confounding learning effects. The study began with
a 5-minute tutorial using dashboards generated from the Titanic
dataset [2] for each condition. To prevent bias across conditions,
participants were not provided an explanation of how the dash-
boards were generated and why the visualizations were arranged
in a particular way.

The first dataset in the study was the aforementioned Police Stop
dataset. The attributes in the dataset include driver gender, age, race,
stop time of day, stop outcome, whether a search was conducted,
and whether contraband was found. We generated dashboards
of bar chart visualizations with x-axis as the stop outcome (i.e.,
whether the police stop resulted in a ticket, warning, or arrest) and
y-axis as the percentage of police stops that led to each outcome.

The second dataset in the study was the Autism dataset [10],
describing the results of autism spectrum disorder screening for
704 adults. The attributes in the dataset are binary responses to 10
diagnostic questions as part of the screening process. This dataset
serves as a data-agnostic condition, since there was no descriptions
of the questions or answer labels provided to our study participants.
We generated dashboard visualizations based on the percentage of
adults that were diagnosed with autism.

4.2 Study Procedure

After the tutorial, for each dataset, participants were given some
time to read through a worksheet containing the descriptions of the
data attributes. Then, they were given an attention check question
where they were provided a verbal description of the visualization
filter (i.e., data subset) and asked about the corresponding visu-
alization in the dashboard. After understanding the dataset and
chart schema, participants were asked to accomplish various tasks.
Since VisP1LoT was developed based on a joint utility objective, it is
impossible to design tasks that evaluate each of the “3S” principles
individually. Instead, our tasks were selected to measure the overall
efficacy and usefulness of the dashboards in helping a participant
understand and become aware of different aspects of and insights
within a dataset during drill-down analysis. These different aspects
of dataset understanding can be roughly illustrated via Figure 2,
from insights gained from individual displayed visualizations (blue
selected nodes), to predicting behavior of related visualizations
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(green related nodes), to understanding overall attribute impor-
tance (entire lattice, a mix of green, blue, and unselected white
nodes).

Labeling (Individual Assessment): Participants were asked to
talk aloud as they interpreted the visualizations in the dashboard
and label each one as interesting or not interesting, or leave it uns-
elected. This subjective task measures how interesting individual
selected visualizations were to participants.

Prediction (Related Assessment): Participants were given a sep-
arate worksheet and asked to sketch an estimate for a visualization
that is not present in the dashboard. For every condition, the vi-
sualization to be estimated contained 2 filter combinations, with
exactly one parent present in the given dashboard. After making
the prediction, participants were shown the actual data distribu-
tion and asked to rate on a Likert scale of 10 how surprising the
result was (1: not surprising and 10: very surprising). This task
measured how well participants inferred the behavior of related, un-
observed visualizations based on a limited set of selected dashboard
visualizations.

Ranking (Overall Assessment): Participants were given a sheet
of paper with all the attributes listed and asked to rank the attributes
in order of importance in contributing to a particular outcome (e.g.,
factors leading to an arrest or autism diagnosis). Participants were
allowed to assign equal ranks to more than one attribute or skip
attributes that they were unable to infer importance for. Attribute
ranking tasks are common in many data science use-cases, such as
feature selection and key driver analysis. Since all dashboards were
equal in size, our goal was to check whether this size limitation
came at the cost of overall dataset understanding. Thus, the goal of
this task was to study participant’s overall dataset understanding
by measuring how well participants judged the relative importance
of each attribute.

At the end of the study, we asked two open-ended questions
regarding the insights gained by participants and what they liked
or disliked about each dashboard. On average, the study lasted
around 48 minutes.

5 STUDY RESULTS

We introduce the study findings for each task starting from the
narrowest scope of individual visualizations to the widest scope of
overall dataset understanding.

RQ1: How are individual selected visualizations in the dash-
board perceived subjectively by the users?

Using click-stream data logged from the user study, we recorded
whether a participant labeled each visualization in the dashboard
as interesting, not interesting, or left the visualization unselected.
Table 1 summarizes the counts of visualizations marked as inter-
esting or not interesting aggregated across conditions. We also
normalize the interestingness count by the total number of selected
visualizations to account for variations in how some participants
select more visualizations than others. The results indicate that
participants who used VisP1LoT saw more visualizations that they
found interesting compared to the BFS and CLUSTER conditions.
While this task is inherently subjective, with many possible reasons
why a participant may have marked a visualization as interesting,
this result is indicative of the fact that the selected visualizations
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were deemed to be relevant by users. We will drill into the possible
reasons why in the next section.

Condition ‘ VisPiLot ‘ BFS ‘ CLUSTER
Interesting 66 61 51
Not Interesting 10 20 22
Interesting (Normalized) 0.87 | 0.75 0.7

Table 1: Total counts of visualizations marked as interesting
or not interesting across the different conditions. VisPiLoT
leads to more visualizations marked as interesting and fewer
visualizations marked as uninteresting.

RQ2: How well do dashboard visualizations provide users
with an accurate understanding of related visualizations?
As discussed in Section 2, contextualizing visualizations correctly
with informative references can help prevent users from falling
prey to drill-down fallacies. To this end, the prediction task aims to
assess whether users can employ visualizations in the dashboard
to correctly predict unseen ones. Indeed, if the dashboard is con-
structed well, one would expect that visualizations that are not very
surprising relative to their informative parents would be excluded
from the dashboard (i.e., their deviation from their informative
parents is not large).
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Distance Surprisingness

Figure 4: Left: Euclidean distance between predicted and
ground truth. In general, predictions made using VisPiLoT
are closer to ground truth. Right: Surprisingness rating re-
ported by users after seeing the actual visualizations on a
Likert scale of 10. VisPiLoT participants had a more accu-
rate mental model of the unseen visualization and therefore
reported less surprise than compared to the baselines.

The accuracy of participants’ predictions is measured using
the Euclidean distance between their predicted distributions and
ground truth data distributions. As shown in Figure 4 (left), pre-
dictions made using VisPiLoT (highlighted in red) were closer to
the actual distribution than compared to the baselines, as indicated
by the smaller Euclidean distances. Figure 4 (right) also shows that
VIsPILOT participants were able to more accurately reason about
the expected properties of unseen data subsets (or visualizations),
since they rated the resulting visualizations to be less surprising.
CLUSTER may have performed better for the Police dataset than
it did for the Autism one, for the same reason as in the attribute
ranking task, where more univariate visualizations happened to be
selected.

We also compute the variance of participants’ predictions across
the same condition. In this case, low variance implies that there is
consistency or agreement between the predictions of participants
who consumed the same dashboard, whereas high variance implies
that the dashboard did not convey a clear data-driven story that
could guide participants’ predictions. So instead, participants had
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to rely on prior knowledge or guessing to inform their predictions.
These trends can be observed in both Figure 4 and in more detail in
Figure 5, where the prediction variance amongst participants who
used VisP1LoT is generally lower than the variance for the baselines.
Overall, VIsPILOT provides participants with a more accurate and
consistent model of related visualizations.

Police 100 - Autism

0o Ground truth

VisPilot

8 80 F Cluster 80
2 BFS
Z 6o f 60 I
g * 40 . -
NI N
ielllp B I
20 20 -I .............
il
0
ticket warn arrest NO YES

Stop Outcome Autism Diagnosis
Figure 5: Mean and variance of predicted values. Predictions
based on VisPiLoT exhibit lower variance (error bars) and

closer proximity to the ground truth values (dotted).

RQ3: How well does the dashboard convey information re-
garding the overall dataset schema?

We use the common task of judging the relative importance of
attributes as an indicator of the participants’ overall understand-
ing. To determine ground truth attribute importance, we computed
the Cramer’s V statistics between attributes to be ranked and the
attributes of interest. Cramer’s V is commonly used for determin-
ing the strength of association between categorical attributes [28].
We deem an attribute as important if it has one of the top-three?
Cramer’s V scores amongst all attributes of the dataset. For the list
of rankings provided by each participant, we first remove attributes
that participants chose not to rank. We compute the F-scores and
average precision (AP) at k relative to the ground truth for various
values of k . Table 2 reports the average across participants in each
condition, after picking the best performing k value for each partic-
ipant based on F-score and AP respectively. Both measures capture
how accurately participants were able to identify the three most
important attributes for each dataset.

Police Autism
Metric F AP F AP
VisPiroT | 0.750 0.867 | 0.723 0.600
CLUSTER | 0.739 0.691 | 0.725 0.665
BFS 0.739 0.592 | 0.222 0.200

Table 2: Best AP and F-scores for the attribute ranking task.

For this task, we expected BFS to have an inherent advantage,
since BFS dashboards consist of all univariate distributions, provid-
ing more high-level, “global” information regarding each attribute.
However, both VisPiLoT and CLUSTER (which contained more “lo-
cal” information) performed better than BFS. The problem with
BFS is that given a limited dashboard budget of k = 10 visualiza-
tions that could be displayed, not all univariate distributions were
shown.For the Police dataset, it happened to select several impor-
tant attributes (related to contraband and search) to display in the
first 10 visualizations. However, for Autism, only visualizations

2This relevancy cutoff is visually-determined via the elbow method to indicate which
rank the Cramer’s V score drops off significantly.
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corresponding to binary diagnostic questions 1-4 fit in the dash-
board. So the poor ranking behavior comes from the fact that the
BFS generated dashboard failed to display the three most impor-
tant attributes (questions 5, 6 and 9) given the limited budget. This
demonstrates BFS’s lack of consistency across different datasets,
due to the fact that exhaustive exploration can only lead to limited
understanding of the data.

We see that VisP1LoT performs better than CLUSTER for the Po-
lice dataset and closely follows CLUSTER for the Autism dataset. It
is not entirely surprising that CLusTER did well, since it is a well-
established method for summarizing high-dimensional data [14].
For Autism, CLUSTER happened to pick the majority of visualiza-
tions (8/10) as univariate distributions that exhibited high-skew
and diversity, leading to more informed inference of attribute im-
portance. Since clustering seeks visualizations that exhibit diversity
in the shape of the data distributions, it could potentially result in
visualizations with many filter combinations. For the police dataset,
6 out of 10 visualizations had more than 2 filters, making it difficult
to interpret the visualization without an appropriate context to
compare against.

Overall, both BFS and CLUSTER do not provide consistent guar-
antees for highlighting important visualizations across different
datasets. In general, our results indicate that participants gain a
better overall dataset understanding regarding attribute importance
using VIsPILoT, with only a few targeted visualizations that tell the
“entire story”. This is without VisP1LoT being explicitly optimized
for the ranking task.

6 DISCUSSION OF STUDY RESULTS

To further understand how participants made use of the recom-
mended visualizations during their analysis, we analyzed the user
study transcripts through an open coding process [29] by two of
the authors. For each task in our study, we assigned a binary-valued
code to indicate whether or not a participant engaged in a particular
action or thought process. Table 4 highlights results from thematic
coding discussed in this section. We will use the notation [Partic-
ipant.DatasetAlgorithm] to refer to a participant engaging with
a dashboard created by an algorithm={1,2,3}={VisP1LoT, CLUSTER,
BFS} on a dataset ={A,B}={Police, Autism}.

6.1 The Choice of Contextual References

As discussed earlier, analysts often make use of related visualiza-
tions to form their expectation or mental model for unseen visual-
izations. We refer to the visualizations used for such purposes as
contextual references. The appropriate choice of a contextual ref-
erence (such as an informative parent) is necessary to ensure the
safety of insights derived through drill-downs. To understand how
“safe” the dashboards generated from each condition were, we exam-
ined the visualizations that participants compared against to inform
unseen visualizations. In particular, we thematically encoded the
participants’ use of contextual references based on their verbal ex-
planations for justifying their prediction task responses. As shown
in Table 3, we find that participants make more comparisons in
total using VisPiLoT than CLUSTER and BFS.

Participants can (and often do) make comparisons against more
than one type of contextual references to obtain their prediction.

Doris Jung-Lin Lee et al.

Algorithm | Parent Sibling Relative Overall ‘ Total

VisPiLot 12 8 0 11 31
CLUSTER 4 0 7 8 19
BFS 0 5 1 8 14

Table 3: Out of 12 participants, the number of participants
who made use of each contextual reference across the two
datasets. Participant behavior shows a similar trend in indi-
vidual datasets. VIsPILOT participants made more compar-
isons in general and against parents compared to the base-
lines.

We uncovered four main classes of contextual references, described
below using the example visualization V;=gender=F,age=21-30
(in the order of most to least similar to V;):

(1) Parent : Comparison against a visualization with one filter
removed (e.g., gender=F)

(2) Sibling : Comparison against a visualization that shares
the same parent. In other words, the filtered attributes are
the same, but one filter has a different value. (e.g., gen-
der=F,age=60+)

(3) Relative : Comparison against a visualization that shares
some common ancestor (excluding overall), but not necessar-
ily the same parent. These visualizations share at least one
common filter, but with more than one filter or filter value
being different. (e.g., gender=F,age=60+,race=White)

(4) Overall : Comparison against the distribution that describes
the overall population (no filters applied).

Studying the participants’ use of contextual references reveals
inherent challenges that arise from using the BFS and CLUSTER
dashboards. For CLUSTER, participants mainly compared against
relatives and overall visualizations. Since CLUSTER optimizes the
diversity of distributions amongst the selected visualizations, these
visualizations had up to 4 filters and were disconnected from each
other. For this reason, in many cases, participants could only rely
on relatives and the overall visualization as contextual references.
For example, P4.A2 pointed at a 4-filter visualization with extreme
values (100% for warning; 0% for arrest and ticket) and indicated
how “a lot of [the visualizations] are far too specific. This is not
very helpful. You can’t really hypothesize that all people are [sic]
going to be warned, because it is such a specific category, it might
Jjust be one person”. He further explained how he “would not want to
see the intersections [visualizations with many filters] at first and
would want to see all the bases [univariate summaries] then dig in
from there.” The lack of informative contextual references in the
CLUSTER dashboard is also reflected in how analysts exhibited high
variance and deviation in their prediction responses.

Furthermore, improper comparisons against contextual refer-
ences often make it difficult to interpret displayed visualizations. In
particular, when visualizations composed of multiple filter condi-
tions were shown in CLUSTER dashboards, 25% of the participants
had trouble making sense of the meaning of a filter for at least one
of the datasets (e.g., understanding that gender=F AND age=60+
corresponds to female drivers with ages larger than 60 years old) at
some point during the study. In contrast, as shown in Table 4, this
confusion only happened once for BFS and none for VisPiLot. This
is due to the fact that CLuSTER dashboards seemed random to the
users, making it challenging to find “close” contextual references
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VisPiror | CLUSTER | BFS
Difficulty Interpreting Visualizations 0 3 1
Misjudged Significance of Population Size | 0 4 1
Interpretable “Human-like” Dashboard 5 1 0
Number of Insights (Police) 11 8 9
Number of Insights (Autism) 16 6 11

Table 4: Summary of qualitative insights from thematic coding. We record the total number of insights based on overall dataset
findings that were independently discovered by more than two different participants. For each participant, we coded the ab-
sence or presence of 7 such insights for the Police dataset and 6 insights for the Autism dataset.

to compare against. In contrast, the linear ordering of BFS and
hierarchical ordering of VisPILoT were natural and interpretable
for participants.

For BFS, most comparisons were based on the overall visualiza-
tion and siblings. Due to the sequential level-wise picking approach,
the overall visualization corresponded to the immediate parent of
all of the dashboard visualizations generated by BFS (all of which
are univariate distributions for k = 10), so they are not explicitly
recorded as a parent. While the overall and sibling comparisons
can be informative, the incomplete comparisons, due to the limited
number of first-level visualizations displayed, can result in flawed
reasoning, as observed in the Autism prediction task. In contrast,
for VisP1LoT, almost all users compared against the overall one and
parents, while some also exploited sibling comparisons to make
weaker guesses for less-frequently observed attributes (e.g., using
a 2-filter sibling visualization involving driver_age to infer an-
other 2-filter visualization involving driver_age with a different
parent.)

6.2 Interpretability of Hierarchical Layouts

In the post-study interviews, participants cited hierarchical layout
as a key reason for why they preferred VisP1LoT recommendations.
Even though participants were never explicitly told what the edge
connections between the visualizations meant during the study,
they were able to interpret the meaning of the dashboards effort-
lessly through VisPiLot’s hierarchical layout. For example, P1.A1
stated that “the hierarchical nature [is] a very natural flow...so when
you are comparing, you don’t have to be making those comparisons in
your head, visually that is very pleasing and easy to follow.” Likewise,
P9 described how VisP1Lot’s hierarchical layout for the Autism
dataset was a lot easier to follow than the Police dataset shown in
the table layout for CLUSTER:

IfI had to look at this dataset in the format of the other one, this
would be much more difficult. It was pretty hard for me to tell in
the other one how to organize the tree, if there was even a tree to be
organized. I like this layout much better, I think this layout allows
me to approach it in a more meaningful way. I can decide, what
do I think matters more: the overall trend? or the super detailed
trends? and I know where to look to start, in the other one, every
time I go back to it, I would say, where’s the top level, where’s the
second level? I mentally did this. Like when you asked me that first
question, it took much longer to find it, because I literally have to
put every chart in a space in my head and that took a lot longer
than knowing how to look at it.

At the end of the study, some participants who were assigned dash-
board conditions with 5 X 2 table layouts (i.e., BFS and CLUSTER

conditions) sketched and explained how they would like the layout
of the visualizations to be done. These participants expressed that
they wanted “groupings” or layouts that arranged visualizations
with the same attribute together. Other participants advocated for
isolating the overall visualization outside of the dashboard table for
facilitating easier comparisons. Both of these suggestions provide
further motivation for our hierarchical organization of visualiza-
tions. Our findings echo prior work on visualization sequences and
storytelling [7, 17, 22, 32] in that analysts prefer visualization se-
quences structured hierarchically based on shared data properties,
such as ordering by increasing levels of aggregation.

Since we did not inform participants about how the dashboards
were generated, it was surprising to see that some participants
presumed that certain dashboards were hand-picked by a human
analyst and hypothesized what this fictitious analyst’s intentions
were (e.g., “It seems like the researcher who created this dashboard
was specifically looking at people of Asian descent and people who
are 60 or older.” [P7.A1]). Table 4 shows how 5 out of 12 participants
referred to the VisPiLoT dashboards as if they were generated by a
human, whereas only 1 participant for CLUSTER and none for BFS
made such remarks>. At the end of the study, many were surprised
to learn that the VisPiLoT dashboard was actually picked out by an
algorithm, indicating that VisPiLoT could automatically generate
convincing dashboards similar to ones that were authored with
human intention. The interpretability of VisPiLot dashboards may
have contributed to the increased number of insights discovered
in both datasets compared to the two baselines, as summarized in
Table 4.

6.3 Limitations of VisPiLoT

As described earlier, since the details of how the dashboards were
obtained were not explained to the users during the study, some
users expressed that they were initially confused by VisPrLoT as
not all variables were present in the dashboard. Others also found
it confusing that the addition of filters did not always correspond
to the same variables. For example, P2.A1 felt that the dashboard
was intentionally biased:
I feel like this one, not all the data is here, so we are already telling
a story, you are trying to steer the viewer to look at certain things.
And the focus seems to be on where the arrest rate is high. You
probably could have found other things that led to ticket being high,
but you didn’t pull those out. You are trying to see if there are other
factors that lead to more arrests.
3We encoded this phenomenon by looking at instances where a participant either

explicitly referred to a person who picked out the dashboard or implicitly described
their intentions through personal pronouns.
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This sentiment is related to participants’ desire to perform their own
ad-hoc querying alongside the dashboard to inspect other related
visualizations for verifying their hypothesis. For example, P7.A1
wanted to inspect all other first-level visualizations for driver’s
race to assess its influence. P7.A1 expressed that while he had
learned many insights from the dashboard, “the only thing I don’t
like is I cannot control the types of filter, which is fixed.” Since our
current goal was to simply provide an informative dashboard and
evaluate its utility, the present version of VIisPrLoT is limited in
its interactivity and the extent of free-form data exploration it
supports. This result also points to how VisP1LoT could serve as a
helpful assistant alongside other conventional visualization tools,
such as Tableau. Outside the context of the user study, it is essential
to explain how VIsPILOT selects the visualizations in an easy and
interpretable manner to establish a sense of the summarization
objectives for the users and help them make better inferences with
the dashboard.

Since the goal of our study is to evaluate whether VisP1LoT can
assist users in drill-down exploration, our preliminary study is
limited to comparisons against baselines stemming from conven-
tional approaches for multidimensional data exploration. While we
understand how the VisP1LoT study condition may confound the hi-
erarchical layout with the algorithmic choice of visualizations, our
intention for the baseline was to simulate how analysts generate a
large number of visualizations individually, typically arranged in a
table grid layout, rather than using a hierarchical layout. Further
evaluation comparing how different hierarchically-displayed visu-
alization selection algorithms assist users in drill-down exploration
is a direction of future work.

7 OTHER RELATED WORK

Our work draws from past research in multidimensional data ex-
ploration and fallacies in visual analytics; we discuss work that we

haven’t covered so far in this section.

Guided Exploration of Multidimensional Data. Given a dataset,
tools such as Tableau support automatic generation of visualiza-
tions based on graphical presentation rules [26, 41]. A more recent

body of work automatically selects visualizations based on statis-
tical measures, such as scagnostics and deviation. For discovering

interesting conditional structures in scatterplots, Anand et al. [4]

apply randomized permutation tests to select partitioning variables

that reveal interesting small multiples using scagnostics [35, 40].
For recommending visualizations for assessing data quality, Kan-
del et al. [20] uses mutual-information as a distance metric for

recommending views that highlight anomalies, as well as related

views that explains the value distribution of the anomalous views.
Vartak et al. [36, 37] uses deviation to recommend visualization

attributes that highlight differences in two populations, while Sid-
diqui et al. [33] and Macke et al. [25] employ deviation to find

similar visualizations. Qetch [27] and ShapeSearch [34] craft more

sophisticated deviation measures to identify visualizations of inter-
est. Our work extends these deviation-based measures to formulate

user expectation. However, unlike existing work, we concentrate

on informativeness rather than the exhaustive enumeration of the

entire space, which enables our system to avoid drill-down fallacies.
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Preventing Biases and Statistical Fallacies. Visualizations are
powerful representations for discovering trends and patterns in a
dataset; however, cognitive biases and statistical fallacies could mis-
lead analysts’ interpretation of those patterns [3, 5, 11, 38, 43]. Wall
et al. [38] present six metrics to systematically detect and quantify
bias from user interactions in visual analytics. These metrics are
based on coverage and distribution, which focus on the assessment
of the process by which users sample the data space. Alipourfard et
al. [3] presents a statistical method to automatically identify Simp-
son’s paradoxes by comparing statistical trends in the aggregate
data to those in the disaggregated subgroups. Zgraggen et al. [43]
present a method to detect the presence of the multiple comparisons
problem in visual analysis. This paper, on the other hand, focuses
on a novel type of fallacy that occurs during drill-down exploration
that has not been addressed by past work.

8 CONCLUSION

Common analytics tasks, such as causal inference, feature selec-
tion, and outlier detection require studying data distributions at
different levels of data granularity [4, 15, 17, 42]. However, without
knowing what subset of data contains an insightful distribution,
manually exploring distributions from all possible data subsets can
be tedious and inefficient. Moreover, when examining data subsets
by adding one filter at a time, analysts can fall prey to the drill-
down fallacy, where they mistakenly attribute the interestingness
of a visualization to a “local difference”, while overlooking a more
general explanation for the root cause of the behavior. To address
these issues, we presented VisPILOT, an interactive visualization
recommendation system that automatically selects a small set of
informative and interesting visualizations to convey key distribu-
tions within a dataset. Our user study demonstrates that VisPiLot
can guide participants toward more informed decisions for retriev-
ing interesting visualizations, judging the relative importance of
attributes, and predicting unseen visualizations than compared to
two other baselines. Study participants also find dashboard gener-
ated by VisPILOT to be more interpretable and “human-like”, leading
to more discovered insights. Our work is one of the first automated
systems that guides analysts across the space of data subsets by
summarizing key insights with safety guarantees—a step towards
our grander vision of developing intelligent tools for accelerating
and assisting with visual data discovery.
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